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Abstract: We propose a new technique for minimization of convex functions not
necessarily smooth. Our approach employs an equivalent constrained optimization
problem and approximated linear programs obtained with cutting planes. At each
iteration a search direction and a step length are computed. If the step length is
considered “non serious”, a cutting plane is added and a new search direction is
computed. This procedure is repeated until a “serious” step is obtained. When this
happens, the search direction is a feasible descent direction of the constrained equivalent
problem. The search directions are computed with FDIPA, the Feasible Directions
Interior Point Algorithm. We prove global convergence and solve several test problems
very efficiently.
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1 Introduction

In this paper, we propose a new algorithm for solving the unconstrained optimization
problem:

{

min
x∈Rn

f(x)
(P)

where f : R
n → R is a closed convex function, not necessarily smooth. Let ∂f(x)

be the subdifferential [3] of f at x. In what follows, it is assumed that one arbitrary
subgradient s ∈ ∂f(x) can be computed at any point x ∈ R

n.

1. COPPE, Federal University of Rio de Janeiro , Caixa Postal 68503, 21945 970 Rio de
Jaineiro, Brazil. E-mail: jose@optimize.ufrj.br
2. UFJF, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
3. COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

1



A special feature of nonsmooth optimization is the fact that ∇f(x) can change
discontinuously and is not necessarily small in the neighborhood of a local extreme
of the objective function, see [11, 2]. For this reason, the usual smooth gradient based
optimization methods cannot be employed.
Several methods have been proposed for solving (P), see [1, 2, 14, 19]. Cutting plane
methods approximate the function with a set of tangent planes. At each iteration the
approximated function is minimized and a new tangent plane is added. The classical
reference is [13], where a trial point is computed by solving a linear programming
problem. We mention [21, 5] for analytic center cutting plane methods and [24, 20] for
logarithmic potential and volumetric barrier cutting plane methods. Bundle methods
based on the stabilized cutting plane idea are numerically and theoretically well
understood [2, 14, 19, 24].
Here we show that the techniques involved in FDIPA [6, 7, 8, 9], the Feasible Direction
Interior Point Algorithm for constrained smooth optimization, can be successfully
combined with bundle methods to obtain a nonsmooth solver with a simple structure
that is easy to implement and without need of solving quadratic programming
subproblems.
In this paper, the nonsmooth unconstrained problem (P) is reformulated as an
equivalent constrained program (EP) with a linear objective function and one
nonsmooth inequality constraint,







min
(x,z)∈Rn+1

z

s.t. f(x) ≤ z,
(EP)

where z ∈ R is an auxiliary variable. With the present approach, a decreasing sequence
of feasible points {(xk, zk)} converging to a minimum of f(x) is obtained. That is, we
have that zk+1 < zk and zk > f(xk) for all k. To compute a feasible descent direction
we employ a procedure that combines the cutting plane technique with the FDIPA,
[8]. At each iteration, an auxiliary linear program is defined by the substitution of
f(x) by cutting planes. A feasible descent direction of the linear program is obtained
employing FDIPA, and a step-length is computed. Then, a new iterate (xk+1, zk+1) is
defined according to suitable rules. To determine a new iterate, the algorithm produces
auxiliary points (yi, wi) and when a auxiliary point is an interior point of epi(f), we
say that the step is “serious” and we take it as the new iterate. Otherwise, the iterate
is not changed and we say that the step is “null”. A new cutting plane is then added
and the procedure is repeated until a serious step is obtained. It will be proved that,
when a serious step is obtained, the search direction given by FDIPA is also a feasible
descent direction of (EP).
This paper is organized in six sections. In the next one we describe the FDIPA. In
section 3 the main features of the new method are presented and global convergence of
the algorithm is shown in section 4. In the subsequent section, numerical preliminary
comparative results with two well known bundle methods show that our method is
strong an efficient. The last section contains some concluding remarks.
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2 The feasible direction interior point algorithm

In this section we describe the basic ideas of the feasible direction interior point
algorithm. The FDIPA [8] is a numerical technique for smooth nonlinear optimization
with equality and inequality constraints. In this paper, we consider the inequality
constrained optimization problem







min
x∈Rn

f(x)

s.t. g(x) ≤ 0,
(1)

where f : R
n → R and g : R

n → R
m are continuously differentiable. The FDIPA

requires the following assumptions about Problem (1):
Assumptions

Assumption 1. Let Ω ≡ {x ∈ R
n/g(x) ≤ 0} be the feasible set. There exists a real

number a such that the set Ωa ≡ {x ∈ Ω; f(x) ≤ a} is compact and has an interior
Ω0

a.

Assumption 2. Each x ∈ Ω0
a satisfies g(x) < 0.

Assumption 3. The functions f and g are continuously differentiable in Ωa and their
derivatives satisfy a Lipschitz condition.

Assumption 4. (Regularity Condition) A point x ∈ Ωa is regular if the gradient vectors
∇gi(x), for i such that gi(x) = 0, are linearly independent. FDIPA requires regularity
assumption at a local solution of (1).

Let us remind some well known concepts [16], widely employed in this paper.
Definitions

Definition 1. d ∈ R
n is a descent direction for a smooth function φ : R

n → R if
dT∇φ < 0.

Definition 2. d ∈ R
n is a feasible direction for the problem (1), at x ∈ Ω, if for some

θ > 0 we have x+ td ∈ Ω for all t ∈ [0, θ].

Definition 3. A vector field d(x) defined on Ω is said to be a uniformly feasible directions
field of the problem (1), if there exists a step length τ > 0 such that x+ td(x) ∈ Ω for
all t ∈ [0, τ ] and for all x ∈ Ω.

It can be shown that d is a feasible direction if dT∇gi(x) < 0 for any i such that
gi(x) = 0. Definition 2.3 introduces a condition on the vector field d(x), which is
stronger than the simple feasibility of any element of d(x). When d(x) constitutes a
uniformly feasible directions field, it supports a feasible segment [x, x+ θ(x)d(x)], such
that θ(x) is bounded below in Ω by τ > 0.
Let x∗ be a regular point of Problem (1). Karush-Kuhn-Tucker (KKT) first order
necessary optimality conditions are expressed as follows: If x∗ is a local minimum of
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(1) then there exists λ∗ ∈ R
m such that

∇f(x∗) + ∇g(x∗)λ∗ = 0 (2)

G(x∗)λ∗ = 0 (3)

λ∗ ≥ 0 (4)

g(x∗) ≤ 0, (5)

where G(x) is a diagonal matrix with Gii(x) ≡ gi(x).
We say that x such that g(x) ≤ 0 is a “Primal Feasible Point”, and λ ≥ 0 a “Dual
Feasible Point”. Given an initial feasible pair (x0, λ0), FDIPA finds KKT points by
solving iteratively the nonlinear system of equations (2, 3) in (x, λ), in such a way that
all the iterates are primal and dual feasible. Therefore, convergence to feasible points
is obtained.
A Newton-like iteration to solve the nonlinear system of equations (2, 3) in (x, λ) can
be stated as

[

Sk ∇g(xk)
Λk∇gT (xk) G(xk)

] [

xk+1 − xk

λk+1
α − λk

]

= −

[

∇f(xk) + ∇g(xk)λk

G(xk)λk

]

(6)

where (xk, λk) is the starting point of the iteration and (xk+1, λk+1
α ) is a new estimate,

and Λ a diagonal matrix with Λii ≡ λi.

In the case when Sk ≡ ∇2f(xk) +
m

∑

i=1

λk
i ∇

2gi(x
k), (6) is a Newton iteration. However,

Sk can be a quasi-Newton approximation or even the identity matrix. FDIPA requires
Sk symmetric and positive definite. Calling dk

α = xk+1 − xk, we obtain the following
linear system in (dk

α, λ
k+1
α ):

Skdk
α + ∇g(xk)λk+1

α = −∇f(xk) (7)

Λk∇gT (xk)dk
α +G(xk)λk+1

α = 0. (8)

It is easy to prove that dk
α is a descent direction of the objective function, [8]. However,

dk
α cannot be employed as a search direction, since it is not necessarily a feasible

direction. In effect, in the case when gl(x
k) = 0 it follows from (8) that ∇gl(x

k)Tdk
α = 0.

To obtain a feasible direction, the following perturbed linear system with unknowns dk

and λ̄k+1 is defined, by adding the negative vector −ρkλk to the right side of (8), with
ρk > 0,

Skdk + ∇g(xk)λ̄k+1 = −∇f(xk)

Λk∇gT (xk)dk +G(xk)λ̄k+1 = −ρkλk.

The addition of a negative vector in the right hand side of (8) produces the effect of
deflecting dk

α into the feasible region, where the deflection is proportional to ρk. As the
deflection of dk

α grows with ρk and dk
α is a descent direction of f , it is necessary to
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bound ρk, in a way to ensure that dk is also a descent direction. Since dkT

α ∇f(xk) < 0,
we can get these bounds by imposing

dkT

∇f(xk) ≤ ξdkT

α ∇f(xk), (9)

with ξ ∈ (0, 1), which implies dkT

∇f(xk) < 0. Thus, dk is a feasible descent direction.
To obtain the upper bound on ρk, the following auxiliary linear system in (dk

β , λ
k
β) is

solved:

Skdk
β + ∇g(xk)λk+1

β = 0

Λk∇gT (xk)dk
β +G(xk)λk+1

β = −λk.

Now defining dk = dk
α + ρkdk

β and substituting in (9), it follows that dk is a descent

direction for any ρk > 0 in the case when dkT

β ∇f(xk) ≤ 0. Otherwise, the following
condition is required,

ρk ≤ (ξ − 1)dkT

α ∇f(xk)/dkT

β ∇f(xk).

In [8], ρ is defined as follows: If dkT

β ∇f(xk) ≤ 0, then ρk = ϕ‖dk
α‖

2. If not, ρk =

min[ϕ‖dk
α‖

2, (ξ − 1)dkT

α ∇f(xk)/dkT

β ∇f(xk)].
A new feasible primal point with a lower objective value is obtained through an inexact
line search along dk, [8]. FDIPA has global convergence in the primal space for any way
of updating S and λ, provided that Sk+1 is positive definite and λk+1 > 0 [8].
The following updating rule for λ can be employed:
Set, for i = 1, ...,m,

λi := max [λαi; ǫ‖dα‖
2], ǫ > 0.

3 Description of the present technique for nonsmooth

optimization

We employ ideas of the cutting planes method [13], to build piecewise linear
approximations of the constraints of (EP ). Let gk

i (x, z) be the current set of cutting
planes such that

gk
i (x, z) = f(yk

i ) + (sk
i )

T (x− yk
i ) − z, i = 0, 1, ..., ℓ

where yk
ℓ ∈ R

n are auxiliary points, sk
i ∈ ∂f(yk

i ) are subgradients at those points and
ℓ represents the number of current cutting planes. Let be,

g̃k
ℓ (x, z) ≡ [gk

0 (x, z), ..., gk
ℓ (x, z)]T , g̃k

ℓ : R
n × R −→ R

ℓ+1

and the current auxiliary problem






min
(x,z)∈Rn+1

ψ(x, z) = z

s.t. g̃k
ℓ (x, z) ≤ 0.

(AP k
ℓ )
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Instead of solving this problem, the present algorithm merely computes with FDIPA a
search direction dk

ℓ of (AP k
ℓ ). We note that dk

ℓ can be computed even if (AP k
ℓ ) has not

a finite minimum.
The largest feasible step is t ≡ max{t | g̃k

ℓ ((xk, zk) + tdk
ℓ ) ≤ 0}. Since t is not always

finite, it is taken
tkℓ := min{tmax/µ, t}

where µ ∈ (0, 1). Then,
(xk

ℓ+1, z
k
ℓ+1) = (xk, zk) + tkℓd

k
ℓ (11)

is feasible with respect to (AP k
i ). Next we compute the following auxiliary point

(yk
ℓ+1, w

k
ℓ+1) = (xk, zk) + µtkℓd

k
ℓ , (12)

where µ ∈ (0, 1). If (yk
ℓ+1, w

k
ℓ+1) is feasible with respect to (EP), that is, if wk

ℓ+1 >

f(yk
ℓ+1) we consider that the current set of cutting planes is a good local approximation

of f(x) in a neighborhood of xk. Then, we say that the “step is serious” and set the
new iterate (xk+1, zk+1) = (yk

ℓ+1, w
k
ℓ+1). Otherwise, a new cutting plane gk

ℓ+1(x, z) is
added to the approximated problem and the procedure repeated until a serious step is
obtained. We are now in position to state our algorithm.

3.1 Algorithm - FD NS

Parameters. ξ, µ ∈ (0, 1), ϕ > 0, tmax > 0.
Data. x0, z0 > f(x0), λ0

0 ∈ R
+, B0 ∈ R

n+1 × R
n+1 symmetric and positive definite.

Set y0
0 = x0, k = 0 and ℓ = 0.

Step 1) Compute sk
ℓ ∈ ∂f(yk

ℓ ). A new cutting plane at the current iterate (xk, zk) is
defined by

gk
ℓ (x, z) = f(yk

ℓ ) + (sk
ℓ )

T (x− yk
ℓ ) − z, gk

ℓ (x, z) ∈ R.

Consider now

∇gk
ℓ (x, z) =





(sk
ℓ )

T

−1



 , ∇gk
ℓ (x, z) ∈ R

n+1

define
g̃k
ℓ (x, z) = [gk

0 (x, z), ..., gk
ℓ (x, z)]T , g̃k

ℓ (x, z) ∈ R
ℓ+1,

and
∇g̃k

ℓ (x, z) = [∇gk
0 (x, z), ...,∇gk

ℓ (x, z)]T , ∇g̃k
ℓ (x, z) ∈ R

(n+1)×(ℓ+1).

Step 2) Calculation of a Feasible Descent Direction dk
ℓ for (AP k

ℓ )
i) Compute dk

αℓ and λk
αℓ, solving

Bkdk
αℓ + ∇g̃k

ℓ (xk, zk)λ̃k
αℓ = −∇ψ(x, z) (13)

Λ̃k
ℓ [∇g̃

k
ℓ (xk, zk)]Tdk

αℓ + G̃k
ℓ (x

k, zk)λ̃k
αℓ = 0. (14)
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Compute dk
βℓ and λk

βℓ, solving

Bkdk
βℓ + ∇g̃k

ℓ (xk, zk)λ̃k
βℓ = 0 (15)

Λ̃k
ℓ [∇g̃

k
ℓ (xk, zk)]Tdk

βℓ + G̃k
l (x

k, zk)λ̃k
βℓ = −λ̃k

ℓ , (16)

where λ̃k
αℓ := (λk

α0, ..., λ
k
αℓ), λ̃k

βℓ := (λk
β0, ..., λ

k
βℓ), λ̃k

ℓ := (λk
0, ..., λ

k
ℓ ),

Λ̃k
ℓ := diag(λk

0, ..., λ
k
ℓ ) and G̃k

ℓ (x, z) := diag(gk
0 (x, z), ..., gk

ℓ (x, z)).

ii) If dkT

βℓ ∇ψ(x, z) > 0, set ρ = ϕ‖dk
αℓ‖

2.

Otherwise, set ρ = min

{

ϕ‖dk
αℓ‖

2, (ξ − 1)
dkT

αℓ ∇ψ(x, z)

dkT

βℓ ∇ψ(x, z)

}

.

iii) Compute the feasible descent direction dk
ℓ = dk

αℓ + ρdk
βℓ.

Step 3) Compute the step length

tkℓ = min
{

tmax/µ, max{t | g̃k
ℓ ((xk, zk) + tdk

ℓ ) ≤ 0}
}

. (17)

Step 4) Compute a new point
i) Set (yk

ℓ+1, w
k
ℓ+1) = (xk, zk) + µtkℓd

k
ℓ .

ii) If wk
ℓ+1 ≤ f(yk

ℓ+1), we have a null step. Then, define λk
ℓ+1 and set ℓ := ℓ+ 1.

Otherwise, we have a serious step. Then, call dk = dk
ℓ , d

k
α = dk

αℓ, d
k
β = dk

βℓ λ
k
α = λk

αℓ,

λk
β = λk

βℓ and ℓk = ℓ. Take (xk+1, zk+1) = (yk
ℓ+1, w

k
ℓ+1), define λk+1

0 , Bk+1 and set

k = k + 1, ℓ = 0, yk
0 = xk.

iii) Go to Step 1). �

4 Convergence analysis

In this section, we prove global convergence of the present algorithm. We first show that
the search direction dk

ℓ is a descent direction for z. Then, we prove that the number
of null steps at each iteration is finite. That is; since (xk, zk) ∈ int(epi f), after a
finite number of subiterations, we obtain (xk+1, zk+1) ∈ int(epi f). In consequence, the
sequence

{

(xk, zk)
}

k∈N
is bounded and belongs the interior of the epigraph of f . Then,

we show that any accumulation point of the sequence
{

(xk, zk)
}

k∈N
is a solution of the

problem (P ). For this, among other results, we have to show that dk converges to zero
when k → ∞. This fact is employed to establish a stopping criterium for the present
algorithm.
Finally, we show that for the accumulations points (x∗, z∗) of the sequence
{

(xk, zk)
}

k∈N
, the optimality condition 0 ∈ ∂f(x∗) is satisfied.

In some cases indices will be omitted to simplify the notation. We introduce the
following assumptions about B, λ and the set of cutting planes.

Assumption 1. There exist positive numbers σ1 and σ2 such that σ1 ‖v‖
2 ≤ vTBv ≤

σ2 ‖v‖
2 for any v ∈ R

n+1.
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Assumption 2. There exist positive numbers λI , λS , such that λI ≤ λi ≤ λS , for
i = 0, 1, . . . , ℓ.

We remark that the solutions dα, λα, dβ , and λβ of the linear systems (13), (14), and
(15), (16) are unique. This fact is a consequence of a lemma proved in [22, 25] and
stated as follows:

Lemma 4.1. For any vector (x, z) ∈ int(epi f) and any positive definite matrix B ∈
R

(n+1)×(n+1), the matrix
[

B ∇g̃(x, z)

Λ̃[∇g̃(x, z)]T G̃(x, z)

]

,

is nonsingular. In addition we assume that the set of cutting planes is selected in such
a way that that the previous matrix remains bounded bellow.

It follows that dα, dβ , λα and λβ are bounded in epi f . Since ρ is bounded above we
also have that λ̄ = λα + ρλβ is bounded.

Lemma 4.2. The vector dα satisfies dT
α∇ψ(x, z) ≤ −dT

αBdα.

Proof. It follows from (13)

dT
αBdα + dT

α∇g̃(x, z)λα = −dT
α∇ψ(x, z), (18)

and from (14)
dT

α∇g̃(x, z) = −λT
α Λ̃−1G̃(x, z). (19)

Replacing (19) in (18) we have dT
α∇ψ(x, z) = −dT

αBdα + λT
α Λ̃−1G̃(x, z)λα. Since

Λ̃−1G̃(x, z) is negative semidefinite, the result of the lemma is obtained.

As a consequence, we also have that the search direction dα is descent for the objective
function the problem (AP k

ℓ ).

Proposition 4.3. The direction d = dα + ρdβ is a descent direction for the objective
function of the problem (AP k

ℓ ) in point xk.

Proof. Since d = dα + ρdβ , we have dT∇ψ(x, z) = dT
α∇ψ(x, z) + ρdT

β∇ψ(x, z).

In the case when dT
β∇ψ(x, z) > 0, we have ρ ≤ (ξ − 1)

dT
α∇ψ(x, z)

dT
β∇ψ(x, z)

. Therefore,

dT∇ψ(x, z) ≤ dT
α∇ψ(x, z)+ (ξ− 1)dT

α∇ψ(x, z) = ξdT
α∇ψ(x, z) < 0. On the other hand,

when dT
β∇ψ(x, z) ≤ 0, it follows from Lemma 4.2 that dT∇ψ(x, z) ≤ dT

α∇ψ(x, z) < 0
for any ρ > 0.

As a consequence of previous Lemma, we have that zk+1 < zk for all k.

Proposition 4.4. The sequence {(xk, zk)}k∈N generated by the present algorithm is
bounded.

Proof. Since f is a closed convex function, we have that the level sets of f are bounded.
Then, the sequence {(xk, zk)}k∈N is contained in the bounded set epi f∩{(x, z) ∈ R

n+1 |
f(xk) ≤ z0}.
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Lemma 4.5. Let X ⊂ R
n be a convex set. Consider x0 ∈ intX and x̄ ∈ X.

Let {x̄k}k∈N ⊂ R
n − X be a sequence such that x̄k → x̄. Let {xk}k∈N ⊂ R

n be a
sequence defined by xk = x0 +µ(x̄k −x0) with µ ∈ (0, 1). Then there exist k0 ∈ N such
that xk ∈ intX, ∀ k > k0.

Proof. We have xk = x0 + µ(x̄k − x0) −→ x0 + µ(x̄ − x0) = xµ. Since the segment
[x0, x̄] ⊂ X and µ ∈ (0, 1) we have that xµ ∈ intX and, in consequence there exist
δ > 0 such that B(xµ, δ) ⊂ intX. Since xk −→ xµ there exist k0 ∈ N such that
xk ∈ B(xµ, δ) ⊂ intX, ∀k > k0.

Proposition 4.6. Consider the sequence {(xk
ℓ , z

k
ℓ )}ℓ∈N defined in (11) for k fixed. If

and (x̃k, z̃k) is an accumulation point of the sequence, then z̃k = f(x̃k).

Proof. By definition of the sequence {(xk
ℓ , z

k
ℓ )}ℓ∈N, we have always that z̃k ≤ f(x̃k).

Suppose now that z̃k < f(x̃k) and consider a convergent sequence {(xk
ℓ , z

k
ℓ )}ℓ∈N′ →

(x̃k, z̃k) such that {sk
ℓ }ℓ∈N′ → s̃k, where N

′ ⊂ N. This sequence exists because
{(xk

ℓ , z
k
ℓ )}ℓ∈N′ as well as {sk

ℓ }ℓ∈N′ are in compact sets by Assumption 3. The
corresponding cutting plane is represented by f(xk

ℓ ) + sT
ℓ (x − xk

ℓ ) − z = 0. Then,
z(x̃k) = f(xk

ℓ ) + sT
ℓ (x̃k − xk

ℓ ) is the vertical projection of (x̃k, z̃k) on the cutting plane.
Taking the limit for ℓ → ∞, we get z(x̃k) = f(x̃k). Then, for ℓ ∈ N

′ > L large
enough, (x̃k, z̃k) is under the ℓth cutting plane. Then, we arrived to a contradiction
and z̃k = f(x̃k).

Proposition 4.7. Let (xk, zk) ∈ int(epi f). The next iterate (xk+1, zk+1) ∈ int(epi f)
is obtained after a finite number of subiterations.

Proof. Our proof starts with the observation that in the step 4) of the algorithm we
have that (xk+1, zk+1) = (yk

ℓ+1, w
k
ℓ+1) only if wk

ℓ+1 > f(yk
ℓ+1) (i.e., if we have a serious

step), consequently, we have that (xk+1, zk+1) ∈ int(epi f).
The sequence {(xk

ℓ , z
k
ℓ )}ℓ∈N is bounded by construction and, by Proposition 4.6, it has

an accumulation point (x̃k, z̃k) such that z̃k = f(x̃k). Considering now the sequence
defined by (12),

(yk
ℓ , w

k
ℓ ) = (xk, zk) + µ

∥

∥

∥
(xk

ℓ , z
k
ℓ ) − (xk, zk)

∥

∥

∥
, µ ∈ (0, 1)

it follows from Lemma 4.5, that there exist k0 ∈ N such that (yk
ℓ , w

k
ℓ ) ∈ int(epi f), for

k > k0. But this is the condition for a serious step and the proof is complete.

Lemma 4.8. There exists τ > 0 such that g̃ℓ((x, z) + td) ≤ 0, ∀ t ∈ [0, τ ] for any
(x, z) ∈ int(epi f) and any direction d given by the algorithm.

Proof. Let us denote by b a vector such that bi = sT
i xi − f(xi) for all i = 0, 1, ..., ℓ.

Then, g̃ℓ((x, z) + td) = (∇g̃ℓ(x, z))
T (x, z) − b, since

gi(x, z) = f(yi) + sT
i (x− yi) − z = [sT

i − 1](x, z) − bi = (∇gi(x, z))
T (x, z) − bi

for all i = 0, 1, ..., ℓ. The step length t is defined in the equation (17) in the Step 3)
of the algorithm. Since the constraints of (AP ) are linear, to satisfy the line search
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condition, the following inequalities must be true:

gi((x, z) + tid) = (∇gi((x, z) + tid)
T ((x, z) + tid) − bi

= gi(x, z) + ti(∇gi(x, z))
Td ≤ 0, for all i = 0, 1, ..., ℓ.

(20)

If (∇gi(x, z))
Td ≤ 0 the inequality is satisfy for all t > 0. Otherwise, it follows from iii)

in the Step 2) that,

(∇gi(x, z))
Td = (∇gi(x, z))

T (dα + ρdβ).

But

(∇gi(x, z))
Tdα = −gi(x, z)

λαi

λi

and

(∇gi(x, z))
Tdβ = −1 − gi(x, z)

λβi

λi
.

Then (20) is equivalent to

gi(x, z)(1 − ti
λ̄i

λi
) − ρti ≤ 0.

Since ρti > 0, the last inequality will be satisfied when ti ≤ λi/λ̄i.
By construction, λ > 0 is bounded, λ̄ is bounded from above. Thus, there exists 0 <
τ < tmax/µ such that τ < λi/λ̄i for all i = 0, 1, ..., ℓ. Therefore, for all t ∈ [0, τ ] the line
search condition gi((x, z) + td) ≤ 0 is satisfied for all i = 0, 1, ..., ℓ.

Proposition 4.9. Let d∗α be a accumulation point of the sequence {dk
α}k∈N. Then

d∗α = 0.

Proof. From Step 3) of the algorithm, we have (xk+1, zk+1) = (xk, zk) + µtk(dk
x, d

k
z),

thus
zk+1 = zk + µtkdk

z . (21)

The sequence {zk}k∈N is decreasing and bounded by Assumption 3. Let us denote by
z∗ = lim

k→∞

zk and N
′ ⊂ N such that {tk}k∈N′ → t∗. It follows from Lemma 4.8 that

t∗ > 0. When k → ∞, k ∈ N
′ on (21) we have z∗ = z∗ + µt∗d∗z, thus d∗z = 0.

From Proposition 4.3 it follows that 0 = d∗z ≤ ξd∗α∇ψ(x, z) = ξd∗αz ≤ 0, thus d∗αz = 0.
Further, by Lemma 4.2, we have 0 = d∗αz = d∗α∇ψ(x, z) ≤ −d∗αBd

∗

α ≤ 0, thus d∗α = 0,
since B is positive definite.

It follows from the previous result that dk = dk
α +ρkd

k
β → 0 when k → ∞, k ∈ N

′, since

ρk → 0 if dk
α → 0.

Proposition 4.10. For any accumulation point (x∗, z∗) of the sequence {(xk, zk)}k∈N,
we have 0 ∈ ∂f(x∗).

10



Proof. Let be the following convex optimization problem,







min
(x,z)∈Rn+1

φ(x, z)

s.t. g̃k
ℓ (x, z) ≤ 0

where φ(x, z) = ψ(x, z)+(dk
α)tBx. A Karush-Kuhn-Tucker point (xφ, zφ) of the problem

above satisfies,

∇ψ(x, z) +Bdk
α + ∇g̃(xφ, zφ)λ̃φ = 0 (22)

G̃(xφ, zφ)λ̃φ = 0 (23)

λ̃φ ≥ 0 (24)

g̃k
ℓ (xφ, zφ) ≤ 0. (25)

Now observe that the system (13), (14) in the step 2) of the algorithm, can be rewritten
as

∇ψ(x, z) +Bkdk
α + ∇g̃k

ℓ (xk, zk)λ̃k
α = 0 (26)

G̃k
ℓ (x

k, zk)λ̃k
α = δk (27)

where δk = −Λ̃k
ℓ [∇g̃

k
ℓ (xk, zk)]Tdk

α. When dk
α → 0 we have that δk → 0 and then, given

ε1 > 0, there exists K1 > 0 such that,

∥

∥

∥
λ̃k

α − λ̃φ

∥

∥

∥
< ε1 for k > K1.

Then, as λ̃φ ≥ 0 from (24), we deduce that λ̃k
α ≥ 0 for k large enough.

Consider now Y := {y0
0, y

0
1, ..., y

0
l0
, y1

0, y
1
1, ..., y

1
l1
, ....., yk

0 , y
k
1 , ..., y

k
ℓk , ....}, the sequence of

all the points obtained by the sub-iterations of the algorithm. Since this sequence is
bounded, we can find a subsequence Ȳ ⊂ Y such that Ȳ → x∗.
We call Ȳ

k ≡ Ȳ ∩ {yk
0 , y

k
1 , ..., y

k
ℓk}. It follows from (13) in the step 2) of the algorithm,

that

lim
k→∞

ℓk

∑

i=0

λk
αis

k
i = 0 and lim

k→∞

ℓk

∑

i=0

λk
αi = 1. (28)

Let be I
k = {i | yk

i ∈ Ȳ
k}. Then,

lim
k→∞

∑

i∈Ik

λk
αis

k
i = 0 and lim

k→∞

∑

i∈Ik

λk
αi = 1. (29)

Consider the auxiliary point yk
i and the subgradient sk

i ∈ ∂f(yk
i ) such that i is the

index of active constraint. By definition of the subdifferential [3], we can write

f(x) ≥ f(yk
i ) + (sk

i )
T (x− yk

i ) = f(xk) + (sk
i )

T (x− xk) − εik,

11



where εik = f(xk)−f(yk
i )−(sk

i )
T (xk−yk

i ). Thus, sk
i ∈ ∂εi

k

f(xk), where ∂εf(x) represents

the ε-subdifferential of f , [3]. Then, we can write





∑

i∈Ik

λk
αi



 f(x) ≥





∑

i∈Ik

λk
αi



 f(xk) + (
∑

i∈Ik

λk
αis

k
i )

T (x− xk) −
∑

i∈Ik

λk
αiε

i
k,

and

f(x) ≥ f(xk) + (
∑

i∈Ik

λk
αi

∑

i∈Ik λk
αi

sk
i )

T (x− xk) − εk,

where εk =

∑

i∈Ik λk
αiε

i
k

∑

i∈Ik λk
αi

. Let be sk = (
∑

i∈Ik

λk
αi

∑

i∈Ik λk
αi

sk
i ).

It follows from (29) that sk ∈ ∂εk
f(xk) and also that 0 ∈ ∂f(x∗).

With this result the proof of convergence is complete.

5 Numerical results

In this section, we give the numerical results obtained with the present algorithm
employing a set of fixed default parameters, (FD NS/DP), and with parameters selected
looking for better results, ( FD NS/BR). We compare our results with the standard
bundle method described in [18], and with the proximal bundle method, described in
[10]. In the last case the results with two different values of the ε-subgradient, ε1 := 10−5

and ε2 := 10−2, are described. A collection of well known convex test problems, that
can be found in [17] or in [19] is employed. The results are reported in Tables 1 and 2.

Table 1: Comparison with Standard Bundle Method

Bundle method FD NS/BR FD NS/DP

Problem NI NF f NI NF f NI NF f f∗

CB2 31 33 1.95222 17 18 1.95224 17 18 1.95256 1.95222

CB3 14 16 2.00000 15 16 2.00015 30 31 2.00016 2

DEM 17 19 -3.00000 15 16 -2.99162 31 32 -2.99861 -3

QL 13 15 7.20000 21 22 7.20002 21 22 7.20002 7.2

LQ 11 12 -1.41421 08 09 -1.41429 19 20 -1.41417 -1.41421

Mifflin1 66 68 -0.99999 20 21 -0.99997 22 23 -0.99991 -1

Rosen 43 45 -43.99999 44 45 -43.99994 48 49 -43.99996 -44

Shor 27 29 22.60016 41 42 22.60028 60 61 22.60016 22.60016

Maxquad 74 75 -0.84140 62 63 -0.84140 134 135 -0.84140 -0.84140

Maxq 150 151 0.16712e-06 157 158 1.29621e-8 244 245 3.32418e-8 0

Maxl 39 40 0.12440e-12 51 52 2.39888e-4 75 76 2.40691e-4 0

TR48 245 251 -638530.48 161 162 -638564.99 161 162 -638564.99 -638565

Goffin 52 53 0.11665e-11 64 65 5.88385e-5 77 78 2.88556e-4 0

Badguy - - - 5 6 3.20e-4 5 6 3.20e-4 0
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We call NI the number of iterations, NF the number of function evaluations, f∗ the
known optimal function value and f the computed one.

Table 2: Comparison with the Proximal Bundle Method

PB (ε1) PB (ε2) FD NS/BR

Problem NI NF f NI NI f NI NF f f∗

CB2 23 32 1.95222 11 32 1.95270 17 18 1.95224 1.95222

CB3 22 33 2.00000 17 32 2.000022 15 16 2.00015 2

QL 40 70 7.20000 22 59 7.20009 22 23 7.20001 7.2

Mifflin1 30 59 -0.99999 27 58 -0.99999 20 21 -0.99997 -1

Rosen 52 98 -43.99999 32 68 -43.99972 44 45 -43.99994 -44

Shor 56 135 22.60016 41 128 22.60097 41 42 22.60028 22.60016

Maxq 319 329 0.00000 252 267 0.00000 170 171 4.95919e-8 0

The default parameters for the present method are: B = 1/2I , where I is the iteration
number, µ = 0.75, ϕ = 0.1, ξ = 0.7, tmax = 1. Furthermore we store up to 5n
subgradients for all the test problems. The iterates stop when

∥

∥dk
∥

∥ ≤ 10−4.

6 Conclusions

In this paper, a new approach for unconstrained nonsmooth convex optimization was
introduced. The present algorithm, that is very simple to code, does not require the
solution of quadratic programming subproblems but just of two linear systems with
the same matrix. Global convergence was proved and some numerical results were
presented. This results compare favorably with well established techniques. A set of
test problems was efficiently solved with the same values of parameters, indicating that
our approach is strong and the corresponding code can be employed by nonexperts in
mathematical programming.
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