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Abstract We consider the problem to minimize the sum of piecewise-linear convex functions under both
linear and nonnegative constraints. We convert the piecewise-linear convex problem into a standard form
linear programming problem (LP) and apply a primal-dual interior-point method for the LP. From the
solution of the converted problem, we can obtain the solution of the original problem.

We establish polynomial convergence of the interior-point method for the converted problem and devise
the computaion of the Newton direction.
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1. Introduction

In this paper, we consider the problem to minimize the sum of piecewise-linear convex functions under both
linear constraints and nonnegative constraints. This problem is a generalized one from a piecewise-linear
convex problem[1, 3]. The purpose of the paper is to estimate complexity of solving this problem. More
precisely speaking, is there a polynomial time method for the problem?

This paper is organized as follows. In section 2, we introduce the conversion from a linear programming
problem(LP) with free variables into the standard form LP. The solution of the original problem is obtained
from the solution of the converted problem. In section 3, we formulate the problem to minimize the sum
of piesewise-linear convex functions. Firstly we convese the problem into an LP with free variable. And
secondly we convert the LP into a standard form problem. We apply the interior-point method. We establish
polynomial convergence of the algorithm and devise the computation of the Newton direction.

2. The conversion from the LP with free variables into the standard form LP

We consider the following LP with free variables.

min cTx+ fT z

s.t. Ax+Dz = b

x ≥ 0,

(P)

where A ∈ ℜm×n, b ∈ ℜm, c ∈ ℜn, f ∈ ℜl, D ∈ ℜm×l are constants, x ∈ ℜn and z ∈ ℜl are variables.
Without loss of generality, we can assume that the matrix D is full column. Therefore rank D = l. We
introduce new variables z+ and z−. The standard form is as follow.

min cTx+ fT z+ − fT z−

s.t. [A D −D]




x
z+
z−



 = b

x ≥ 0 z+ ≥ 0 z− ≥ 0.

(P1)

The dual is as follow.

max bT y

s.t. AT y ≤ c
DT y = f.

(D1)
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The transform z = z+ − z− has a drawback that one z can’t determine z+ and z− and the computation
is unstable. The constraints of the dual problem, corresponding to free variables of the primal problem,
are equality constraints. We solve the equations in basic variables and substitute it for both the objective
function and constarint functions. We obtain a dual problem with only nonbasic variables. We consider the
primal problem corresponding to this problem.In case of semidefinite programminng, the conversion was
proposed[5]. The advantage is that the size of problem is small. We can obtain the solution of original
problem from the solution of the converted problem. We use DB for a submatrix of D corresponding to the
basis, and use the submatrix DN for the remain. We use subvectors yB and yN corresponding to DB and
DN . And we use, respectively, the submatrices AB and AN and subvectors bB and bN corresponding to yB
and yN . We solve equations DT y = f in basic variables,

yB = D−T
B (f −DT

NyN ). (1)

Substituting yB into the objective function, we have

bT y = bTBD
−T
B (f −DT

NyN ) + bTNyN

= (bTN − bTBD−T
B DT

N )yN + bTBD
−T
B f.

(2)

Substituting yB into constraint functions, we have

ATBD
−T
B (f −DT

NyN ) + ATNyN ≤ c. (3)

The dual problem is as follows.

max (bTN − bTBD−T
B DT

N )yN + bTBD
−T
B f

s.t. (ATN − ATBD−T
B DT

N )yN ≤ c− ATBD−T
B f.

(D2)

The primal problem is as follows.

min (c− ATBD−T
B f)Tx+ bTBD

−T
B f

s.t. (AN −DND−1
B AB)x = bN −DND−1

B bB

x ≥ 0.

(P2)

We use x∗ and y∗ for the solution of the converted primal and dual problems. The solutions (x, z) and
(yB , yN ) of the original problems are given respectively by (x∗, D−1

B (bB−ABx∗)) and (D−T
B (f −DT

Ny
∗), y∗)

.

3. Formulation of the problem to minimize the sum of piecewise-linear convex functions

We consider the convex problem to minimize the sum of piecewise-linear convex functions under linear and
nonnnegative constraints. The sum of piecewise-linear convex function is also convex [2]. The objective
function is nonlinear and has some nondifferential points. The formulation is as follows.

min
x

∑

p=1,... ,q

max
ip=1,... ,lp

(
cpip

T
x+ dpip

)

s.t. Ax = b

x ≥ 0,

(P3)

where A ∈ ℜm×n, b ∈ ℜm, cpip ∈ ℜn, d
p
ip
∈ ℜ are constants, x ∈ ℜn is variable. The objective function is

the sum of q piecewise-linear convex functions and each piecewise-linear convex function consists of lp affine
funcitions. This problem is written, by introducing both variables tp (p = 1, . . . , q) and slack variables
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spip (ip = 1, . . . , lp, p = 1, . . . , q), as follows

min
∑

p=1,... ,q

tp

s.t. cp1
T
x+ dp1 + sp1p = tp p = 1, . . . , q

...

cpipTx+ dpip + spip = tp p = 1, . . . , q

...

cplp
T
x+ dplp + splp = tp p = 1, . . . , q

Ax = b

x ≥ 0

spip p = 1, . . . , q ip = 1, . . . , lp.

(P4)

We divide tp into two nonnegative variables and transpose the terms. And we obtain a standard form LP,

min
∑

p=1,... ,q

t+p −
∑

p=1,... ,q

t−p

s.t. cp1p
T
x− t+p + t−p + sp1p = −dp1 p = 1, . . . , q

...

cpip
T
x− t+p + t−p + spip = −dpip p = 1, . . . , q

...

cplp
T
x− t+p + t−p + slpp = −dplp p = 1, . . . , q

Ax = b

x ≥ 0

t+p ≥ 0 p = 1, . . . , q t−p ≥ 0 p = 1, . . . , q

spip ≥ 0 p = 1, . . . , q i = 1, . . . , lp.

(P5)

The dual problem is as follows.

max bT y −
∑

p=1,... ,q

∑

ip=1,... ,lp

dpipu
p
ip

s.t. AT y +
∑

p=1,... ,q

∑

ip=1,... ,lp

cpipu
p
ip
≤ 0

∑

ip=1,... ,lp

upip = −1 p = 1, . . . , q

upip ≤ 0 p = 1, . . . , q ip = 1, . . . , lp.

(D3)

The peculiarity is that the primal (P4) problem has free variables tp. One of the methods dealing with free
variables is that the free variable is represented by the difference of two nonnegative variables. This method
has a drawback that variable diverge and numerical difficulties happen. We apply another method, which
was introduced in section 2, in order to avoid this difficulty.

We solve one of the constraints, then uplp = −1 −
∑

ip �=lp

upip(≤ 0) (p = 1, . . . , q) and we substitute this
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relation into both objective function and constraint function. The objective function is

bT y −
∑

p=1,... ,q

∑

ip=1,... ,lp

dpipu
p
ip

=bT y −
∑

p=1,... ,q

∑

ip �=lp

dpipu
p
ip
−

∑

p=1,... ,q





dplp



−1−
∑

ip �=lp

upip










=bT y +
∑

p=1,... ,q

∑

ip �=lp

(dplp − d
p
ip

)upip +
∑

p=1,... ,q

dplp .

(4)

The constraint function is

AT y +
∑

p=1,... ,q

∑

ip=1,... ,lp

cpipu
p
ip

=AT y +
∑

p=1,... ,q

∑

ip �=lp

cpipu
p
ip

+
∑

p=1,... ,q





clp



−1−
∑

ip �=lp

upip










=AT y +
∑

p=1,... ,q

∑

ip �=lp

(cpip − c
p
lp

)upip −
∑

p=1,... ,q

cplp(≤ 0).

(5)

The dual problem is as follows.

max bT y +
∑

p=1,... ,q

∑

ip �=lp

(dplp − d
p
ip

)upip +
∑

p=1,... ,q

dplp

s.t. AT y +
∑

p=1,... ,q

∑

ip �=lp

(cpip − c
p
lp

)upip ≤
∑

p=1,... ,q

cplp

−
∑

ip �=lp

upip ≤ 1 p = 1, . . . , q

upip ≤ 0 p = 1, . . . , q, ip = 1, . . . , lp − 1.

(D4)

The primal problem is as follow.

min

(
∑

p=1,... ,q

cplp

)T
x+

∑

p=1,... ,q

splp +
∑

p=1,... ,q

dplp

s.t. (cp1p − c
p
lp

)Tx+ sp1 − splp = dplp − d
p
1 p = 1, . . . , q

...

(cpip − c
p
lp

)Tx+ spip − s
p
lp

= dplp − d
p
ip
p = 1, . . . , q

...

(cplp−1 − c
p
lp

)Tx+ splp−1 − s
p
lp

= dplp − d
p
lp−1

p = 1, . . . , q

Ax = b

x ≥ 0,

spip ≥ 0 p = 1, . . . , q ip = 1, . . . , lp.

(P6)

We introduce slack variables.

vx :=
∑

p=1,... ,q

cplp − A
T y −

∑

p=1,... ,q

∑

ip �=lp

(cpip − c
p
lp

)upip , (6a)

vsplp
:= 1 +

∑

ip �=lp

upip p = 1, . . . , q, (6b)

vspip
:= −upip p = 1, . . . , q ip = 1, . . . , lp − 1. (6c)
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The optimality condition is as follow.

(cp
1
− cplp)Tx+ sp

1
− splp = dplp − d

p
1
p = 1, . . . , q

...

(cpip − c
p
lp

)Tx+ spip − s
p
lp

= dplp − d
p
ip
p = 1, . . . , q

...

(cplp−1 − c
p
lp

)Tx+ slp−1p − splp = dplp − d
p
lp−1

p = 1, . . . , q

Ax = b

x ≥ 0

spip ≥ 0 p = 1, . . . , q i = 1, . . . , lp

AT y +
∑

p=1,... ,q

∑

ip �=lp

(cpip − c
p
lp

)upip + vx =
∑

p=1,... ,q

cplp

−
∑

ip �=lp

upip + vsplp
= 1 p = 1, . . . , q

upip + vsplp
= 0 p = 1, . . . , q, ip = 1, . . . , lp − 1

vx ≥ 0

vsplp
≥ 0 p = 1, . . . , q

vspip
≥ 0 p = 1, . . . , q, ip = 1, . . . , lp − 1

xT vx = 0

spipvs
p
ip

= 0 p = 1, . . . , q, ip = 1, . . . , lp.

(7)

We use (x∗, sp1
∗
, . . . , splp

∗
) for the solution of the converted primal problem (P6). The solution of the

original primal problem (P4) is given by

(x, tp, s
p
1, . . . , s

p
lp

) = (x∗, cTlppx
∗ + splp

∗
+ dplp , s

p
1p

∗
, . . . , s∗lpp). (8)

We use (y∗, up1
∗
, . . . , uplp−1

∗
) for the solution of the converted dual problem(D4). The solution of the original

dual problem (D3) is given by

(y, up1, . . . , u
p
lp−1

, uplp) = (y∗, up1
∗
, . . . , uplp−1

∗
,−1−

∑

ip �=lp

upip
∗
). (9)

By the number of the variables in the primal problem (P6), the short step interior-point method (Algo-

rithm SPF[7]) can solve the problem (P6) in O





√√√√n+

q∑

p=1

lpL



 iterations. We ascertain this proposition.
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We use the following notations.

x̃ :=






x
s11
...
s1i1
...
s1l1
...
sq1
...
sqiq
...
sqlq






, ỹ :=






y
u11
...
u1i1
...

u1l1−1
...
uq1
...
uqiq
...

uqlq−1






, s̃ :=






vx
...
vs1

1

...
vs1i1

...
vs1l1

...
vsq

1

...
vsqiq

...
vsqlq






, (10)

Ã :=






A 0 . . . 0 . . . 0 0
(c11 − c1l1)T 1 . . . 0 . . . 0 −1

...
. . .

...
(c1i1 − c1l1)T 0 . . . 1 . . . 0 −1

...
. . .

...
(c1l1−1 − c1l1)T 0 . . . 0 . . . 1 −1

...
. . .

(cq1 − cqlq)T 1 . . . 0 . . . 0 −1
...

. . .
...

(cqiq − c
q
lq

)T 0 . . . 1 . . . 0 −1
...

. . .
...

(cqlq−1 − c
q
lq

)T 0 . . . 0 . . . 1 −1






, (11)

b̃ :=






b
d1l1 − d11

...
d1l1 − d1i1

...
d1l1 − d1l1−1

...
dqlq − d

q
1

...
dqlq − d

q
iq

...
dqlq − d

q
lq−1






, c̃ :=






∑q
p=1 c

p
lp

0
...
0
...
1
...
0
...
0
...
1






. (12)

The feasible interior is written by

F0 :=
{

(x̃, ỹ, s̃) : Ãx̃ = b̃, ÃT ỹ + s̃ = c̃, (x̃, s̃) > 0
}
. (13)
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The neighborhood is written by

N :=
{

(x̃, ỹ, s̃) ∈ F0 : ‖X̃s̃− µe‖2 ≤ 0.4µ
}
, (14)

where e is a vector whose components are all 1. We use the following algorithm.
step0: Initial point (x̃0, ỹ0, s̃0) ∈ N is given. Termination criteria µ∗.

σ := 1− 0.4
√
n+

∑q
p=1 lp

, µ0 :=
x̃0T s̃0

n+
∑q

p=1 lp
, let k := 0.

step1: If termination criteria µk ≤ µ∗ is satisfied, then stop.

step2: Set µk :=
x̃k

T

s̃k

n +
∑q

p=1 lp
. Solve

Ã∆x̃k = 0 (15a)

ÃT∆ỹk + ∆s̃k = 0 (15b)

S̃k∆x̃k + X̃k∆s̃k = σµke − X̃k s̃k, (15c)

and obtain Newton direction (∆x̃k,∆ỹk,∆s̃k).
Let

(
x̃k+1, ỹk+1, s̃k+1

)
:=
(
x̃k, ỹk, s̃k

)
+
(
∆x̃k,∆ỹk,∆s̃k

)
.

step3: Set k := k + 1, go to step1.

3.1. iteration number

We consider at kth iteration. The equality constraints are satisfied by the following relation

Ãx̃k+1 = Ãx̃k = b̃, (16)

ÃT ỹk+1 + s̃k+1 = ÃT ỹk + s̃k = c̃. (17)

Note that, about dualtiy gap used by optimality criteria, ∆x̃k
T

∆s̃k = 0, We have the following estimate

x̃k+1
T

s̃k+1 =
(
x̃k + ∆x̃k

)T (
s̃k + ∆s̃k

)

= x̃k
T

s̃k + x̃k
T

∆s̃k + s̃k
T

∆x̃k + ∆x̃k
T

∆s̃k

=



1− 0.4
√
n +

∑q
p=1 lp



 (n+

q∑

p=1

lp)µ
k.

(18)

By the following inequality, the next point generated by the algorithm is also kept in the neighborhood.
∥∥∥X̃k+1s̃k+1 − µk+1

∥∥∥
2

=
∥∥∥
(
X̃k + ∆X̃k

) (
s̃k + ∆s̃k

)
− µk+1

∥∥∥
2

(19)

=
∥∥∥∆X̃k∆s̃k

∥∥∥
2

(20)

=
∥∥∥D−1∆X̃kD∆s̃k

∥∥∥
2

where D := X̃k1/2S̃k
−1/2

(21)

≤
√

2

4

∥∥D−1∆x̃k +D∆s̃k
∥∥2
2

(22)

=

√
2

4

∥∥∥∥
(
X̃kS̃k

)−1/2 (
σµke− X̃k s̃k

)∥∥∥∥
2

2

(23)

≤
√

2

4

∥∥∥X̃ks̃k − σµke
∥∥∥
2

2

min x̃ki s̃
k
i

(24)

≤
√

2

4

∥∥∥
(
X̃k s̃k − µke

)
+ (1− σ)µke

∥∥∥
2

2

(1− 0.4)µk
(25)

≤
√

2

4

0.42 + (1− σ)2(n +
∑q

p=1 lp)

1− 0.4
(26)

≤ 32
√

2

240
µk (27)

≤ 0.4µk+1, (28)
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where X̃ and S̃ are diagonal matrices whose components are x̃ and s̃ respectively. Positivity condition is
also satisfied.

Because one iteration can make the duality gap 1−0.4/
√
n+

∑q
p=1 lp time, algorithm can obtain optimal

solution in O(
√
n+

∑q
p=1 lpL) iterarions, where L is the number of bits expressing the data of the problem.

From the solution of the converted problem, we can obtain the solution of the original roblem.

3.2. Newton direction

The time of computing the Newton direction is most part of all computing time. Therefore devising
computing the Newton direction is important. For the simplicity, we sonsider the problem about the sum
of two piecewise-linear convex functions. The Newton direction is given by the solution of the following
system of equations

ÃX̃kS̃k
−1

ÃT∆ỹk = −ÃS̃k−1
(
σµke− X̃k s̃k

)
(29a)

∆s̃k = −ÃT∆ỹk (29b)

∆x̃k = S̃k
−1
(
σµke− X̃k s̃k

)
− X̃kS̃k

−1

∆s̃k (29c)

We use the following notations.

Ā :=






A
(c11 − c1l1)T

...
(c1i1 − c1l1)T

...
(c1l1−1 − c1l1)T

(c21 − c2l2)T
...

(c2i2 − c2l2)T

...
(c2l2−1 − c2l2)






diag(x)diag(vx)−1






A
(c11 − c1l1)T

...
(c1i1 − c1l1)T

...
(c1l1−1 − c1l1)T

(c21 − c2l2)T
...

(c2i2 − c2l2)T
...

(c2l2−1 − c2l2)






T

+






O
s11v

−1
s1
1

. . .

si1
1

v−1
s1i1

. . .

sl1−11v
−1
sl1−11

s21v
−1
s2
1

. . .

s2i2v
−1
s2i2

. . .

s2l2−1v
−1
s2l2−1






,

(30)

where diag() is a diagonal matrix whose components are elements of the input vector.The coefficient matrices
are written by

Ā+ s1l1v
−1
s1l1




0
e
0








0
e
0





T

+ s2l2v
−1
s2l2




0
0
e








0
0
e





T

. (31)

Let A be a nonsingular matrix and B,C,D be matrices of proper size. Note that we have Sherman-Morrison-
Woodbury formula [4, 6, 7]

(A+BDC)
−1

= A−1 − A−1BD
(
D +DCA−1BD

)−1
DCA−1. (32)
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we use the notation

Â := Ā+ s1l1v
−1
s1l1




0
e
0








0
e
0





T

. (33)

By using the relation

Â−1 = Ā−1 −
sl1
1

v−1
s1l1

1 + s1l1v
−1
s1l1




0
e
0





T

Ā−1




0
e
0





Ā−1




0
e
0








0
e
0





T

Ā−1,
(34)

we can obtain Â−1 from Ā−1. And by using the relation

(
ÃX̃kS̃k

−1

ÃT
)−1

= Â−1 −
s2l2v

−1
s2l2

1 + s2l2v
−1
s2l2




0
0
e





T

Â−1




0
0
e





Â−1




0
0
e








0
0
e





T

Â−1,
(35)

we can obtain the Newton direction. If Ā has special structure by which it is easy to compute its inverse
matrix, then this devise reduces computation time. This method can be applied to the problem to minimize
the sum of more than three piecewise-linear convex functions.

References

[1] D. Bertsimas and J. N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific (1997).

[2] S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press (2004).

[3] G. B. Dantzig and M. N. Thapa: Linear Programming 2:Theory and Extensions, Springer (2003).

[4] M. Iri: Ippansenkeidaisu (in Japanese), Iwanami shoten (2003).

[5] K. Kobayashi, K. Nakata and M. Kojima: A Conversion of an SDP Having Free Variables into the
Standard Form SDP, Computational Optimization and Applications, 36 (2007), 289-307.

[6] J. Nocedal and S. J. Wright: Numerical Optimization, Springer (2006).

[7] S. J. Wright: Primal-Dual Interior-Point Method, SIAM Publications (1997).

9


