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Abstract We report on experiments with turning the branch-price-and-
cut framework SCIP into a generic branch-price-and-cut solver. That is,
given a mixed integer program (MIP), our code performs a Dantzig-
Wolfe decomposition according to the user’s specification, and solves the
resulting re-formulation via branch-and-price. We take care of the column
generation subproblems which are solved as MIPs themselves, branch
and cut on the original variables (when this is appropriate), aggregate
identical subproblems, etc. The charm of building on a well-maintained
framework lies in avoiding to re-implement state-of-the-art MIP solving
features like pseudo-cost branching, preprocessing, domain propagation,
primal heuristics, cutting plane separation etc.

1 Situation

Over the last 25 years, branch-and-price algorithms developed into a very power-
ful tool to optimally solve huge and extremely difficult combinatorial optimiza-
tion problems. Their success relies on exploiting problem structures in an inte-
ger program (via a decomposition or re-formulation) to which standard branch-
and-cut algorithms are essentially “blind.” While both, commercial and open-
source solvers feature very effective generic implementations of branch-and-cut,
almost every application of branch-and-price is ad hoc, that is, problem spe-
cific. Even though the situation improved considerably due to the availability of
open-source branch-price-and-cut frameworks, implementations are often started
from scratch or from previous projects. In addition, even though all concepts are
reasonably easy to understand, experience and expert knowledge is still indis-
pensable to get most out of the approach. In order to easily test new ideas,
while using the current state-of-the-art, it would be much more satisfactory to
have a generic implementation. This—ideally—performs a decomposition if this
is likely to be promising, and takes care of branch-and-price (not to forget: -and-
cut), without the user’s notice and interaction—just as it is the case for generic
branch-and-cut today. A future solver could terminate with the message

Integer optimal solution found (1209.71 sec., 2 threads)
Mixed integer rounding cuts applied: 65
Dantzig-Wolfe decomposition performed (3 subproblems)



While one may be sceptical about such a complete automatism (it requires at
least detecting decomposable structures, and deciding how to best exploit them),
a publicly available generic implementation which requires only a little user
interaction is rather a matter of months than years from now. Our work is a
contribution to this aim.

Related Work. There are several frameworks which support the implementa-
tion of branch-and-price algorithms like ABACUS [7], BCP [13], and MINTO [9], to
name only a few. We restrict attention to (non-commercial) codes which perform
a Dantzig-Wolfe decomposition of a general (mixed) integer program, and handle
the resulting column generation subproblems in a generic way. Frangois Vander-
beck has been developing important features [16,18,19,20] for his own implemen-
tation called BaPCod [17] which is a “prototype code that solves mixed integer
programs (MIPs) by application of a Dantzig-Wolfe reformulation technique.”
Also the COIN-OR initiative (www.coin-or.org) hosts a generic decomposition
code, called DIP [12] (formerly known as DECOMP), which is a “framework for
implementing a variety of decomposition-based branch-and-bound algorithms
for solving mixed integer linear programs” as described in [11]. The constraint
programming G12 project develops “user-controlled mappings from a high-level
model to different solving methods,” one of which is branch-and-price [10]. As
of this writing, among these projects (including ours), only DIP is open to the
public (as trunk development, there is no release yet).

Our Approach. We witness a development towards generic, re-usable imple-
mentations, however, in a sense, again started from scratch each time, at least in
terms of standard MIP techniques like preprocessing and tree management etc.
This is why, in this paper, we follow the different approach in complementing an
existing, well-accepted, and well-maintained MIP solver, namely SCIP [1]. The
rationale behind this is, of course, to have the full range of MIP tools available in
one solver one future day, including a generic and automatic decomposition; so
we found it reasonable to start from the state-of-the-art in non-commercial MIP
solving [8]. The implementation is in such a way that it benefits from improve-
ments of the solver itself, e.g., when better branching or node selection rules
become available, preprocessing or propagation are getting more effective.

2 Decomposition of Integer Programs

We wish to solve an MIP, which is called the original (or compact) problem,
min{c’z | Az > b, Dz >d, x € Z} x Q1} . (OP)

It exposes a structure in the sense that X = {x € Z x Q% | Dx > d} is a mixed
integer set, optimization over which is considerably easier (computationally)



than solving (OP) itself. For many problems, D can be brought into a (bordered)
block-diagonal form, so that (OP) can be written as

min{) " cja® | > A*ab > b, DFab > di VE, 2F € 2 x Q¥ Yk} . (OPk)
k k

In this case X = X3 x .-+ x X (possibly permuting variables), that is, X
decomposes into X, = {zF € 7 x Q¥ | Dfz > di}, k = 1,..., K, with all
matrices and vectors of compatible dimensions and ), ny =n, >, qx = q. We
discuss two ways of exploiting this structure when solving (OP). A very thorough
exposition of advantages and disadvantages, possibilities, extensions, examples,
and much more context can be found in the most recent survey [22].

Convezification. By the Minkowski-Weyl theorem we express each z* € conv(X},)
as a convex combination of extreme points Py of conv(X}) plus a non-negative
combination of extreme rays Ry of conv(X}y), with P and Ry, finite. For ease of
presentation, we assume X, bounded, i.e., R, = (). In analogy to a Dantzig-Wolfe
decomposition of linear programs, we introduce a variable )\’; for each p € Pj, and
require ZpePk )\Z = 1 (convezity constraints). Substituting 2% = >
obtain the ertended formulation

. kyk kyk k_ k_ k
mm{z Z cp)‘p ‘Z Z ap)‘p > b, Z )‘p =12 = Z p)‘p vk,
k pEPy k pePg pEPy PE Py (EPC)
o € 2 x QI Vk, Ak € QI vk}

k
pep, PAp> We

k

where p

= ¢ip and a’; = App. Integrality is required on the original variables.

Discretization. For pure integer programs, i.e., g = 0 for all k, one can implicitly
express ¥ as an integer convex combination of the integer points in Xy, i.e., 2% =
> opex, pAL, AF € {0,1} Vk [16]. Unifying the notation with the convexification

approach, we denote the set X} of points by P and obtain

min{} Y EN ST ST kN> b, ST A =1, A ez vk} . (EPD)

k pEPy k pEP PE P

This can be generalized to MIPs, when continuous variables are convexified [21].
Often, some or all X} are identical, e.g., for bin packing, vertex coloring, or
some vehicle routing problems. This introduces a symmetry which is avoided by
aggregating (summing up) the )\’; variables. We choose a representative P := Py,
substitute A\, := >, )\’;, and add up the convexity constraints. This leads to the
aggregated extended formulation

min{} " e A [ Y ap, >0, Y N, =K, aezlll} (EPDa)
peP peP peEP



Column Generation and Branch-and-Price. For the LP relaxation of the
extended problem, we drop the integrality constraints, and also omit the original
variables in the convexification approach. We obtain the master problem

min{) DTN D apAy b DA =1 A e QR Ly

k pePy k pEPy pEP

Since (MP) typically has an exponential number of variables, it is solved via
column generation. That is, we work with a restricted master problem (RMP)
that contains only a subset of the variables. In each node of the branch-and-
bound tree, the RMP is solved to optimality, and variables with negative reduced
cost are added. One iterates until no more variables are found. As the reduced
cost of a variable A is given by & = cfp — (7' A¥p + ;) with (7%,4")" being
the optimal dual solution to the RMP, we solve, for each block k € [K], the
pricing problem ¢}, = min { (c}, — 7' A*) & — v | z € X }. The LP relaxation can
be strengthened by additional valid inequalities (in different ways). If the solution
is still fractional, branching takes places, for convexification typically on the
original variables, but see e.g., [20] for a different generic rule which does not
interfere with the pricing problem and avoids symmetry.

3 Some Details on the Implementation in SCIP

Our implementation GCG (generic column generation) extends SCIP [1] which
was well received in the computational mathematical programming community.
While the flexible plugin-based architecture enables the user to easily implement
column generation in every node of the search tree, it neither provides methods
for decomposition nor does it work with original and extended problem formu-
lations simultaneously. Our work aims at complementing SCIP in this respect,
turning the branch-price-and-cut framework into a branch-price-and-cut solver.

3.1 Overview: Synchronizing two Trees

We maintain two SCIP instances, one for the original, one for the extended prob-
lem (called original and extended instance, respectively). The original instance is
the primary one which coordinates the solving process, the extended instance is
controlled by a relaxation handler that is included into the original instance. At
the moment, information about the structure of the problem has to be provided
by an additional input file, that defines the relation between variables and blocks
and may explicitly force constraints as linking constraints, i.e., constraints that
will be transferred to the extended (master) problem.

After the original instance is presolved, the relaxator performes the Dantzig-
Wolfe decomposion and initializes the extended SCIP instance as well as the
SCIP instances representing the pricing problems. The extended instance ini-
tially contains no variables. Original variables that are labeled to be part of a
block, and constraints containing variables of just one block are copied into the



corresponding pricing problem unless explicitly forced otherwise. All remaining
constraints are transferred to the extended problem.

During the solving process, the extended instance builds the branch-and-
bound tree in the same way as the original instance. There is a bijection be-
tween nodes of the original instance and nodes of the extended instance; two
corresponding nodes are solved at the same time. When solving a node of the
original instance, the node lower bound is not computed by solving the node’s
LP relaxation, but the special relaxator is used for this purpose which instructs
the extended SCIP instance to solve the next node. A special node selector in
the extended instance chooses as the next node to be processed the node corre-
sponding to the current node in the original instance. Branching restrictions are
imposed by a branching rule included in the original instance, so they have to be
transferred to the node of the extended instance when it is activated. The solving
process of the node starts with domain propagation, i.e., tightening the domains
of the variables for the local problem, a concept that is also used for the enforce-
ment of branching decisions. The LP relaxation of the problem corresponding to
the node—the master problem—is then solved by column generation.

After the master problem is solved, bounding is performed and branching is
performed if needed, creating two children without further problem restrictions.
The solving process of the extended problem is then halted and the relaxator
in the original instance transfers the local dual bound and the master problem’s
current solution as well as new primal solutions to the original instance. The
current node in the original instance is pruned if and only if the corresponding
node in the extended instance was pruned, since both nodes have the same dual
bound and both instances have the same primal bound—each solution of one
instance corresponds to a solution of the other instance with the same objective
function value. However, it is possible that the master solution is fractional but
leads to an integral solution to the original problem. In this case, the current
subproblem is solved to optimality, otherwise, branching is performed. Two chil-
dren are created and branching restrictions are imposed in the original instance,
that will be transferred to the corresponding nodes in the extended instance on
activation. After the branching, the original instance selects a next node and the
process is iterated. Fig. 1 shows GCG’s solving process.

We decided to work with both formulations simultaneously rather than trans-
forming the original problem into an extended problem and solving this problem
with a branch-price-and-cut algorithm, since it fits better into the SCIP frame-
work and makes better use of the functionalities already provided. The original
problem can be read in a variety of formats by the original instance using SCIP’s
default file reader plugins. If we do not read a file defining the structure of the
problem, the problem is solved by SCIP with a branch-and-cut algorithm. Oth-
erwise, the special relaxator is activated, creates the extended SCIP instance,
performs the Dantzig-Wolfe decomposition, and substitutes the LP relaxation
in the branch-and-bound process. Both problems are solved in parallel, so that
techniques that speed up the solving process, like presolving, domain propaga-
tion, and heuristics, can be used in both instances. For details see [6].
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Figure 1. Solving process of GCG

3.2 Pricing

We structure the pricing implementation in variable pricer and a set of pricing
solvers. The former coordinates the pricing process, while the latter are called by
the variable pricer to solve a specific pricing problem. A variable pricer plugin
is added to the extended instance. These plugins have two essential callbacks
that are called during the pricing process, one for Farkas pricing, which is called
by SCIP whenever the RMP is infeasible, the other for the reduced cost pricing,
which is called in case the RMP is feasible.

We introduced the concept of pricing solvers, which are used by the pricer
in a black box fashion: Whenever a specific pricing problem should be solved, it
is given to the set of solvers, solved by one of the solvers, and a set of solutions
is returned. We chose this concept, which is similar to the way the LP solver is
handled in SCIP, in order to provide a possiblity to add further problem specific
solvers as external plugins without the need to modify the variable pricer.

We compute the intermediate Lagrangean dual bounds every time all pricing
problems were solved to optimality in a pricing round and update the dual
bound of the current node each time this leads to an improvement. We make use
of early termination, i.e., if all solutions have integral values—this is detected in
the presolving process of the original problem—we abort the pricing process at
a node whenever [LB] > zgyp for the current local dual bound LB and the
optimal objective value zgasp of the RMP in this pricing iteration.



When using the discretization approach, we identify identical subproblems
and automatically aggregate them. That is, if X; = X, for all 4,5 € {1,...,k},
we define aggregate variables A\, =), )\’; in the master problem.

3.3 Branching Rules

We provide two branching rules, one that branches on the variables of the original
problem and Ryan and Foster’s branching scheme [14] for problems with a set
partitioning master problem. When branching on original variables, the master
solution is transferred into a solution of the original problem, an integer variable
x¥ with fractional value v is identified and the domain of the variable is split
by adding constraints z¥ > [v] and z¥ < |v], respectively, to the two child
nodes. These constraints can be enforced in the pricing problems as well as in
the extended problem. The latter leads to an additional constraint in the master
problem, its dual variable is respected in the objective function of the pricing
problem like it is done for the other master constraints. Enforcing the branching
decisions in the pricing problems can lead to better dual bounds at the expense
that all variables in the master problem have to be checked for their feasibility
w.r.t. the current pricing problems. This is done via domain propagation in the
extended instance; variables that are not compatible with branching decisions are
locally fixed to zero. It is well-known that the choice of the variable to branch on
has a big impact on the performance of the branch-and-bound process [2]. Hence,
apart from most infeasibility branching, we provide the possibility to make use of
pseudocosts of the variables in the original problem. This leads to a considerable
decrease of computational time for the class of capacitated p-median problems
(Sect. 4.1). The Ryan and Foster branching scheme is used for problems with a
set partitioning master structure and for problems with identical blocks.

3.4 Presolve and Propagation

We perform standard SCIP presolving on the original problem. Furthermore, at
each node, we perform domain propagation in the original instance as well as
the extended instance. In the extended instance, we use it primarily to remove
variables from the problem, that are not valid for the current pricing problem.
In the original instance, standard domain propagation methods are used that
lead to domain reductions especially when branching on the original variables.
These reductions can then be imposed on the variables of the pricing problems,
too. Variables that fulfill these bounds are called proper [21].

3.5 Cutting Plane Separators

A by now “standard” way to strengthen the dual bound it to derive valid inequal-
ities from the original variables. An original fractional solution can be separated
by SCIP’s default cut separation plugins. Note that zF = ZpGPk p)\’; is not a ba-
sic solution in (OPk), thus we cannot use Gomory mized integer cuts or strong



Chvdtal-Gomory cuts. Nevertheless, we can use all kinds of cutting planes that
do not need any further information besides the problem and the current so-
lution in their separation routine. This applies, for example, to knapsack cover
cuts, mized integer rounding cuts, and flow cover cuts. An alternative is to de-
rive cuts from the extended formulation. This may lead to stronger cuts but has
the drawback that the dual variable of a cut has to be respected in the pricing
problems, which typically results in additional variables and constraints added
to the pricing problems, see [5] for a very recent unified view.

3.6 Primal Heuristics

The default primal heuristics of SCIP (including sophisticated ones) are applied
to the extended instance. Simple rounding heuristics are performed in each iter-
ation of the column generation process which often find feasible primal solutions.
Currently, most heuristics make use of the LP relaxation, so we cannot run them
on the original instance. This is to be changed in the future.

3.7 Customization and Extendibility

It is to be expected that a tailor-made approach will outperform a generic one,
so we keep the possibility to extend and customize the framework, in addition to
adding pricing solvers. SCIP’s interface for branching rules is extended in order
to give the possibility to define branching rules operating on both the original
as well as the extended formulation. This includes ways to enforce branching
decisions in the pricing problems and to store pseudocosts for branching on con-
straints. Finally, problem specific plugins for presolving, node selection, domain
propagation, separation and primal heuristics can be added to either one of the
two SCIP instances as usual.

4 Computational Study

We tested our solver GCG 0.7 on MIPs which expose various different structures
using SCIP 1.2.0.5 with CPLEX 12.1 as embedded LP solver. The computations
presented in Section 4.1 and 4.2 were performed on a 2.66 Ghz Core2 Quad with
4MB Cache and 4GB RAM, those of Section 4.3 on a 2.83 GHz Core2 Quad with
6MB cache and 16GB RAM. We compute averages using the shifted geometric
mean, i.e., for non-negative numbers aq, ...,ar € Ry, e.g., the number of nodes,
the solving time, or the final gap of the individual instances of a test set, and a
shift s € Ry, the average is defined by

k *
Vs(ala-"aak): (H(al+s)) - S.
i=1
We use a shift of 10 for the runtime and the number of branch-and-bound nodes
and 100 for the final gap in percent. The average value of multiple test sets is
computed in the same way, using the shifted geometric means of the individual
test sets.



test set SCIP GCG no pseudocost knapsack

CPMP50S 896.2 44.9 82.5 42.1
2 cpMP100S 14234.2 587.1 1962.6 491.6
2 CcPMP150s 15128.7 847.6 2211.7 1228.6
= cPMP200s 26263.9 1753.3 5577.7 2338.0

sh. geom. mean 8454.9 461.8 1216.6 515.1
—~ CPMP50s 14.5 (0) 12.8 (0) 20.7 (0) 1.8 (0)
S cpmpP100s 234.8 (3) 184.7 (1) 469.5 (6) 37.8 (0)
2 cPMP150s 714.5 (9) 493.5 (5) 920.3 (10) 253.8 (1)
g cpMP200s 1950.7 (7) 1243.9 (3) 2978.0 (10) 519.3 (0)
* sh. geom. mean 294.0 (19) 220.1 (9) 439.7 (26) 84.3 (1)

Table 1. Comparison of GCG and SCIP for the capacitated p-median test sets. We
list the shifted geometric mean of the number of branch-and-bound nodes (top), and
the runtime (bottom) for SCIP (first column) and GCG (second column) with default
settings. The next columns illustrate the performance effect of disabling the pseudocost
branching rule and using the most fractional rule instead (third column) and of using a
specialized knapsack solver to solve the pricing problems (last column). Following the
runtime, in brackets, we list the absolute number of timeouts.

4.1 Different Subproblems: The Capacitated p-Median Problem

In the capacitated p-median problem we are given a set N of nodes, each with a
demand ¢, € Z, n € N. In each node n € N, a facility with capacity C' can
be opened; p of which have to opened in total. The distance between a node
n € N and a facility placed at node m € N is given as d,,, € Z. Nodes are
assigned to opened facilities so that the total sum of connection distances is
minimized and the capacity constraints are respected. To solve large instances
by branch-and-price, so far an ad hoc implementation was necessary [4].

The problem can be decomposed by defining one block for each possible
facility location which contains the capacity constraint corresponding to this
location. The blocks are not identical since the objective function coefficients
of the variables depend on the location represented by this block. Therefore, we
branch on the original variables. We used a subset of the instances used in [4] and
defined four test sets CPMPNS, each of which contains instances with N nodes,
N € {50,100, 150,200}. In order to reduce the computational effort, we missed
out every second instance in the test sets with up to 150 nodes and selected only
12 instances for test set cPMP200S, three for each number of facilities.

Tab. 1 shows that the generic branch-and-price approach performs better
than plain SCIP. It particularly pays off to have a state-of-the-art branching rule
at hand: using most fractional branching instead of pseudocost branching doubles
the shifted geometric mean of the solution time. Furthermore, by using a dynamic
programming knapsack solver to solve the pricing problems and customizing the
code in this way, we are able to decrease the shifted geometric mean of the
solving time by more than 60% compared to GCG with default settings. More
detailed computational experiments are reported in [6].



nodes time

number of items total sh. geom. mean total sh. geom. mean
50 713 3.3 54.7 0.3
100 1617 6.7 254.4 1.4
200 5229 17.6 2186.8 11.7

Table 2. Computational results for the 180 instances of each size in the bin packing
test set.

4.2 Identical Subproblems: Bin Packing

Bin packing instances have identical blocks and a set partitioning master prob-
lem, so the variables were aggregated and Ryan and Foster’s branching scheme
was used. It is well-known that the Dantzig-Wolfe decomposition of the bin
packing problem leads to strong dual bounds, so we were able to solve all 540
instances (all 180 instances with 50, 100, and 200 items, respectively, of data
set 1 of [15]) in less than 90 minutes altogether, cf. Tab. 2. For each number of
items, GCG solves the whole test set faster than SCIP solves the first instance of
the set.

4.3 No Block Structure: A Resource Allocation Problem

The following generalized knapsack problem [3] does not have a block structure
(but staircase structure). Given a number of periods n € N and items i € I,
each item has a profit p;, a weight w;, and a starting and ending period. In each
period, the knapsack has capacity C and items consume capacity only during
their life time. The problem can be modelled in the following way:

max{Zpixi | Z wiz; <CVYneN, x; €{0,1} Vie I}, (RAP)
jer i€l(n)

where I(n) is the set of items that are alive in period n € N. The matrix can
be transformed into block structure by splitting the capacity constraints into
groups of size M [3]. For each variable that appears in more than one group, we
create a copy of this variable for each group and link the values of these copies to
each other by additional constraints. These additional constraints will be part of
the extended formulation, the M capacity constraints corresponding to a block
are transferred to this block’s pricing problem.

We performed computational experiments (see Tab. 3) for the instances de-
scribed in [3]. We used SCIP 1.2.0.5 for solving formulation RAP explicitly, and
GCG 0.7 to solve the reformulation of the problem grouping 32 and 64 constraints
to form one block, respectively. The same grouping was used in [3]. SCIP was
able to solve five instances within the timelimit of one hour, the remaining 65
instances remained unsolved with a final gap between 0.1 and 3.0 percent. For
both numbers of constraints grouped per block, GCG was able to solve 56 in-
stances, the final gap of the remaining instances was typically lower than 0.3



percent. For both sizes of blocks, GCG was about four times faster than SCIP in
the shifted geometric mean.

The relaxation given by the master problem is tighter the more constraints
are assigned to a block, so with 64 constraints per block, we need less nodes to
solve the problems. The shifted geometric mean of the number of nodes accounts
11.5 for the former variant, compared to 21 nodes when assigning 32 constraints
to each block. In return, more time is needed to solve the master problem, but
this pays off for this test set since the total time is reduced by 8%. The average
gap is higher when grouping 64 constraints, however, this is caused by one single
instance for which the master problem at the root node could not be solved
within the time limit of one hour so that just a trivial dual bound is obtained,
leading to a gap of more than 70 percent.

5 Summary and Discussion

We report first computational experiments with a basic generic implementation
of a branch-price-and-cut algorithm within the non-commercial framework SCIP.
Given an MIP and information about which rows belong to which subproblem
(or the master problem), either a convexification or discretization style decom-
position is performed. For structured problems, the approach is very promising.

The modular design of SCIP allowed us to include the described functionality
in the form of plugins. A true integration would require a few extensions, some of
which have been incorporated into SCIP during this project already, but some are
still missing. Examples include per-row dual variable stabilization, column pool,
primal heuristics on original variables, LP basis of original variables for cutting
planes like Gomory cuts, etc. It is planned that our implementation becomes
part of a future release of SCIP. We hope that this enables researchers to play
with and quickly test ideas in decomposing mixed integer programs.

It remains to be demonstrated that there really is a significant share of prob-
lems on which decomposition methods are more effective than (or a reasonable
complement to) standard branch-and-cut, even when one does not know about
a possibly contained structure. This requires detecting whether it may pay to
decompose any given MIP, and if so, how this should be done. This is, of course,
a much more challenging question which is the subject of our current research.

Acknowledgment We thank Alberto Ceselli and Enrico Malaguti for providing
us with the p-median and RAP instances from Sections 4.1 and 4.3, respectively.
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SCIP GCG (32) GCG (64)
instance gap nodes time| gap nodes time| gap nodes time
newl_1 1.3 >757186 >3600.0( 0.0 29 201.2 0.0 3 111.4
newl_2 1.7 >589833 >3600.0/ 0.0 119  979.6| 0.0 13 350.5
newl_3 1.6 >408635 >3600.0| 0.0 23 359.7| 0.0 9 5295
newl 4 1.7 >296254 >3600.0| 0.0 187 1888.9| 0.0 7 4733
newl_5 2.0 >262849 >3600.0| 0.0 41 828.6| 0.0 11 562.3
newl_6 1.4 >194120 >3600.0| 0.0 17 468.5| 0.0 39 11434
newl_7 1.5 >163145 >3600.0| 0.0 27 460.6| 0.0 1 478.7
newl_8 1.7 >161800 >3600.0| 0.0 13 583.6| 0.0 3 350.6
newl_ 9 1.8 >108307 >3600.0| 0.0 87 1687.5| 0.0 2 4534
newl_10 2.2 >84190 >3600.0| 0.0 35 1085.1| 0.0 7 896.1
new2_1 2.0 >750775 >3600.0| 0.0 7 109.5| 0.0 3 140.0
new2_2 1.4 >580746 >3600.0/ 0.0 136  898.0| 0.0 44 7447
new2_3 1.1 >415357 >3600.0( 0.0 23 299.5| 0.0 2 135.9
new2_4 1.2 >428950 >3600.0( 0.0 1 118.9] 0.0 1 367.1
new2_5 1.9 >207493 >3600.0| 0.0 161 1622.6| 0.1 >154 >3600.0
new?2_6 2.0 >198288 >3600.0| 0.0 11 425.6| 0.0 4 326.9
new2_7 1.6 >188555 >3600.0| 0.0 36  642.2| 0.0 13 740.3
new2_8 1.7 >142970 >3600.0| 0.0 13 399.6| 0.0 14 7822
new2_9 1.8 >75900 >3600.0| 0.0 31 702.4] 0.0 1 293.5
new2_10 1.9 >131284 >3600.0| 0.0 151 1489.0| 0.0 41 12744
new3_1 1.3 >233708 >3600.0( 0.0 31 1205.1| 0.0 1 1205.8
new3_2 1.2 >89037 >3600.0| 0.0 >119 >3600.0{ 0.0 >49 >3600.0
new3_3 1.3 >75770 >3600.0| 0.0 13 1227.5| 0.0 >7  >3600
new3.4 1.4  >84830 >3600.0| 0.0 39 2596.2| 0.0 9 1688.5
new3.5 1.7 >19150 >3600.0| 0.0 33 1937.4| 0.0 9 3039.5
new3_6 2.2 >8632 >3600.0| 0.1 >55 >3600.0/ 0.0 >39 >3600.0
new3_7 1.8 >35455 >3600.0| 0.0 >88 >3600.0/ 0.0 >62 >3600.0
new3_-8 1.8 >30130 >3600.0| 0.0 53 3535.1| 0.0 5 31724
new3.9 2.4  >25500 >3600.0] 0.1 >40 >3600.0|73.8 >1 >3600.0
new3_10 2.6 >864 >3600.0/ 0.0 >45 >3600.0/ 0.2 >27 >3600.0
new4_1 0.0 4907 16.1| 0.0 1 26.1| 0.0 1 15.6
new4_2 0.0 187 4.8 0.0 1 17.9| 0.0 1 17.1
new4_3 0.0 132 6.0| 0.0 1 24.6| 0.0 1 28.4
new4_4 0.1 >1571331 >3600.0| 0.0 1 73.01 0.0 1 44.5
new4_5 0.0 70140  342.6| 0.0 13 86.4| 0.0 13 106.3
new4_6 0.2 >792713 >3600.0| 0.0 1 58.8| 0.0 1 66.1
new4_7 0.0 670545 3406.9| 0.0 1 57.01 0.0 1 54.1
new4_8 0.2 >535592 >3600.0| 0.0 4 99.3| 0.0 3 59.0
new4_9 0.2 >546140 >3600.0| 0.0 3 92.6| 0.0 3 93.6
new4_10 0.2 >507737 >3600.0| 0.0 3 61.0| 0.0 5 154.4
newb_1 0.7 >640409 >3600.0| 0.0 23 254.4| 0.0 1 130.1
newb_2 1.3 >317663 >3600.0| 0.0 11 248.6] 0.0 1 230.7
newd_3 0.9 >318430 >3600.0| 0.0 3 177.1] 0.0 3 282.4
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SCIP GCG (32) GCG (64)
instance gap  nodes time|gap nodes time| gap nodes time
newb_4 1.4 >247945 >3600.0| 0.0 75 1445.6| 0.0 3 265.3
newb._5 1.4 >120474 >3600.0| 0.0 42 871.3| 0.0 17 8874
newb_6 1.3 >147990 =>3600.0| 0.0 161 3570.1| 0.0 >129 >3600.0
newb_7 1.0 >135050 >3600.0| 0.0 133 2008.2| 0.0 13 730.5
newb_8 1.3 >114213 >3600.0| 0.0 15 554.7| 0.0 1 5644
newb_9 1.2 >78548 >3600.0| 0.0 >124 >3600.0|{ 0.0 >87 >3600.0
new5_10 1.7 >22990 >3600.0| 0.0 85 2109.2| 0.0 25 1799.1
new6_1 1.0 >215663 >3600.0| 0.0 25 692.2| 0.0 7 484.2
new6._2 1.2 >159970 =>3600.0| 0.0 7 518.3| 0.0 3  686.3
new6._3 1.0 >92896 >3600.0| 0.0 27 975.0| 0.0 11 559.0
new6_4 1.0 >93850 =>3600.0| 0.0 17 1091.2| 0.0 1 628.5
new6._5 1.1 >69570 =>3600.0| 0.0 29 1546.7| 0.0 21 1826.8
new6._6 1.8 >14540 >3600.0| 0.0 13 1094.0| 0.0 7 1714.0
new6_7 2.3 >10384 >3600.0|/ 0.0  >51 >3600.0| 0.0 3 1368.9
new6._8 1.6 >6209 =>3600.0| 0.1 >77 >3600.0{ 0.0 >38 >3600.0
new6_9 1.7 >38634 >3600.0/ 0.0 >37 >3600.0| 0.0 3 2030.4
new6_10 3.0 >772 >3600.0/ 0.0  >55 >3600.0{ 0.0 >35 >3600.0
new7_1 1.4 >537230 >3600.0| 0.0 58  614.3| 0.0 7 276.9
new7._2 1.5 >373513 >3600.0| 0.0 31 624.5| 0.0 41 1263.9
new7-3 1.4 >230756 >3600.0| 0.0 46 823.1| 0.0 11 545.2
new7.4 1.8 >164797 >3600.0| 0.0 25  665.2| 0.0 >37 >3600.0
new7.5 1.3 >147376 >3600.0| 0.0 9 486.2| 0.0 9 7918
new7_6 1.7 >158523 >3600.0| 0.0 >186 >3600.0| 0.0 34 3032.1
new7.7 1.7 >95711 =>3600.0{ 0.0 >140 >3600.0| 0.1 >74 >3600.0
new7.8 2.2 >96525 >3600.0| 0.1 >148 >3600.0| 0.0 19 32054
new7-9 1.7 >80942 >3600.0| 0.0 31 1051.1| 0.0 11 1800.4
new7-10 2.4 >78398 >3600.0|/ 0.0 >107 >3600.0| 0.1 >42 >3600.0
total 97.1 16259k 237776.4| 0.4 3484.0 98169.6|74.3 1305.0 95403.1
timeouts 65/70 14/70 14/70
sh. geom. mean| 1.4 97564.0 2772.4| 0.0 32.2 727.4| 0.8 11.5 670.7

Table 3. Computational results for the test set of RAP instances. We list the final
gap, the number of branch-and-bound nodes and the runtime for SCIP, GCG with 32
constraints assigned to a block, and GCG with 64 constraints assigned to a block.



