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Abstract We present three new copositivity tests based upon difference-of-convex (d.c.) decompo-
sitions, and combine them to a branch-and-bound algorithm of ω-subdivision type. The tests employ
LP or convex QP techniques, but also can be used heuristically using appropriate test points. We also
discuss the selection of efficient d.c. decompositions and propose some preprocessing ideas based on
the spectral d.c. decomposition. We report on first numerical experience with this procedure which
are very promising.
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1 Preliminaries

1.1 Introduction

A symmetric n× n matrix is called Rn
+-copositive (or shortly copositive), if it generates a quadratic

form which takes no negative values on the nonnegative orthant Rn
+. The problem of determining

whether a matrix is not copositive is NP-complete [36]. Copositive optimization problems are par-
ticular conic programs: the task is to optimize linear forms over the copositive cone subject to linear
(equality) constraints. Recently it has been shown [15] that every quadratic program with linear
constraints can be formulated as a copositive program, even if some of the variables are binary.
Hence, many combinatorial optimization problems can be cast into copositive programs. For further
details we refer to the recent surveys [8,16,22] and to [13] for a clustered collection of references.
These references also cover a multitude of procedures or conditions for copositivity detection, devel-
oped in the last 59 years since T.S. Motzkin coined this notion (apparently abbreviating “conditional
positive-semidefinite”) back in 1952. However, there are but a few implemented numerical algorithms
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which (a) apply to general symmetric matrices without any structural assumptions or dimensional
restrictions; (b) are not merely recursive, i.e., do not rely on information taken from all principal
submatrices, but rather focus on generating subproblems in a somehow data-driven way. Bound-
ary cases, some possibly without implementation, are [1,3,17,33,37]. It seems that only the recent
publication [14] satisfies criteria (a) and (b) to full extent.

In this paper we aim at both requirements. We present three easy-to-test, and apparently new,
conditions which guarantee copositivity. This is of particular importance in view of the wide-spread
belief in the community, that it is easier to detect violation of copositivity than to obtain a positive
certificate for that property. Based on these ideas, we formulate a branch-and-bound algorithm
of ω-subdivision type, which we supplement by a series of preprocessing steps, some of them also
apparently new. To be more specific, the paper is organized as follows: Section 2 introduces difference-
of-convex (d.c.) based approaches to copositivity testing. These tests employ techniques of linear
programming (LP; in Subsection 2.2) and convex quadratic programming (QP; in Subsection 2.3).
Some of these can also be used heuristically using appropriate test points. We also give a first outline
of our proposed algorithm. Section 3 deals with the question which d.c. decomposition should be
chosen and may be skipped at first reading. We argue in Section 3 why the so-called spectral d.c.
decomposition is preferable, and discuss in Section 4 some preprocessing steps, among them some
based on spectral information. In Section 5 we describe a robustification step which may be of
advantage both from a theoretical and practical point of view and combine these ingredients to a
branch-and-bound algorithm. Section 6 reports very promising numerical experience, while the final
Section 7 concludes.

1.2 Terminology and a motivation

Let us start introducing some notions and notations. For integers i < k, we abbreviate by {i : k} :=
{i, i+ 1, . . . , k}. Further denote by e = [1, . . . , 1]⊤ =

∑n
i=1 ei ∈ Rn (where ei is the i-th column of

the n× n identity matrix In) and by En = ee⊤ the n× n all-ones matrix. Then

∆s := {x ∈ Rn
+ : e⊤x = 1}

is the standard simplex in Rn. Closely related to copositivity testing are the so-called Standard
Quadratic optimization Problems (StQPs) [5], to optimize a quadratic form over ∆s:

αQ := min
{
x⊤Qx : x ∈ ∆s

}
, (1.1)

where Q ∈ Sn, the set of symmetric n×n matrices. Any feasible point x to (1.1) delivering a negative
objective value is a certificate for non-copositivity of Q (more generally, in the sequel we shall speak
of a violating vector v ∈ Rn

+ if v⊤Qv < 0), while αQ ≥ 0 means that Q is copositive.

It will be convenient to use a more general copositivity notion w.r.t. a nonempty set K ⊂ Rn: a
matrix is called K-copositive ([23,24] call it K-semidefinite, [38] cone-positive), if the quadratic form
takes no negative values on K and thus [23, Thm. 2.19] on R+K := {tx : t ≥ 0,x ∈ K}, the cone
generated by K (e.g., Q is ∆s-copositive if and only if Q is (Rn

+-)copositive). Therefore a matrix Q
is copositive if and only if ∆s is contained in the positivity cone of Q, which we denote by

Pos(Q) := {x ∈ Rn : x⊤Qx ≥ 0} .

This cone is symmetric w.r.t. the origin o, i.e., −Pos(Q) = Pos(Q). The set of all violating vectors
coincides with the cone Rn

+ \ Pos(Q), which is empty if Q is copositive, see Fig. 1.1.

A violating vector is not only useful as a negative certificate, it may even contain important infor-
mation in a global optimization context. In fact, for general QPs of the form min

{
g(x) = x⊤Qx+ c⊤x :

Ax ≤ b ,x ∈ Rn}, where Q may have negative eigenvalues, A is an m × n matrix, and c ∈ Rn,
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Pos(Q)

Fig. 1.1 Positivity cone Pos(Q) for some 2× 2-matrix Q, which is copositive since R2
+ ⊆ Pos(Q).

b ∈ Rm, we can characterize global optimality of a Karush-Kuhn-Tucker point x̄ by not more than
m copositivity conditions on suitable (indefinite) rank-two updates of Q, with respect to polyhedral
cones derived from x̄ and the problem data with a worst-case complexity requirement of O(m+ n);
see [2,18]. If v is a vector violating one of these copositivity conditions, one can as easily construct
a globally improving feasible point, and thus enable an escape from the inefficient (local) solution x̄;
this means that v is a tunneling direction, i.e., g(x̄+ tv) > g(x̄) may happen for small t > 0. There
is a direct application in case of specially structured feasible sets like ∆s, i.e., for Standard QPs; for
details we refer to [4].

2 Copositivity detection via difference-of-convex approach

2.1 Basic ingredients and ideas

Given Q ∈ Sn, we select two positive-semidefinite matrices Q+ ∈ Sn and Q− ∈ Sn such that

Q = Q+ −Q− (2.1)

which means that we decompose the (possibly nonconvex) quadratic objective function x⊤Qx of (1.1)
into the difference of two convex quadratic functions x⊤Q±x. Such a difference-of-convex decompo-
sition (d.c.d.) of course always exists, and we will discuss selection of the Q± later in Section 3. Here
let us only note that the most efficient d.c.d.s will necessary employ singular matrices Q± [11]. By
this d.c.d., we can write the positivity cone as

Pos(Q) = {x ∈ Rn : x⊤Q+x ≥ x⊤Q−x} ,

and this will be the starting point of our investigations. We immediately see that by construction,
Q is always kerQ−-copositive, hence any positive-semidefinite Q (where Q− = O can be chosen)
guarantees Rn

+-copositivity of Q. Furthermore, any vector v ∈ kerQ+ ∩ Rn
+ \ kerQ− is violating.

In particular, if Q+ = O but Q− ̸= O (i.e, if Q ̸= O is negative-semidefinite), there is such a
violating vector, as can be seen from the following lemma, which we will need to assess feasibility
of auxiliary optimization problems for copositivity tests. Of course, a nonzero negative-semidefinite
matrix cannot be copositive and hence no copositivity test has to be applied then. But beforehand
let us notice that a violating vector v ∈ kerQ+ ∩ Rn

+ \ kerQ− can be found by LP methods, which
will be detailed in Section 4 below.

Lemma 2.1 For S ∈ Sn define CS :=
{
x ∈ Rn

+ : x⊤Sx = 1
}
. If S is positive-semidefinite, we have

CS = ∅ ⇐⇒ S = O .
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Proof Only one implication is nontrivial. So suppose that CS = ∅. Since S is positive-semidefinite,
we have by homogeneity that CS = ∅ if and only if Rn

+ ⊆
{
x ∈ Rn : x⊤Sx = 0

}
. Now, again by

positive-semidefiniteness of S, any x ∈ Rn with x⊤Sx = 0 satisfies x ∈ kerS, which is a linear
subspace. So we get Rn = Rn

+ − Rn
+ ⊆ kerS, which means S = O. ⊓⊔

Similar to the use of (1.1), we now may characterize copositivity by a program which has a convex
quadratic objective:

Proposition 2.2 Given (2.1) with Q− ̸= O, consider the program

µdcd := inf
{
x⊤Q+x : x⊤Q−x = 1 , x ∈ Rn

+

}
≥ 0 . (2.2)

This program is always feasible and characterizes copositivity of Q as follows:

(a) Any (2.2)-feasible x̄ with x̄⊤Q+x̄ < 1 is a violating vector.
(b) If µdcd ≥ 1, then Q is copositive.

Proof The feasible set of (2.2) is CQ− ̸= ∅ as argued in Lemma 2.1. Since kerQ− ⊆ Pos(Q) by
construction, a violating vector must always lie in the cone Rn

+ \ kerQ− =
{
x ∈ Rn

+ : x⊤Q−x > 0
}
.

Again, by homogeneity, we may restrict the search for a violating vector to CQ− , which implies both
assertions, (a) and (b). ⊓⊔

Given a d.c.d. (2.1), we can also use a different quadratically constrained quadratic problem for
the characterization of copositivity.

Proposition 2.3 Given (2.1) with Q+ ̸= O, consider the program

µ+
dcd := sup

{
x⊤Q−x : x⊤Q+x = 1 , x ∈ Rn

+

}
≥ 0 . (2.3)

This program is always feasible and can be written as a convex quadratic maximization problem over
a convex region as follows:

µ+
dcd = sup

{
x⊤Q−x : x⊤Q+x ≤ 1 , x ∈ Rn

+

}
≥ 0 . (2.4)

Further, both equivalent problems characterize copositivity of Q as follows:

(a) Any (2.4)-feasible x̄ with x̄⊤Q−x̄ > 1 is a violating vector.
(b) If µ+

dcd ≤ 1, then Q is copositive.

If both Q+ ̸= O and Q− ̸= O, then we have µ+
dcd = [µdcd]

−1, using the extension 0−1 = +∞ whenever
necessary.

Proof Feasibility is again clear from Lemma 2.1 which implies here CQ+
̸= ∅. Further, homogeneity

also implies that the optimal values of (2.3) and (2.4) coincide. Assertions (a) and (b) are proved as
before, and the last assertion follows from standard arguments for switching constraint and objec-
tive on a cone-constrained problem. For the sake of completeness, we provide a proof: assume that
x⊤
k Q+xk ↘ µdcd where xk ∈ CQ− with x⊤

k Q+xk > 0 for all k. Put yk := 1√
x⊤
k Q+xk

xk ∈ CQ+ , then

µ+
dcd ≥ y⊤

k Q−yk =
x⊤
k Q−xk

x⊤
k Q+xk

=
1

x⊤
k Q+xk

↗ 1

µdcd
.
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Now, if µ+
dcd = 0 ≤ 1

µdcd
, there is nothing more to show. So finally suppose that µ+

dcd > 0 and pick

uk ∈ CQ+ such that 0 < u⊤
k Q−uk ↗ µ+

dcd. Then zk := 1√
u⊤

k Q−uk

uk ∈ CQ− and thus

µdcd ≤ z⊤k Q+zk =
u⊤
k Q+uk

u⊤
k Q−uk

=
1

u⊤
k Q−uk

↘ 1

µ+
dcd

.

Hence µ+
dcd = [µdcd]

−1. ⊓⊔

Note that there is no counterpart of (2.4) for (2.2), in the following sense: if we tried to modify
the non-convex constraint from x⊤Q−x = 1 into x⊤Q−x ≤ 1, we would rather end up in triviality
(x = o is an optimal solution). However, one can consider the following optimization problem with
a convex objective function and a reverse convex constraint [39]:

µdcd = inf
{
x⊤Q+x : x⊤Q−x ≥ 1 , x ∈ Rn

+

}
≥ 0 . (2.5)

Homogeneity again implies that the optimal values of (2.2) and of (2.5) coincide and thus the results
of Proposition 2.2 also hold for the problem (2.5). Of course, any (2.5)-feasible x̄ with x̄⊤Q+x̄ < 1
is a violating vector.

In the following subsections, we propose three new sufficient conditions for copositivity; the first
starts with Problem (2.4) and relaxes the constraint, so it can be seen as an outer approximation.
The second and the third both start from Problem (2.2) and shrink the feasible set CQ− to a finite
subset in two different ways, and then employ convex QPs to arrive at the copositivity conditions.

Note that there are many ways to use decompositions of Q for estimating and/or bounding
αQ (remember the sign of this quantity is a copositivity certificate), among them underestimating
techniques, (semi-) Lagrangian dual and other relaxation bounds, and those requiring Semidefinite
Optimization, which – although enjoying polynomial-time worst case complexity – need much more
effort than the subproblems studied here. For details, references, and a hierarchy of bounds we refer
to [12].

2.2 An LP-based sufficient condition for copositivity

For convenience, we denote the feasible set of (2.4)

B+ :=
{
x ∈ Rn

+ : x⊤Q+x ≤ 1
}
.

This is a closed convex set with a boundary containing CQ+ . If we enclose B+ in a polytope with a
few known vertices, we can relax (2.4) to a problem equivalent to maximization over a small finite
set (the next result holds for any N but for efficiency reasons we will restrict our attention to the
minimal possible number N = n and y0 = o below):

Proposition 2.4 Suppose P = conv(y0, . . . ,yN ) is a polytope containing B+. If

y⊤
i Q−yi ≤ 1 for all i ∈ {0 : N} , (2.6)

then Q is copositive.

Proof This follows immediately from convex maximization over P ⊃ B+: indeed,

µ+
dcd = sup

{
x⊤Q−x : x ∈ B+

}
≤ sup

{
x⊤Q−x : x ∈ P

}
= max

{
y⊤
i Q−yi : i ∈ {0 : N}

}
≤ 1

implies the assertion via Proposition 2.3(b). ⊓⊔
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Fig. 2.1 Feasible set B+, the polytope P , the hyperplane H with normal vector p; see text.

Next we construct such a polytope P by virtue of an affine hyperplane H supporting B+ at a
boundary point, say v0 := 1√

x⊤Q+x
x, of B+, see Fig. 2.1. Here x ∈ Rn

+ such that p := Q+x has only

positive coordinates (we will discuss existence of such a vector x later). Then p⊤v0 =
√
x⊤Q+x by

construction, so that the hyperplane takes the form

H =
{
y ∈ Rn : p⊤y =

√
x⊤Q+x

}
.

Lemma 2.5 Take any x ∈ Rn
+ such that p = Q+x has only positive coordinates, and define y0 := o

as well as yi :=

√
x⊤Q+x

pi
ei for all i ∈ {1 : n}. Then the polytope

Px := conv(y0, . . . ,yn) = conv

(
o,

√
x⊤Q+x

(Q+x)1
e1, . . . ,

√
x⊤Q+x

(Q+x)n
en

)
(2.7)

contains B+.

Proof The function f(x) = 1
2x

⊤Q+x is convex, and p = Q+x =
√

x⊤Q+x∇f(v0) supports the
sublevel set B+ of f at the boundary point v0 := 1√

x⊤Q+x
x ∈ CQ+ of B+:

p⊤(y − v0) =
√
x⊤Q+x∇f(v0)

⊤(y − v0) ≤
√
x⊤Q+x [f(y)− f(v0)] ≤ 0 ,

if f(y) ≤ f(v0) =
1
2 , i.e., if y

⊤Q+y ≤ 1. This means that B+ ⊆
{
y ∈ Rn : p⊤y ≤

√
x⊤Q+x

}
, the

half space generated by H. As B+ ⊆ Rn
+ by definition, we have

B+ ⊆ P :=
{
y ∈ Rn

+ : p⊤y ≤
√

x⊤Q+x
}
.

We now show that the polyhedron P coincides with Px given in (2.7). Indeed, since yi satisfy by

construction p⊤yi =
√
x⊤Q+x for i ∈ {1 : n} while p⊤y0 = 0, we immediately get Px ⊆ P . On the

other hand, for any y ∈ P ⊆ Rn
+ we have the representation y =

∑n
i=1 νiei with νi ≥ 0 and of course∑n

i=1 νipi = p⊤y ≤
√
x⊤Q+x, hence we arrive at the convex combination

y =

(
1−

∑n
i=1 νipi√
x⊤Q+x

)
o+

n∑
i=1

νipi√
x⊤Q+x

yi ,

and P ⊆ Px is established. ⊓⊔

Theorem 2.6 Given (2.1), take any x ∈ Rn
+ such that p = Q+x has only positive coordinates. If

(x⊤Q+x)(Q−)ii ≤ [(Q+x)i]
2

for all i ∈ {1 : n} , (2.8)

then Q is copositive.
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Proof We use Lemma 2.5 and calculate y⊤
i Q−yi =

x⊤Q+x
p2
i

(Q−)ii. Hence Proposition 2.4 yields (2.8)

as a condition sufficient for copositivity of Q. ⊓⊔

The next step would be to determine an x ∈ Rn
+ such that p = Q+x ≥ e > o. Of course, this

can be done by an LP, and it turns out that this LP is always feasible, given kerQ+ ∩∆s = ∅:

Proposition 2.7 The condition kerQ+ ∩∆s = ∅ is equivalent to
{
x ∈ Rn

+ : Q+x ≥ e
}
̸= ∅.

Proof The condition
{
x ∈ Rn

+ : Q+x ≥ e
}
̸= ∅ is equivalent to saying that the LP

inf
{
f⊤x : Q+x ≥ e , x ∈ Rn

+

}
(2.9)

is feasible for any f ∈ Rn. The dual LP to (2.9) with f = o is

sup
{
e⊤z : Q+z ≤ o , z ∈ Rn

+

}
, (2.10)

and this program (2.10) is always feasible (take z = o for instance). So (2.9) is feasible if and only
if (2.10) is bounded, which means that e⊤z ≤ 0 whenever z ∈ Rn

+ and Q+z ≤ o. This means that
Q+z ≤ o and z ∈ Rn

+ imply z = o. In particular, any z ∈ ∆s ∩ kerQ+ would satisfy z = o, which is
impossible. On the other hand, if indeed kerQ+ ∩∆s = ∅, then kerQ+ ∩ Rn

+ = {o}. Q+z ≤ o and
z ∈ Rn

+ imply

0 ≤ z⊤Q+z ≤ 0 or Q+z = o ,

since Q+ is positive-semidefinite, so that z ∈ kerQ+ ∩ Rn
+. Due to kerQ+ ∩ Rn

+ = {o} we conclude
z = o, which means that (2.10) is bounded and therefore (2.9) is feasible. ⊓⊔

So to apply Theorem 2.6, we can solve one or several LPs of the form (2.9) with different f ,
which means to solve a multiple cost-row problem allowing for warm-start techniques if n is large.
Reasonable choices are f = o or f = e or f = Q+e. The latter choice is motivated by the following
heuristics: to avoid a too large Px = conv(o,y1, . . . ,yn), we should keep

√
x⊤Q+x low (remember

yi :=

√
x⊤Q+x

pi
ei), and due to √

x⊤Q+x ≥ e⊤Q+x√
e⊤Q+e

,

we could minimize (Q+e)
⊤x = e⊤Q+x. Observe that a small x⊤Q+x also increases chances that (2.8)

is satisfied. Another, more numerical, argument would be that the choice of f = e or f = Q+e would
keep the optimal solutions to (2.9) reasonably bounded, due to the constraints x ≥ o and Q+x ≥ e.

For relatively small examples we refer to Subsection 2.4 below. On a larger scale, in a simulation
study of 5000 randomly generated copositive n× n matrices of the form P +N where P is positive-
semidefinite and N has no negative entries (1000 matrices for each n ∈ {10, 20, 50, 100, 200}), only
one (!) matrix failed to satisfy (2.8) with the choice f = Q+e. With the choice of f = o, there were
a total of 83 instances (fairly equi-distributed across n in the above range) where (2.8) was violated.

The random n × n matrices above and in the remaining numerical simulations were created as
follows: for an n×n matrix C with entries independently drawn from a standard normal distribution,
we obtain a random positive-semidefinite matrix P = CC⊤. A random nonnegative matrix N is
constructed by N = B − bminIn with B = A + A⊤ for a random matrix A with entries uniformly
distributed in [0, 1] and bmin the minimal diagonal entry of B. By this construction we maintain
nonnegativity of N while increasing the chance that P +N is indefinite, to avoid too easy instances.

Finally note that we can use condition (2.8) even without employing any LP techniques, if we
are lucky enough to find a point x ∈ Rn

+ satisfying the assumption of Theorem 2.6. In another
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n mini pi > 0 x = e fulfils (2.8) psd
10 852 714 165
20 672 466 32
50 302 94 0
100 94 6 0
200 10 0 0

Table 2.1 Simulation results for p = Q+e; 1000 matrices were generated for each n.

simulation, we counted how often this is the case for x = e, and how often this vector satisfies (2.8); see
Table 2.1, where we also specified the number of generated matrices which are positive-semidefinite as
a reference. It is remarkable how often this cheap check works in a range of low to medium dimensions
(for n ∈ {10, 20, 50} between 71, 4% and 9, 4%). Note that for this test only n inequalities have to
be evaluated, and no optimization problem has to be solved at all.

2.3 Two convex QP-based sufficient conditions for copositivity

Here we propose two variants of QP-based tests for copositivity, which in a natural way extend to
subcones of the nonnegative cone Rn

+.

First note that the feasible set of (2.2), and likewise that of (2.5), may be non-convex (possi-
bly even disconnected) and non-compact. So we avoid solving (2.2) or (2.5), and instead just try
finitely many points for obtaining violating vectors. For instance, we can consider the n vertices
{w1, . . . ,wn} ⊂ ∆s \ kerQ− of a subsimplex ∆ = conv(w1 . . . ,wn) of ∆s, and rescale them such
that they are (2.2)-feasible: v−

i := 1√
w⊤

i Q−wi

wi, i ∈ {1 : n}, to see whether (a) in Proposition 2.2

holds. If this fails, we know

[v−
i ]

⊤Q+[v
−
i ] ≥ 1 = [v−

i ]
⊤Q−[v

−
i ] for all i ∈ {1 : n} , (2.11)

but still v⊤Qv < 0 may be possible for some v ∈ ∆Q− = conv(v−
1 , . . . ,v

−
n ). The latter polytope is

again a simplex, but not necessarily contained in ∆s. Its position depends on the subsimplex ∆ ⊆ ∆s,
and also on the choice of the d.c.d. (2.1). On this simplex we can solve a convex quadratic program
easily.

Theorem 2.8 Given a subsimplex ∆ = conv(w1 . . . ,wn) with vertices {w1, . . .wn} ⊂ ∆s \ kerQ−,
consider the simplex ∆Q− := conv(v−

1 , . . . ,v
−
n ) with v−

i := 1√
w⊤

i Q−wi

wi, and define

r := min
{
[v−

i ]
⊤Q+[v

−
i ] : i ∈ {1 : n}

}
.

If r < 1, then {w1, . . . ,wn} contains a violating vector;

else (r ≥ 1) consider the convex quadratic program on ∆Q−

µ−
∆ := min

{
v⊤Q+v : v ∈ ∆Q−

}
, (2.12)

and denote by v−
∆ an optimal solution of (2.12). Then

(a∆) if µ−
∆ ≥ 1, then Q is ∆-copositive;

(b∆) if µ−
∆ < 1, then v−

∆ /∈
{
v−
1 , . . . ,v

−
n

}
(this is also true for 1 ≤ µ−

∆ < r, but irrelevant).
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Proof (a∆) is a straightforward consequence of convexity of x⊤Q−x which entails

v⊤Q−v ≤ max
{
[v−

i ]
⊤Q−[v

−
i ] : i ∈ {1 : n}

}
= 1 for all v ∈ ∆Q− = conv(v−

1 , . . . ,v
−
n )

and therefore v⊤Q+v ≥ µ−
∆ ≥ 1 ≥ v⊤Q−v which implies ∆Q−-copositivity of Q. As we obtained

∆Q− from ∆ by scaling the vertices, we have R+∆Q− = R+∆ and the result follows.
(b∆) follows from [v−

∆]⊤Q+[v
−
∆] = µ−

∆ < r ≤ [v−
i ]

⊤Q+[v
−
i ] for all i ∈ {1 : n}. ⊓⊔

Note that, unless by chance a solution v̄ to (2.2) is among {v1, . . . ,vn}, in general we do not
have µ−

∆ ≤ µdcd, even for the case ∆ = ∆s, as ∆Q− is not contained in the feasible set CQ− of (2.2).

An anonymous referee made us aware of another interpretation of Theorem 2.8: we rescale the
simplex ∆ to the simplex ∆Q− such that the concave function ψ(v) = −v⊤Q−v takes the (constant)

value −1 on all its vertices v−
i . The tightest convex underestimator ψ of ψ over ∆Q− is therefore the

constant function ψ(v)≡ − 1 (as ψ must always be an affine function with the same values at the
vertices), and the condition (a∆) is nothing else than the requirement that v⊤Q+v + ψ(v) ≥ 0 for
all v ∈ ∆Q− which implies, by ψ(v) ≥ ψ(v), that v⊤Qv = v⊤Q+v + ψ(v) ≥ 0, for all v ∈ ∆Q− ,
and hence ∆-copositivity of Q.

We may also minimize v⊤Q+v over a simplex resulting from rescaling vertices in a different way.
This gives another convex QP-based sufficient condition for copositivity.

Theorem 2.9 Given a subsimplex ∆ = conv(w1 . . . ,wn) with vertices {w1, . . . ,wn} ⊂ ∆s\kerQ+,
consider the simplex ∆Q+ := conv(v+

1 , . . . ,v
+
n ) with v+

i := 1√
w⊤

i Q+wi

wi, and define

s := max
{
[v+

i ]
⊤Q−[v

+
i ] : i ∈ {1 : n}

}
= r−1 .

If s > 1, then {w1, . . . ,wn} contains a violating vector

else (s ≤ 1) consider the convex quadratic program on ∆Q+

µ+
∆ := min

{
v⊤Q+v : v ∈ ∆Q+

}
. (2.13)

and denote by v+
∆ an optimal solution to (2.13). Then

(a∆) if µ+
∆ ≥ s, then Q is ∆-copositive;

(b∆) if µ+
∆ < s, then v+

∆ /∈
{
v+
1 , . . . ,v

+
n

}
(this is also true for s ≤ µ+

∆ < 1, but irrelevant).

Proof The relation s = r−1 is evident from the definitions. Again, assertion (a∆) is also a straight-
forward consequence of convexity of x⊤Q+x and x⊤Q−x, which entails

v⊤Q−v ≤ max
{
[v+

i ]
⊤Q−[v

+
i ] : i ∈ {1 : n}

}
= s for all v ∈ ∆Q+ = conv(v+

1 , . . . ,v
+
n )

and therefore v⊤Q+v ≥ µ+
∆ ≥ s ≥ v⊤Q−v which implies ∆Q+ -copositivity of Q. As we obtained

∆Q+ from ∆ by scaling the vertices, we have R+∆Q+ = R+∆ and the result follows.
(b∆) follows from [v+

∆]⊤Q+[v
+
∆] = µ+

∆ < 1 = [v+
i ]

⊤Q+[v
+
i ] for all i ∈ {1 : n}. ⊓⊔

Now, in contrast to the situation in Theorem 2.8, we have ∆Q+ ⊆ B+, but still cannot infer some
relation between µ+

∆ and µ+
dcd, because (2.4) is a maximization and (2.13) a minimization problem

for different objective functions.

Very often in our simulations, the two QP-based tests deliver different violating vectors v−
∆ and

v+
∆ if the matrix is not copositive, see for instance Example 2.12 below. For details we refer to

Subsection 6.2.
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Fig. 2.2 (a) on the left: illustration of Example 2.10. (b) on the right: illustration of Example 2.13.

2.4 Examples

Example 2.10 We establish copositivity of the following matrix, a principal submatrix of the matrix
from [33, Ex. 1]:

Q =

 1 0.9 −0.54
0.9 1 −0.03

−0.54 −0.03 1

 .
A d.c.d. of Q is given by

Q+ =

 1.019 0.884 −0.531
0.884 1.014 −0.038

−0.531 −0.038 1.005

 and Q− =

 0.019 −0.016 0.009
−0.016 0.014 −0.008
0.009 −0.008 0.005


(this is a rounded version of the so-called spectral d.c.d., see Section 3 below). This results for∆ = ∆s

in the vectors

[v−
1 ,v

−
2 ,v

−
3 ] ≈

 7.355 0 0
0 8.613 0
0 0 14.821


and the value r ≈ 55.097, while µ−

∆ ≈ 22.503, and thus Q is copositive according to Theorem 2.8.
Theorem 2.9 yields s = 1/r ≈ 0.018 as compared to µ+

∆ ≈ 0.238, which also establishes copositivity.
In Fig. 2.2(a) we plot a projection of the eigencoordinates yi, ordered with increasing eigenval-
ues and scaled by the eigenvalues, such that v⊤Q+v = y22 + y23 . The triangle represents ∆Q+

=
conv(v+

1 ,v
+
2 ,v

+
3 ). The outer circle is the projection of the level set v⊤Q+v = 1 and contains{

v+
1 ,v

+
2 ,v

+
3

}
, whereas the inner circle is the projection of the level set v⊤Q+v = s. As the tri-

angle does not intersect the inner circle, the matrix is copositive. The solution v+
∆ of (2.13) at the

boundary of the triangle is also indicated. Copositivity can also be shown using Theorem 2.6 with
x ≈ [0.5, 1.3, 1.3]⊤ obtained by solving (2.9) for f = Q+e, with p ≈ [1, 1.8, 1]⊤. Condition (2.8) is
satisfied:

(x⊤Q+x)diag Q− ≈ [0.08, 0.06, 0.02]⊤ ≤ [1, 3.07, 1]⊤ ≈ [(Q+x)
2
1, (Q+x)

2
2, (Q+x)

2
3]

⊤.

Example 2.11 The matrix

Q =

 1 2 −2
2 1 −1

−2 −1 5
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shows that the two QP-based tests are not completely symmetric. Again using the spectral d.c.d.,
we get µ−

∆ ≈ 1.280 > 1 for ∆ = ∆s, the matrix Q is copositive according to Theorem 2.8. Indeed, Q
is the sum of a positive-semidefinite matrix and a nonnegative matrix:

Q =

 1 0 −2
0 1 −1

−2 −1 5

+

 0 2 0
2 0 0
0 0 0

 .
But µ+

∆ ≈ 0.169 < 0.382 ≈ s, and hence the sufficient copositivity criterion of Theorem 2.9 is not
satisfied. For this matrix also the sufficient LP-test with an x gained by solving (2.9) for f = Q+e
fails.

Example 2.12 Consider

Q =


1 1.63 1 −0.77 −0.67

1.63 1 0 0.32 −0.82
1 0 1 −0.26 −0.67

−0.77 0.32 −0.26 1 0.77
−0.67 −0.82 −0.67 0.77 1

 .
The QP-test of Theorem 2.8 delivers the optimal solution to (2.12)

v−
∆ ≈ [0.2, 0.18, 0.17, 0, 0.45]⊤ with [v−

∆]⊤Q[v−
∆] ≈ 0.13 > 0 .

But Problem (2.13) of Theorem 2.9 gives a violating vector:

v+
∆ = [0, 0.26, 0.3, 0, 0.44]⊤ with [v+

∆]⊤Q[v+
∆] ≈ −0.01 < 0 .

Of course, the LP-based test failed before.

Example 2.13 For the matrix

Q =

 3 2 −2
2 1 −1

−2 −1 2


copositivity can be shown using the LP-based test (with f = Q+e delivering x ≈ [0.94, 1.12, 2]⊤) as
well as the sufficient criterion of Theorem 2.8. The matrix is indeed copositive as it can be written
as

Q =

 3 1 −2
1 1 −1

−2 −1 2

+

 0 1 0
1 0 0
0 0 0

 .
However evaluating the criterion in Theorem 2.9 for ∆ = ∆s leads to µ+

∆ ≈ 0.10 < 0.15 ≈ s, as
illustrated in Fig. 2.2(b). The projected solution v+

∆ now lies inside the inner circle, and this sufficient
criterion fails.

2.5 Outline of the algorithm

Now let us reconsider the conditions in Subsection 2.3. First suppose we always obtain case (a∆)
in Theorems 2.8 or 2.9 for a collection of simplices ∆ which together cover ∆s. Then we can infer
copositivity of Q because of the next observation (note that the assumption there is satisfied if
∆s = ∪i∈I∆i):



12

Proposition 2.14 Assume we have a family of nonempty ∆i (for i from some index set I) with

Rn
+ =

∪
i∈I

R+∆i .

Then Q is copositive if and only if Q is ∆i-copositive for all i ∈ I.

Proof follows from [23, Lemma 2.1]. ⊓⊔

If, however, we arrive at case (b∆) in both Theorems 2.8 and 2.9 for some ∆ in this collection,
we may use both v+

∆ and v−
∆ as new trial points for violating vectors, i.e. check whether

σ∆ := min
{
[v−

∆]⊤Q[v−
∆], [v+

∆]⊤Q[v+
∆]
}
< 0 . (2.14)

If this is not the case, we have to continue our investigations with the help of the trial point with
lower v⊤Qv, i.e., choose

v∆ ∈
{
v−
∆,v

+
∆

}
such that v⊤

∆Qv∆ = σ∆ . (2.15)

Suppose now that the LP-based test of Subsection 2.2 fails, and that the trial point v∆ defined
via (2.14) and (2.15) is not a violating vector, so that v⊤

∆Qv∆ ≥ 0. As this vector still minimizes the
positive part v⊤Q+v over ∆Q+ or ∆Q− , it seems reasonable to rescale it to a vector

w̄ :=
1

e⊤v∆
v∆ ∈ ∆s . (2.16)

This point will be used for subdivision of ∆. A very rough and inexact outline of our algorithm
follows (most of the conditions will be made precise in the sequel, and also the algorithm will be
presented in more detail in Section 5.2); the terminology ”a test fails on ∆” is short for the situation
where it neither delivers a certificate for ∆-copositivity nor a violating vector (in ∆).

Sketch of algorithm

Input: Matrix Q with a d.c.d. Q = Q+ −Q−.

Output: Either a copositivity guarantee for Q or a violating vector (a certificate for non-copositivity).

0.) Put ∆ = ∆s = conv(e1, . . . , en), the columns of In.
1.) Run the tests on ∆ = conv(w1, . . . ,wn); if all tests fail on ∆ and σ∆ ≥ 0 (2.14), use the point w̄

defined in (2.16) for ω-subdivision as follows:

∆ =
n∪

i=1

∆i with ∆i = conv ({w̄} ∪ {wj : j ̸= i}) , i ∈ {1 : n} ;

replace ∆ with all full-dimensional subsimplices ∆i, and repeat from 1.) on all ∆i.

Example 2.15 We continue Example 2.13. Let us for presentational purposes assume we only use the
sufficient criterion of Theorem 2.9, and hence copositivity of Q is not yet established. In this case we
may subdivide ∆s using

w̄ :=
1

e⊤v+
∆

v+
∆ ≈ [0.45, 0, 0.55]⊤ ,

which is the minimal solution v+
∆ reprojected to the standard simplex. We get two full-dimensional

successor simplices, ∆1 := conv(e2, e3, w̄) and ∆3 := conv(e1, e2, w̄), and a flat one, ∆2, see
Fig. 2.3(a). Solving Problem (2.13) we get µ+

∆1
≈ 0.162 > 0.145 ≈ s so that Q is ∆1-copositive,

and µ+
∆3

≈ 0.661 > 0.145 ≈ s which entails ∆3-copositivity of Q, see Fig. 2.4. We conclude that Q

is R3
+-copositive.
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Fig. 2.3 (a) on the left: subdivision for Example 2.15; (b) on the right: ω-subdivision for Example 2.16.

Fig. 2.4 Subdivision for Example 2.15; (a) on the left: subsimplex ∆1; (b) on the right: subsimplex ∆3.

Example 2.16 We investigate the matrix

Q =

 2 −3 5
−3 1 −2
5 −2 2

 .
which is not copositive as v = [0, 0.6, 0.4]⊤ ∈ ∆s is violating (see also Example 4.6 below). Indeed,
the solution of (2.13) for ∆s yields a point v+

∆ which results in w̄ = 1
e⊤v+

∆

v+
∆ = [0.33, 0.61, 0.07]⊤,

see Fig. 2.3(b). This is a violating vector: w̄⊤Qw̄ ≈ −0.55 < 0.

The idea of partitioning is already used in [14] for a branch-and-bound copositivity test. There,
the authors employ bisections (i.e. subdivision w.r.t. the mid-point of an edge) always on the longest
edge between two vertices wi and wj for which w⊤

i Qwj < 0 holds. They combine two subdivision
strategies: the convergence-generating one is taking the midpoint on this edge (halving the edge),
while the data-driven one is determined by the minimum of the function

φ(t) = [twi + (1− t)wj ]
⊤
Q [twi + (1− t)wj ] . (2.17)

So all division points lie on the edges of subsimplices∆. In the method proposed here also subdivisions
using an interior point of a subsimplex ∆ are possible. Both methods have in common that they
concentrate on interesting regions of the standard simplex ∆s in a data-driven way. However, a
problem is solved at the root by the method of [14] only if Q has no negative entries. This is in
contrast to our method, see, e.g. Subsection 2.4.



14

3 The choice of a d.c. decomposition

We shortly discuss the choice of the d.c.d. used in the preceding section. Recall that a d.c.d. Q =
Q+ − Q− is called undominated if there is no other d.c.d. Q = Q′

+ − Q′
− such that Q± − Q′

±
are positive-semidefinite. Undominated d.c.d.s for quadratic optimization problems were introduced,
discussed and characterized in [11]. For instance, it is shown [11, Theorem 4] that if Q is indefinite,
there always exist infinitely many undominated d.c.d.s. Undominatedness favors the construction
of tighter bounds for the StQP (1.1) on the standard simplex, so we expect that an undominated
d.c.d. will be more efficient in copositivity detection. Here, we have implemented the most popular
undominated d.c.d., the so-called spectral d.c.d. which is constructed as follows:

Take an orthonormal basis of eigenvectors ui of Q to the eigenvalues λi, i ∈ {1 : n} (we may sort
them in increasing order if needed). Define γ+ := max {0, γ} for a number γ and Λ+ := Diag [(λi)+]i,
the n×n diagonal matrix containing the positive parts of the eigenvalues. Collect the columns ui in an
orthonormal n×n matrix U . Then Q+ := UΛ+U

⊤ and Q− := Q+−Q are both positive-semidefinite
but singular if Q is indefinite.

The spectral d.c.d. Q = Q+−Q− is undominated and dominates all other d.c.d.s which commute
with Q [11, Corollary 3]. One may wonder whether this choice of d.c.d. must be repeated on the
subsimplices ∆Q− (or ∆Q+ respectively). Indeed, we can rephrase for instance the program (2.12)
as an StQP using the n × n matrix V := [v−

1 , . . . ,v
−
n ] as follows (note that if ∆ is spanned by

linearly independent w1, . . . ,wn, then V is nonsingular): any v ∈ ∆Q− can be written in barycentric
coordinates w.r.t. V , i.e., v = V x for some x ∈ ∆s, so that

µ−
∆ = min

{
x⊤Q∆

+x : x ∈ ∆s
}
= αQ∆

+
with Q∆

± := V ⊤Q±V . (3.1)

Now compare the feasible sets of (2.2) and (2.12): the non-convex quadratic constraint v⊤Q−v = 1
is replaced with the linear constraint v ∈ ∆Q− in (2.12). Similarly (recall x⊤Q∆

−x = v⊤Q−v), the
StQP (3.1) is used to approximate the problem

µ∆
dcd := inf

{
x⊤Q∆

+x : x⊤Q∆
−x = 1 , x ∈ Rn

+

}
.

We now show that sandwiching transforms an undominated d.c.d. again into an undominated one,
so that

Q∆ = V ⊤QV = V ⊤Q+V − V ⊤Q−V = Q∆
+ −Q∆

− (3.2)

is undominated if Q± result by the spectral d.c.d. Unless Q∆Q∆
± = Q∆

±Q
∆, the d.c.d (3.2) is not the

spectral d.c.d. of Q∆.

Theorem 3.1 Suppose that V is a nonsingular n × n matrix. Then sandwiching an undominated
d.c.d. Q = Q+ −Q− by V yields again an undominated d.c.d. V ⊤QV = V ⊤Q+V − V ⊤Q−V .

Proof First we note that for any B ∈ Sn we have kerV ⊤BV = V −1(kerB). Next denote by

K± = kerQ± and KV
± = ker(V ⊤Q±V ) = V −1(K±) .

From [11, Theorem 1] we know that K+ +K− = Rn, so that also

KV
+ +KV

− = V −1(K+) + V −1(K−) = V −1(K+ +K−) = V −1(Rn) = Rn .

Hence, employing [11, Theorem 1] again, we deduce that V ⊤QV = V ⊤Q+V − V ⊤Q−V is an un-
dominated d.c.d. ⊓⊔
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ε = 0 ε = 0.001 ε = 0.01 ε = 0.1

N cond(Qγ,ε
+ ) N cond(Qγ,ε

+ ) N cond(Qγ,ε
+ ) N cond(Qγ,ε

+ )

γ = α 14 73.88 · 1015 26 24.68 · 103 43 2468.5 60 247.75
γ = 2 1061 57.83 1045 57.69 1059 56.53 1112 47.04
γ = 4 1316 57.83 1412 57.69 1429 56.53 1409 47.04
γ = 6 1661 83.01 1811 82.82 1926 81.13 2083 67.44
γ = 8 1657 112.05 1686 111.79 1978 109.50 2579 90.96
γ = 10 2552 141.08 2567 140.76 2620 137.88 3523 114.49

Table 3.1 Results for different d.c.d.s of Q from (3.3); see text.

There is only one obstacle in applying Theorems 3.1, 2.8 and 2.9: we need to assume that the
vertices of ∆ are not contained in kerQ− and kerQ+ respectively. Recall that Q is ∆-copositive for
sure if ∆ ⊆ kerQ−, On the other hand, any vector in ∆ ∩ kerQ+ \ kerQ− is a violating one. We
treat a slightly more general case in Lemma 4.5 below.

Small values of w⊤
i Q−wi suggest that wi is not close to a violating vector. Numerically speaking,

the scaling of verticeswi even close to kerQ− and kerQ+, so thatw
⊤
i Q±wi < ε, could be problematic

for small ε. A robustification step avoiding this is discussed in Subsection 5.1 below. The experimental
design in the following example resembles this on a macroscopic level with larger ε.

Example 3.2 To examine the significance of choice of an undominated d.c.d., and also to corroborate
the choice of the spectral d.c.d. among all undominated d.c.d.s, we run numerical tests with the
copositive matrix Q [41] given by

Q =


1 −1 1 2 −3

−1 2 −3 −3 4
1 −3 5 6 −4
2 −3 6 5 −8

−3 4 −4 −8 16

 . (3.3)

Let λ1 < 0 < λ2 ≤ λ3 ≤ λ4 ≤ λ5 denote the ordered eigenvalues of Q and U the orthonormal matrix
of respective eigenvectors. Let α = λ2 ≈ 0.2828 and β = −λ1 ≈ 1.7520. Then an infinite number of
undominated d.c.d.s is given by [11, Theorem 4] Q+(γ) := UB(γ)U⊤ and Q−(γ) := Q+(γ)−Q for
γ ≥ α, where B(γ) is defined by

B(γ) :=


β
αγ − β

√
β
√
γ2/α− γ 0 0 0√

β
√
γ2/α− γ γ 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

 .
For γ = α we obtain the undominated spectral d.c.d. Q+(α), Q−(α). Dominated positive definite
d.c.d.s are generated by a rank-one update: Q+(γ) + εEn and Q−(γ) + εEn for ε > 0. Table 3.1
shows the number N of subsimplices which have to be considered in the procedure as presented in
Subsection 2.5 and cond(Qγ,ε

+ ) gives the condition numbers of the matrices Qγ,ε
+ := Q+(γ) + εEn.

In most cases, using dominated d.c.d.s significantly increases the number N of used subsimplices.
For other undominated d.c.d.s than the spectral d.c.d. also much more subsimplices have to be
considered which supports our choice of the spectral d.c.d. This result is confirmed by repeating the
above test with other, also noncopositive matrices. However, for the famous Horn matrix [25]

H =


1 −1 1 1 −1

−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

 , (3.4)
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ε = 0 ε = 0.001 ε = 0.01 ε = 0.1

N cond(Hγ,ε
+ ) N cond(Hγ,ε

+ ) N cond(Hγ,ε
+ ) N cond(Hγ,ε

+ )

γ = α 3711 268.76 · 1015 5691 3237.1 5905 324.61 6179 33.36
γ = 2 2737 358.04 · 1014 2416 3237.1 2935 324.61 2805 33.36
γ = 4 3342 412.57 · 1015 3200 4001.0 3536 401.00 3516 41.00
γ = 6 3101 504.45 · 1014 2832 6181.3 3006 619.03 4652 62.80
γ = 8 3923 894.25 · 1013 4142 8653.5 4003 866.25 4715 87.52
γ = 10 4759 373.18 · 1014 4650 11125.6 4754 1113.46 4950 112.25

Table 3.2 Results for different d.c.d.s of the Horn matrix H from (3.4); see text.

other undominated d.c.d.s demanded less subsimplex evaluations, for the results see Table 3.2. Still,
the results for the dominated d.c.d.s tend to be worse. The particular behavior of the Horn matrix
is further discussed in Subsection 6.1.

4 Preprocessing for a copositivity test

4.1 Simple sign tests and diagonal normalization

We start with some simple sign tests, which we collect in a lemma for easy reference. Most of these
are well known since long, see, e.g. [40].

Lemma 4.1 Let Q = [qij ] ∈ Sn and choose an arbitrary i ∈ {1 : n}.

(a) If qii < 0, then v = ei is a violating vector;
(b) if qii = 0 > qij for some j ∈ {1 : n}, then v = (qjj + 1)ei − qijej is a violating vector;
(c) if qij ≥ 0 for all j ∈ {1 : n}, then

Q is copositive if and only if R := [qjk]j ̸=i,k ̸=i ∈ Sn−1 is copositive;

further, if u = [uj ]j ̸=i ∈ Rn−1
+ is a violating vector for R,

then vi = 0 and vj = uj for j ̸= i defines a violating vector v ∈ Rn
+ for Q.

Proof is evident by straightforward calculation. ⊓⊔

Therefore, we can eliminate nonnegative rows and concentrate on the reduced matrix. However,
as the example of the 2 × 2 permutation matrix Q ̸= I2 and its d.c.d. shows, deleting the first row
and column of an undominated d.c.d. does not always yield an undominated d.c.d. of the smaller
matrix. So one has to balance the advantage of dimension reduction with the additional effort of a
new spectral decomposition and we decided here to use nonnegative row/column elimination only at
the root of the branch-and-bound-algorithm.

If copositivity of the reduced matrix (which we for convenience of notation still denote by Q ∈ Sn)
is still unclear, Q must have strictly positive diagonal entries and at least one negative off-diagonal
entry in every row. The next test is a dominance test for these off-diagonal entries. Finally, we
normalize Q such that the diagonal is equal to e (see also [33] and Remark 1.1 and 1.2 in [42]).

Lemma 4.2 Let Q = [qij ] ∈ Sn with strictly positive diagonal.

(a) Q is copositive if and only if DQD is copositive where D ∈ Sn is a positive-definite diagonal
matrix; if w ∈ Rn

+ is a violating vector for DQD, then v = Dw ∈ Rn
+ is violating for Q.
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(b) Q is copositive if and only if

Q′ =

[
qij√
qiiqjj

]
is copositive. We have diag Q′ = e.

(c) If qij < −√
qiiqjj, then v = q

−1/2
ii ei + q

−1/2
jj ej is a violating vector.

Proof (a) is straightforward to verify, noting that D(Rn
+) = Rn

+. (b) follows from (a) by putting

D = Diag [q
−1/2
ii ]i. To prove (c), we now may and do work with Q′ from (b) instead of Q. But

w = D−1v = (ei + ej) is easily seen to be a violating vector for Q′. ⊓⊔

Again, Theorem 3.1 ensures that the spectral (or any undominated) d.c.d. Q = Q+−Q− gives an
undominated d.c.d. DQD = DQ+D −DQ−D which in general is not the spectral d.c.d. for DQD.
Anyhow, we thus need not determine the spectral d.c.d. for the normalized Q′ anew. Although it
has no immediate consequences for our implementation, it is instructive to see what happens on a
subsimplex ∆ = conv(w1, . . . ,wn) where Q is replaced with Q∆ (with strictly positive diagonal),
and then Q∆ is rescaled as above to (Q∆)′ with diag (Q∆)′ = e. It turns out that in effect we rather
rescale the original quadratic form and minimize the convex part on the subsimplex generated by zi
which are rescaled from the wi by requiring z⊤i Qzi = 1.

Proposition 4.3 Let a subsimplex ∆ = conv(w1, . . . ,wn) be given with linearly independent vertices
{w1, . . . ,wn} ⊂ ∆s \ kerQ−. Let Q

∆ = V ⊤QV with V = [v−
1 , . . . ,v

−
n ], v

−
i = 1√

w⊤
i Q−wi

wi and

(Q∆)′ = D⊤Q∆D with D = Diag [(q∆ii )
−1/2]i. Suppose that q∆ii = [v−

i ]
⊤Q[v−

i ] > 0 for all i ∈ {1 : n}.
Then Problem (2.12) for (Q∆)′ yields the same value as

min
{
z⊤Q+z : z ∈ conv(z1, . . . , zn)

}
, (4.1)

where zi ∈ Rn
+ with z⊤i Qzi = 1 are scaled from wi by zi :=

1√
w⊤

i Qwi

wi for all i ∈ {1 : n}.

Proof First note that 0 < q∆ii =
w⊤

i Qwi

w⊤
i Q−wi

by assumption so that zi are well defined. We obtain the

undominated d.c.d. (recall Theorem 3.1)

(Q∆)′ = D⊤V ⊤QVD = D⊤V ⊤Q+V D −D⊤V ⊤Q−V D = (Q∆)′+ − (Q∆)′− ,

so that the vertices for the feasible set of Problem (2.12) for (Q∆)′ are zi = (V D)ei. Using the
definitions of D and V as well as the definitions of q∆ii (see above) and v−

i , we obtain

zi = (V D)ei = V ( 1√
q∆ii

ei) =
1√
q∆ii

v−
i =

√
w⊤

i Q−wi

w⊤
i Qwi

1√
w⊤

i Q−wi

wi =
1√

w⊤
i Qwi

wi .

Hence the result. ⊓⊔

Note that we cannot easily transfer the proof of Theorem 2.8 to infer ∆-copositivity of Q from
the fact that the optimal value in (4.1) is not exceeding one, since the quadratic function z⊤Qz is
non-convex, so we cannot control the condition z⊤Qz ≤ 1 as z ranges over conv(z1, . . . , zn).
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4.2 Truncating positive off-diagonal entries

So, after these sign and dominance tests and after normalization we end up with a matrix (again
denoted by Q rather than Q′) with unity on the diagonal, all negative entries not smaller than −1,
and at least one negative entry per row. In [28] it was shown that a matrix Q with diag Q = e remains
copositive if each off-diagonal entry qij is replaced by min{qij , 1}. Collecting somehow scattered and
implicit arguments in [28], we construct a violating vector in an explicit way here, apparently for the
first time in literature.

Lemma 4.4 Let

Q =

 1 b⊤ q1n
b A c
q1n c⊤ 1

 ∈ Sn

with diagonal equal to e and off-diagonal entry q1n > 1. Then the matrix

M :=

 1 b⊤ 1
b A c
1 c⊤ 1

 ∈ Sn

is copositive if and only if Q is copositive. If v = [v1,a
⊤, vn]

⊤ ∈ Rn
+ is a violating vector to M , then

w :=

{[
max{0,−a⊤b},a⊤, 0

]⊤
if a⊤b ≤ a⊤c,[

0,a⊤,max{0,−a⊤c}
]⊤

if a⊤b > a⊤c

is a violating vector to Q.

Proof Necessity is proved in [28, Theorem 1], while sufficiency is immediate noting that Q is the sum
of M and a nonnegative matrix.

Let v be a violating vector to M , i.e.

0 > v⊤Mv = v21 + a⊤Aa+ v2n + 2v1vn + 2v1a
⊤b+ 2vna

⊤c ≥ [v1 + vn + γv]
2
+ a⊤Aa− γ2v

for γv := min{a⊤b,a⊤c}. We therefore obtain

a⊤Aa− γ2v < 0 . (4.2)

In the case of γv ≥ 0, i.e., if a⊤b ≥ 0 and a⊤c ≥ 0, we also conclude

a⊤Aa < −
(
v21 + v2n + 2v1vn + 2v1a

⊤b+ 2vna
⊤c
)
≤ 0. (4.3)

For a⊤b ≤ a⊤c put w :=
[
w1,a

⊤, 0
]⊤

for some w1 ≥ 0, then

w⊤Qw = w2
1 + a⊤Aa+ 2w1a

⊤b =
[
a⊤Aa− (a⊤b)2

]
+
(
w1 + a⊤b

)2
.

In the case of a⊤b ≥ 0 set w1 = 0 and then with (4.3) w⊤Qw = a⊤Aa < 0. In the case of a⊤b < 0
set w1 = −a⊤b and get with (4.2) w⊤Qw = a⊤Aa − (a⊤b)2 < 0. The remaining case a⊤c < a⊤b
can be dealt with by analogy. ⊓⊔

In Lemma 4.4, only for notational convenience we selected the corner entries q1n and qn1 for
truncation. Obviously, the same can be done for any positive off-diagonal entry. Hence, additionally
to normalizing Q to Q′ we can truncate all positive off-diagonal entries to 1 in a preprocessing step.
Therefore we can even assume without loss of generality that all entries range between −1 and 1,
and all diagonal entries equal one.
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4.3 Spectral preprocessing

If we choose the spectral variant as an undominated d.c.d., we need to know the eigenpairs (λi,ui)
with u⊤

i ui = 1. Note that qii > 0 for some i already implies that Q cannot be negative-definite, so
there is a k < n with λk < 0 ≤ λk+1. Hence the next tests are almost for free. In the proof, we need the
following notation: with γ+ = max {γ, 0}, for any vector u ∈ Rn denote by u+ = [(ui)

+]i ∈ Rn
+ and

u− = u+−u ∈ Rn
+ so that u = u+−u− and u⊤u = (u+)⊤(u+)+(u−)⊤(u−) = (u++u−)⊤(u++u−)

because of (u+)⊤(u−) = 0 (one may define u± also in terms of the spectral d.c.d. for Diag u =
Diag u+ −Diag u−).

Lemma 4.5 Denote by λ1 ≤ · · · ≤ λk < 0 ≤ λk+1 ≤ · · · ≤ λn the ordered eigenvalues of Q.

(a) If λ1 ≥ 0, then Q is positive-semidefinite and hence copositive.
(b) If λ1 < −λn, then at least one of the two vectors u+

1 or u−
1 is violating.

(c) If λ1 = −λn and if there is no eigenvector of λn in Rn
+ (e.g. if λn is simple and un has entries

with different signs), then at least one of the two vectors u+
1 or u−

1 is violating.
(d) Consider the polytope (possibly empty, may be checked by phase I in an LP):

P− =
{∑k

i=1 µiui : [µi]i ∈ Rk
}
∩∆s =

{
x ∈ ∆s : u⊤

i x = 0 for all i ∈ {(k + 1) : n}
}
.

Then any v ∈ P− is a violating vector.

Proof (a) and (d) are immediate; (b) and its variant (c) are essentially shown in [27], cf. also [7]: let
y = u+

1 + u−
1 ∈ Rn

+ so that y⊤y = u⊤
1 u1 = 1. Then straightforward calculations yield

y⊤Qy + u⊤
1 Qu1 = 2

[
(u+

1 )
⊤Q(u+

1 ) + (u−
1 )

⊤Q(u−
1 )
]
. (4.4)

Under (b), we infer y⊤Qy + u⊤
1 Qu1 ≤ λn + λ1 < 0 while under (c), we know y⊤Qy < λn and thus

y⊤Qy+u⊤
1 Qu1 < λn+λ1 = 0. In both cases, we arrive via (4.4) at (u+

1 )
⊤Q(u+

1 )+(u−
1 )

⊤Q(u−
1 ) < 0,

and the assertion follows. ⊓⊔

Example 4.6 For Q as in Example 2.16, the (rounded) vector v = [0, 0.6, 0.4]⊤ ∈ ∆s is orthogonal
to the eigenvector to the (unique) nonnegative eigenvalue 8.64 of Q, and hence violating.

Rather than checking multiplicity of λn, or the existence of a nonnegative eigenvector to this
eigenvalue, it is much easier to check all the vectors u±

i ∈ Rn
+ for i ∈ {1 : k} whether they are

violating.

5 An ω−subdivision branch-and-bound approach

5.1 Subdivision and robustification

To begin with, let us recall the procedures in Section 2. If we always obtain case (a∆) in Theorems 2.8
or 2.9 for a collection of simplices ∆ which together cover ∆s, then we know that Q is copositive,
due to Proposition 2.14.

If, however, we arrive at case (b∆) in both Theorems 2.8 and 2.9 for some ∆ in this collection
and if the trial point v∆ defined via (2.14) and (2.15) is not a violating vector, then v⊤

∆Qv∆ ≥ 0. As
indicated in Subsection 2.5, we rescale v∆ to a vector w̄ := 1

e⊤v∆
v∆ ∈ ∆s, to use it for ω-subdivision

in further iterations.
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Lemma 5.1 For linearly independent vertices {w1, . . . ,wn} ⊂ ∆s \ (kerQ− ∪ kerQ+) take ∆ =
conv(w1, . . . ,wn). Assume that µ−

∆ < 1 ≤ r = s−1 < [µ+
∆]−1. Then

w̄ = 1
e⊤v∆

v∆ ∈ ∆ \ {w1, . . . ,wn}, and there is at least one wi such that

{w̄} ∪ {wj : j ̸= i} are linearly independent.

Proof Let us treat the case v∆ = v−
∆; the other case is completely symmetric. We know v∆ = V x

for some x ∈ ∆s, so, recalling that e⊤wj = 1 for all j, the coordinate sum amounts to

e⊤v∆ =
n∑

j=1

xje
⊤v−

j =
n∑

j=1

xj√
w⊤

j Q−wj

.

Hence

w̄ =
n∑

i=1

xi
e⊤v∆

vi =
1

e⊤v∆

n∑
i=1

xi√
w⊤

i Q−wi

wi (5.1)

is a convex combination of all wi, since the coefficients of wi are non-negative and sum up to one.
Now assume w̄ = wi for some i. Since wj are linearly independent, this means xi = 1 while all
other xj = 0. But then v∆ = v−

i , which contradicts Theorem 2.8 (b∆). The assertion about linear
independence follows from considering the union

∆ = conv(w1, . . . ,wn) =
n∪

i=1

conv ({w̄} ∪ {wj : j ̸= i}) , (5.2)

because by assumption ∆ has full dimension. ⊓⊔

Numerically speaking, the scaling of vertices wi as in (5.1) with w⊤
i Q±wi < ε could be prob-

lematic for small ε. Therefore we decided to employ the following robustification step: once this
case occurs, we deviate from the undominated d.c.d., by changing from Q± to a slightly dominated
rank-one update, namely Qε

± = Q± + εEn. This robustification resembles the usual regularization
approach which perturbs Q by adding εIn rather than εEn.

However, unlike regularization, robustification just means an additive shift by a constant and
thus does not affect curvature: Q±u = Qε

±u holds if u belongs to the (n− 1)-dimensional subspace
e⊥ parallel to ∆s. In addition, robustification guarantees x⊤Qε

±x ≥ ε > 0 over ∆s. Hence this
choice will in most cases still be quite efficient and the scaled vertices vi always remain in a bounded
region. Variants of this rank-one update approach could also be used for detecting strict copositivity
(in (2.12) only replace Q− with Qε

−), or testing ε-copositivity, a relaxation of copositivity discussed
in [14] (in (2.12) only replace Q+ with Qε

+).

5.2 The algorithm

In the following algorithm we also accelerate detection by incorporating the LP-based method of
Subsection 2.2, applied to ∆ = conv(w1, . . . ,wn) rather than to ∆s. Thus, if W = [w1, . . . ,wn],
replace Q± with QW

± = W⊤Q±W for an undominated d.c.d. of QW = W⊤QW ; if (2.8) is satisfied,
we know that QW is Rn

+-copositive and hence that Q is ∆-copositive (recall that QW and QW
±

differ from their counterparts Q∆ = V ⊤QV and Q∆
± = V ⊤Q±V ; indeed, if ∆ ̸= ∆s, then ∆ must

have been generated from subdividing its predecessor, say ∆̂ = conv(ŵ1, . . . , ŵn); if v∆̂ = v−
∆̂
, then

V = [v̂−
1 , . . . , v̂

−
n ], whereas if v∆̂ = v+

∆̂
, then V = [v̂+

1 , . . . , v̂
+
n ], where, again, v̂

±
i = 1√

ŵ⊤
i Q±ŵi

ŵi
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are the suitably scaled vertices of ∆̂). In any case, the quantities r and s for the simplex ∆ =W (∆s)
are given by

1

r
= s = sW := max

i

(QW
− )

ii

(QW
+ )

ii

= max
i

w⊤
i Q−wi

w⊤
i Q+wi

.

Algorithm 1 Copositivity detection by d.c.d. and ω-subdivision
Require: ε ≥ 0 {robustification parameter}
Require: Q,Q+, Q− {(preprocessed) matrix Q with spectral d.c.d. Q = Q+ −Q−}
1: put ∆ = ∆s = conv(e1, . . . , en), the columns of In
2: put L = {∆}
3: put Lnew := ∅
4: while L ̸= ∅ do
5: for all ∆ = W (∆s) = conv(w1, . . . ,wn) ∈ L do
6: solve inf

{
f⊤x : QW

+ x ≥ e , x ∈ Rn
+

}
with, e.g., f = QW

+ e, denote the solution by x {LP-based test}
7: if (x⊤QW

+ x)(QW
− )ii > (QW

+ x)2i for any i ∈ {1 : n} then

8: robustify the current d.c.d. Q∆ = Q∆
+ −Q∆

− , if necessary, to Q∆ = [Q∆
+ ]ε − [Q∆

− ]ε

9: solve (2.12) and (2.13) {QP-based tests}
10: if µ−

∆ < 1 and µ+
∆ < sW then

11: get v∆ from (2.15)
12: if v⊤

∆Qv∆ < 0 then
13: stop: v∆ is a violating vector
14: else
15: use v∆ for ω-subdivision of ∆ as in Lemma 5.1 and put all full-dimensional subsimplices

generated as in (5.2) on the list Lnew

16: end if
17: end if
18: end if
19: end for
20: if Lnew = ∅ then
21: stop: the matrix Q is copositive
22: end if
23: replace L by Lnew and re-initialize Lnew = ∅
24: end while

Remember that preprocessing guarantees condition (2.11) at the root ∆ = ∆s, and that also all
vertices w generated later are not violating, if the algorithm did not stop before. This explains why
in the algorithmic description above, the case (r < 1 and) s > 1 treated in Theorems 2.8 and 2.9
does not occur.

Standard convergence results in branch-and-bound theory, see, e.g. [30, Theorem 3.8] are based on
the assumption of exhaustivity. This means that any infinite nested sequence of simplices generated
in the course of the algorithm is exhaustive, i.e. shrinks to a singleton. To ensure this with our
subdivision strategy, we replace line 15. above in every kth iteration (k to be chosen by the user)
with a simple bisection step, halving the longest edge of ∆. This remedy is related to Horst/Tuy’s
normal subdivision strategy [31] and also turned out to be beneficial from a numerical performance
point of view. The above indicated variant of normal subdivision implies that the simplices shrink
to singletons [32]. To be more precise: denote the list of subsimplices generated at the lth while loop
by Ll and by

δ(Ll) = max {diam (∆) : ∆ ∈ Ll} ,

with the Euclidean diameter diam W (∆s) = max {∥wi −wj∥ : {i, j} ⊆ {1 : n}}. Then under the
above assumptions, δ(Ll) ↘ 0 as l → ∞, if the algorithm does not stop. Now we are able to prove
exactness of the algorithm for generic Q, as done in [14] for their bisection strategy.

Theorem 5.2 Suppose that δ(Ll) ↘ 0 as l → ∞. If αQ ̸= 0, then Algorithm 1 always stops after a
finite number of while loops with the correct answer.
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Proof First we deal with the case αQ < 0 where Q is not copositive and there is a violating vector
x ∈ ∆s with x⊤Qx = −η < 0. We (very roughly) overestimate by LQ the Lipschitz constant for
w⊤Qw on ∆s as follows:

y⊤Qy −w⊤Qw = 2(y −w)⊤Qw + (y −w)⊤Q(y −w)

≥ −∥y −w∥ (2∥Qw∥+ ∥Q(y −w)∥) ≥ −LQ∥y −w∥ .
(5.3)

Now diam (∆s) =
√
2 and max {∥w∥ : w ∈ ∆s} = 1 <

√
2, so we get for u = w or u = y −w

∥Qu∥2 = u⊤Q2u ≤ λmax(Q
2)∥u∥2 ≤ 2λmax(Q

2)

and we can choose

LQ := 3
√

2λmax(Q2) (5.4)

in (5.3). Put δx = η
LQ

. Since for all l we have

x ∈ ∆s =
∪

∆∈Ll

∆,

there is a vertex v of a subsimplex ∆ with ∥x−v∥ ≤ diam (∆) ≤ δ(Ll). If the algorithm did not stop
before with a violating vector, then v cannot be violating, because ∆ was generated by the algorithm.
We deduce δ(Ll) ≥ δx. Indeed, otherwise, we would arrive at the absurd chain of inequalities

v⊤Qv = v⊤Qv − x⊤Qx+ x⊤Qx ≤ LQ∥v − x∥ − η < LQδx − η = 0 .

Hence the algorithm stops at some finite l in this case.
Next, if η = αQ > 0, i.e., if Q is strictly copositive, then the sequence δ(Ll) can also not converge to
zero, and the algorithm must stop with a copositivity guarantee: indeed, suppose that ∆ = W (∆s)
has very small diameter and choose any w ∈ ∆. We show that then the LP-based test must establish
∆-copositivity. If this holds true for all ∆ ∈ Ll because δ(Ll) is small, we are done. Basically,
W ≈ [w, . . . ,w] so that QW ≈ (w⊤Qw)En and likewise QW

± ≈ (w⊤Q±w)En, and w⊤Q−w + η ≤
w⊤Q+w. Moreover, the LP is always feasible (for any y ∈ ∆s, the point x = 2

w⊤Q+w
y ∈ Rn

+ satisfies

QW
+ y ≈ 2e, thus for sure QW

+ y ≥ e), and likewise the solution x̄ for f = QW
+ e ≈ n(w⊤Q+w)e must

satisfy QW
+ x̄ ≈ (w⊤Q+w)Enx̄ = e (since the LP constraint also approximately is e⊤x ≥ 1

w⊤Q+w
)

and hence x̄⊤QW
+ x̄ ≈ 1

w⊤Q+w
. Hence

(x̄⊤QW
+ x̄)(QW

− )ii ≈
w⊤Q−w

w⊤Q+w
≤ w⊤Q+w − η

w⊤Q+w
= 1− η

w⊤Q+w
≈ (QW

+ x̄)2i −
η

w⊤Q+w
< (QW

+ x̄)2i

for all i ∈ {1 : n}, and the LP test (2.8) works. ⊓⊔

Note that, like in [14], for the boundary case αQ = 0 where Q is copositive but not strictly
copositive, we cannot guarantee that the algorithm terminates after a finite number of steps. The
next subsection provides a more detailed and quantitative analysis which is independent from the
assumption δ(Ll) ↘ 0.

Mainly for concave minimization over a general polytope, there is an advanced convergence theory
for ω-subdivision without bisection steps [34,35], which does not need the exhaustivity assumption.
A similar analysis for the above algorithm may constitute an interesting topic for future research.
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5.3 Numerical flatness

In numerical practice, one has to decide on the threshold δ on the determinant of the n× n matrix
Wi with columns w̄ and wj , j ̸= i, which determines if the successor Wi(∆

s) is accepted in L or not
(the latter if | detWi| ≤ δ). Counting the occurrence of the latter cases (say rδ) after the algorithm
stopped, one may estimate the maximum volume (relative to e⊥) of ∆s \Pos(Q), the set of violating
vectors, by

voln−1 [∆
s \ Pos(Q)] ≤ νδ :=

δ rδ
(n− 1)!

. (5.5)

Also, tracking the longest edge of these “numerically flat” simplices Wi(∆
s), one obtains a lower

bound for the possibly negative values of x⊤Qx, which delivers a certificate of ε-copositivity [14]:

Proposition 5.3 Suppose the longest edge length diam Wi(∆
s) of all numerically flat simplices

(where | detWi| ≤ δ) does not exceed ℓδ. If the algorithm did not stop by delivering a violating vector,
we have

x⊤Qx ≥ −εδ for all x ∈ ∆s where εδ := 3
√
2λmax(Q2) ℓδ . (5.6)

Proof By assumption, we know that all verticesw ∈ {w̄}∪{wj : j ̸= i} ofWi(∆
s) satisfyw⊤Qw ≥ 0,

because no violating vector was found, so that

x⊤Qx ≥ w⊤Qw − LQ∥x−w∥ ≥ 0− LQ ℓδ for all x ∈Wi(∆
s) ,

where LQ is the Lipschitz constant from (5.3). Hence the result follows from (5.4). ⊓⊔

So we may start with a relatively large δ and keep track of νδ and εδ. Once these bounds on
volume (5.5) or on violation (5.6) exceed acceptable values, we can decrease δ (and even restart,
resources permitting).

Based on the size of the (not numerically flat) subsimplices also a speedup of the proposed
algorithm is possible, if one tries to find a violating vector as fast as possible. Since a violating vector
can more probably be found in a larger subsimplex than in a smaller one, we suggest to sort the
subsimplices with decreasing size (represented by the absolute value of the determinant of the matrix
Wi containing their vertices). Additionally, in each iteration (for-loop) one may only consider those
submatrices Wi for which

|detWi| ≥
∑s̄

j=1 | detWj |
s̄

− t ·
[
max

j∈{1:s̄}
{| detWj |} − min

j∈{1:s̄}
{| detWj |}

]
, i ∈ {1 : s̄} , (5.7)

for some value of t, e.g. t = 0.1. This means, that in the for-loop of the above algorithm, we consider
∆ ∈ L only if (5.7) is satisfied. The remaining ∆ of the list L which do not satisfy (5.7) are directly
moved to the new list Lnew for the next iteration and are considered in the next while-loop.

6 Empirical evidence

Besides the numerical examples already presented in the previous sections we apply the proposed
algorithm to some test matrices which were already examined in the literature related to copositive
matrices and copositivity tests. Most of these instances are known to be very difficult in some sense.
In addition, we consider an application, the maximum clique problem.
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6.1 Small but famous matrices

We choose the following parameters for the algorithm: at every fifth iteration we do a bisection
step. A subsimplex Wi is considered to be really flat if | det(Wi)| < 10−10 (and it will no longer
be considered, not even for (5.5)) and numerically flat if |det(Wi)| ≤ 10−6. For robustification we
choose ε = 10−6 and in each iteration we check all submatrices independently of their size.

For the matrix

Q =

 2 −1 −1
−1 2 −1
−1 −1 2


the algorithm presented in [14] terminates after 7 iterations and needs 15 subsimplices. As we deter-
mine the eigenvalues in the preprocessing for the spectral d.c.d., this matrix is immediately detected
as a positive-semidefinite matrix with eigenvalues 0, 3, 3.

The following test matrices are considered in [33]:

K1 =


1 0.9 −0.54 0.21

0.9 1 −0.03 0.78
−0.54 −0.03 1 0.52
0.21 0.78 0.52 1

 , K2 =


1 −0.72 −0.59 −0.6

−0.72 1 0.21 −0.46
−0.59 0.21 1 −0.6
−0.6 −0.46 −0.6 1

 .
In the preprocessing step the last row/column inK1 is deleted as it is nonnegative. Then the LP-based
test recognizes the reduced matrix and thus K1 to be copositive. The matrix K2 is not copositive.
Here the QP-based tests deliver in the first iteration the violating vector v ≈ [0.3, 0.21, 0.21, 0.28]⊤.
In [33] also a copositive 10× 10 matrix is specified. Our algorithm first reduces it to a 8× 8 matrix
by preprocessing, and then detects copositivity by the LP-based test at the root.

In [1] the following copositive matrix is given:

A =


2 −2 −1 2

−2 3 2 −3
−1 2 1 1
2 −3 1 4

 .
Without any preprocessing, copositivity is detected at the root, by an application of Theorem 2.8.
However, by normalizing the diagonal and truncating this matrix as in Section 4, a partitioning
of the standard simplex into two subsimplices is required. Then on each of these subsimplices the
criterion of Theorem 2.8 applies and hence the matrix is recognized as copositive. This is an instance
where preprocessing slightly complicates the process. To avoid this phenomenon, one could run the
first one or two iterations without preprocessing, depending on some condition characteristic of the
given matrix, and only then use it for numerical stabilization; or immediately try with the two
undominated d.c.d.s at the root (recall the d.c.d.s most probably will be different). However, the
next example exhibits a positive effect of preprocessing at the root.

According to [41] the matrix Q from (3.3) is copositive but not strictly copositive, i.e. it holds
x⊤Qx = 0 for some vector x ∈ Rn

+ \ {o}, e.g., for x = [0, 4, 0, 4, 1]⊤. For this matrix 16 subsim-
plices have to be considered. The LP-based sufficient criterion was never satisfied. The number of
subsimplices can be reduced to 13 by doing no bisection steps, also not in any fifth iteration. If we
apply a bisection in any second step, starting with a bisection — thus reduce the influence of the
data-driven ω-subdivisions — we need to consider 42 subsimplices. This was done without truncating
positive entries. After preprocessing as in Subsection 4.2, these figures become smaller (14/11/27).
Also the copositive 4× 4 matrix R obtained by dropping the last row and column of Q is considered
in the literature [3,6,40]. For R copositivity is already shown at the root via the QP-test according
to Theorem 2.8. Note that in [40] 10 tableaus have to be calculated for establishing copositivity.
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Diananda [20] showed that every 3 × 3 or 4 × 4 copositive matrix is the sum of a positive-
semidefinite and a nonnegative matrix. This does no longer hold for n × n matrices with n ≥ 5.
The Horn matrix H, see (3.4), is an example. The test in [14] for H terminates after 19 simplices
have been tested. Our algorithm needs 3 351 subsimplices, and stops after 17 iterations as only
subsimplices are left which are numerically flat. The difficulty to detect copositivity of H is due to
its symmetry. To illustrate this phenomenon, we perturbed H by adding a matrix of the form P +N
randomly generated as described above, scaled with entries in the interval [− 1

100 ,
1

100 ]. The number
of subsimplices immediately dropped to an average below 871 (over 30 matrices), ranging between
644 and 1095. However, for the matrix H3, our algorithm immediately delivers a violating vector
with the help of the QP-tests already at the root. These are two instances prototypical for the widely
reported phenomenon that non-copositive matrices are more easily detected than copositive ones,
especially those at the boundary of the copositive cone (i.e., Q with αQ = 0). Our approach softens
this asymmetry of hardness a bit due to our preprocessing and the cheap sufficient tests.

A copositive matrix Q is called extreme, see, e.g. [26], if Q = Q1 + Q2 with Q1, Q2 copositive,
implies Q1 = αQ and Q2 = (1− α)Q for some α ∈ [0, 1]. Examples for extreme copositive matrices
are H above [26, p.273] and the Hoffman-Pereira matrix [29]:

P =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1


.

For this matrix 20 001 subsimplices have to be considered. To break the symmetry, we employed,
instead of ω-subdivision, an asymmetric bisection (this means that the longest edge is divided in a
ratio different from one; we used 1:4) right from the start and then at every tenth iteration; all other
iterations were performed according to our previous description. Then the number of subsimplices
is reduced to 12 129. This favorable reduction applied, at a more modest scale, also to the highly
symmetric Horn matrix H. Apparently, the algorithm in [14] takes profit from this high degree of
symmetry. Indeed, it is easy to see that for Q = H, the data-driven bisection by minimizing φ
from (2.17) coincides with the midpoint (t = 1

2 at the root).

6.2 Randomly generated instances

In [42] the following empirical test is proposed: 1000 symmetric n×n matrices with unit diagonal and
with off-diagonal entries in the interval [−1, 1] are randomly generated for different dimensions n. The
copositivity test is performed and then the number of matrices which are copositive, not copositive,
or undetermined are counted. For n ≤ 7 according to [42] with their test no matrix was undetermined,
for n = 8, eight matrices, for n = 9, six and for n = 10, two matrices were undetermined. With
the algorithm proposed here, the copositivity status of all matrices was correctly detected for each
n = 1, . . . , 10 as well as for larger dimensions n = 20, 40, 60, 80, 100, 120, 140, 200. For n ≥ 20 all
randomly generated matrices were recognized as not copositive without any partitioning. For n = 200,
we only generated 100 random matrices. In each of these instances, both QP-tests generated different
violating vectors, rescaled to lie in ∆s, with a distance exceeding 10−5 (the average exceeds 0.01).

We also repeated the simulation study proposed for the LP-test (see end of Subsection 2.2) with
3000 randomly generated copositive n×n matrices of the form P+N where P is positive-semidefinite
and N has no negative entries (1000 matrices for each n ∈ {20, 40, 60}). All matrices were detected as
copositive already by preprocessing, or after performing the LP-test or the QP-test on ∆s. In some
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instance nodes ω(G) l.b. (d.c.d.) l.b. in [14] l.b. in [43]
Brock200 4 200 17 7 — 13
Hamming6-2 64 32 32 28 32
Hamming8-2 256 128 128 — 128
Hamming8-4 256 16 16 12 16
Johnson8-2-4 28 4 4 4 4
Johnson8-4-4 70 14 14 14 14
Johnson16-2-4 120 8 8 8 8
Keller4 171 11 6 9 8

Table 6.1 Instances from 2nd DIMACS Challenge (selection by [14,43] and us).

cases a robustification was necessary (in 146 cases for n = 20, in 54 cases for n = 40, and in 21 cases
for n = 60 without truncating positive entries, slightly less with truncation as in Subsection 4.2). For
monitoring purposes solely, we repeated the run with the same matrices but only using the QP-based
tests and achieved the same results. Note that the LP-test demands less numerical effort than the
QP-test, and therefore we always start with the LP-test; sometimes this saves time as the slightly
more expensive QP-tests no longer have to be applied.

6.3 Application: maximum clique problem

Like in [14] we tested our procedure for checking copositivity also on the well known maximum clique
problem: given a simple (i.e. loopless and undirected) graph G = (V, E) with node set V = {1 : n}
and edge set E , a clique C is a subset of V such that every pair of nodes in C is connected by an edge
in E . A clique C is said to be a maximum clique if it contains the most elements among all cliques, and
its size ω(G) is called the (maximum) clique number. For a survey of this problem which was shown
very early to be NP-complete, we refer to [9]. The maximum clique problem can be reformulated as
a copositive optimization problem [10,19]:

ω(G) = min {λ ∈ N | λ(En −AG)− En is copositive} (6.1)

with En the n×n all-ones matrix and AG = [aij ]i,j the adjacency matrix of the graph G, i.e. aij = 1
if {i, j} ∈ E , and aij = 0 else, i, j ∈ {1 : n}.

In Table 6.1 the results for some instances of the Second DIMACS Challenge [21] are listed, which
are known to be very hard instances for copositive programming because of their inherent symmetry.
In view of the aforementioned asymmetry of hardness (αQ < 0 is easier detected than αQ ≥ 0).
we focus on lower bounds, as done also in [14]. For instance, the lower bound for Hamming8-2, i.e.
the non-copositivity for λ = 127, was shown by the algorithm proposed here in about a second
in the preprocessing step (Lemma 4.5 applied). For all instances, we chose the parameters as in
Subsection 6.1 and we put t = 0.1 in (5.7).

In [43] it is proposed to consider in addition smaller maximum clique test problems. For these, we
report in Table 6.2 the lower bound λ, and the number N of tested subsimplices (N = 0 represents
a successful result already in the preprocessing; otherwise we chose t = 0 in (5.7) here). For several
test instances also the copositivity of λ(En −AG)−En for λ = ω(G) could be shown, but frequently
we had to stop the procedure (after more than 10 minutes) before obtaining any result. In [43] for
many more instances copositivity was shown but with much larger computational time (quite often
around 40 minutes, in one case even more than 400 minutes).

For Hamming4-4 (16 nodes) copositivity for λ = ω(G) = 2 was established after one subsimplex-
test (as compared to 511 in [43]). The procedure also successfully determined λ = ω(G) for sanchis20
(20 nodes) after 8 139 subsimplices (as compared to 25 204 809 in [43]) and for sanchis22 (22 nodes)
after 5 921 subsimplices (57 308 615 in [43]). But for showing copositivity for λ = ω(G) = 6 in the
Jagota14 instance (14 nodes), 30 777 (as compared to 323 621 in [43]) subsimplices had to be tested.
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instance nodes ω(G) λ N (d.c.d.) N in [43]
c-fat14-1 14 6 5 0 5
Brock14 14 5 4 3 13
Brock16 16 5 4 1 24 848
Brock18 18 5 4 3 7
Brock20 20 5 4 22 7
Morgen14 14 5 4 1 4
Morgen16 16 5 4 1 12
Morgen18 18 5 4 1 5
Morgen20 20 5 4 59 9
Morgen22 22 5 4 181 11
Johnson6-2-4 15 3 2 1 2
Johnson6-4-4 15 3 2 1 2
Johnson7-2-4 21 3 2 1 2
Jagota14 14 6 5 5 58 105
Jagota16 16 8 7 5 20 968 165
Jagota18 18 10 9 11 141 —
sanchis14 14 5 4 143 4
sanchis16 16 5 4 6 11
sanchis18 18 5 4 1 4
sanchis20 20 5 4 1 4
sanchis22 22 5 4 1 6

Table 6.2 Smaller maximum clique problems from [43]: N subsimplices generated when testing λ(En −AG)− En.

7 Conclusions and outlook

Based upon a difference-of-convex decomposition of a given symmetric matrix Q, we propose an
algorithm to detect copositivity of Q which combines LP and/or convex QP technology with spectral
information. Three apparently new copositivity tests are presented, and we show by example that all
three tests are a priori needed. The resulting algorithm either provides a guarantee for copositivity,
or delivers a violating vector as a certificate for non-copositivity. To exploit the present algorithm in
context of general (mixed-binary) QPs, and likewise of general copositive programs, to escape from
inefficient solutions, remains as a topic for future research.

Empirical evidence suggests that our algorithm is remarkably powerful in detecting violating
vectors, or copositivity, as long as there is not too much symmetry. The simulation results make
us believe that almost all matrices Q = P + N , where P is positive-semidefinite, and N has no
negative entries, will be detected quickly (sometimes without invoking any optimization procedure)
as copositive, with an effort which is by far exceeded by that of using SDP solvers, which would be the
current technology to deal with such matrices. We also saw that breaking symmetries or perturbing
may reduce the number of subproblems generated. Last but not least, aiming at numerical stability,
we have provided a concise collection of different preprocessing steps, most of them scattered in the
literature, but so far without a focus on constructing violating vectors.

Acknowledgement. The authors are indebted to the handling MPA co-editor, Adrian Lewis, as
well as to two anonymous referees and an anonymous handling editor for their careful reading. Their
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