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Abstract

This paper studies a multi-stage stochastic programming model for large-scale net-

work revenue management. We solve the model by means of the so-called Expected Future

Value (EFV) decomposition via scenario analysis, estimating the impact of the decisions

made at a given stage on the objective function value related to the future stages. The

EFV curves are used to define bid prices on bundles of resources directly, as opposed

to the traditional additive bid prices. Numerical results show that the revenue outcome

of our approach is generally comparable to that of state-of-the-art additive approaches,

and tends to be better when the network structure is complex. Moreover, our approach

requires significantly less computation time than the direct optimization, taking only up

to 5 minutes for large-scale problem instances (up to 2.6 million variables and 2.3 million

constraints).
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1 Introduction

Revenue management aims to maximize the revenue of selling limited quantities of a set of

resources by means of demand management decisions. A resource in revenue management

is usually a perishable product/service, such as seats on a single flight leg or hotel rooms

for a given date. It is common in revenue management that multiple resources are sold in

“bundles”. For instance, connecting flight legs are sold on a single ticket and hotel customers

may stay multiple nights. In this case, the lack of availability of any resource will prevent

sales of the bundle, which creates interdependence among these resources. Consequently, the

demand management decisions of these resources must be coordinated, which is generally

referred to as the network revenue management problem [17].

The state-of-the-art approach to this problem is to use bid-price policies [16], in which a

bid price is generated for each bundle, and a request to purchase the bundle is accepted if

and only if the associated revenue exceeds the bid price. Bid-price policies are not optimal,

in general, but they are very popular because they are intuitive and easy to implement, see

[16, 17]. Bid prices can be generated using either an “additive” or a “non-additive” approach

[1]. In the additive approach, a bid price is generated for each resource, and the bid price of

a bundle is defined as the sum of the bid prices of all resources used by the bundle. On the

other hand, in the non-additive approach a bid price is generated directly for each bundle.

A number of optimization models have been proposed for generating additive bid prices,

mainly differing in the way uncertainty in demand is incorporated. The simplest and most

popular model is the so-called Deterministic Linear Programming (DLP) due to D’Sylva

[6], Glover et al. [7], and Wong, Koppelman and Daskin [19]. The demand for each bundle,

which is stochastic by nature, is replaced by the mean value. The objective of the optimization

model is to maximize the revenue such that sales are bounded by the mean demand and the

capacities on the resources are not violated. The bid prices of the resources are calculated as

the dual variables of the capacity constraints [7, 19]. Talluri and van Ryzin [16] showed that

DLP is asymptotically optimal as capacity and demand increase linearly and with the same

rate. The main drawback of DLP is that it considers only the mean demand and ignores all

the uncertainty. As a result, it could suffer when the variance of demand is high.

A natural extension of DLP is to replace the mean demand by the demand distribution,

which is called the Probabilistic Non-Linear Programming (PNLP) model. A Linear Pro-

gramming (LP) version of PNLP was proposed by Wollmer in [18] by using discrete scenarios

to represent the demand distribution. In the same manner as in DLP, the bid prices of the
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resources are calculated as the dual variables of the capacity constraints. Higle and Sen [8]

converted the PNLP into a Stochastic Programming (SP) simple recourse model.

The Randomized Linear Programming (RLP) method was first proposed by Smith and

Penn [14], and was then further investigated by Talluri and van Ryzin [16]. Basically, RLP

considers a finite set of demand scenarios with their corresponding weights, and then solves a

different DLP for each scenario. The bid prices of the resources are calculated as the weighted

average of the Lagrange multipliers corresponding to the DLPs using scenario demand rather

than mean demand. Topaloglu [13] has recently showed that RLP is asymptotically optimal

under the abovementioned conditions for DLP.

PNLP and RLP consider different scenarios for the total demand over the whole booking

horizon and ignore the potential inter-temporal uncertainty of demand along the booking

horizon. In order to account for these dynamics, Higle and Sen [8] studied a two-period SP

model, in which the initial allocation of resources is revised based on the demand observed in

the first period. Numerical results were provided for small and medium networks. Chen and

Hommem-de-Mello [4] also studied a two-period SP model and proposed to handle the multi-

period problem by solving a sequence of two-period models. Möller, Römisch and Weber

[10, 11] were the first to study a multi-period SP model, however their approach was only

tested on single-resource instances. DeMiguel and Mishra [5] studied another multi-period SP

model, where protection levels are not modeled. They focus on examining different methods

for generating the scenarios trees, and numerical results are provided for small and medium

sized networks.

Additive bid prices are easy to implement and popular in practice, however non-additive

bid prices could provide a more accurate reflection of the opportunity cost of bundles. As

argued in [15], the opportunity cost of a bundle is basically determined by the most con-

straining resource used by the bundle, and therefore additive bid prices could be restrictive

compared to non-additive ones. Bertsimas and Popescu [1] propose a framework for gen-

erating non-additive bid prices. Given a model for network revenue management, the bid

price of a bundle is calculated as the change on the expected revenue when the capacity on

each resource used by the bundle is reduced by one unit. However this approach can be

computationally expensive, since a different optimization problem needs to be solved for each

bundle.

In this study, we propose an SP based method for generating non-additive bid prices.

Noticing that the high computational complexity of multi-period SP models has prevented
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their application in large networks, we use the Expected Future Value (EFV) decomposition

algorithm proposed in [3]. Adopting a Stochastic Dynamic Programming (SDP) approach

[12], the EFV decomposition algorithm first combines time periods into stages, then divides

the SP problem into intra-stage subproblems that are linked to each other, and finally solves

them iteratively. The crucial ingredient of the algorithm is the family of so-called EFV curves,

estimating the impact of the decisions to be made at a given stage on the objective function

value related to the future stages. The EFV curves are used to define non-additive bid prices

on bundles directly.

We apply the EFV decomposition algorithm to the two multi-period SP models proposed

in [11] and [5] respectively. Numerical results show that the EFV decomposition algorithm

requires significantly less computation time than the direct optimization of the corresponding

SP model, taking only up to 5 minutes for large-scale problem instances (up to 2.6 million

variables and 2.3 million constraints). The revenue performance of the non-additive bid prices

from EFV is tested in a rolling horizon simulation in two test networks. Results show that,

in general, the non-additive bid prices from EFV lead to comparable revenues to those from

additive SP models. Moreover, when bundles containing a large number of resources are

present in the network, the non-additive bid prices from EFV can improve the revenue of

additive SP models.

The remainder of the paper is organized as follows. Section 2 introduces the general SP

formulation and reviews the EFV decomposition algorithm. The network revenue manage-

ment problem and the two multi-period SP models are introduced in Section 3. In Section

4, we explain how the EFV decomposition algorithm can be used to generate non-additive

bid prices. Section 5 is devoted to the computational experience, in which we examine the

solution accuracy, computation time and revenue performance of our approach. Finally, we

conclude the paper and discuss future research directions in Section 6.

2 The EFV decomposition algorithm

In this section, we familiarize the reader with the EFV decomposition algorithm for solving

stochastic programs proposed in [3]. Section 2.1 presents the general SP formulation. The

algorithmic framework of the EFV decomposition algorithm is introduced in Section 2.2. The

crucial ingredient of the algorithm, i.e., the EFV curves, is explained in detail in Section 2.3.
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2.1 The general SP formulation

Consider the following dynamic multi-linking constraint deterministic program, in which

decisions are taken over a time horizon T with T periods:

maximize
∑

t∈T

ctxt (2.1)

s.t.

∑

t∈{τ−1,τ}

At
τxt = bτ ∀τ ∈ T (2.2)

xt ∈ Xt ∀t ∈ T , (2.3)

where xt is the vector of variables related to time period t, ct is the row vector of the

objective function coefficients associated with xt, At
τ is the coefficient matrix in the constraints

related to time period τ for xt, and bτ is the right-hand-side (rhs) vector for the constraint

related to time period τ , for τ ∈ T . Additional constraints on xt, such as non-negativity

and 0–1 constraints, are modeled in Xt. All vectors and matrices have the appropriate

dimensions. Hereafter, components of xt that have non-zero coefficients in At
t+1, will be

referred as “linking” variables, since they will affect the decisions in period t + 1. Note that

in this formulation, and for the sake of clarity, variables in a given period will affect the ones

in the next period, but not further periods into the future. As we will see in Section 4, this

assumption is satisfied by the network revenue management problem.

The stochasticity of the objective function and the rhs vectors is modeled by means of

a scenario tree, such as the one illustrated in Figure 1. Each node in the tree represents a

point in time where a decision will be made. Once a decision is made, some contingencies

can arise and information related to these contingencies is available at the beginning of the

period. Each root-to-leaf path in the tree represents one specific scenario and corresponds

to one realization of the whole set of uncertain parameters. Each node in the tree can be

associated with a scenario group, such that two scenarios belong to the same group from a

given time period provided that they have the same realizations of the uncertain parameters

up to that period. Accordingly with the non-anticipativity principle, for example, see [2],

scenarios belonging to the same group at a given time period t should have the same value

for variables xτ with τ ≤ t, for all t ∈ T .

In the following we introduce the notation for describing the elements of the scenario tree:

Ω, set of scenarios, consecutively numbered.
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t = 1 2 3 4 5 6 7

e = 1 e = 2

1 2 3 4
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16
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21

22

23

24

25

T = {1, . . . , 7}

Ω = Ω1 = {14, 15, . . . , 25}

Scenario 14 = path 1, 2, . . . , 5, 8, 14

t(12) = 6; ρ(12) = 7

G2 = {5, . . . , 25}

A2 = {5, 6, 7}

C5 = {5, 8, 9, 14, . . . , 17}

S3 = {3, 4, 5, 6, 7, . . . , 24, 25}

P1 = {4}

Figure 1: An example of a scenario tree.

G, set of scenario groups, consecutively numbered.

wg, likelihood associated with scenario group g, for g ∈ G.

t(g), time period for scenario group g, for g ∈ G.

Ωg, set of scenarios in group g, such that the scenarios that belong to the same group are

identical in all realizations of the uncertain parameters up to period t(g), for g ∈ G.

Notice that Ωg ⊆ Ω. From now on we will without distinction use nodes in the scenario

tree and scenario groups.

ρ(g), immediate ancestor node of node g, for g ∈ G. (A dummy node acts as the ancestor of

the root node.)

Sg, set of nodes in the subtree whose root is node g, for g ∈ G.

In order to present the stochastic version of Model (2.1)-(2.3), let the following notation

be used for the variables and the uncertain parameters.
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Variables:

xg, vector of variables under scenario group g, for g ∈ G. It replaces the vector xt(g) in the

deterministic model.

Uncertain parameters:

cg, vector of the objective function coefficients for the variables xg under scenario group g,

for g ∈ G. It replaces the vector ct(g) in the deterministic model.

bg, rhs of the constraints under scenario group g, for g ∈ G. It replaces the vector bt(g) in the

deterministic model.

The Deterministic Equivalent Model (DEM) of the stochastic program with complete recourse

for maximizing the expected objective function value over the set of scenarios has the following

so-called compact representation as an alternative to Model (2.1)-(2.3),

maximize
∑

g∈G

wgcgxg (2.4)

s.t.

∑

δ∈{ρ(g),g}

A
t(δ)
t(g)

xδ = bg ∀g ∈ G (2.5)

xg ∈ Xt(g) ∀g ∈ G. (2.6)

2.2 The EFV decomposition algorithm

The EFV decomposition algorithm adopts a stochastic dynamic programming approach [12].

It aims to approximate the solution value of DEM through an iterative procedure, which

stops if the relative change of solution value between two consecutive iterations is below a

tolerance parameter ǫ > 0.

The EFV decomposition algorithm combines consecutive time periods into stages, as

shown in Figure 1. The following notation describing the stages will be used throughout the

paper:

E, set of stages in the time horizon.

Ge, set of scenario groups from stage e, for e ∈ E .
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Ae, set of scenario groups associated with the root nodes from stage e, for e ∈ E . Notice

that Ae ⊆ Ge.

Ca, set of nodes in the subtree rooted at node a with nodes in Ge, for a ∈ Ae, e ∈ E .

Pa, set of leaf nodes in Ca, for a ∈ Ae.

Once the time horizon has been split into stages, the DEM can be divided into subprob-

lems, which are connected by the linking variables. For each e ∈ E and a ∈ Ae, we associate

a subproblem with the subtree defined by node set Ca. In Figure 1, C5 = {5, 8, 9, 14, . . . , 17}

defines a subtree/subproblem in stage 2 with node 5 as the root node. In this example, there

are in total four subtrees/subproblems marked by dashed boxes.

The subproblem defined by node set Ca, a ∈ Ae, e ∈ E , can be written as:

σa := maximize
∑

g∈Ca

wgcgxg +
∑

g∈Pa

λg(xg) (2.7)

s.t.

∑

δ∈{ρ(g),g}

A
t(δ)
t(g)x

δ = bg ∀g ∈ Ca (2.8)

xg ∈ Xt(g) ∀g ∈ Ca (2.9)

xρ(a) = xρ(a) (2.10)

where xρ(a) is the vector of variables the subproblem receives from its ancestor node ρ(a),

in which only the linking components will be actually used in the subproblem, and λg(xg)

represents the expected future objective function value under the set of scenarios Ωg, for

each leaf node g ∈ Pa. The function λg(xg) is therefore called the “Expected Future Value”

(EFV) curve of node g. Since the exact EFV curves are generally difficult to compute, the

EFV decomposition algorithm proposes to approximate them by piecewise linear and concave

functions.

In short, each iteration of the EFV decomposition algorithm consists of a front-to-back

scheme, followed by a back-to-front scheme. The front-to-back scheme solves subproblems

from stage 1 to stage |E|, passing the obtained values of linking variables onto the subproblems

in the next stage. The back-to-front scheme goes from stage |E| to stage 1. In each stage, it

first refines the approximations of the EFV curves and then solves the associated subproblems

based on those refined approximations.
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2.3 Approximating the EFV curves

In this section, we will explain how the approximations of the EFV curves are obtained and

refined in the back-to-front scheme.

Consider a leaf node g in stage e, g ∈ Pa, a ∈ Ae, e ∈ E . The descendent subproblems of

node g in stage e + 1 are given by node sets Ca, ∀a ∈ Sg ∩ Ae+1. We can express λg(xg) as

the sum of the optimal objective function value of these subproblems:

λg(xg) =
∑

a∈Sg∩Ae+1

waσa. (2.11)

Let xg be the values of xg obtained in the previous front-to-back scheme. We obtain an

approximation of the EFV curve λg(xg) through an ad-hoc sensitivity analysis of σa against

xg around the values of xg. These values of xg around xg are called reference levels.

Let Zg denote the set of the reference levels for xg. For each reference level z ∈ Zg, we

solve the subproblem defined by Ca by fixing the values of variables of xg at z. Let σaz be

the solution value of the subproblem and πaz be the dual variables of constraints (2.10). Due

to the concavity of this subproblem, we have:

σa ≤ σaz + πaz(xg − z), (2.12)

and together with Formula (2.11), we obtain:

λg(xg) ≤ µgz
e+1 + πgz

e+1x
g, (2.13)

where µgz
e+1 :=

∑

a∈Sg∩Ae+1 wa(σaz − πazz) and πgz
e+1 :=

∑

a∈Sg∩Ae+1 waπaz are constant

terms. Combining Inequality (2.13) obtained for multiple reference levels will give us an upper

envelope of a finite family of linear functions, continuous and concave but not differentiable

everywhere, see Figure 2 for an example.

We use this envelope as an approximation of the EFV curve λg(xg), which means that

constraints (2.13) will be added to subproblem (2.7)-(2.10), for all reference levels z ∈ Zg,

where λg(xg) will be replaced by λg. Note that since the non-linking components of xg do

not affect the objective function value of future subproblems, they have zero coefficient in

πaz, and subsequently zero coefficient in πgz
e+1.

The approximations of the EFV curves are refined in each back-to-front scheme by gen-

erating new reference levels.
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Figure 2: An example of an EFV curve and its approximation.

3 The network revenue management problem

As discussed in the introduction, two multi-period SP models have been proposed for network

revenue management in [11] and [5] respectively. In the following we give the formulations of

both models.

The following notation is used to describe the network revenue management problem:

Sets:

L, set of resources (with size L).

I, set of bundles (with size I).

J , set of fare classes (with size J).

Il, set of bundles using resource l, for l ∈ L.

Deterministic parameters:

fij, fare of bundle-class ij, for i ∈ I, j ∈ J .

Cl, capacity on resource l, for l ∈ L.

Uncertain parameters:

dg
ij, demand for bundle-class ij in period t(g) at node g, for i ∈ I, j ∈ J , g ∈ G.
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Variables:

bg
ij, number of accepted bookings for bundle-class ij in period t(g) at node g, for i ∈ I,

j ∈ J , g ∈ G.

Bg
ij, cumulative number of accepted bookings of bundle-class ij along the path from the root

to node g, for i ∈ I, j ∈ J , g ∈ G.

P
ρ(g)
ij , protection level of bundle-class ij set at node ρ(g) for cumulative accepted bookings

along the path from the root to node g, for i ∈ I, j ∈ J , g ∈ G. (Notice that all the

nodes with the same immediate ancestor share the same protection level.)

3.1 The model with Protection Levels

A stochastic programming model with protection levels and satisfying the non-anticipativity

constraints was proposed in [10] and [11]. The DEM formulation of the model is the following:

maximize
∑

g∈G

wg
∑

i∈I

∑

j∈J

fijb
g
ij (3.1)

s.t.

Bg
ij = B

ρ(g)
ij + bg

ij ∀g ∈ G, i ∈ I, j ∈ J (3.2)

Bg
ij ≤ P

ρ(g)
ij ∀g ∈ G, i ∈ I, j ∈ J (3.3)

∑

i∈Il

∑

j∈J

P
ρ(g)
ij ≤ Cl ∀g ∈ GT , l ∈ L (3.4)

0 ≤ bg
ij ≤ dg

ij ∀g ∈ G, i ∈ I, j ∈ J , (3.5)

where GT is the set of nodes in the last period of the time horizon, T . Constraints (3.2) define

the booking balance equations and constraints (3.3) ensure that the cumulative number of

accepted bookings along the path from the root to node g cannot exceed the protection level

set at the ancestor node ρ(g). The protection levels across bundles and class fares are then

bounded by the capacity on the resources in constraints (3.4). Constraints (3.5) reflect that

the number of accepted bookings should be not greater than the demand. Notice that the

non-anticipativity constraints are satisfied by construction. We will refer to this model as

DEMP.

Note that in DEMP, the only linking variables are Bg
ij , since they determine the remaining

capacity on the resources. It is easy to see that Bg
ij is only present in constraints associated

with its own period, t(g), and the next one.
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3.2 The model without Protection Levels

A model partially violating the non-anticipativity principle was proposed in [5]. The DEM

formulation of the model is the following:

maximize
∑

g∈G

wg
∑

i∈I

∑

j∈J

fijb
g
ij (3.6)

s.t.

Bg
ij = B

ρ(g)
ij + bg

ij ∀g ∈ G, i ∈ I, j ∈ J (3.7)
∑

i∈Il

∑

j∈J

Bg
ij ≤ Cl ∀g ∈ GT , l ∈ L (3.8)

0 ≤ bg
ij ≤ dg

ij ∀g ∈ G, i ∈ I, j ∈ J . (3.9)

We will refer to this model as DEMN. Notice that here constraints (3.8), imposing that

the total number of accepted bookings over the whole booking horizon is restricted by the

capacity on the resources, replace constraints (3.3) and (3.4) in DEMP. As a consequence,

DEMN has fewer variables and constraints than DEMP.

Contrary to DEMP, in which the same protection level is chosen for all successor nodes,

in DEMN, different allocations can be chosen for different successors. In other words, DEMN

assumes perfect information on which realization of demand will happen in the next period.

4 EFV based non-additive bid prices

In this section, we propose to use the EFV decomposition algorithm introduced in Section 2

to solve both DEMP and DEMN, as well as derive non-additive bid prices. We denote the

two resulting algorithms by EFVP and EFVN respectively.

In the last back-to-front step of EFVP and EFVN, we solve the unique subproblem in stage

1 and derive the non-additive bid prices. In the following, we write down this subproblem

for both cases.

Let us first look at the subproblem in stage 1 in algorithm EFVP. We have that

maximize
∑

g∈G1

wg
∑

i∈I

∑

j∈J

fijb
g
ij +

∑

g∈P1

λg (4.1)
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s.t.

Bg
ij = B

ρ(g)
ij + bg

ij ∀g ∈ G1, i ∈ I, j ∈ J (4.2)

Bg
ij ≤ P

ρ(g)
ij ∀g ∈ G1, i ∈ I, j ∈ J (4.3)

∑

i∈Il

∑

j∈J

P
ρ(g)
ij ≤ Cl ∀g ∈ P1, l ∈ L (4.4)

0 ≤ bg
ij ≤ dg

ij ∀g ∈ G1, i ∈ I, j ∈ J (4.5)

λg ≤ µgz
2 +

∑

i∈I

∑

j∈J

πgz
2,ijB

g
ij ∀g ∈ P1, z ∈ Zg. (4.6)

Hereafter, we will refer to constraints (4.6) as the EFV curve constraints of leaf nodes in

stage 1.

Similarly, in algorithm EFVN, the subproblem in stage 1 reads as follows

maximize
∑

g∈G1

wg
∑

i∈I

∑

j∈J

fijb
g
ij +

∑

g∈P1

λg (4.7)

s.t.

Bg
ij = B

ρ(g)
ij + bg

ij ∀g ∈ G1, i ∈ I, j ∈ J (4.8)
∑

i∈Il

∑

j∈J

Bg
ij ≤ Cl ∀g ∈ P1, l ∈ L (4.9)

0 ≤ bg
ij ≤ dg

ij ∀g ∈ G1, i ∈ I, j ∈ J (4.10)

λg ≤ µgz
2 +

∑

i∈I

∑

j∈J

πgz
2,ijB

g
ij ∀g ∈ P1, z ∈ Zg. (4.11)

Similarly, we will use the EFV curve constraints term when referring to (4.11).

Before the bid prices are defined, there are two useful observations to be made. For a

given EFV curve constraint, the coefficient πgz
2,ij of variable Bg

ij can be seen as an estimation

of the future effect in revenue of a unit increase of the cumulated bookings Bg
ij . Let Γgz ≥ 0

be the dual variable of the EFV curve constraint of g ∈ P1, z ∈ Zg. Using the Duality Theory,

we know that
∑

z∈Zg Γgz = 1, while Γgz will be equal to zero when the EFV curve constraint

is not binding. Therefore, for a given g, Γgz can be seen as a measure of the importance of

the binding EFV curve constraints.

In both formulations, once the corresponding stage 1 subproblem is solved, the bid price

for bundle i is defined as:

max
{

∑

g∈P1

∑

z∈Zg

Γgzπgz
2,ij : j ∈ J

}

, (4.12)

where we combine the slopes πgz
2,ij given by all the EFV curve constraints of leaf nodes in

stage 1, using the dual variables Γgz.
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Using the definition of πgz
2,ij given in Section 2.3, πgz

2,ij :=
∑

a∈Sg∩Ae+1 waπaz
ij , the term

being maximized in (4.12) can be rewritten as

∑

g∈P1

∑

z∈Zg

Γgzπgz
2,ij =

∑

g∈P1

∑

z∈Zg

Γgz
∑

a∈Sg∩Ae+1

waπaz
ij

=
∑

g∈P1

∑

a∈Sg∩Ae+1

wa
∑

z∈Zg

Γgzπaz
ij

=
∑

g∈P1

∑

a∈Sg∩Ae+1

∑

z∈Zg

wa Γgzπaz
ij ,

which is a weighted average of the slopes πaz
ij , since

∑

g∈P1

∑

a∈Sg∩Ae+1

∑

z∈Zg wa Γgz = 1.

Finally, the bid prices derived from DEM are additive, while with our approach the bid

prices are calculated directly for each bundle, and therefore they are not additive, in general.

5 Computational experience

5.1 Overview

Our computational experience consists of two parts. The first part focuses on the perfor-

mance of EFV as a decomposition algorithm, which includes testing its solution accuracy

and computation time compared to DEM. The second part focuses on the revenue perfor-

mance of the non-additive bid prices generated by EFV, which consists of running a rolling

horizon simulation [5, 15] and comparing the revenues generated by EFV with DEM and

state-of-the-art additive approaches.

Recall that the EFV decomposition algorithm will stop if the relative change of solution

value between two consecutive iterations is below a tolerance parameter ǫ > 0. Throughout

our numerical experiments, we set ǫ = 0.1%. We use the optimization engine CPLEX v11.0

[9] for solving the LP problems arising. Our experiments were conducted on a PC with a 2.33

GHz Intel Xeon dual core processor, 8.5 Gb of RAM and the operating system was LINUX

Debian 4.0.

The remainder of the section is organized as follows. We will describe the test networks

and the demand model in Section 5.2. The results on solution accuracy and computation

time will be given in Section 5.3. Finally, we present the results on revenue performance in

Section 5.4.
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5.2 The test networks and demand model

In this numerical study, we consider a medium network and a large one. Next, we will

introduce first the dimensions and then the structure of our test networks. Finally, we will

discuss the fare structure and the demand model.

Recall that the dimensions of a network are given by its number of bundles I, number of

fare classes J and number of resources L. We also include here the capacity on the resources

Cl. The dimensions of our test networks can be found below:

Medium network: I = 18, J = 2, L = 10, Cl = 200 ∀l ∈ L.

Large network: I = 200, J = 2, L = 100, Cl = 200 ∀l ∈ L.

In terms of network structure, we follow the standard practice in the literature to use

randomly generated networks with a hub-and-spoke structure [1, 5, 15], resembling networks

seen in hub-based airlines.

Among the resources, the first half are spoke-to-hub flight legs and the second half are

hub-to-spoke flight legs. The bundles are generated as follows. In the medium network, the

first 10 bundles each use one of the 10 legs, and the remaining 8 each use two random legs,

spoke1-to-hub and hub-to-spoke2. In the large network, the first 100 bundles each use one of

the 100 legs, the next 75 each use two random legs, spoke1-to-hub and hub-to-spoke2, and

finally the last 25 each use four random legs spoke1-to-hub, hub-to-spoke2, spoke2-to-hub

and hub-to-spoke1.

We now present the way the fares and the demands have been generated. In the following,

we will denote by N tr(µ, σ, a, b) a normal distribution with parameters µ and σ, and truncated

within the interval [a, b].

The class 1 fare of a single-resource bundle is generated from N tr(100, 40, 20, 180). The

class 1 fare of a multi-resource bundle is the summation of the class 1 fares of the single-

resource bundles associated with its resources. For all bundles, the fare of class 2 is twice

that of class 1.

The demand for bundle-class ij in period t is generated from N tr(µijt, υµijt, 0, 2µijt),

where υ controls the level of variation in demand relative to the mean demand. We will refer

to υ as the “variation coefficient”. Each µijt is generated from N tr(µ, 0.2µ, 0.6µ, 1.4µ), where

µ = λ
P

l∈L
Cl

I×J×T
. Since

P

l∈L
Cl

I×J×T
is a constant, the higher λ the higher the demand. We refer to

λ as the “load factor” of demand.
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5.3 Results on solution accuracy and computation time

In this section, we will compare the solution accuracy and computation time of the EFV

approach with the DEM approach. We have generated 10 and 8 problem instances for the

medium and large network respectively. The scenario tree is generated through random

period-by-period demand sampling based on our demand model.

Table 1 describes the scenario tree and gives the dimensions of both DEM formulations

for each problem instance. The first column of the table assigns an identifier to each problem

instance. The following four columns focus on the scenario tree, reporting the predefined

structure “Tree”, the number of periods T , the number of scenarios |Ω|, and the number of

nodes |G|. Column “Tree” displays the structure of the tree in the form AB1

1 AB2

2 . . . , where

Ai denotes the number of children each node in stage i has and Bi denotes the number of

periods in stage i. For instance, the structure 32323232 means the tree has 4 stages, 2 periods

in each stage, and each node has 3 children. The rest of the columns show the dimensions of

DEMP and DEMN, including the number of variables n, number of constraints m, number of

nonzero elements in the constraint matrix nel, and constraint matrix density dens := nel
n×m

(in %).

Table 2 shows the solution values and computation time of the four approaches, namely

DEMP, DEMN, EFVP and EFVN. The headings are as follows: solution, solution value; tLP ,

elapsed time (in seconds) to solve the problem (where a maximum of 3600 seconds has been

imposed); Niter, number of iterations used by the EFV decomposition algorithm; Nz, total

number of reference levels generated for each vector xg by the EFV decomposition algorithm;

NLP , total number of LP subproblems solved by the EFV decomposition algorithm; error,

relative error of the solution value of the EFV decomposition algorithm (in %). For each test

network, the last row shows average figures across all problem instances.

The problem instances generated in this paper are challenging because of their large scale,

especially in the protection levels formulation. In the largest problem instance in the medium

network, problem instance 10, DEMP contains roughly 1.42 million variables and 1.16 million

constraints, while DEMN contains roughly 1.06 million variables and 0.20 million constraints.

In the largest problem instance in the large network, problem instance 18, DEMP contains

roughly 2.62 million variables and 2.30 million constraints, while DEMN contains roughly

1.97 million variables and 0.66 million constraints. Nevertheless, the EFV decomposition

algorithm only takes a few minutes. The longest running time of EFVP in Table 2 is 251

seconds in problem instance 10, while the longest running time of EFVN is 159 seconds in
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problem instance 8.

Compared with DEM, the EFV decomposition algorithm trades solution accuracy for

computation time. From Table 2, we have that the average error of EFVP and EFVN in the

medium network is 2.05% and 2.46% respectively. In the large network, the corresponding

figures are 1.71% and 2.11%. Given the scale of the instances, these results suggest that the

EFV decomposition algorithm generally achieves good solution accuracy.

The EFV decomposition algorithm requires significantly less computation time than

DEM. On average, EFVP and EFVN reduce the computation time of DEMP and DEMN

by 353/31 = 11.4 times and 163/28 = 5.8 times in the medium network, respectively. The

average reduction in the large network is 1112/24 = 46.3 times and 924/31 = 29.8 times, for

EFVP and EFVN respectively. Furthermore, the reduction of computation time is more sig-

nificant when the problem instance is larger. For example, the reduction in problem instance

10 is 3125/251 = 12.4 times and 1531/96 = 15.9 times, for EFVP and EFVN respectively. In

problem instance 18, the largest problem instance in the large network, both DEM models are

stopped after 3600 seconds. The reduction in problem instance 18 is at least 3705/71 = 52.2

times and at least 3656/44 = 83.1 times, for EFVP and EFVN respectively.

5.4 Results on revenue performance

In this section, we present results on the revenue performance of the four approaches discussed

in this paper, namely DEMP, DEMN, EFVP and EFVN. The popular single-period models,

DLP [19], RLP [16] and the perfect hindsight (PH) model are tested as well. PH consists

of solving a DLP using the actual demand instead of mean demand and its optimal value is

used as an upper bound of the achievable revenue, see [16, 5].

As usual in the literature, we use a rolling horizon simulation to test the revenues of the

different approaches, see e.g. [5, 15]. Next, we describe the details on the simulation. We end

the section with the discussion on the reported revenues.

5.4.1 Rolling horizon simulation

The input data to the simulation is the length of the simulation horizon, denoted by T s,

and the sequence of booking requests. These booking requests are put into a simulated

sales process controlled by a bid-price policy. The simulation is carried out on a rolling-

horizon basis. At the beginning of period ts ∈ {1, . . . , T s}, bid prices are calculated using

the corresponding model, which are then used to decide which booking requests to accept
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in period ts. At the end of period ts, the remaining capacity is updated. This process is

repeated for ts = 1, . . . , T s.

In our experiments, we have set T s = 8 and T s = 6 for the medium and large network

respectively. The booking requests are generated as follows. Using our demand model, we

generate the vector of (actual) demands over the simulation horizon. For each period, the total

number of booking requests for each bundle-class combination is equal to the corresponding

actual demand, while the bookings for different bundle-class combinations arrive in random

order.

In terms of the input data used by each model, in simulation period ts, PH uses the

actual demand in period ts, while DLP uses the (theoretical) demand mean µijts . For the

rest of tested models, demand scenarios are needed. At the beginning of each simulation

period ts, a scenario tree with time horizon equal to the remaining simulation horizon, i.e.

T = T s + 1− ts, and 2 children per node is generated. The demands in the scenario tree are

generated through random period-by-period demand sampling based on our demand model.

To ensure a fair comparison, DEMP, DEMN, EFVP and DEMN use the same scenario tree,

while RLP uses the demand scenarios defined by the scenario tree.

5.4.2 Revenue performance

As discussed in Section 5.2, there are two demand parameters: the variation coefficient υ

and the load factor λ. In terms of demand variation, we have tested three values, namely

υ = 0.1, 0.3 and 0.5. In terms of demand load, extreme values will yield very similar revenues

for all models. If demand is too low, all methods will simply accept all demand requests, while

if demand is too high all methods will accept demand requests for the very profitable bundles

only. To cover an interesting range of load factors, we have chosen λ ∈ {0.8, 0.9, . . . , 2.8}.

For each combination of the two parameters υ and λ, we perform 100 simulation runs,

each run with a different random realization of the demand. For each method, we calculate

the total revenue across the 100 runs, and report its relative total revenue against that of

DLP. For each value of υ, we plot the relative revenues against λ. See Figures 3–5 for the

medium network and Figures 6–8 for the large network. To help with the discussion on

revenue performance, Table 3 shows the average relative revenue across the entire range of

λ, denoted by “AvgRev”, for each network and each value of υ.

Throughout all six plots, the following two observations hold. First, the curve of PH

cannot be fully shown, since it is much higher than the rest, confirming that PH gives a very
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loose upper bound of the achievable revenue. Second, the relative revenues of all methods,

except for DLP, are above 1, and thus DLP is outperformed by the other six methods, for

most of the values of λ. Moreover, in terms of AvgRev, this dominance always holds in our

experiments. Therefore, PH and DLP will not be included in our discussion below. The

conclusions on relative performance of the remaining five methods are similar in the two

networks.

In general, we can say that EFVN is consistently the best method in terms of AvgRev,

followed by RLP, DEMN, EFVP and lastly DEMP, for υ = 0.1, 0.3 and 0.5. (This only fails

for the large network with υ = 0.5, where for RLP the AvgRev is equal to 1.0124, while for

EFVN is equal to 1.0123.) With respect to the four models discussed in this paper, we have

that DEMP and EFVP produce lower AvgRev than DEMN and EFVN, respectively. For

instance, in the medium network and when υ = 0.1, the respective AvgRev of DEMN and

EFVN is 1.0049 and 1.0057, while the respective AvgRev of DEMP and EFVP is 1.0027 and

1.0034. This agrees with the observations in [5], where they argue that the non-anticipativity

constraints prevent an adaptive response to the realization of demand.

We also observe that EFVP and EFVN produce higher relative revenues than DEMP and

DEMN respectively. The advantage of the EFV approach is more pronounced in the large

network, for middle values of λ. For instance, when υ = 0.3 and λ = 2, the respective relative

revenue of DEMP and DEMN is 1.00863 and 1.01258, while the respective AvgRev of EFVP

and EFVN is 1.01637 and 1.01849. The more pronounced effect in the large network is mostly

due to the difference in the structure of the two networks. Recall that the medium network

only has single-resource and two-resource bundles, whereas the large network also has four-

resource bundles. As discussed above, the bid price of a bundle, if calculated in an additive

manner, could deviate from its real opportunity cost. Such deviation gets more serious when

the bundle contains a large number of resources, which explains why EFVP and EFVN are

more competitive in the large network, where four-resource bundles are present.

6 Conclusions

The computation of bid prices for network revenue management along a time horizon has

been considered in this paper. The uncertainty in demand is modeled by means of scenarios

yielding an SP formulation. We proposed to solve two existing SP models from the literature

using the EFV decomposition algorithm, which brings two main advantages. First, the EFV

decomposition algorithm requires remarkably less computation time than DEM. Instances
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with up to 400 pairs of bundle-fare classes have been solved in less than 5 minutes, while the

DEM model with protection levels has up to 2.6 million variables and 2.3 million constraints.

In fact, the bigger the problem instance the bigger the difference in computation time. Such

difference in computation time makes EFV more useful than DEM in practice, since bid prices

usually need to be updated on a daily basis in real world revenue management systems, if not

more frequently. Second, contrary to the traditional additive bid prices, the EFV approach

is able to define non-additive bid prices on bundles directly. Numerical results based on a

rolling horizon simulation in two test networks show that in general, the non-additive EFV

bid prices give comparable revenues to those obtained from DEM and RLP. Further, when

bundles containing a large number of resources are present in a network, the non-additive

bid prices from EFV can improve the revenue of additive bid prices from DEM and RLP.

Two future research directions are worth considering. First, it will interesting to investi-

gate the effect of the network structure on the revenue of non-additive and additive bid prices,

and different methods for generating them. As discussed above, the relative performance of

bid prices from different methods is quite different for our two test networks. If we can un-

derstand exactly how network structure affects the relative performance of different methods

then, in practice, we will be able to choose the method that fits the network structure the

best. Second, a parallel implementation of the EFV decomposition approach, in which the

subproblems in each stage are solved in parallel, would allow handling larger sets of reference

levels, ensuring better solution values.
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[10] A. Möller, W. Römisch and K. Weber. A new approach to O-D revenue management

based on scenario trees. Journal of Revenue and Pricing Management, 3:265-276, 2004.

[11] A. Möller, W. Römisch and K. Weber. Airline network revenue management by multi-

stage stochastic programming. Computational Management Science, 5:355-377, 2008.

[12] S. M. Ross. Introduction to Stochastic Dynamic Programming, Academic Press, 1995.

[13] H. Topaloglu. On the asymptotic optimality of the randomized linear programming

method for network revenue management. European Journal of Operational Rersearch,

197:884-896, 2009.

[14] B.C. Smith and C.W. Penn. Analysis of alternative origin-destination control strategies.

In Proceedings of the Twenty Eight Annual AGIFORS Symposium, New Seabury, MA,

1988.

[15] K.T. Talluri and G.J. van Ryzin. A randomized linear programming method for com-

puting network bid prices. Transportation Science, 33:207-216, 1999.

[16] K.T. Talluri and G.J. van Ryzin. An analysis of bid-price controls for network revenue

management. Management Science, 44:1577-1593, 1998.

[17] K.T. Talluri and G.J. van Ryzin. The Theory and Practice of Revenue Management.

Springer, 2004.

21



[18] R.D. Wollmer. An airline seat management model for a single leg route when lower fare

class book first. Operations Research, 40:26-37, 1992.

[19] J.T. Wong, F.S. Koppelman and M.S. Daskin. Flexible assignment approach to itinerary

seat allocation. Transportation Research Part B: Methodological, 27:33-48, 1993.

22



Medium network DEMP DEMN

ID Tree T |G| |Ω| n m nel dens(%) n m nel dens(%)

1 222222 6 64 32 3420 2588 15488 0.17499 2268 320 9984 1.37566

2 323232 6 365 243 17496 14324 91628 0.03656 13104 2430 75816 0.23810

3 232222 7 128 64 6876 5212 35584 0.09929 4572 640 23296 0.79615

4 333232 7 1094 729 52488 42998 314216 0.01392 39348 7290 265356 0.09251

5 22222222 8 256 128 13788 10460 80384 0.05574 9180 1280 53248 0.45316

6 32323232 8 3281 2187 157464 129020 1060712 0.00522 118080 21870 909792 0.03523

7 23222222 9 512 256 27612 20956 179200 0.03097 18396 2560 119808 0.25440

8 33323232 9 9842 6561 472392 387086 3536396 0.00193 354276 65610 3070548 0.01321

9 2222222222 10 1024 512 55260 41948 395264 0.01705 36828 5120 266240 0.14120

10 3232323232 10 29525 19683 1417176 1161284 11672036 0.00071 1062864 196830 10235160 0.00489

Large network DEMP DEMN

ID Tree T |G| |Ω| n m nel dens(%) n m nel dens(%)

11 222222 6 64 32 19000 15800 88000 0.02931 12600 3200 67200 0.16667

12 323232 6 365 243 97200 85000 516500 0.00625 72800 24300 510300 0.02885

13 232222 7 128 64 38200 31800 201600 0.01660 25400 6400 156800 0.09646

14 333232 7 1094 729 291600 255100 1767950 0.00238 218600 72900 1786050 0.01121

15 22222222 8 256 128 76600 63800 454400 0.00930 51000 12800 358400 0.05490

16 32323232 8 3281 2187 874800 765400 5959700 0.00089 656000 218700 6123600 0.00427

17 23222222 9 512 256 153400 127800 1011200 0.00516 102200 25600 806400 0.03082

18 33323232 9 9842 6561 2624400 2296300 19847150 0.00033 1968200 656100 20667150 0.00160

Table 1: DEM dimensions of problem instances on medium and large networks
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Medium network DEMP EFVP DEMN EFVN

ID solution tLP solution tLP Niter Nz NLP error solution tLP solution tLP Niter Nz NLP error

1 357810 0 351488 0 5 21 526 1.77 360907 0 356473 0 4 17 425 1.23

2 357705 1 354861 2 6 25 2797 0.80 361238 0 357460 2 9 37 4150 1.05

3 347835 0 342251 1 6 25 1247 1.61 350239 0 347002 1 8 33 1649 0.92

4 347632 6 345073 10 10 41 13781 0.74 350543 1 347043 7 10 41 13781 1.00

5 345886 0 342464 3 9 37 3874 0.99 348082 0 344807 0 2 9 927 0.94

6 345946 46 343158 30 10 41 41780 0.81 348400 11 344522 4 2 9 9012 1.11

7 359114 1 347885 1 2 9 1851 3.13 361255 0 346526 9 5 21 4374 4.08

8 359143 347 339715 15 2 9 27030 5.41 361464 94 334872 159 8 33 100746 7.36

9 350940 4 337447 2 2 9 3743 3.84 352737 1 341047 3 10 41 17351 3.31

10 350898 3125 345778 251 10 41 376391 1.46 352930 1531 340330 96 9 37 339490 3.57

Average 353 31 6 26 47302 2.05 163 28 6 28 49190 2.46

Large network DEMP EFVP DEMN EFVN

ID solution tLP solution tLP Niter Nz NLP error solution tLP solution tLP Niter Nz NLP error

11 1995191 1 1964167 2 5 21 526 1.55 1995690 0 1941296 2 6 25 627 2.73

12 1994880 21 1966185 18 8 33 3699 1.44 1995507 9 1976605 9 7 29 3248 0.95

13 1996017 4 1974383 8 8 33 1649 1.08 1996317 1 1968961 4 6 25 1247 1.37

14 1995744 1311 1962784 38 7 29 9728 1.65 1996183 91 1962445 44 10 41 13781 1.69

15 1995625 18 1949571 23 10 41 4295 2.31 1995941 3 1942214 32 5 21 2190 2.69

16 1995380 3645∗ 1949890 28 2 9 9012 2.28 1995809 3617∗ 1941420 82 8 33 33588 2.73

17 1996546 191 1954316 5 2 9 1851 2.12 1996744 12 1948032 32 10 41 8579 2.44

18 1982240 3705∗ 1957124 71 2 9 27030 1.27 1996597 3656∗ 1951099 44 2 9 27030 2.28

Average 1112 24 5 23 7224 1.71 924 31 7 28 11286 2.11

∗Time limit: 3600 secs

Table 2: Solution accuracy and computation time of DEMP, DEMN, EFVP and DEMN
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size υ PH DLP RLP DEMP DEMN EFVP EFVN

MEDIUM 0.1 1.0222 1.0000 1.0049 1.0027 1.0049 1.0034 1.0057

MEDIUM 0.3 1.0257 1.0000 1.0084 1.0041 1.0083 1.0050 1.0090

MEDIUM 0.5 1.0307 1.0000 1.0104 1.0052 1.0097 1.0063 1.0105

LARGE 0.1 1.0347 1.0000 1.0036 1.0015 1.0036 1.0024 1.0048

LARGE 0.3 1.0387 1.0000 1.0095 1.0049 1.0093 1.0061 1.0100

LARGE 0.5 1.0444 1.0000 1.0124 1.0070 1.0120 1.0083 1.0123

Table 3: Average relative revenues of seven methods
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Figure 3: The relative revenues of seven methods in the medium network with υ = 0.1
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Figure 4: The relative revenues of seven methods in the medium network with υ = 0.3
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Figure 5: The relative revenues of seven methods in the medium network with υ = 0.5
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Figure 6: The relative revenues of seven methods in the large network with υ = 0.1
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Figure 7: The relative revenues of seven methods in the large network with υ = 0.3
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Figure 8: The relative revenues of seven methods in the large network with υ = 0.5
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