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Abstract

Sparse covariance selection problems can be formulated as log-determinant
(log-det) semidefinite programming (SDP) problems with large numbers of lin-
ear constraints. Standard primal-dual interior-point methods that are based on
solving the Schur complement equation would encounter severe computational
bottlenecks if they are applied to solve these SDPs. In this paper, we consider
a customized inexact primal-dual path-following interior-point algorithm for
solving large scale log-det SDP problems arising from sparse covariance selec-
tion problems. Our inexact algorithm solves the large and ill-conditioned linear
system of equations in each iteration by a preconditioned iterative solver. By
exploiting the structures in sparse covariance selection problems, we are able
to design highly effective preconditioners to efficiently solve the large and ill-
conditioned linear systems. Numerical experiments on both synthetic and real
covariance selection problems show that our algorithm is highly efficient and
outperforms other existing algorithms.

keywords: log-determinant semidefinite programming, sparse inverse covariance se-
lection, inexact interior point method, inexact search direction, iterative solver

1 Introduction

Given n independent and identically-distributed (i.i.d.) observations AN D)
drawn from a p-dimensional Gaussian distribution N (x; i, ¥,), the sample covariance
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matrix 3 is defined as the second moment matrix about the sample mean
~ 1 <
£ =3 6 - @ - )",

n
k=1

where we use n instead of n — 1 for the degree of freedom and i = %2?21 @ is the
sample mean. If ¥, is non-singular, then the probability density function of x is given
by
. B 1 1 T .
P 5) = sy o (-3 - S -0).

To estimate Y, from the sample X := {zM ... (™} we consider the log-likelihood
function

n

1
log P(X i, 5y) = —2 log(det 5,) — 5 3o = )75, ¥ — ) +e, - (2)
k=1

where ¢ is a constant. Let S? be the space of p x p symmetric matrices, and S} (S,)
be its subset of positive semidefinite (definite) matrices. We also use X = 0 (= 0)
to denote X € SV, (X € 8T). Given X,Y € 87, we define the inner product to be
X oY = Trace(XY). Then expression (2) can be rewritten as

log P(X; 1, 5,) = glog(det =) - gzj oS+ (3)

From (3) we can see that if 3 is nonsingular (hence n > p), then
57 = argmax {log P(X; 4, %,) | 5, € ST, }

is the maximum likelihood estimator of the inverse covariance matrix 3, 1 ak.a.
precision matriz or concentration matrix. However, in practice, one may not want

to use L' as the estimator of DI ! for a variety of reasons. The most obvious is

that when 3 is singular or nearly so, it is not a robust estimator of X ; ! for many
statistical purposes. The second is that one may want to impose structural conditions
on X ! such as conditional independence between different components of x, which
is reflected as zero entries in X! [39, Proposition 5.2].

The covariance selection problem was first introduced by Dempster [8], who sug-
gested that the covariance structure of a multivariate normal population can be sim-
plified by setting elements of the inverse covariance matrix to zero. Since then, the
covariance selection model has become a common statistical tool to distinguish direct
from indirect interactions among a set of variables. The graphical interpretation of
the covariance selection model is called the Gaussian graphical model (GGM) [10, 19].
Given an undirected graph G = (V, £), the Gaussian graphical model assumes a mul-
tivariate Gaussian distribution for the underlying data, and any nonadjacent pair in



G indicates the independence between the underlying variables conditional on the
remaining variables.

Applications of the covariance selection model or GGM can be found in various
areas. In financial portfolio management, sparse portfolios with fewer assets incur
less transaction costs and are more tractable. In [6], the covariance selection model is
applied to find a sparse portfolio for mean-reversion trading strategies. In the research
of dependency networks of genome data, a gene may play a role in many biological
pathways and be associated with many other genes, though all these effects may be
transmitted through direct associations of only a few genes in the neighborhood. The
sparse gene association network exhibited in GGM can help to explain the known
biological pathways and to provide insights on the unknowns, see for example [1, 28].
Recent advances in DNA microarray technology require modeling an association net-
work on a large number of genes (say, 10 —10*) from a small sample (say, 10?), which
will lead to a singular sample covariance matrix 5. In this situation, the covariance
selection model provides a systematic way to recover the population covariance ma-
trix. For more applications of the covariance selection model, see [2, 4].

As an important statistical problem, the covariance selection model has been in-
tensively studied. There are many available statistical approaches, including the well
known stepwise backward selection [10] and graphical-lasso [13, 22]. However, the
challenge from high dimensional data requires more efficient and robust algorithms
to handle covariance selection problems. It is well known that covariance selection
problems can be modeled as log-det semidefinite programming (SDP) problems. Typ-
ically, covariance selection problems can be divided into two classes, depending on
whether the sparsity pattern is given a priori. If no sparsity pattern is assumed,
sparsity can be enforced by [;-regularized maximum log-likelihood estimation [13, 7]:

max{logdetX—i]oX—Ho|X||X€Sﬁ+}. (4)

In (4), | X| takes entry-wise absolute value of the matrix X, and H € S? is a given
nonnegative weight matrix. The latter controls the trade-off between the goodness-
of-fit and the sparsity of X. A typical choice for H is H = pE, where E is the matrix
of ones and p is a positive parameter. The matrix H may also assign zero weight on
certain entries, such as the diagonal entries.

If the conditional independence structure between all variables is given, then the
covariance selection problem can be formulated as a log-det maximization problem
with linear constraints, that is, finding the maximum log-likelihood value subject to
given entry-wise constraints [37, 5]

max {logdetX —SeX|X,;=0,(i,j) €, and X € SL} , (5)

where () contains the indices of the upper triangular part of X that are supposed to
be zero, i.e. the sparsity pattern. We let 2 be the set of the remaining indices of the



upper triangular part of X. It is not difficult to find some connections between (4)
and (5). In [13], the constraint X;; = 0 in (5) is approximately enforced by setting
H;; to be a large number (say, 10°) in (4), and this is the approach taken by [13] to
solve (5) via (4).

Combining (4) and (5), we have the following [; regularized log-det semidefinite
programming problem with linear constraints:

max { logdet X — X o X — Y HylX;| | X;; =0, (i,5) €Q, X €S 5,  (6)
(i) ¢S

where () is as defined previously.

The problems (5)-(6) can be expressed as standard log-det SDP problems, which
can in principle be solved by popular interior-point-method-based solvers such as
SDPT3 [34] or SeDuMi [31]. However, the resulting standard log-det SDP problems
typically have a large number of linear constraints m (even for moderate p, say p <
100) which the solvers in SDPT3 or SeDuMi cannot handle since the computational
cost they need in each iteration is at least ©(m?) and the memory required is at least
©(m?) bytes. Thus a variety of customized algorithms have been developed to solve
the problem (4) or (5), and most of them avoid the interior-point method approach.

The graphical Lasso methods developed by Meinshausen and Biithlmann [22] and
Friedman et al. [13] for solving (4) are essentially block coordinate descent methods.
In [1, 7], d’Aspremont et al. considered Nesterov’s smooth gradient method [23] as
well as the block coordinate gradient method (BCG) for solving the dual of (4). The
complexity of their implementation of Nesterov’s first order algorithm is @(%) For
their BCG method, a box-constrained quadratic programming subproblem is to be
solved in each iteration and the total complexity is unknown. Lu [20] proposed a
variant of Nesterov’s smoothing method for solving (4) with complexity @(\/ig) More
recently, Lu [21] proposed an adaptive version of Nesterov’s smooth method (ANS)
to solve (6) by solving a sequence of penalized problems of the form (4). Yuan [45]
applied alternating direction methods to (4). Scheinberg and Rish [29] proposed a
coordinate descent method for the primal problem of (4) in a greedy approach. First
order methods only need small memory and cpu time per iteration, but they typically
take many iterations to converge even for relative low accuracy. Krishnamurthy and
d’Aspremont [17] developed a pathwise algorithm consisting of a predictor step with
the conjugate gradient method and a corrector step with the block coordinate descent
method. Second-order information is involved in their predictor step. Note that
among the methods just described, the ANS method in [21] is the only one that is
designed for the problem (6).

In [36], the authors considered the problem (5) but with € chosen to reflect local
interactions between variables defined on a grid. They proposed to eliminate the

constraints X;; = 0 by using the parametrization X = Z(ij)em Xi;jEi;, where E;; are



unit matrices in SP. By doing so, (5) is converted to an unconstrained smooth convex
problem for which they applied a standard Newton method with back-tracking line
search to solve the problem. For the problems in [36], X is extremely sparse and well
structured, and the authors were able to solve problems with p up to 34,000 and Q¢
up to 100,000 although the computer architecture used and times taken were not
mentioned. More recently, Wang, Sun and Toh [38] applied a Newton-CG primal
proximal-point (PPA) method to solve (6). In the algorithm, each subproblem is
solved by a semismooth Newton-CG method for which they used a preconditioned
conjugate gradient (PCG) solver to compute an inexact Newton direction from the
semismooth Newton equation in each inner iteration for the subproblem. Their nu-
merical results show that PPA is efficient for solving problem (6) with p up to 2000
and m (the cardinality of ) up to 10%. In particular, for randomly generated test
examples, it can be a factor of 2 — 19 times faster than the ANS method in solving
the problem (5).

It is well known that interior-point methods are robust and generally can obtain
high accuracy solution with relatively few iterations. They are often the ideal choice
for solving small to medium size generic SDP problems. It is not difficult to see that
(6) can be cast as a standard log-det SDP problem with p(p+ 1)/2 linear constraints.
In [44], Yuan and Lin actually applied a standard primal-dual interior-point method
to solve (6). However, as we have pointed out earlier, a standard IPM solver would
encounter a severe computational bottleneck or even become impractical when p is
large since its computational cost per iteration is at least O(p®). But given that
IPMs have the highly desirable property of being able to compute accurate solutions
in relatively few iterations, it is worthwhile to design an IPM based method for
solving (6) but one that overcomes the computational bottleneck just mentioned. In
the case of linear and convex quadratic SDP, it has been demonstrated that inexact
IPMs for which the large linear system in each iteration is solved approximately by
a preconditioned iterative solver can be quite successful in solving certain classes of
large primal and dual nondegenerate problems [32, 33].

This motivates us to design a customized inexact primal-dual interior-point method
for solving (6). The main idea in our inexact interior-point method (IIPM) is to
compute the search direction at each iteration approximately by solving the large
linear system of equations defining the search direction via an iterative solver such
as the preconditioned conjugate gradient method. As the linear system is generally
ill-conditioned, it is crucial for us to design efficient preconditioners to speed up the
convergence of the iterative solver. In general, it is difficult to construct efficient
preconditioners for such an ill-conditioned linear system of equations, and hence the
computational cost for solving the linear system is generally quite high. (This also ex-
plains why recent approaches for solving large scale linear SDP problems have moved
away from interior-point methods to algorithms based on classical methods for convex
programming, such as proximal-point and augmented Lagrangian methods [26]. For
details on non-interior-point based methods for solving large scale linear SDP prob-



lems, see [3], [16], [18], [38], [47].) Fortunately, for the problem (6), by exploiting the
problem structure in the SDPs arising from the covariance selection model, we are
able to design highly efficient preconditioners such that the condition numbers of the
preconditioned matrices in each IPM iteration are bounded independent of the barrier
parameter. We compare the performance of our I[IPM method with the two recently
developed methods: the ANS [21] and the PPA [38] methods. The latter methods
are currently the most general and competitive methods for solving problems of the
forms given in (4) and (5). Numerical experiments on test problems generated from
synthetic and real data show that our IIPM method can outperform the ANS and
PPA methods by a significant margin when solving problems (4) and (5).

We should emphasize that the focus of this paper is on the practical efficiency
of the proposed IIPM method for solving (6) rather than the theoretical efficiency.
Even though we have not worked out the details, it is likely that by adapting and
combining the analysis in [48] and [35], polynomial iteration complexity results can
be established for a theoretical version of the ITPM method proposed in this paper.

The remainder of the paper is organized as follows: Section 2 describes the
formulation of the log-det SDP problem and the details of an inexact primal-dual
interior-point algorithm (which we call Algorithm IIPM). In Section 3, we discusses
the efficient computation of the search direction in each iteration of IIPM for the
covariance selection problem (6). We also design efficient preconditioners for the lin-
ear systems of equations associated with the problem (6). Section 4 demonstrates
the computational performance of IIPM on both synthetic and real examples. The
performance of IIPM is compared with the ANS and PPA methods. Section 5 gives
the conclusion.

In the paper, we use the following notation. For any two p-dimensional matrices
G and K, the symmetrized Kronecker product between them is the linear operator
on 8P defined by

1
(G® K)(U) = 5(GUKT + KUG™).
Some properties of the symmetrized Kronecker product can be found in the Appendix

of [24]. We use || - || to denote the Frobenius norm for a matrix or Euclidean norm
for a vector, and || - ||2 to denote the spectral norm of a matrix.

2 An inexact primal-dual interior-point method

Here we design a customized inexact primal-dual path-following interior-point method
for the following [;-regularized log-det SDP problem which includes (6) as a special



case:
(P) min CeX —~logdet X +h'x; + h'x,
st. AX)=b
B(X)—x1+x2=0
xri1, 2 >0, X >0,

(7)

where 7 is a given positive constant, C, X € SP, h € Ri and b € R™ are given
data; A : S — R™ is a linear map defined by A(X) = [A; e X,..., A,,  X]T where
{A; € 8 : i =1,...,m} are given matrices; B : S» — R! is another linear map
defined by B(X) = [By e X,..., B;  X|T where {B; € 8” : i = 1,...,l} are given
matrices. Without loss of generality, we assume that the linear map defining the linear
equality constraints in (7) is surjective. Thus we must have m +1 < p(p+1)/2 + 2l.
Note that the problem (6) can be easily transformed to the form in (P) by writing
Xij = X;T — X;; with X;;-,Xi; > 0 for (i,7) € Q° see Section 4 for details. For
the problem (P), if an optimal solution X* exists, then it must be unique since the
problem is equivalent to min{C @ X — ylogdet X + h'|B(X)| : A(X) =b,X = 0},
whose objective function is strictly convex with respect to X.
The dual problem of (P) is given by:

(D) max bly+vylogdet Z + py(1 —log~)
st. AT(y)+B'(uw)+Z=C (8)
—h<u<h,Z>0,yeR"™

where AT and BT are the adjoint of A and B respectively. For the problem (D), if
an optimal solution Z* exists, then it must be unique since the problem is equivalent
to the problem: max{bTy + ylogdet(Z(y,u) := C — [AT,BT][y;u]) : —h < u <
h,y € R™ Z(y,u) = 0}, whose objective function is strictly concave with respect to
[y; ul.

The perturbed KKT optimality conditions for (P) and (D) are as follows:

AT+ BT (u)+Z2-C = 0

AX)—b = 0,
BX)—x1+xz2 = 0 (9)
XZ -~ = 0, X,Z»0,
z10(h+u) = ve, 1 >0, h+u>0,
xz0(h—u) = ve, x>0, h—u>0,

(1))

where e is the vector of ones. Here the notation “o” denotes element-wise mul-
tiplication between two vectors. The last two equations of (9) are the perturbed

7



complementarity conditions, where the positive barrier parameter v is to be driven
to 0 explicitly.

Due to the fact that X Z is usually nonsymmetric, the equation XZ = I in (9) is
usually symmetrized to Hp(X Z) = vI, where for a given positive definite matrix P,
Hp : RP*P — S§™is defined by Hp(M) := (PM P~ +(PMP~")T) /2. In this paper, we
choose P = W~1/2 where W = 0 is the Nesterov-Todd (NT) scaling matrix satisfying
WZW = X for given X, Z € 8%, [24]. It has been shown in [46] that for X, Z € S|
and our choice of P, Hp(XZ) = ~I if and only if XZ = ~I.

Given the current iterate (X, x1,x2,y,u,Z), our IPM algorithm computes a
search direction for the current iterate by applying one step of Newton method to
(9) with the fourth equation XZ = ~I replaced by Hp(XZ) = vI. Without go-
ing through the algebraic manipulations, the search direction is the solution to the
following linear system of equations:

AT(Ay) + BT (Au) + AZ =R =C—7— AT(y) — B (u),
AAX) =7 =b— AX),
B(AX) — Azxq + Azxe =7P =21 —xy — B(X),
WrleW  AX)+AZ =R =X '-2Z (10)
zy lo(h+u)oAxy +Au =7 =vey ' —h—u,

mZ_lo(h—u)ko2—Au =ry :=vky ' —h+u.

Here, for a given vector & > 0, we let £ ! be the componentwise reciprocal of . It is
clear that the linear system (10) has dimension m + p(p + 1) + 3I, which could easily
be very large. In practice, one would not solve (10) directly, but would first perform
block eliminations so that only a smaller linear system is solved.

There are two possible ways to obtain a smaller linear system for computing the
search direction from (10). The first approach is based on the fact that Axq, Az,
and Aw, the variables associated with the linear constraints, can easily be eliminated.
From the last two equations of (10), we have

Axy = (h+u)toxyo(r — Au), an
Axy = (h—u)toxyo(ry+ Au).
Then from (11) and the third equation of (10), we get
Au = q ' og—diag(q ") B(AX) (12)

where

q = (h+u) oz +(h—u)"'ox,, (13)



g = 2vuo(hoh—uou)! —B(X). (14)

By using (12) and eliminating AZ from the first and fourth equations of (10), we get
the following augmented system:

—Wte W= — Bldiag(g B A"
A 0

AX
Ay

Rd — R¢ — BT(q—l og)

/,ﬂp

(15)

To compute the search direction associated with the current iterate, one can solve
the linear system (15) for AX, Ay. Once they are obtained, Au, AZ can be obtained
from (12) and the first equation of (10), respectively. After that, Ax;, Axg can be
computed from (11).

The linear system (15) is generally dense even if A is sparse, and its dimension,
m + p(p + 1)/2, can be very large even for a moderate p (say p = 500). Thus it
is impractical to solve (15) via a direct solver since it would require huge computer
memory space to store the coefficient matrix as well as excessive computing time
to factorize it. The only viable alternative is to use an iterative solver to compute
an approximate solution with a sufficiently small residual norm. Note that if (15)
is solved inexactly such that the computed solution (AX,Ay) has residual given
by (Z,€), then the residual of the computed search direction for (10) is given by
(0,£,0,—=,0,0). In our numerical implementation, we deem (AX,Ay) computed
from (15) to be sufficiently accurate if the following relative stopping criterion is
satisfied:

max {[|Z], €11} < wmax { R, 72, w2l 1B el o]l

where k € (0, 1) is an accuracy parameter. Although we do not investigate the global
polynomial convergence of our inexact IPM under such a stopping criterion, we note
that a similar criterion has been used in the analysis in [48].
Observe that for the system (15), if let H = W~ ® W~ + BTdiag(q~!)B and
G =[-H, AT; A, 0] be its coefficient matrix, then
~H '+ H'A"Y"AHY H'ATY !

-1 _ 16
g Y 1AH! y-1 ’ (16)

where Y = AH ' A”. Thus for any given [z;y], G~'[x;y] can be computed via the
following steps:

Compute v =Y H(AH 'z + y); (17)
Compute G '[z;y] = [H '(ATv — 2);0)]. (18)

However, note that it is impractical to compute either (17) or (18) exactly since it is
extremely costly to compute H~! and Y.

9



In the second approach for computing the search direction in (10), we rewrite the
system (10) in the following block form

-]

U=diag(W'e@W ' (h+u)oxy ', (h—u)oxzy™ '), V=(A008,-I,7),

where

AX = (AX,Azy, Axs), AJ = (Ay,Au),
R= (Rd — R% —7ry; —7'2) , T =(r";rP).

Since U~! exists and is easy to compute, by eliminating AX , the system (19) can be
reduced to the following smaller system:

VU 'WTA = VU 'R+T7. (20)

By rewriting (20) with the original variables, Ay, Au can be computed from the
following linear system:

AW @ W AT AW @ WBT
BW @ WAT BW ® WBT + diag(q)

Ay
Au

AW ® W (R — R¢) + rP
BW ® W(R!— R) +g

(21)

where g is defined as in (14). Once Ay, Au are computed, AZ can be obtained from
the first equation of (10), while Axy, Az can be computed from (11). The unknown
AX is easy to obtain since from the fourth equation of (10), we have

AX =W @ W(R® — AZ). (22)

Just like the linear system (15), the linear system (21) is generally dense and its
dimension, m +(, can be very large. Thus it is generally impractical to solve (21) via
a direct solver, and one must resort to an iterative solver to compute an approximate
solution with a sufficiently small residual norm. We note that if the solution (Ay, Au)
is computed inexactly from (21) with residual given by [n; (], then the residual of the
computed search direction for (10) is given by [0;n;(;0;0;0].

We should emphasize that when we apply an iterative solver to (15) or (21),
it is crucial for us to construct efficient preconditioners for the systems since they
are generally ill-conditioned, as we will explain next. Assume that strict comple-
mentarity conditions hold for the last two equations in (9) at an optimal solu-
tion (X*, &}, s, u*,y*, Z%), i.e., there exists a positive constant x independent of
v such that for xq, 2, u that are sufficiently close to the optimal solution, we have
x1+h+u>k xa+h—u>k Let L:={1,...,1}. We define

Li={keL : (x1)r=06()and (x2)r = O(v)}, (23)

10



and Ly = L\Ly ={k € L : (h+u), =0(v)or (h—u), =0O(v)}. It is clear that for
the vector q in (13), its components would have the following order of magnitudes:

O(v) forkel,
=3 o(1/v) forke L.

Thus when L; # (), the coefficient matrix in (15) would have its norm increase like
O(1/v) as v | 0 since its (1,1) block involves g~!. Thus the condition number of the
coefficient matrix in (15) is at least of the order ©(1/v) when the iterate is close to
optimality. Similarly, when Ly # (), the condition number of the coefficient matrix in
(21) is at least of the order ©(1/v) when the iterate is close to optimality.

As the focus of this paper is on the special problem (6), the design of efficient
preconditioners for (15) and (21) arising from the general problem (7) is an interesting
topic that we will not pursue here but leave it for future research.

Now we describe the details of our inexact primal-dual path-following algorithm.
Algorithm (IIPM). Choose starting points X° = Z° € SV, , x1° = x" > 0,
=0, u®=0. Let 0,7 € (0,1) be given parameters.

For £k =0,1,2,...
Let the current and next iterate be (X, @1, T2, y,w, Z) and (X, 21", xaT yT ut, Z7),
respectively.

1. (Convergence test) Terminate the iteration if

gap
1 + |pobj| + |dobj]

¢ = max{ , pinf, dinf} < Tol, (24)

where pobj, dobj are the primal and dual objective values, and
gap = (h+u)"xy+ (h—u)Txy+ X 0 Z —~ylogdet(XZ) — py(1 —log~)

P P d
L T .4

L+ [bl]" 14 |1 X]| IEeh

pinf = max{

2. Compute the search direction (AX, Axy, Axs, Au, Ay, AZ) from (10) by solv-
ing the augmented system (15) for (AX, Ay) or (21) for (Ay, Au) with v = op,

where
(h+u)Tzy + (h—u)lx,

21

3. Determine the mazimum step lengths a, 3 € (0,00) such that X + alAX, Z +
BAZ remain positive semidefinite; &1 + aAxy, T2 + @Azs, h + u + fAu,
h — u — SAwu remain nonnegative.

11



4. (Update) Compute the next iterate as:
XT=X+aAX, z1" =z1+alAxy, x2" =9 + alAx,,
Zt=7+4pAZ, yT=y+ Ay, u"=u+ [Au,

where o = min{1, 7a} and B = min{1,73}.

3 Computation of search direction for the special
case (6)

For the special case (6), the computation of the search direction via the systems (15)
and (21) can further be simplified. More importantly, we can also design efficient
preconditioners for the simplified systems.

Recall that for the problem (6), we have m +1 = p(p+1)/2, and [AT, BT] is just
a permutation of the identity operator. As a result, we have the following properties:

ATA+B"B =1, AAT = 1,,, BB = I;, AB" = 0, (25)

where p :=p(p + 1).

3.1 Computing (AX, Ay) first

First we consider the linear system (15) corresponding to the problem (6). By using
(25), we have AX = AT(AAX) + BT(BAX) = ATr? + BT(BAX), thus the system

(15) can be rewritten as follows:
(BW '@ W'B" + diag(g™")) A¢ = f, (26)

where A§ = BAX and f = g log — B(R!— R¢+ WY ATrP)W 1), Once AE is
computed, (AX, Ay) can be recovered from the following equation:

AX = ATr? + BTAE, Ay =AW 'AXW ' 4+ R — RY). (27)

Suppose that the computed solution A from (26) has residual §. Then for the
direction (AX, Ay) computed based on (26) and (27), the residual vector associated
with the system (15) is given by [—B74;0].

It is easy to see that when X, Z are sufficiently close to the optimal solutions
X*, Z*, there exists a positive constant 7 (independent of the barrier parameter v)
such that

WreW ! =7A"1e A,

where A is a given positive definite diagonal matrix, for example, A = I. In our
numerical implementation of the ITPM algorithm, we take A~ = diag(W™1).

12



We can rewrite (26) as
BWeW ™ —rA @ ATB" + M3) AS = f, (28)
where
Mz =1BA P ® A7BT + diag(q™). (29)

If we precondition (28) by M3, then we get
(1+ M 2BV @ W —ra @ ATYBT M ) (MyPAg) = Mz F (30)

For the above preconditioned system (30), which has a symmetric positive definite
coeflicient matrix, the iterative solver of choice is the minimum residual (MINRES)
method [27, p. 194]. We can expect the MINRES method (also known as the con-
jugate residual method) to be efficient in solving (30), as the result in Theorem 1
indicates.

Theorem 1. Let 3 = | M3 *BW-leW ' —rA— @A) BT M;"/?||,. The MINRES
method applied to (30) would converge at a rate given by

VI+G-1
VI+B+1

Proof. Let H be the preconditioned matrix in (30). It is clear that the eigenvalues
of H are contained in the interval [1,1 + (3]. Thus the condition number of H is no
more than 14 3, and the required convergence rate follows by adapting the standard
convergence result for the conjugate gradient method [27, p. 203] to the MINRES
method. O

Note that the quantity § in Theorem 1 can be bounded independent of the barrier
parameter v.

In our implementation of Algorithm IIPM, we use the symmetric quasi-minimal
residual (SQMR) iterative method [12] to solve the linear system (30) instead of the
MINRES method. We note that the SQMR method is mathematically equivalent
to the MINRES method when the coefficient matrix is symmetric positive definite.
But we prefer the former in our implementation as it has slightly better numerical
performance in finite-precision arithmetic.

3.2 Computing (Ay, Au) first

Next, we consider the linear system (21) corresponding to the problem (6). In this
case, by using (25), the linear system (21) can be rewritten as follows:

(W ® W + B'diag(q)B) AV = F (31)
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where AV = AT(Ay) + BT (Au) and F = ATrP+ W (R?— R )W + BT g. After solving
for AV, the search direction can be found as follows:

Ay = A(AV), Au=B(AV), AZ = R* — AV,

and Axq, Az, can be computed from (11). The unknown AX can be computed either
from (22) or from the following equation: AX = ATr? + BT (g — q o Au). We found
that the former has better numerical stability and we adopt it in the implementation
of Algorithm ITPM.

Suppose AV is computed from (31) with residual ®. Then the residual corre-
sponding to the system (21) for the computed (Ay, Au) above is given by [A®; BP|.
Note that if AX is computed from (22), then the residual vector associated with the
computed search direction for (10) is given by (0, AP, B®,0,0,0).

It is easy to see that when X, Z are sufficiently close to the optimal solutions
X*, Z*, there exists a positive constant 7 (independent of the barrier parameter v)
such that

WeW =1A®A,

where A is a given positive definite diagonal matrix. In our implementation of the
ITPM algorithm, we take A = diag(W).

We can rewrite (31) as
(WeaW —1tA® A+ My AV = F, (32)
where
My =7A® A+ Bdiag(q)B. (33)

If we precondition (32) by My, then we get
(1+ M7 (W oW —rh@ ) M) (MPAV) = M; P, (34)

For the above preconditioned system (34), which has a symmetric positive definite
coefficient matrix, again the iterative solver of choice is the MINRES method. As in
(30), we can expect the MINRES method to be efficient in solving (34), as the result
in the next theorem indicates.

Theorem 2. Let 8 = |[M;*(W @ W — 7A ® A)M;"?||». The MINRES method
applied to (34) would converge at a rate given by

VITA-1
VI+G+1
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Proof. Similar to that of Theorem 1. O

Note that as before, the quantity  in Theorem 2 can be bounded independent
of the barrier parameter v. Again, for the same reason mentioned in the last
subsection, we use the SQMR method to solve (34) instead of the MINRES method
in our implementation of Algorithm ITPM.

Remark Given the systems (26) and (31), we have the flexibility to choose a better
conditioned system among the two to compute the search direction. By noting that
W ~ X/,/7 when (X, Z) is close to optimality, the system (31) is preferred if || .X|| is
moderate. On the other hand, the system (26) is preferred if || X !|| is moderate. In
our implementation of Algorithm ITPM for solving (5) and (4), we replace Step 2 in
the algorithm as follows:

2 I | X7 < 1072||X||, compute the search direction (AX, Az, Axa, Au, Ay, AZ)
for (10) via solving the system (30) for (AX, Ay); otherwise, compute the search
direction via solving the system (34) for (Ay, Au).

4 Numerical Experiment

In this section, we conduct numerical experiments to evaluate the performance of Al-
gorithm ITPM for solving the problem (6) arising from covariance selection. Specif-
ically, we solve the following problem:
min 3 e X —logdet X + A7 (xt +x7)
st. X;;=0 V(ij) €,
B(X)—x"+x =0,
xt,x™ >0, X =0,

(35)

where 3 is a given p X p sample covariance matrix, h corresponds to H = pFE, and F
is the matrix of ones. The linear map B : S? — R' is defined by B(X) = Xgqc, where
Xqe is the vector in R that is obtained by stacking the elements X;; with (4,5) € Q°
in lexicographical order into a column vector.

The input sample covariance matrices S} are chosen from both synthetic data
and real data. For synthetic data, the sparsity pattern of the true inverse covariance
matrix X! is assumed to be known. In this case, we create linear constraints X;; = 0
by letting €2 to be a subset of =, where = is the set of indices of the zero elements of
¥~ In our experiments, we randomly choose 50% of the elements in = to form the
subset 2 and expect to recover the rest by solving (35). For the real data considered
in this section, we have no priori knowledge on the sparsity pattern. Hence, we set

2 =0 in the problem (35).
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In Algorithm ITPM, we use the following starting iterate:
Z9=S 41, y"=0, u’=0,
X0=(2°)7", xi=nqe, xI=1e

where v = 0.1e + || X°||/p, with p being the dimension of &, and e is the vector of
ones.

All the numerical experiments are carried out in MATLAB 7.6 on a 3.0GHz In-
tel Xeon PC with 4.0GB RAM running Linux 9.10. We compare the performance
of our inexact interior point algorithm (Algorithm IIPM) with the Adaptive Nes-
terov Smoothing (ANS) method proposed by Lu [20, 21] and the Newton-CG primal
proximal-point (PPA) method proposed in [38]. For the IIPM method, we use the
stopping condition (24) with Tol = 1075, For the ANS method, its stopping condi-
tions depend on two tolerance parameters, €, and €., which control the duality gap
and constraint violation, respectively. When solving examples with linear constraints,
Xi; =0, (i,7) € Q1in (5), we use ANS method with its default updating parameter
r, = 2. For the PPA method, the stopping condition used is similar to that in (24),
and the tolerance is set to be Tol = 107°.

4.1 Synthetic Examples

Example 1. We adopt the idea from d’Aspremont [7] to construct a random sparse
inverse covariance matrix. In particular, let U be a p X p sparse matriz with a few
randomly chosen nonzero entries that are equal to 1, then we generate a sparse
wmverse covariance matriz as follows:

A=U"U; d = diag(A); A = max(min(A — diag(d), 1), —1);
A= A+diag(d +1); ' = A+ max(—1.2 i (4), €)1 (36)
where € = 10™* is a small perturbation to ensure that X' is positive definite.

The above choice has been frequently considered when constructing a synthetic
testing example for covariance selection problems, see for example [20, 21, 38]. It
is worth pointing out that (36) is a slight modification of d’Aspremont’s original
example. The reason for doing so is to generate a true covariance matrix > such that
the problem (6) can recover 7! reasonably well.

Using the true sparse inverse covariance matrix 3! generated in (36), we first
generate n i.i.d. random vectors from the p-dimensional Gaussian distribution N'(0, X).
Then we calculate the sample covariance matrix . Note that in [7, 21, 21], the sam-
ple covariance matrix is obtained by adding an i.i.d. uniform random noise term to
Y. Here we prefer the simulation approach to the noise term approach since it is more
commonly employed in statistics [41, 42].
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Table 1: Comparison of the IIPM and ANS methods in solving the problems (4) and (5)
with the data matrix & generated from Example 1. The regularization parameter p is
set to p = 5/p for all the problems. The numbers in each parenthesis are the average
number of SQMR steps taken in each iteration, Lossg, Lossg, Specificity and Sensitivity,
respectively.

problem pm iteration count primal objective value time (secs)

ITPM ANS|PPA IIPM ANS|PPA ITPM ANS|PPA
random 500 | O 14 (11.2] 2.6-2| 1.6-1] 0.90| 0.87) 239 (68 -1.75100724 2 9.01-4]-9.34-5 19.2 51.5|79.5
random 1000 | O 15 (12.2| 2.2-2| 1.8-1| 0.88| 0.90) 310 |82 -6.48857883 2 7.64-4]-2.16-4 122.1 365.9|547.6
random 1500 | O 15 (11.9| 2.3-2| 2.3-1| 0.84| 0.83) 295 |73 -1.44108284 3 5.72-4]-3.71-4 359.7 1089.6/1410.4
random 2000 | O 15 (10.3| 2.3-2| 2.7-1| 0.82| 0.75) 307 |76 -2.41395693 3 3.53-4]-5.64-4 735.6 2602.5|3188.6
random 500 | 56774 13 (14.2] 2.4-2| 1.5-1] 0.94] 0.89) 3087 [69 -1.68294895 2 9.28-4]-6.75-5 19.3 654.4|80.5
random 1000 | 221990 16 (18.1| 2.1-2| 1.7-1] 0.92| 0.93) 5462 |82 -6.31255339 2 9.78-4/-1.02-5 157.4 6325.8|628.5
random 1500 | 491764 16 (17.9| 2.1-2| 2.2-1| 0.90| 0.87) 5714 |80 -1.40417016 3 9.81-4| 5.44-6 473.6 19959.0|1762.6
random 2000 | 862392 15 (16.5| 2.1-2| 2.5-1| 0.89| 0.81) 5958 |83 -2.35187373 3 9.07-4]-5.13-5 945.1 47690.0/4100.8

Table 1 presents the results obtained by Algorithm ITPM and the ANS and PPA

methods for various instances of Example 1 on the problems (5) and (4).

Note

that a number of the form “9.01-4” under the column “primal objective value” means
the number “9.01 x 107%". For all the problems, we set p = 5/p. We use the
primal objective value and computing time to compare the performance of the two
algorithms. Observe that the CPU time taken by the IIPM method to solve (5) is
only slightly more than that taken to solve (4) for the same sample covariance matrix.
The same observation also applies to the PPA method. But for the ANS method,
the time it takes to solve (5) is about 20 times of that needed for solving (4). Thus
the IIPM and PPA methods are equally efficient for solving (5) and (4), but the
ANS method is typically much slower in solving (5) compared to (4). Overall, we
see that the ITPM method outperforms the ANS and PPA methods by quite a big
margin. The ITPM method is faster than the ANS method by a factor of 2.7 — 3.5
and 33.9 — 50.5 in solving the problems (4) and (5), respectively. Comparing the
ITPM and PPA methods, the former is faster by a factor of 3.9 — 4.5 and 3.7 — 4.3 in
solving (4) and (5), respectively. One may expect the IIPM method to outperform
the ANS method by an even larger margin when the matrix dimension p increases.
As one may observe from Table 1, the number of iterations and the average number
of SQMR steps needed to solve each linear system do not increase visibly when p
increases for the IIPM method. But for the ANS method, the number of iterations
increases moderately when p increases.

Due to the difference in stopping criteria for different algorithms, we set different
accuracy tolerances for the ITPM and ANS methods. For the ANS method, we set
the tolerances to e, = 1073, and e, = 10~°. For the IIPM method, we set Tol = 107°
in (24). They are chosen in such a way the both algorithms would obtain roughly the
same primal objective values while the primal infeasibilities are below 107%. As we
can see from Table 1, the columns of “primal objective value ANS (PPA)” show the
differences between the primal objective values obtained by ANS (PPA) and those
obtained by IIPM. A positive difference means IIPM achieved a better (smaller)
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primal objective value while a negative difference indicates a worse (larger) result by
IIPM. As we can observe from the table, the differences are usually insignificant.

To evaluate how well we have recovered the true inverse covariance matrix ¥,
we compute the normalized entropy loss (Lossg) and quadratic loss (Lossg)

1 1
Lossp := —(Tr(X£X) —logdet XX — p), Lossg := —||XX — ] (37)
p p

In general, it is impossible to recover X! accurately based on 5 by solving (6). Thus
the purpose of solving (6) is not to recover the true matrix ~! accurately but to
detect the sparsity pattern while maintaining a reasonable approximation to the true
matrix. To measure the quality of the sparsity pattern in X in relation to that of the
true matrix, we borrow some criteria from the machine learning literature:

TN TP

Spemﬁmty = m—m, Sen81t1V1ty = T‘P—{——FN7

where TP, TN, FP, and FN denotes the number of true positives, true negatives, false
positives, and false negatives, respectively. In our situation, specificity measures the
quality of zero entries while sensitivity measures the quality of nonzero entries. As we
may observe from the results in Table 1, by solving (4) or (5) with an appropriately
chosen regularization parameter p, one can obtain a reasonably good estimation X
of the true inverse covariance matrix ¥~! from the sample covariance matrix . In
particular we see that the Specificity and Sensitivity of the sparsity pattern of the
estimated matrix X are both quite close to 1.

Next we consider a collection of problems considered in [11] and [44].

Example 2. Let A denotes a p X p sparse inverse covariance matriz. We consider
the following problems.

AR(1) An autoregressive process of order one, defined as Ay =1, A;io1 = Aisq1,; =
0.5;

AR(2) Ayiy=1, A1 =A1,=05, Aj;o = Aj_5; = 0.25;
AR(3) Aji=1, A1 =A4,_1,=04, A o =A 9, =Ai;3=A_3,=0.2;

ARM4) Ai=1, A1 =4i1,=04, Aijo=Ai2;=Aii3=Ai3;=02, A;; 4=
Ai—4,i = 01,

Decay Ezponential decay matriz A;; = exp(—2[i — j|), far-end off-diagonal entries
could be close to zero for A with large dimensions;

Star Fvery node connects to the first node A; = 1, Ay = Ay = 1/p;
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Circle A” = ]_, Ai,i—l = Ai—l,i = 05, Alp = Ap1 = 0.4.

For each of the problem, we generate 2p i.i.d. random samples from the p-
dimensional Gaussian distribution N (0, A™!) and use the sample covariance matrix
S as the input of the covariance selection problems (4) and (5). The numerical
results for the problems (4) and (5) are presented in Tables 2 and 3, respectively. As
in Table 1, we see that the IIPM method can solve both the problems (4) and (5)
equally efficiently but the ANS method is much slower in solving (5) compared to (4).
The PPA method is slightly slower in solving (5) compared to (4) for the same data
matrix. Overall, the IIPM method outperforms both the ANS and PPA methods
by a rather big margin. It is faster than the ANS method by a factor of 1.0 — 5.1
and 1.8 — 26.9 in solving the problems (4) and (5), respectively. The IIPM method
is faster than the PPA method by a factor of 2.7 — 5.7 and 3.2 — 5.2 in solving the
problems (4) and (5), respectively.

Table 2: Comparison of the IIPM and ANS methods in solving the problem (4) with the
data matrix & generated from Example 2. The regularization parameter p is set to p = 0.1
for all the problems. The numbers in each parenthesis are the average number of SQMR
steps taken in each iteration, Lossg, Lossg, Specificity and Sensitivity, respectively.

problem plm iteration count primal objective value time (secs)
ITPM ANS|PPA ITPM ANS|PPA IIPM ANS|PPA
arl 500 | 0 | 22 (24.6] 2.2-1] 4.7-2] 0.99] 1.00) 957 [111 9.13018630 2 9.76-4] 3.49-3 25 189.4]204.5
arl 1000 | O 28 (37.5] 2.3-1| 3.9-2| 1.00| 1.00) 2109 [130 1.84038733 3 -4.00-1]-3.50-1 446.8 2363.2(1632.7
ar2 500 | O 14 (11.1] 1.3-2| 5.0-2| 0.98| 1.00) 248 |51 7.51955161 2 3.74-1| 3.73-1 17.3 56.6/61.2
ar2 1000 | O 15 (12.1] 8.2-3| 4.5-2| 1.00| 1.00) 291 |48 1.51119408 3 9.24-1] 9.23-1 115.8 374.1|313.0
ar3 500 | O 13 (10.3] 1.3-2| 5.4-2| 0.99] 0.76) 208 |45 6.92658631 2 1.42 0| 1.42 0 15.5 44.8]53.1
ar3 1000 | O 12 (9.0] 8.5-3| 5.2-2| 1.00| 0.74) 268 (48 1.39055266 3 -6.84-1[-6.85-1 80.5 325.3|293.1
ard 500 | 0 | 12 (6.7 1.2-2| 5.7-2| 0.99| 0.52) 110 |37 6.77784642 2 2.24 0] 2.24 0 12.2 26.1]44.2
ar4d 1000 | O 12 (7.5| 8.5-3| 5.5-2| 1.00| 0.52) 118 [37 1.35939369 3 1.46-1| 1.45-1 74.7 159.0|225.0
full 500 | O 10 (3.1] 4.7-3| 1.6-2| NaN| 0.00) 34 |24 5.45765356 2 1.75 0] 1.74 0 8.3 9.3|32.3
full | 1000 | 0 | 10 (3.1] 3.1-3| 1.1-2| NaN| 0.00) 36 |29 1.09305256 3 2.12 0] 2.12 0 a7.7 58.0|187.2
decay 500 | O 10 (3.6] 7.4-3| 1.6-2| 1.00| 0.01) 32 (25 5.62153506 2 1.73 0| 1.73 0 8.6 8.7|32.7
decay 1000 | O 10 (3.5] 5.2-3| 1.6-2| 1.00| 0.00) 31 |29 1.12579339 3 5.14-1] 5.13-1 49.3 51.6/185.6
star 500 | O 11 (3.2| 5.0-1| 6.2-3] 1.00| 0.33) 51 |44 5.58744528 2 8.90-1] 9.01-1 9.1 12.5|51.4
star 1000 | O 11 (3.1] 4.5-1| 5.1-3] 1.00| 0.33) 65 47 1.10745413 3 9.78-1] 1.17 0 52.4 90.8|296.5
circle 500 | O 22 (25.7] 2.2-1] 4.8-2| 0.99| 1.00) 1115 |108 9.14061736 2 1.73-1| 1.78-1 43.1 220.2(198.3
circle 1000 | O 29 (40.2] 2.3-1| 3.9-2| 1.00| 1.00) 2232 |133 1.84145113 3 2.16 0] 2.20 0 485.5 2499.2|1703.0
Table 3: Comparison of the IIPM and ANS methods in solving the problem (5) with the
data matrix 3 generated from Example 2. The regularization parameter p is set to p = 0.1
for all the problems. The numbers in each parenthesis are the average number of SQMR
steps taken in each iteration, Lossg, Lossg, Specificity and Sensitivity, respectively.
problem pIm iteration count primal objective value time (secs)
ITPM ANS|PPA ITPM ANS|PPA IIPM ANS|PPA
arl 500 | 62126 22 (34.3] 2.2-1| 4.1-2| 1.00| 1.00) 8524 [122 9.16396506 2 2.90-1] 2.93-1 52.3 1679.4(244.4
arl 1000 | 249251 30 (53.1] 2.3-1| 3.5-2| 1.00| 1.00) 12211 |146 1.84492497 3 1.03 0| 1.07 0 633.7 13633.0|2233.6
ar2 500 | 61877 13 (11.3| 1.2-2| 4.8-2| 0.99] 1.00) 1250 |44 7.53991596 2 3.28-1] 3.27-1 15.5 285.1]50.6
ar2 1000 | 248752 13 (10.9| 8.3-3| 4.4-2| 1.00| 1.00) 1299 |53 1.51324471 3 2.94-1] 2.93-1 93.4 1675.3|333.6
ar3 500 | 61628 11 (9.7] 1.3-2| 5.4-2| 0.99| 0.77) 693 |41 6.93360782 2 7.55-5]-9.17-4 12.4 150.3|45.3
ar3 1000 | 248253 13 (11.2| 8.7-3] 5.2-2| 1.00| 0.74) 614 |50 1.39111340 3 5.76-1| 5.75-1 95.3 762.0|298.7
ard 500 | 61380 11 (7.4| 1.2-2| 5.6-2| 1.00| 0.53) 284 |34 6.78121646 2  1.41 0| 1.41 0 11.2 72.1|38.0
ar4 1000 | 247755 11 (7.9] 8.6-3| 5.6-2| 1.00| 0.52) 252 |38 1.35948285 3 1.33 0/ 1.33 0 68.8 381.5|220.1
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Table 3: Comparison of the IIPM and ANS methods in solving the problem (5) with the
data matrix & generated from Example 2. The regularization parameter p is set to p = 0.1
for all the problems. The numbers in each parenthesis are the average number of SQMR
steps taken in each iteration, Lossg, Lossg, Specificity and Sensitivity, respectively.

problem plm iteration count primal objective value time (secs)

ITPM ANS|PPA ITPM ANS|PPA IIPM ANS|PPA
full 500 | 62375 10 (3.1] 4.7-3| 1.6-2| NaN| 0.00) 52 |25 5.45773261 2 1.64-1| 1.63-1 7.9 22.9|30.0
full 1000 | 249750 10 (3.1] 3.1-3| 1.1-2| NaN| 0.00) 56 |28 1.09305145 3 1.16 0| 1.15 0 46.6 210.5|173.6

decay 500 | 57961 10 (3.7] 7.4-3] 1.6-2| 1.00| 0.01) 42 |25 5.62165596 2 1.69 0| 1.69 0 8.2 14.8]30.6
decay 1000 | 240836 10 (3.6] 5.2-3| 1.6-2| 1.00| 0.00) 47 |28 1.12579253 3 1.59 0| 1.59 0 48.4 171.0|175.2
star 500 | 62126 11 (3.1] 5.0-1] 6.1-3| 1.00| 0.33) 66 [43 5.58755927 2 1.08 0| 1.10 0 8.6 25.6/49.0
star 1000 | 249251 11 (3.0] 4.5-1| 5.1-3| 1.00| 0.33) 82 |46 1.10745324 3 2.17 0] 2.50 0 50.6 225.8|263.1
circle 500 | 62125 23 (36.1] 2.2-1] 4.1-2| 1.00| 1.00) 9876 126 9.17446117 2 3.50-1] 3.53-1 56.0 1955.7(259.9
circle 1000 | 249250 28 (42.6] 2.3-1| 3.5-2| 1.00| 1.00) 12161 |149 1.84600264 3 8.96-1] 9.52-1 498.8 13513.2|2262.3

4.2 Real world examples

Gaussian graphical model (GGM) has become a popular statistical tool in the reverse
engineering of genetic regulatory networks, where individual genes are represented
by the nodes in a graph and the conditional dependencies between their expression
profiles are indicated by edges. The GGM constructed from the sample data is usually
dense, which covers underlying interactions among the genes. Moreover, the number
of genes can reach thousands while the number of samples is limited. Note that the
rank of a sample covariance matrix cannot exceed n, where n is the sample size. Thus
for such a “large p small n” data set, the sample covariance matrix is not positive
definite and it is not suitable for many statistical purposes. The sparse covariance
selection model (35) can help to reduce spurious edges in the graph and also to
estimate a positive definite covariance matrix. In this section, we consider several
gene expression data sets that have been widely used in the model selection and
classification literature.

Example 3. Lymph node status data

Lymph node status is an important clinical risk factor affecting the long-term outlook
of breast cancer treatment outcome. Pittman et al. [25] analyzed the prediction of
Lymph mode positivity status at gene expression level. Here, we use the data after
the pre-processing of Dobra [9], which consists of 4514 genes from 148 samples. The
samples can be divided into two classes, 100 low-risk (node-negative) and 48 high-risk
(high-node-positive).

Example 4. Estrogen receptor data Increasingly, patterns of gene expressions
are combined with traditional clinical risk factors in the prediction of disease outcome
at the individual patient level. As mentioned before, Pittman et al. [25] demonstrated
substantially improved accuracy in the combined prediction of primary breast cancer
recurrence. Their study involves 158 breast cancer patients. The data we use is after
an initial pre-processing [9] and contains 7027 probe sets in 158 samples that are
potentially related to estrogen receptor pathway. The log-scaled and normalized data
can be downloaded from Dobra’s BMSS package [9].
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Example 5. Arabidopsis thaliana data

Arabidopsis thaliana, a small flowering plant, is important for understanding the ge-
netic pathways of many plant traits, partially due to its small genome. Wille et al.
[40] studied a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, which
links to many other biochemical products in plants such as sterols (membranes), gib-
berellins(hormones), carotenoids and chlorophylls (photosynthetic pigments). Their
data set contains the gene expression data from 40 isoprenoid genes in mevalonate
(MVA) and non-mevalonate (MEP) pathways as well as 795 additional genes from
56 downstream pathways. All gene expression values were monitored under various
experimental conditions using 118 GeneChip (Affymetriz) microarrays.

Example 6. Leukemia data

Golub et al. [14] developed a generic approach to cancer classification based on gene
expression data. Their data contains 7129 human genes monitored by DNA microar-
rays from 72 samples. The samples are divided into two cancer classes, 25 in the
class acute myeloid leukemia (AML) and 47 in the class acute lymphoblastic leukemia
(ALL). Yeung et al. [43] further reduced the data set to 3501 genes with significant
variance across the two classes. We use their data for analysis.

Example 7. Hereditary breast cancer data In order to discover the connections
between a mutant BRCAI1 or BRCAZ2 gene and the risk of inherited breast cancer,
Hedenfalk et al. [15] studied 3226 genes of primary breast tumors from both heredi-
tary and sporadic cases, including 7 BRCA 1-mutation-positive, 8§ BRCAZ2-mutation-
positive and 7 sporadic cases.

In Examples 4 and 7, we only select a sub-matrix of the sample covariance matrix
for testing. The selection is based on [1, Theorem 4], where we remove columns and
rows whose off-diagonal entries are all smaller than the regularization parameter p
in absolute value. The rank of the matrix after the selection is expected to be the
same as the original matrix. The dimension of the sub-matrix can be found in Table
4. In Examples 3 and 6, to reduce the dimension of the initial data, we apply false
discovery rate (FDR) multiple testing and select q-values at 5% significance level; see
[30] and [9].

We have the data log-scaled and normalized so that the sample mean is zero and
the sample variance for each gene is one. The parameter p is set to be 0.5 for all the
examples. The performance of the [IPM and ANS methods on the problem (4) for
the five real data sets is summarized in Table 4. As before, the stopping tolerance
for the IIPM and PPA methods is set to Tol = 10~¢ while for the ANS method,
the tolerance is set to €, = 1073. As we can see from the table, the [IPM method
consistently outperforms the ANS and PPA methods in terms of the CPU time taken
to achieve almost the same objective values. For the largest problem with p = 1869,
the IIPM method is about 15.8 times faster than the ANS method, and it is about
3.1 times faster than the PPA method.
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Table 4: Comparison of the IIPM and ANS methods on the problem (4) using gene data
sets. The number in parenthesis is the average number of SQMR steps taken in each
iteration. In the table, r is the rank of 3.

problem plrlpe iteration count primal objective value time (secs)
IIPM ANS|PPA IIPM ANS|PPA IIPM ANS|PPA
Lymph 587 | 147 | 0.50 20 (8.2) 443 | 43 8.13260834 2 5.96-4 |-3.87-4 34.6 131.6 | 80.5
ER 692 | 157 | 0.50 20 (13.6) 931 | 49 9.23106034 2 -9.26-4 |-1.76-3 62.1 415.3 | 146.1
Arabidopsis 834 | 117 | 0.50 24 (14.2) 1074 | 56 1.10930058 3 4.84-4 |-2.11-4 126.4 752.6 | 321.7
Leukemia 1255 | 71 | 0.50 30 (16.7) 1718 | 60 1.69788920 3 -1.32-3 |-2.21-3 533.6 3829.0 | 1258.6
hereditarybc 1869 | 21 | 0.50 29 (17.2) 3567 | 70 2.37258798 3 -1.11-3 |-1.98-3 1563.7 24619.2 | 4787.4

5 Conclusion

We have designed an inexact primal-dual interior-point algorithm (ITPM) for solving
large scale log-det SDP problems. We also customized it to solve sparse covariance
selection problems. To ensure that our ITPM is practically viable, we designed effi-
cient preconditioners for the ill-conditioned linear systems of equations arising in each
iteration of the IIPM. Our IIPM enjoys the robustness and efficiency (in terms of it-
eration count) of classic interior-point methods and is capable of solving large scale
log-det SDP problems arising from sparse covariance selection. Numerous numerical
experiments conducted on sparse covariance selection problems with both synthetic
and real data have shown that [IPM outperforms other current major algorithms in
terms of computing time and accuracy. Observing that IIPM can achieve satisfactory
practical efficiency (in terms of computing time and memory requirement) on log-det
SDP and convex quadratic SDP problems [33], we hope to extend the IIPM approach
for more general types of convex optimization problems in the future, for example,
linearly constrained convex SDP where the objective function is a smooth convex
function of the matrix variable X.
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