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Abstract. The main concern of this article is to study Ulam stability
of the set of ε-approximate minima of a proper lower semicontinuous
convex function bounded below on a real normed space X, when the
objective function is subjected to small perturbations (in the sense of
Attouch & Wets). More precisely, we characterize the class all proper
lower semicontinuous convex functions bounded below such that the
set-valued application which assigns to each function the set of its ε-
approximate minima is Hausdorff upper semicontinuous for the Attouch-
Wets topology when the set C(X) of all the closed and nonempty convex
subsets of X is equipped with the uniform Hausdorff topology. We prove
that a proper lower semicontinuous convex function bounded below has
Ulam-stable ε-approximate minima if and only if the boundary of any
of its sublevel sets is bounded.

1. Statement of the problem

In the sequel, (X, ‖ · ‖) will be a real normed linear space with closed
unit ball BX and origin θX ; the closed unit ball and origin of the dual
space X? will be denoted by BX? and θX? , respectively. We will often be
forced to consider finite products of normed spaces, e.g., X×R, and in such
spaces, the box norm will be understood. We denote the space of proper
lower semicontinuous extended-real-valued convex mappings defined on X
by Γ0(X).

An important concept for our study is that of the Attouch-Wets topology
τAW on C(X), the class of all the closed and convex subsets of X, which
is nothing but the topology of the uniform convergence on bounded sets
applied to the distance functionals to the sets from C(X); moreover this
topology is metrizable [9]. This topology has been defined in different ways
and we refer to section 2 for its historical presentation as it can be found for
instance in Attouch’s book [3].

More precisely, we consider the Attouch-Wets topology on Γ0(X): given a
sequence (fn)n∈N in Γ0(X), we say that it Attouch-Wets converges to f pro-
vided the sequence (epi fn)n∈N of the epigraphs of functions fn is convergent
to epi f in the Attouch-Wets topology of the space C(X × R). Our study
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is particulary focused on (Γb(X), τAW ), the subspace of those functions in
Γ0(X) that are bounded below, endowed with the Attouch-Wets topology.
Let us also note (C(X), τH) the topology induced on C(X) by the uniform
Hausdorff metric.

Finally, for any fixed positive value ε, we define the application Aε from
(Γb(X), τAW ) to (C(X), τH), as being the set-valued mapping which assigns
to every f ∈ Γb(X) the nonempty set

Aε(f) = {x ∈ X : f(x) ≤ inf
X
f + ε}

of all the ε-approximate minima of f .

This article focuses on the study of the upper semi-continuity of Aε. A
function f ∈ Γb(X) such that Aε is Hausdorff upper semicontinuous at f is
said to have a Ulam stable ε-approximate minima. Our main objective is to
characterize the subclass of Γb(X) formed of those functions at which Aε is
Hausdorff upper semicontinuous.

Despite its abstract appearance, this type of stability turns out to be es-
sential in numerical optimization, namely in answering the natural question
of defining the largest class of functionals f ∈ Γb(X) for which minimization
algorithms exist.

Thus, it is not surprising that this topic has been intensively studied over
the last twenty years. Subsection 1.3 provides a very brief overview of some
of the most important results in this field obtained by Asplund, Attouch,
Beer, Beeer & Lucchetti, Moreau, Rockafellar & Wets and many others.
From the above mentionned results it is not hard to deduce that Ulam
stability of approximate minima is achieved for all the coercive functions
f ∈ Γ0(X). Moreover, several convincing examples prove that Ulam stability
may fail outside the coercive setting. All this facts suggest that coercivity
and Ulam stability are closely connected notions.

The reason why we re-address such an well-explored subject, is the unex-
pected (and, to our best knowledge, new) fact that Ulam stability holds true
also for some non-coercive functions f ∈ Γb(X), since easily observed the
mapping Aε is Hausdorff upper semicontinuous at any constant function,
and also is upper semi-continous everywhere on Γb(R).

Thus, it appears that Ulam stability is a property shared by three ap-
parently dissimilar type of Γb(X)-functionals: the class of all mappings
f ∈ Γ0(X) which are coercive, the constant functions, and Γb(R) (that
is when X = R).

The main objective of the present article is to provide an explanation
to this bizarre situation. To this respect, we characterize (Theorem 1) the
mappings f ∈ Γb(X) with Ulam-stable approximate minima as being those
functions f ∈ Γb(X) for which the boundary of every sublevel set is bounded,
and we remark (Proposition 4) that a Γ0(X)-functional has all its sublevel
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sets with a bounded boundary if and only if it is coercive, constant, or
defined on the real axis.

Accordingly, the key concept for Ulam stability is the boundedness of the
boundary of any sublevel set of the function, and not, as the emphasis classi-
cally put on coerciveness might suggest, the boundedness of the sublevel sets
themselves. The interpretation of Ulam stability as ensuring the existence
of a minimizing algorithm allows us now to state that f ∈ Γb(X) may be
numerically minimized as long as the boundary of each of its sublevel sets
is bounded.

1.1. Ulam stability of the approximate minima. “It seems desirable
in many mathematical formulations of physical problems to add still another
requirement to the well known desiderata of Hadamard of existence, unique-
ness and continuity of the dependence of solutions on the initial parameters.
Specifically [...] the solutions should vary continuously even when the oper-
ator itself is subject to ”small” variations. [...] Speaking descriptively, the
question is: when is it true that solutions of two problems in the calculus of
variations which corresponds to “close” physical data must be close to each
other? [28]”.

Throughout this contribution, the above mentionned type of stability will
be referred to as Ulam stability, that shall not be confused with Hyers-Ulam
stability for functional equations (see [23] for an recent account of the latter
notion).

Ulam stability is crucial when applied to the minimization of a function
f ∈ Γb(X). Indeed, in order to correctly work, most (if not all) of the
numerical minimizing algorithms require enough regularity on the function
to be minimized. This regularity in general fails in real world applications.

In order to overcome this difficulty and be able to minimize also less
regular functions in the class Γb(X), it is customary to use one of the
available regularizing techniques (such as the rolling ball technique [22],
the Lipschitzian regularization (see, e.g., [17], [18], [7], [10], [5], [15], [16]),
the Moreau-Yosida regularization (see, e.g., [6] , [4], [20], [29]), or the ro-
bust regularization (see, e.g., [8], [26]) and construct in this way a sequence
(fn)n∈N in Γb(X) ”very regular” (typically coercive and two times contin-
uously differentiable) converging to f ; usually, such a sequence (fn)n∈N is
called a regularizing sequence for f .

For every function fn and error bound ε > 0, it is now possible to use a
minimizing algorithm and compute an ε-approximate minimizer of fn, that
is a vector xn,ε such that

(1) fn (xn,ε)−min
X

fn ≤ ε;

following Zolezzi [31], the sequence (xn,ε)n∈N is called an ε-asymptotically
minimizing sequence.
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Of course, this technique is of some use only if the ε-asymptotically min-
imizing sequence actually approaches the set of ε-approximate minima of f ,
that is if

(2) lim
n→∞

(
dist xn,ε, {x ∈ X : f(x)− inf

X
f ≤ ε}

)
= 0.

This article is concerned with the class of those mappings in Γb(X) for
which the above-described technique works for one of the regularizing tech-
niques ordinarily in use. In agreement with the analysis undertaken in [11,
pages 796-797], we are interested in the case when relation (2) holds for all
the sequences (fn)n∈N, fn ∈ Γb(X) Attouch-Wets converging (see Section 2
for a detailed account of this notion) to f , as the Attouch-Wets convergence
appears as the main common feature of all the above-mentionned regulariz-
ing sequences.

More precisely, we seek for all f ∈ Γb(X) such that, for every sequence
(fn)n∈N, fn ∈ Γb(X) Attouch-Wets converging to f , and every error bound
ε > 0, it holds that

(3) (ε− argmin fn) ⊂ (ε− argmin f) + δnBX

for some sequence δn > 0 converging to zero (recall that BX stands for the
closed unit ball of X).

Let us remark that, as the Attouch-Wets topology is metrizable, relation
(3) says in fact that the set-valued application

Aε : (Γb(X), τAW )→ (C(X), τH) ,

defined as

(4) Γb(X) 3 g → Aε(g) = ε− argmin g ∈ C(X),

is Hausdorff upper semicontinuous at f .
Our interest for the upper semi-continuity of the above-defined applica-

tion is thus motivated by the fact that, although potentially irregular, any
Γb(X)- functional f at which the mapping Aε is Hausdorff upper semicon-
tinuous may still be minimized. Indeed, it is enough to apply a minimizing
algorithm to any regularizing sequence of f , as the ε-asymptotically mini-
mizing sequence thus obtained must approach the ε-approximate minima of
the function f to be minimized.

1.2. Ulam stability for the minima of a convex mapping. A closely
related (and obvioulsy stronger) notion is the concept of Ulam-stable min-
ima, meaning that any asymptotically minimizing sequence xn ∈ εn −
argmin fn approaches the minima of f , i.e.,

lim
n→∞

dist (xn, argmin f) = 0,

for any sequence (εn)n∈N of error bounds going to zero and any sequence
(fn)n∈N Attouch-Wets converging to f (see for instance Beer & Luchetti [11,
Theorem 4.1]).
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It is easy to observe that the minima of f is Ulam-stable if and only if f
has an Ulam-stable ε-approximate minima for some ε > 0 as well as a sharp
minima (in Ferris’ s sense, [14], [13]). Accordingly, once the characterization
of functions with an Ulam-stable ε-approximate minima is provided, one
can easily deduce a characterization of Γb(X)- functionals with Ulam-stable
minima.

1.3. Classical results on Ulam stabilty of the approximate minima.
As customary, we note X?, the topological dual of X and 〈·, ·〉 : X?×X → R
the duality pairing between X? and X. Let us first recall that, for each
f ∈ Γ0(x), the ε-subfifferential of f at

x ∈ Dom f = {x ∈ X : f(x) < +∞}

is the set

∂εf(x) = {x ∈ X? : 〈x?, y − x〉 ≤ f(y)− f(x) + ε ∀y ∈ X},

while the Fenchel-Legendre conjugate f? : X? → R ∪ {+∞} is defined by

f?(x?) = sup
x∈X

(〈x?, x〉 − f(x)) .

Note that ∂εf?(0) coincides with the set of ε-approximate minima of f . It
is thus possible to interpret a classical theorem by Moreau (see, [21, Proposi-
tion 11.3]) in the sense of our analysis; this result, initially published in [19],
establishes the upper semi-continuity of the approximate subdifferential on
the interior of the effective domain of every Γ0(X)-functional (see also the
important article of Asplund and Rockafellar [1, Proposition 5]). Therefore,
Moreau’s result can be viewed as a partial answer to the Ulam-stability ques-
tion. Indeed, the above-cited theorem literary means that the restriction of
the set-valued mapping defined at relation (4) to the subset

{f − y? ∈ Γb(X) : y? ∈ X?}

of Γb(X) is Hausdorff upper semicontinuous at f provided that f is coercive.

A more detailed account of Ulam stability was achieved by Beer and
Lucchetti in their well known article [11]. It is an easy consequence of their
central result [11, Theorem 3.6] (and we can only agree with the authors
when they write ”we anticipate that our next theorem will have numerous
applications” [11, page 802]), that any coercive Γ0(X) functional admits an
Ulam-stable ε-approximate minima for any positive value ε > 0.

It is therefore legitimate to consider that the result establishing Ulam
stability of the approximate minima of any coercive Γ0(X)-functional defined
on a real normed space X, although (at our best knowledge) never stated
in this form, is implicit in the mathematical literature.
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1.4. Scope and plan of the article. It may thus appear as a real sur-
prise that this classical result does not completely solve the Ulam stability
problem for approximate minima. It is however a simple exercice to show
that any Γb(X)-functional has an Ulam-stable ε-approximate minima for
any ε > 0 provided that X = R.

Moreover, the upper semi-continuity is always achieved when the set of
ε-approximate minima of f is the whole underlying space X, that is when
f is constant.

We have accordingly identified three completely dissimilar classes of Γb(X)
-functionals, each of them composed uniquely from mappings with Ulam-
stable ε-approximate minima. It is thus natural to ask if, given X, a normed
space of dimension larger than one, it is possible to find a Γb(X)-functional
with Ulam-stable ε-approximate minima which is neither constant nor coer-
cive, and in the event of a negative answer, to investigate why Ulam-stability
is a feature shared, by and only by, coercive, constant and one-dimensional
Γb(X) functionals.

All these questions are answered in this note. On one hand we prove that
the coercive, constant and one-dimensional Γ0(X) functionals are exactly
those Γ0(X)-mappings admiting sublevel sets with a bounded boundary (see
Proposition 4, Section 2). On the other hand we prove that, if the boundary
of a sublevel set of a Γb(X)-functional f is unbounded, then the mapping
defined in (4) is not Hausdorff upper semicontinuous at f (Proposition 5,
Section 3).

Finally, we are in a position to prove the main result of our article, The-
orem 1, Section 3, stating that the approximate minima of a Γb(X)- func-
tional is Ulam stable if and only if the boundary of any of its sublevel sets
is bounded.

2. Closed and convex sets with a bounded boundary

Let us recall the definition of the Hausdorff distance between two sets
from C(X), the class containing all the closed and nonempty convex subsets
of a normed space (X, ‖ · ‖):

(5) dH(C1, C2) = max (e(C1, C2), e(C2, C1))

where
e(C1, C2) = sup

x1∈C1

inf
x2∈C2

‖x1 − x2‖,

is the excess of C1 over C2. Endowed with this metric, C(X) becomes a
metric space, denoted hereafter by (C(X), τH).

This topology turns out to be too fine for its applications to variational
problems, in the sense that many sequences of sets which ”intuitively” must
converge, are not Hausdorff converging. Hence, several coarser topologies
have been introduced. Among them, a prominent place is held by the
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Attouch-Wets topology (sometimes called the bounded Haussdorff topol-
ogy): a net (Ci)i∈I ⊂ C(X) Attouch-Wets converges to C ∈ C(X) if and
only if it converges with respect to any of the distances dρ, ρ > 0, where

dρ(C1, C2) = max (e(C1 ∩ ρBX , C2), e(C2 ∩ ρBX , C1)) .

We shall denote this topology by (C(X), τAW ); we also use the notation
(Γ0(X), τAW ) for the topology induced on Γ0(X) by the one-to-one mapping

epi : Γ0(X)→ (C(X × R), τH) ,

where epi f is the epigraph of the Γ0(X)-functional f .
Let us also mention that the Attouch-Wets topology is metrizable, for

instance by using the mapping

dAW (C1, C2) =
+∞∑
i=1

di (C1, C2)
2i (1 + di (C1, C2))

;

hence, we may use sequences instead of nets in studying this topology.

2.1. Attouch-Wets versus uniform Hausdorff topologies. Consider
τ1 and τ2, two topologies on the same partially ordered set (M, ≤); an
important issue in studying the interplay between τ1 and τ2 is to characterize
all the points x ∈M at which the identity mapping ι : (M, τ1)→ (M, τ2) is
continuous, as well as lower or Hausdorff upper semicontinuous.

In the case of the topological spaces (C(X), τAW ) and (C(X), τH), both
defined on the partially ordered set ((C(X), ⊂), it can be observed that the
three following statements are equivalent:
i) the mapping ι is continuous at C ∈ C(X);
ii) the mapping ι is lower semi-continuous at C ∈ C(X);
iii) the set C is bounded.

The present subsection addresses the remaining problem of the upper
semi-continuity of the mapping ι.

Let us first provide a technical characterization of the class of closed and
convex sets with a bounded boundary.

Lemma 1. Let C be a closed convex subset of a normed space (X, ‖ · ‖).
The two following sentences are equivalent:
i) the boundary of C is unbounded;
ii) there is an unbounded sequence (xn)n∈N ⊂ X such that

(6) a ≤ dist(xn, C) ≤ b ∀n ∈ N

for some values a and b such that 0 < a < b.

Proof of Lemma 1: i)⇒ ii). Since ∂ C is an unbounded set, it is possible
to pick (yn)n∈N ⊂ ∂ C such that

(7) ‖yn‖ ≥ n+ 4 ∀n ∈ N.
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Since each yn belongs to the boundary of C, it is possible to find an
element zn ∈ X \ C such that

(8) ‖yn − zn‖ ≤ 1.

Set µn = dist(zn, C) (of course, 0 < µn ≤ 1), and pick vn ∈ C such that

(9) ‖zn − vn‖ ≤ 2µn.

We claim that relation (6) holds for

xn = vn +
zn − vn
µn

.

Indeed, xn = (xn − vn) + (vn − zn) + (zn − yn) + yn, so

‖xn‖ ≤ ‖yn‖ − ‖xn − vn‖ − ‖vn − zn‖ − ‖zn − yn‖;
from relations (7), (8) and (9) it yields that

(10) ‖xn‖ ≤ n+ 2− ‖xn − vn‖ ∀n ∈ N.

Remark that xn − vn = zn − vn
µn , so relation (9) implies that

(11) ‖xn − vn‖ ≤ 2 ∀n ∈ N.

Combined with relation (10), the above inequality shows that

(12) ‖xn‖ ≤ n ∀n ∈ N;

on the other hand, from relation (11) it results that

(13) dist(xn, C) ≤ 2 ∀n ∈ N.

To the purpose of estimating the lower bound of the distance between xn
and C, let us pick u ∈ C. Set w = vn + µn(u − vn); being a convex set, C
contains w, so

(14) ‖zn − w‖ ≥ dist(zn, C) = µn.

Remark that u = vn + w − vn
µn , and hence that xn − u = zn − w

µn ; we
deduce from relation (14) that

(15) ‖xn − u‖ =
‖zn − w‖

µn
≥ 1 ∀u ∈ C, n ∈ N.

Let us now use relation (12) to prove that the sequence (xn)n∈N is un-
bounded, and combine relations (13) and (15) to obtain relation (6) for a = 1
and b = 2.

ii)⇒ i) Suppose instead that the boundary of C is bounded, that is

(16) ∂ C ⊂ κBX
for some κ > 0.

The following general fact is easy to prove: (as usual, we denote by
◦
S the

topological interior of the set S).
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Lemma 2. Let X be a topological vector space and C be a closed subset of

X of non-void interior. Any line segment of ends x ∈
◦
C and y ∈ X \ C

meets the boundary of C.

Among the many useful but simple consequences of Lemma 2, let us
mention the following statement.

Lemma 3. Let X be a normed vector space and C be a closed subset of X.
Then, for any x ∈ X \ C it holds that

dist(x,C) = dist(x, ∂ C),

where by ∂S we mean the topological boundary of the set S.

The first inequality in relation (6) proves that xn /∈ C, so we may use
Lemma 3, and deduce that dist(xn, C) = dist(xn, ∂ C); combine this relation
with the second inequality in relation (6) to obtain that

(17) dist(xn, ∂C) ≤ b ∀n ∈ N;

from relations (16) and (17) it yields

‖xn‖ ≤ κ+ b ∀n ∈ N,

fact which contradicts the unboundedness of the sequence (xn)n∈N, and the
proof is complete. 4

Remark 1. The convexity assumption on C is essential in establishing that
the implication i)⇒ ii) holds true. Indeed, the closed subset

C =
{

(x, y) : |x y| ≤ 1
2

}
of the normed space

(
R2, ‖(x, y)‖ =

√
x2 + y2

)
possesses an unbounded bound-

ary. Straightforward calculations prove that

dist ((x, y), C) ≤ 1

2
√
x2 + y2

∀(x, y) ∈ R2, (x, y) 6= (0, 0).

Hence, no sequence fulfilling relation (6) may exist.

The following result uses Lemma 1 to establish a sufficient condition for
the upper semi-continuity of the operator ι.

Proposition 1. The identity mapping

ι : (C(X), τAW ) → (C(X), τH)

is Hausdorff upper semicontinuous at C provided that the boundary of C is
bounded.
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Proof of Proposition 1: Let us consider a closed and convex set C at which
the mapping ι is not Hausdorff upper semicontinuous.

An equivalent way to express the fact that the mapping ι is not Hausdorff
upper semicontinuous at C is to state the existence of a sequence (Cn)n∈N ⊂
C(X) Attouch-Wets converging to C, and of a value γ > 0 such that

(18) e (Cn, C) ≥ γ ∀n ∈ N.
Our aim is to construct an unbounded sequence (xn)n∈N ⊂ X such that

(19) γ ≤ dist(xn, C) ≤ 2 γ ∀n ∈ N.
Let us pick x ∈ C; since the sequence (Cn)n∈N converges in the Attouch-

Wets sense to C, it results that dist(x,Cn) goes to 0. Thus, by passing, if
necessary, to a subsequence, we may state that there is yn ∈ Cn such that
‖x− yn‖ ≤ γ.

On the other hand, according to relation (18), let us pick zn ∈ Cn such
that dist(zn, C) ≥ γ.

As the function

[0, 1] 3 λ→ Dn(λ) = dist (λ yn + (1− λ)zn, C) ∈ R
is continuous, Dn(0) ≥ γ and Dn(1) ≤ γ, it follows that there is a value
λn ∈ [0, 1] such that

(20) Dn(λn) = γ.

We claim that the sequence (xn)n∈N given by xn = λn yn + (1− λn)zn is
unbounded and fulfills relation (19).

Indeed, relation (20) directly implies relation (19). Moreover, since (Cn)n∈N
Attouch-Wets converges to C, it holds that for any bounded sequence, say
(wn)n∈N of elements from Cn, the sequence dist(wn, C) goes to 0. Relation
(19) proves that this is not the case for the sequence (xn)n, and thus that
this sequence is necessarily unbounded.

The conclusion of Proposition 1 is now a simple consequence of the im-
plication ii)⇒ ii) of Lemma 1. 4

A first step in proving the converse of Proposition 1 is the following result,
which provides a sistematic manner to construct sequences of closed and
convex sets Attouch-Wets converging to a given set.

Lemma 4. Let C be a closed and convex subset of a normed space (Y ‖ · ‖)
and set Cn := C ∩nBY , the intersection of C with the closed ball of center
θY and radius n. For any sequence (yn)n∈N ⊂ Y , denote by An the convex
hull of the union between the singleton {yn} and the set Cn.

Then An ∈ C(X), and the sequence (An)n∈N ⊂ C(Y ) Attouch-Wets con-
verges to C provided that

(21) ‖yn‖ ≥ n2 and dist (yn, C) ≤ k ∀n ∈ N,
where k > 0 is a postive real number.
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Proof of Lemma 4: As easily seen, the convex hull of the union between
a singleton and a bounded closed and convex set is again a bounded closed
and convex set; in particular, this fact implies that An ∈ C(Y ) for all n ∈ N.

In order to prove that the sequence (An)n∈N Attouch-Wets converges to
C, it is sufficient to show that

(22) dρ(An, C) ≤ ρ
2(k + 1)

n
∀ ρ ∈ R, n ∈ N s.t. 0 < ρ ≤ n.

Let us consider ρ ∈ R and n ∈ N such that 0 < ρ ≤ n. It is obvious that
C ∩ ρBY ⊂ An, so

(23) e(C ∩ ρBY , An) = 0 ∀ ρ ∈ R, n ∈ N s.t. 0 < ρ ≤ n.
It remains to estimate e(An ∩ ρBY , C). To this end, pick x ∈ An ∩ ρBY ;

accordingly, ‖x‖ ≤ ρ, and there are λ(x) ∈ [0, 1], and y(x) ∈ Cn such that
x = λ(x) yn + (1− λ(x))y(x).

Recall that dist (yn, C) ≤ k, to deduce that there exists zn ∈ C such that

(24) ‖yn − zn‖ ≤ k + 1 n ∈ N.

As C is a convex set, it follows that the convex combination z(x) = λ(x) zn+
(1− λ(x))y(x) belongs to C. Obviously,

‖x− z(x)‖ = ‖λ(x)(yn − zn)‖ = λ(x)‖yn − zn‖,
so, in view of relation (24) it follows that

(25) ‖x− z(x)‖ ≤ λ(x)(k + 1).

Finally, recall that ‖x‖ ≤ ρ; as

‖x‖ = ‖λ(x) yn + (1− λ(x))y(x)‖ ≥ λ(x)‖yn‖ − (1− λ(x))‖y(x)‖,
it follows that

λ(x) (‖yn‖+ ‖y(x)‖) ≤ ρ+ ‖y(x)‖.
But ‖yn‖ ≥ n2; the previous inequality gives thus the upper estimate

λ(x) ≤ ρ+ ‖y(x)‖
n2 + ‖y(x)‖

.

On one hand, since n ∈ N, it holds that n ≤ n2. Hence, 0 < ρ ≤ n2 and
therefore, the mapping

R+ 3 s→ ρ+ s

n2 + s
∈ R+

is increasing. On the other hand, we know that ‖y(x)‖ ≤ n; accordingly,

λ(x) ≤ ρ+ n

n2 + n
=

2
n

n2 + ρn

n2 + (n+ 2)n
,

and, since 0 < ρ ≤ n < n+ 2, it yields that

(26) λ(x) ≤ 2
n

∀x ∈ An ∩ ρBX .
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Combining relations (25) and (26) we deduce that

‖x− z(x)‖ ≤ 2(k + 1)
n

∀x ∈ An ∩ ρBX .

Consequently,

inf
c∈C
‖x− c‖ ≤ ‖x− z(x)‖ ≤ 2(k + 1)

n
∀x ∈ An ∩ ρBX ,

and therefore,

sup
x∈An∩ρBX

(
inf
c∈C
‖x− c‖

)
≤ 2(k + 1)

n
.

We have thus proved that

(27) e(An ∩ ρBX , C) ≤ 2(k + 1)
n

∀ ρ ∈ R, n ∈ N s.t. 0 < ρ ≤ n;

the desired inequality (22) stems from relations (23) and (27). 4

We have now all the ingredients to prove the converse of Proposition 1,
that is a necessary upper semi-continuity condition for ι.

Proposition 2. If the identity mapping

ι : (C(X), τAW ) → (C(X), τH)

is Hausdorff upper semicontinuous at C, then the boundary of C is bounded.

Proof of Proposition 2: Let D ∈ C(X) be a set at which the mapping
ι is Hausdorff upper semicontinuous, and assume instead that D has an
unbounded boundary.

Apply implication i)⇒ ii) from Lemma 1 to D, and deduce that there is
an unbounded sequence (xn)n∈N ⊂ X and two values a and b such that for
any n ∈ N it holds that a ≤ dist(xn, D) ≤ b.

As the sequence (xn)n∈N is unbounded, take a subsequence, still denoted
by (xn)n such that ‖xn‖ ≥ n2. Define Dn as the convex hull of the point xn
and of the set D ∩ nBX ; apply Lemma 4 for X = Y , D = C, xn=yn and
b = k to deduce that the sequence (Dn)n∈N Attouch-Wets converges to D.
On the other hand,

e(Dn, D) ≥ dist(xn, D) ≥ a ∀n ∈ N.

Hence, the mapping i is not Hausdorff upper semicontinuous at D, a con-
tradiction. 4
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2.2. A characterization of closed and convex sets with a boun-
ded boundary. Propositions 1 and 2 motivate our interest for the study
of closed and convex sets with a bounded boundary, as their class turns
out to be a key notion when studying the interplay between the topologies
(C(X), τH) and (C(X), τAW ).

The following result allows us to completely characterize the family of
closed and convex sets with a bounded boundary, as well as Γ0(X)- func-
tionals with sublevel sets possessing this property.

Proposition 3. Let X be a normed vector space of dimension greater than
one, and let C be an unbounded and proper closed and convex subset of X.
Then, the boundary of C is unbounded.

Proof of Proposition 3: Being unbounded, the set C is nonempty; being
proper, it does not coincides with X. Recall that the only two subsets of
X that are simultaneously open and closed are ∅ and X, to deduce that C
is not an open set, and thus that its boundary ∂ C is nonempty. It is thus
possible to pick x ∈ ∂ C.

Let us assume instead that the boundary of C is bounded. It means that
∂ C ⊂ κBX for some κ > 0. As C is an unbounded set, there is y ∈ C such
that ‖y‖ ≥ 2κ; of course, y belongs to the interior of C.

Using a well known geometrical consequence of the Hahn-Banach theorem
( [30, Theorem 1.1.5]) we deduce the existence of some f ∈ X? and α ∈ R
such that

sup
x∈κBX

〈f, x〉 < α < 〈f, y〉 .

Recall that the dimension of X is greater than one; accordingly, the di-
mension of the hyperplane f−1(0) is greater or equal to one, meaning that
there is a non-null vector v ∈ X such that 〈f, v〉 = 0.

We claim that the line x+R v is completely contained within the boundary
of C. In order to prove this result, let us first remark that y + R v ⊂ C;
indeed, if a point of the line y+ R v is not in C, then Lemma 2 implies that
y + R v meets ∂ C, fact which is impossible, since

〈f, y + µ v〉 = 〈f, y〉 > α > sup
x∈κBX

〈f, x〉 ≥ sup
x∈ ∂ C

〈f, x〉 .

Invoke the well known result (originally proved by Steinitz [27] for eu-
clidean spaces, but valid with no modification in any topological vector
space) stating that, if a half-line is contained in a closed and convex set,
then its translate to any point of the set is still included in it, to deduce
that the line x+ R v is completely contained within the set C.

Finally, use the standard result ( [30, ii), Theorem 1.1.2]) stating that
the interior of a line segment is completely contained in the interior of C

provided that the segment is included in C and meets
◦
C, to infer that a line
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contained in C either completely misses
◦
C, or is a part of

◦
C. As

[x+ R v 3 x ∈ ∂ C] and
[
∂ C ∩

◦
C = ∅

]
,

it follows that the line x+R v cannot be entirely contained in
◦
C, establishing

our claim.

Of course, the fact that the boundary of C contains a line contradicts
our initial assumption on the boundedness of ∂ C, and proves in this way
Proposition 3. 4

As the boundary of X is empty, the boundary of a bounded set is bounded
(is a part of the set), and a boundary of a convex subset of the real axis
is composed of at most two points, it follows that the boundaries of all the
three above-mentionned classes of sets are bounded. We have thus proved
the following characterization of the subfamily of C(X) consisting of sets
with a bounded boundary.

Proposition 4. The boundary of a closed and convex subset C of a normed
space X is bounded if and only if at least one of the following three statements
holds true:
s1) the underlying space is the real axis, that is X = R;
s2) the set C itself is bounded;
s3) the set C coincides with the whole underlying space, C = X.

Accordingly, all the sublevel sets of a Γ0(X)- functional have bounded
boundaries, if and only if at least one of the following three statements holds
true:
f1) the underlying space is the real axis, that is X = R;
f2) the mapping f is coercive;
f3) the mapping f is constant.

3. A characterization of Ulam stability of approximate minima

The last section of the article is concerned with the main object of our
study, namely the upper semi-continuity of the operator Aε. Let us first
establish a Γ0(X)-version of the technical Lemma 4.

3.1. A sequence of Attouch-Wets converging functions. A standard
way to associate an extended real-valued function to a subset S of the prod-
uct space (X × R, ‖·, ·‖B) (here ‖·, ·‖B is the standard box norm on X ×R,
‖x, s‖B = max (‖x‖, |s|)) is to consider kS , the lower-boundary function to
S. This application is defined (see [24, Theorem 5.3], or [26, 2.1, page 46]),
as the unique extended-real-valued function kS : X → X∪{−∞, +∞} such
that

epi(kS) = S ∪ {0} × R+;
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more precisely,

X 3 u → kS(u) = inf {s ∈ R : (x, s) ∈ S} ∈ X ∪ {−∞, +∞}.
As easily observed, when S is a convex subset of X × R, then kS is a

convex function. However, assuming that S is closed and convex does not
automatically implies that kS belongs to Γ0(X) as, on one hand, kS may
take the value −∞, and on the other, its epigraph may not be a closed
subset of X × R.

A classical result yields that, when S is a closed and convex subset of
X ×R, the function kS belongs to Γ0(X) if and only if kS takes somewhere
a finite value (in other words, if the vector (0,−1) does not belong to the
recession cone of S).

Let us now consider a sequence (Sn)n∈N ⊂ X × R which Attouch-Wets
converges; even if kAn exists for every n, it may happen that the sequence
(kAn)n∈N is not Attouch-Wets convergent in Γ0(X) (take for instance X = R
and An = {(x, n x) : x ∈ R}).

The following result provides a very general frame in which the Attouch-
Wets convergence of a sequence of sets (Sn)n∈N implies the Attouch-Wets
convergence of the sequence (kSn)n∈N.

Lemma 5. Let (Sn)n∈N ⊂ X × R be a sequence of sets Attouch-Wets con-
verging to the epigraph of a functional f ∈ Γ0(X). Then:
i) for n large enough, the functions kSn belong to Γ0(X);
ii) the sequence (kSn)n∈N Attouch-Wets converges to f .

Proof of Lemma 5: Let us pick x0 ∈ X such that f(x0) ∈ R. It is well
known (and easy to prove) that a functional f ∈ Γ0(X) is bounded below
on bounded sets; thus, for any c > 0, there is mc ∈ R such that

(28) f(x) ≥ mc + 1 ‖x− x0‖ ≤ c+ 1.

An important step in proving both statements i) and ii) is to establish
that mappings kAn are uniformly bounded below on bounded sets. More
precisely, we must prove that there is an integer nc ∈ N such that

(29) kAn(x) ≥ mc for all x s.t. ‖x0 − x‖ ≤ c, and for alln ≥ nc.
To this respect, remark that relation (28) implies that

(30) dist ((x, s), epi f) ≥ 1 ∀ (x, s) ∈ (x0 + cBX)× [mc − 1, mc].

As (Sn)n∈N Attouch-Wets converges to epi f , it results that dδ(Sn, epi f)
goes to 0 for every δ > 0, and in particular for δ = ‖x0‖+c+mc+1. Hence,
there exists pc ∈ N such that

dist((x, s), epi f) < 1 ∀(x, s) ∈ Sn ∩ (‖x0‖+ c+mc + 1)BX×R, ∀n ≥ pc;
as (x0 + cBX) × [mc − 1, mc] ⊂ (‖x0‖ + c + mc + 1)BX×R, the previous
relation implies that, for any n ≥ pc it holds that

(31) dist((x, s), epi f) < 1 ∀(x, s) ∈ Sn ∩ (x0 + cBX)× [mc − 1, mc].
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From relations (30) and (31) it yields that

(32) Sn ∩ (x0 + cBX)× [mc − 1, mc] = ∅ ∀n ≥ pc.

On the other hand, let us remark that from relation (28) it follows that
f(x0) ≥ mc + 1, which means that the closed and convex set

Kc = (x0 + cBX)× [mc, +∞[

is a neighborhood of (x0, f(x0)). As dist((x0, f(x0)), Sn) goes to 0 (recall
that (x0, f(x0)) ∈ epif and that (Sn)n∈N Attouch-Wets converges to epi f),
we deduce that, for n large enough, the sets Sn must meet Kc; in other
words, there is qc ∈ N such that relation

(33) Sn ∩ (x0 + cBX)× [mc, +∞[6= ∅

holds true for any n ≥ qc.
Combining relations (32) and (33), and taking into account the convexity

of Sn it follows that

(34) Sn ∩ (x0 + cBX)×]−∞,mc − 1[= ∅ n ≥ max(pc, qc);

from relations (32) and (34) it stems that the desired relation (29) holds
provided that nc = max(pc, qc).

In order to prove the statement i), let n ≥ nc = max(pc, qc); as n ≥ qc,
relation (33) says that the set Sn∩Kc is non-void, so we may pick (xn, sn) ∈
Sn ∩ Kc. Since (xn, sn) ∈ Sn, the definition of the mapping kSn implies
that kSn(xn) ≤ sn; on the other hand, we know that (xn, sn) ∈ Kc, so
‖x0−xn‖ ≤ c. We may thus apply relation (29) for x = xn and deduce that
kSn(xn) ≥ mc.

We have proved that mc ≤ kSn(xn) ≤ sn provided that n ≥ nc =
max(pc, qc). In other words, the value of kSn at xn is finite, and let us
recall that, given a closed and convex set A, the mapping kA belongs to
Γ0(X) if and only if it takes a finite value. Accordingly, the statement i) is
valid whenever n ≥ nc = max(pc, qc).

Let us now address statement ii). Recall that for any sets A, B and C
such that C ⊂ B, it holds that e(A,B) ≤ e(A,C), to conclude that

(35) e (epif ∩ δ BX×R, epi kAn) ≤ e (epif ∩ δ BX×R, An) ∀δ > 0.

The sequence (An)n∈N Attouch-Wets converges to epi f , so

lim
n→∞

e (epif ∩ δ BX×R, An) = 0 ∀δ > 0;

use relation (35) to obtain that

(36) lim
n→∞

e (epif ∩ δ BX×R, epi kAn) = 0 ∀δ > 0.

Proving that (e (epi kAn ∩ δ BX×R, epif))n∈N also converges to 0 is more
difficult, as the set epi kAn∩δ BX×R is larger than An∩δ BX×R. It is however
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possible to prove that, for every δ > 0 there is a value β(δ) > 0 such that

(37) epi kAn ∩ δ BX×R ⊂ epikAn∩β(δ)BX×R ∀n ≥ nc.

To this respect, consider n ≥ nc and (x, s) ∈ epi kAn ∩ δ BX×R. Hence,
‖x‖ ≤ δ; thus

‖x0 − x‖ ≤ ‖x0‖+ ‖x‖ ≤ ‖x0‖+ δ.

It is then possible to apply relation (29) for c = ‖x0‖+ δ, and establish that

m‖x0‖+δ ≤ kAn(x).

Accordingly,

‖x, kAn(x)‖B ≤ ‖x‖+ |kAn(x)| ≤ δ + |m‖x0‖+δ|.

We have therefore proved that relation (37) holds true, provided that
β(δ) = δ + |m‖x0‖+δ|.

Combining the inequality e(B,A) ≤ e(C,A), which obviously holds for
any sets A, B and C such that C ⊂ B and relation (37), we deduce that

(38) e (epi kAn ∩ δ BX×R, epif) ≤ e
(
epi kAn∩β(δ)BX×R , epif

)
.

Let (x, s) ∈ epi kAn∩β(δ)BX×R ; clearly, s ≥ kAn∩β(δ)BX×R(x), so, for any
(y, t) ∈ epif it holds that (y, t+ s− kAn∩β(δ)BX×R(x)) ∈ epif , and

‖(x, kAn∩β(δ)BX×R(x))− (y, t)‖B = ‖(x, s)− (y, t+ s− kAn∩β(δ)BX×R(x))‖B;

the previous relation implies that

e
(
epi kAn∩β(δ)BX×R , epif

)
≤ e (An ∩ β(δ)BX×R, epif) ,

and, as the reverse inequality trivially holds, we conclude that

(39) e
(
epi kAn∩β(δ)BX×R , epif

)
= e (An ∩ β(δ)BX×R, epif) .

Relations (38) and (39) allow us to deduce that

e (epi kAn ∩ δ BX×R, epif) ≤ e (An ∩ β(δ)BX×R, epif) ;

since the sequence (An)n∈N Attouch-Wets converges to epi f , it results that
the sequence (e (An ∩ β(δ)BX×R, epif))n∈N goes to zero, so

(40) lim
n→∞

e (epi kAn ∩ δ BX×R, epif) = 0 ∀δ > 0.

Relations (36) and (40) complete the proof of statement ii), and hence of
Lemma 5. 4
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3.2. The main result. The following Proposition provides the main tech-
nical result of this article.

Proposition 5. Let f ∈ Γb(X) and η > 0. The application Aε is not Haus-
dorff upper semicontinuous at f for any ε < η, provided that the sublevel set
Lη = {x ∈ X : f(x) ≤ infX f + η} of f has an unbounded boundary.

Proof of Proposition 5: Let f ∈ Γb(X) such that the boundary of the
sublevel set Lη is unbounded. The proof will proceed through the construc-
tion of a sequence (fn)n∈N ⊂ Γb(X), Attouch-Wets converging to f and
satisfying:

(41) dist(xn, Lη) ≥ 1. ∀n ∈ N,
for some xn ∈ argminfn.

In order to construct the sequence (fn)n∈N fulfilling the requirements of
relation (41), let us apply the implication i) ⇒ ii) from Lemma 1 to the
closed and convex set Lη with unbounded boundary, and deduce that there
is an unbounded sequence (xn)n∈N ⊂ X such that

1 ≤ dist(xn, Lη) ≤ 2.

Using, if necessary, a subsequence, (still denoted by (xn)n, as no confusion
may occur), we may assume that ‖xn‖ ≥ n2.
Since, dist(xn, Lη) ≤ 2, and denoting by F the epigraph of f , we have

(42) dist
((

xn,

(
inf
X
f

)
− 1
)
, F

)
≤ η + 3.

Next, set Fn for the convex hull of the singleton (xn, (infX f)− 1) and the
intersection between F and the ball of center (θX , 0) and radius n of X×R.

We claim that the sequence of lower-boundary functions fn = kFn fulfills
relation (41).

As both the singleton (xn, (infX f)− 1) and the epigraph of f belong to
the half-space X × [(infX f)− 1,+∞[ , the same holds also for Fn; accord-
ingly,

(43) inf
X
fn ≥

(
inf
X
f

)
− 1.

Recall that the set Fn contains the singleton (xn, (infX f)− 1), and that fn
is the lower-boundary function of Fn to infer that

(44) fn(xn) ≤
(

inf
X
f

)
− 1.

From relations (43) and (44) we obtain:

min
X

fn =
(

inf
X
f

)
− 1 and xn ∈ argmin(fn).

Finally, as 1 ≤ dist(xn, Fη), we have constructed a sequence (fn)n∈N satis-
fying relation (41).
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Let us conclude by establishing that the sequence (fn)n∈N Attouch-Wets
converges to f .

Let us first apply Lemma 4 when the normed space (X × R, ‖(·, ·)‖B)
stands for (Y, ‖·‖), F stands for the closed and convex set C with unbounded
boundary, ((xn, (infX f)− 1))n stands for the unbounded sequence (xn)n∈N,
and η+3 stands for a (see relation (42)), to deduce that the sequence (Fn)n∈N
Attouch-Wets converges to F .

Finally, let us apply Lemma 5 to deduce that the sequence (kFn)n∈N
Attouch-Wets converges to f .

Using the previous construction, we are now in position to conclude the
proof of Proposition 5. For every ε < η it follows that

Aε(f) =
{
x ∈ X : f(x) ≤

(
inf
X
f

)
+ ε

}
⊂

{
x ∈ X : f(x) ≤

(
inf
X
f

)
+ η

}
= Lη;

thus, for any S ∈ C(X) it holds that

e (S, Aε(f)) = sup
u∈S

inf
v∈Aε(f)

‖u− v‖(45)

≥ sup
u∈S

inf
v∈Lη

‖u− v‖

≥ dist (u, Lη) ∀u ∈ S.
Since

xn ∈ argminfn ⊂ Aε(fn), ∀ε > 0, ∀n ∈ N,
it is possible to take S = Aε(fn) and u = xn in relation (45), and therefore
to deduce that

(46) e (Aε(fn), Aε(f)) ≥ dist(xn, Lη) ∀ε ∈]0, η], ∀n ∈ N.
According to relations (41) and (46), it follows that Aε fails to be upper
semicontinuous at at f , proving in this way Proposition 5. 4

The theorem coming next demonstrates that we can completely character-
ize the subclass of Γb(X) of those functions with Ulam-stable ε-approximate
minima.

Theorem 1. Let (X, ‖ · ‖) be a normed space. The application Aε is Haus-
dorff upper semicontinuous at f for any ε > 0 if and only if the boundary
of every sublevel set of f is bounded.

Proof of Theorem 1: The ”only if” part is an obvious consequence of
Proposition 5. Let us move on to the ”if” part.

Consider a function f ∈ Γb(X) which possesses only bounded boundary
sublevel sets. Choose any ε > 0, and a sequence (fn)n∈N ⊂ Γb(X) Attouch-
Wets converging to f . We have to prove that

(47) lim
n→∞

e (Aε(fn),Aε(f)) = 0.
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A standard argument yields that

(48) lim sup
n→∞

inf
X

(fn) ≤ inf
X
f.

Indeed, let us pick, for every α > 0, a point xα ∈ X such that

f(xα) ≤ (inf
X
f) + α.

As the sequence (fn)n∈N Attouch-Wets converges to f , it is possible to pick
(xα,n, sα,n)n ∈ epi fn such that (xα,n)n∈N converges to xα and (sα,n)n∈N to
f(xα). Since (xα,n, sα,n)n ∈ epi fn, then

inf
X

(fn) ≤ f (xα,n) ≤ sα,n,

and therefore

lim sup
n→∞

inf
X

(fn) ≤ lim
n→∞

sα,n = f(xα) ≤ (inf
X
f) + α ∀α > 0.

Hence relation (48) is established.
As a consequence of relation (48), it results that the sequence (ωn)n∈N

defined by

ωn = max
(

inf
X

(fn)− inf
X
f, 0

)
converges to 0. Invoking the sum theorem [9, Theorem 7.4.5, page 260] we
claim that the sequence (fn − ωn)n∈N Attouch-Wets converges to f . Next,
using this fact and applying a theorem by Beer & Luchetti [11, Theorem
3.6] we deduce that the sequence of level sets

Lε,n = {x ∈ X : fn(x) ≤ ωn + inf
X
f + ε}

Attouch-Wets converges to

Lε = {x ∈ X : f(x) ≤ inf
X
f + ε}.

Since by assumption the boundary of Lε is bounded, applying Proposition
1 we deduce the upper semi-continuity at Lε of the mapping ι. Accordingly,

(49) lim
n→∞

e (Lε,n, Lε) = 0.

Finally, remarking that infX(fn) ≤ ωn+ infX f , we deduce that Aε(fn) ⊂
Lε,n; as, on the other hand, Aε(f) = Lε the desired relation (47) follows
from relation (49) and the proof is established. 4
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Linénaire, 10 (1993), 289 – 312.

[5] H. Attouch, R. Wets, Isometries for the Legendre-Fenchel transform, Trans.
Amer. Math. Soc. 296 (1986), 33-60.
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