
A Branch-and-Price Algorithm for Multi-Mode
Resource Leveling

Eamonn T. Coughlan1, Marco E. Lübbecke2, and Jens Schulz1

1 Technische Universität Berlin, Institut für Mathematik, Straße d. 17. Juni 136,
10623 Berlin, Germany, {coughlan,jschulz}@math.tu-berlin.de

2 Technische Universität Darmstadt, Fachbereich Mathematik, Dolivostr. 15,
64293 Darmstadt, Germany, luebbecke@mathematik.tu-darmstadt.de

Abstract Resource leveling is a variant of resource-constrained project
scheduling in which a non-regular objective function, the resource avail-
ability cost, is to be minimized. We present a branch-and-price approach
together with a new heuristic to solve the more general turnaround
scheduling problem. Besides precedence and resource constraints, also
availability periods and multiple modes per job have to be taken into ac-
count. Time-indexed mixed integer programming formulations for similar
problems quite often fail already on instances with only 30 jobs, depend-
ing on the network complexity and the total freedom of arranging jobs. A
reason is the typically very weak linear programming relaxation. In par-
ticular for larger instances, our approach gives tighter bounds, enabling
us to optimally solve instances with 50 multi-mode jobs.

1 Introduction

Motivated by an industrial application from chemical engineering, we study a
resource leveling problem, which was recently introduced as turnaround schedul-
ing problem [MMS10]. In turnaround scheduling, for inspection and renewal of
parts, plants are shut down, disassembled, and rebuilt, so there is a partial or-
dering of jobs to be done. The time horizon and the number of workers hired
for each job determine production downtime and working cost, the two of which
are conflicting in a time-cost tradeoff manner. Once a time horizon is fixed, the
problem turns into a resource leveling problem, on which we focus in this paper.

Different types of renewable resources are given, each associated with avail-
ability periods which can be thought of as working shifts. Besides the actual
scheduling of jobs, the task is to decide how many workers need to be assigned
to each job such that working costs are minimized, that is, we must determine a
minimum amount of resources needed. We break down the granularity of plan-
ning, so that each job needs exactly one resource, possibly several units of which.

Heuristics, rather than exact methods, are prominent for solving such com-
plex scheduling problems. This is also due to the fact that mixed integer program-
ming formulations for scheduling problems in general, and for ours in particular,
often yield very weak bounds from the linear programming relaxation.

2 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

Our Contribution. We approach the turnaround scheduling from both ends.
Besides presenting a heuristic which improves on the results reported in [MMS10],
we formulate a mixed integer program which is based on working shifts, and thus
has an exponential number of variables. A branch-and-price algorithm to solve
this model computes optimal schedules for instances with up to 50 jobs, which is
a large number in this area of scheduling. In particular the derived lower bounds
demonstrate that our heuristic solutions are mostly near the optimum or at least
near the best solution found by exact methods within half an hour.

2 Formal Problem Description

For a recent survey on resource-constrained project scheduling (RCPSP) we
refer to [HB09]. We are given a set J of non-preemptable jobs and a set R of
renewable resources. Precedence constraints between jobs are given as an acyclic
digraph G = (J , E) with ij ∈ E iff job i has to be finished before job j starts.
Each job j may be run in exactly one out of a setMj of modes. Processing job j
in mode m ∈Mj takes pjm time units and requires rjmk units of resource k ∈ R.
Due to a fine granularity of planning, in our setting each job needs exactly one
resource for execution, so we write rjm if the resource is clear from the context.

All jobs have to finish before T , the time horizon. Each resource k ∈ R has a
set Ik := {[a1, b1], . . . , [aki

, bki
]} of ki ∈ N availability periods, also called shifts,

where a1 < b1 < . . . < aki
< bki

. A job requiring resource k can only be executed
during a time interval I ∈ Ik, see Fig. 1. We use a parameter δkt which is one if
resource k is available at time t, i.e., t ∈ I for some I ∈ Ik, and zero otherwise.
Each resource k ∈ R is associated with a per unit cost ck. For each resource k
we have to determine the available capacity Rk such that at any time the total
resource requirement of all the jobs does not exceed Rk.

We denote by S = (S1, . . . , Sn) the vector of start times of jobs, and by M =
(m1, . . . ,mn) the vector of modes in which jobs are executed. For a given sched-
ule (S,M), denote by A(S,M, t) :=

{
j ∈ J : Sj ≤ t < Sj + pjmj

}
the set of jobs

active at time t. The amount rk(S,M, t) :=
∑
j∈A(S,M,t) rjmjk of resource k used

at time t must never exceed the provided capacity. Thus, we obtain resource con-
straints with calendars: rk(S,M, t) ≤ Rk · δkt, ∀k ∈ R, ∀t. Besides this resource

R2

R1

Figure 1. Schematic representation of turnaround scheduling with two resources.

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 3

feasibility a feasible schedule must obey precedence feasibility, i.e., Si + pimi
≤ Sj

for all ij ∈ E.
Following the extended α|β|γ-classification scheme [BDM+99], we consider

MPSm,∞|prec, shifts|
∑
ck ·max rk(S,M, t) for multi-mode project scheduling

with m renewable resources of unbounded capacity, with precedence constraints
and working shifts, with the objective to minimize the total resource availability
cost, i.e., minimizing

∑
k∈R ck ·Rk.

Related Work. Turnaround scheduling comprises project scheduling with cal-
endars, multi-mode scheduling, and resource leveling; see [MMS10] for an indus-
trial application. The zoo of scheduling problems is large, and we give an idea
only of the most related problems. Makespan minimization is a classical schedu-
ling goal. Lower bound schemes for this objective are presented in [BK00], where
column generation is employed to solve a relaxed problem, allowing preemption
and precedence constraints formulated as disjunctions. A variable represents a
set of jobs selected to run at a certain point in time. For the case of gener-
alized precedence constraints, [BC09] derive lower bounds by relaxing resource
constraints for jobs which are not precedence related. This allows a dynamic
programming approach on a modified activity-on-nodes network. In contrast to
this regular objective function, i.e., being non-decreasing in the completion time
of the jobs, a measure of the variation of resource utilization, e.g., f(rk(S, t)) is
not regular; see e.g., [NSZ03].

The resource leveling problem with single-modes per job, which is denoted
by PS|temp|

∑
ck max rk(S, t) with general temporal constraints has been con-

sidered earlier under the name resource investment problem. The special case
without generalized precedence constraints PS|prec|

∑
ck max rk(S, t) has been

considered e.g., by [Dem95] and [Möh84]. They competed on the same instance
set which contained about 16 jobs and four resources, with a time horizon be-
tween 47 and 70. Further computational studies were done containing 15 to 20
jobs and four resources. In the same setting, [DK01] propose lower bound com-
putations, one based on Lagrangian relaxation, and one based on a column gen-
eration procedure, where variables represent schedules as in our approach. Small
job sizes with 20 jobs can be handled; but for 30 jobs the Lagrangian relaxation
wins against the column generation approach.

Multi-mode jobs are a key feature of turnaround scheduling. Such problems
of the form MPS|prec|Cmax have been investigated with renewable and non-
renewable resources, with limited capacity, and makespan minimization, known
as multi-mode RCPSP, see e.g., [DH02,Har01].

Previous algorithms have also taken calendars into account. Scheduling prob-
lems with fixed processing times and calendars, but without resource capacities
were considered by [Zha92] who provides an exact pseudo-polynomial time al-
gorithm (turned into a polynomial one by [FNS01]) for computing earliest and
latest start times for preemptable as well as non-preemptable jobs.

For benchmarking, different problem sets are available in the PSPLib [PSP],
where several variants of the RCPSP and of resource investment problems can

4 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

be found. For the RCPSP single-mode case, test sets containing 60 jobs could
not be solved in total by a vast number of researchers. In the multi-mode case
instances with 30 jobs are not solved yet. For the resource investment problem,
test sets containing 10, 20, or 30 jobs are available, but they do not contain
working shifts, are in single-mode or include time-lags. On the other hand a job
may need more than one resource. Even though none of these problems is suited
for a direct comparison, they are similar to ours, and the mentioned instances
inspired us when generating our own test set (see Sect. 5).

3 Integer Programming Formulations

For solving large-scale scheduling problems, mixed integer programming (MIP) is
not considered as primary choice since the linear programming (LP) relaxations
may be weak. Huge numbers of variables and constraints may result in high
computation times and memory failures for solving only the LP relaxation. For
the remainder of the paper, we need to assume the reader be familiar with MIP
solving [Ach09] and branch-and-price [DL05].

3.1 Obstacles of Integer Programming for RCPSP

One of the most prominent models for the RCPSP was introduced by [PWW69].
Their formulation adapted to resource leveling looks as follows:

min
∑
k

ck · R̄k (1)

s.t.
∑
t

xjt = 1 ∀ j ∈ J (2)∑
t

t · xjt = Sj ∀ j ∈ J (3)

Si + pi ≤ Sj ∀ ij ∈ E (4)∑
j∈J

t∑
τ=t−pj+1

τ≥0

rjk · xjτ ≤ R̄k ∀ k ∀ t (5)

xjt ∈ {0, 1} ∀ j ∀ t (6)

Binary variables xjt model whether job j starts at time t or not. Each job j
must start exactly once (2). The start times Sj are linked to the binary vari-
ables xjt in (3). Also precedence constraints (4), and resource capacity con-
straints (5) are linear. The integer program decides on the resource capacities R̄k
for each resource k, such that the total resource availability cost is minimized.

Depending on several factors, such as network complexity (the density of G)
or the time discretization considered, this formulation may yield good or poor
lower bounds. We show an example LP solution, where even an optimal assign-
ment of the start time variables Sj does not yield an optimum solution value.

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 5

S1 = 3

S2 = 3

x1,0 = 0.5

x1,4 = 0.5

x2,2 = 0.5

x2,6 = 0.5

x1,2 = 0.5

x1,4 = 0.5

x2,0 = 0.5

x2,6 = 0.5

S1 = 2 S2 = 4

(a) (b)

0 4 8

80 0 8

840

4 4

Figure 2. Two schedules where primal and dual bounds do not match, even though
in (b) the start times are optimal.

Example. In Fig. 2 two jobs are given, each with processing time 2 and resource
demand 2. The integrality gap may be large depending on the jobs’ parameters.
In Fig. 2(a) the two jobs are running in parallel using as many resource units
as possible, according to their start times S1 = S2 = 3, but a corresponding LP
solution may only yield a lower bound of 1 since binary variables are maximally
fractional. Even for an optimal start time solution S1 = 2 and S2 = 4, as in
Fig. 2(b), the dual bound may not be tight. The convex combination (3) of start
times of a job which are far apart from each other to form Sj gives us irrelevant
information about the schedule and we lose all structure in the model.

Furthermore, branching on the binary variables leads to a confusing result.
In Fig. 2(b), when branching on x1,0, job 1 which starts at time S1 = 2 now
would be scheduled at t = 0 or not. Thus, a more sophisticated branching rule
that is aware of the linking of continuous variables Sj and binary variables xjt
and that prefers branching on the start time variables Sj is desirable. Therefore,
natural branching candidates are start time variables the corresponding binary
variables of which are fractional. This conforms branch-and-price theory.

3.2 Master Problem: A Model based on Shift Configurations

In order to reduce the effects of “losing the timing information” just described,
we propose a model which exploits the problem structure by decomposing the
time horizon. Based on the calendar for each resource type, every working shift
represents a smaller subproblem for which sub-schedules are generated indepen-
dently. These sub-schedules are linked by constraints ensuring that exactly one
is chosen for each working shift. For each such sub-schedule, or configuration, we
introduce a binary variable xξ which indicates whether configuration ξ is chosen.
We abbreviate j ∈ ξ to express that job j is executed in the shift corresponding
to ξ. Every configuration ξ has an associated resource capacity Rξ and start
times Sjξ and completion times Cjξ for each j ∈ ξ. Note that the mode of each
job is determined by the start and completion times. The model reads:

6 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

min
∑
k

ck · R̄k (7)

s.t. Ci ≤ Sj ∀ ij ∈ E (8)

Sj =
∑
ξ:j∈ξ

Sjξxξ ∀j ∈ J (9)

Cj =
∑
ξ:j∈ξ

Cjξxξ ∀j ∈ J (10)

∑
ξ:ξ∈I

Rξxξ ≤ R̄k ∀k ∀ I ∈ Ik (11)

∑
ξ:j∈ξ

xξ = 1 ∀j ∈ J (12)

xξ ∈ {0, 1} ∀ξ (13)

Each job is executed in exactly one configuration by (12). The start and com-
pletion times for each job are computed from the chosen configurations via the
linking constraints (9) and (10). Constraints (8) model the precedence relations
between jobs. These could be directly expressed by substituting Sj and Cj from
the linking constraints, but (9) and (10) are helpful in the upcoming pricing
problem where they penalize or encourage certain start or completion times of
jobs. Constraints (11) link resource consumptions to the capacities.

3.3 Column Generation: Pricing Problem

Since the number of feasible configurations is exponential in the number of jobs,
we solve the relaxation by column generation embedded into a branch-and-bound
scheme [DL05]. By defining dual variables sj , cj , ρ, πj for constraints (9), (10),
(11), and (12), respectively, we obtain a pricing problem for each shift I.

max
∑
j

πjXj−
∑
j

cjCj +
∑
j

sjSj − ρR

s.t. Xj =
∑
m,t

xjmt ∀j ∈ J (14)

Sj =
∑
m,t

txjmt ∀j ∈ J (15)

Cj =
∑
m,t

(t+ pjm)xjmt ∀j ∈ J (16)

∑
j∈J

∑
m

t∑
τ=t−pjm+1

t≥0

rjmxjmτ ≤ R ∀t ∈ I (17)

xjmt ∈ {0, 1} ∀j ∈ J,m, t (18)
Xj ∈ {0, 1} ∀j ∈ J (19)

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 7

This is a scheduling problem with non-regular objective function where a
new configuration ξ for a specific shift I is generated. It must be decided, see
constraint (14), whether a job corresponding to the binary decision variable Xj

is running in this shift or not, and if so, which mode m ∈ Mj is used. Con-
straints (15) and (16) fix the start and completion times of jobs according to the
chosen mode assignment. Resource capacity constraints (17) have to be satisfied
such that the total profit is maximized. The objective value is increased by πj
if a job is taken into the configuration and by multiples of sj and cj if it has
late start times and early completion times. With each unit increase of resource
capacity the objective value decreases by a factor of ρ.

The pricing problem is NP-hard as it contains a leveling problem. This can
be seen when all πj are set to a value large enough to ensure that each job must
be scheduled, and by setting sj and cj to zero for all j.

4 Branch-and-price Algorithm

A solution to the original problem is given by the resource capacities Rk, and an
assignment of start times Sj and completion times Cj for each job j. The mode
is given by the closest resource allocation, such that pjmj

≤ Cj − Sj . We refer
to Rk, Sj , Cj as original variables since these correspond to original decisions.

The variables of the master problem xξ that symbolize configurations of
different shifts are generated by the pricing problem and whenever a heuristic
finds a feasible solution. We refer to these variables as master variables.

4.1 Branching scheme

Experiments revealed as branching order Rk, Sj , and then Cj . Start and com-
pletion time variables are considered as branching candidates, only if any corre-
sponding binary configuration variable is fractional. After the resource capacities
are fixed in the search tree, a start time variable Sj with LP solution value S?j
is selected. Completion times are handled accordingly. The node is split into
two subnodes with Sj ≤ bS?j c, and Sj ≥ dS?j e, respectively. This scheme is used
together with some propagation rules to overcome the smeared LP solutions and
to create a more balanced branching tree.

4.2 Propagation

For scheduling problems a large variety of propagation algorithms is known.
Edge-finding is a constraint programming technique concerned with deriving
better bounds for earliest start and latest end times of jobs using energy argu-
ments. The first correct algorithm, proposed in [MVH08] can be adapted to the
multi-mode case, by using the minimum energy of all modes for each job, which
naturally seems to give weaker bounds. This is balanced by the fact that jobs
are not preemptive, may not cross shift-bounds and obey precedence constraints
which enables further propagation of start and completion times.

8 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

Furthermore, propagation serves the technical purpose of communicating the
branching decisions to the pricing problem.

4.3 Primal bounds

For the master problem rounding heuristics for LP solutions are not promising,
since values of binary variables may be smeared over the time horizon as in
Fig. 2. To improve upper bounds we extended a leveling heuristic from [MMS10]
and implemented a generic list scheduling algorithm which is used as a stand
alone heuristic during the branching process as well as in the leveling procedure.

Ready scheduling heuristic. The general idea of ready scheduling is similar
to that of list scheduling with jobs sorted by earliest start times. Jobs are divided
according to the resource they need, and scheduled as soon as their predeces-
sors are completed, if possible, thus increasing the chance to meet a given time
horizon. We say a job is “ready” if all its predecessors are scheduled.

For each resource k we maintain a set of jobs Jk = (jk1 , .., jk|Jk|) that use this
resource and have no unscheduled predecessors, together with a lower bound tk
on the next feasible start FSj of any job j ∈ Jk. If Jk is empty, we set tk to ∞.

The heuristic loops over t, which increases to the minimal tk in each iteration.
A subset I ⊂ Jk of constant size s (we chose s = 6 in our computational studies)
is scheduled so that the overall completion time is kept small (line 8). This is
accomplished by trying all mode combinations for I recursively, and bounding
recursion using the currently shortest feasible solution found in this way. If s
is small, this can be done quickly. Finally, for each scheduled job in I, those
successors which become ready, are added to the corresponding set Jk, each tk
is updated, and the next iteration begins. This process continues until all jobs
are scheduled, or a makespan violation occurs.

Algorithm 1: Ready Scheduling

Input: Set of jobs J to be scheduled and max. total duration T
Output: Job start times and modes, or that no solution was found.
for k ∈ R do1

Let Jk ⊂ J be the set of jobs that use resource k, and are ready.2

Set tk to minj∈Jk
FSj .3

Set t := 04

while t < T do5

` := argmink tk, and t := tl .6

m := min(s, |J`|) with s a small constant and I := {j`1 , .., j`m}.7

Schedule jobs in I such that maxi∈I Ci is minimal. .8

Add all successors of jobs in I that become ready to their respective Jk.9

J` := J` \ I10

Update tk for all changed Jk as in Step 3.11

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 9

Resource Leveling heuristic. We now describe the resource leveling heuristic
by [MMS10], and how the ready scheduler ties into the framework of the lev-
eling procedure. This heuristic uses a binary search on the capacity bounds of
the resources, while greedily selecting the resource whose upper bound is to be
improved in each iteration. This selection is based on a parameter µk, measuring
how badly a resource k is leveled.

One iteration of the binary search consists of trying to find a feasible schedule
for the current bounds. These bounds for the selected resource k? are set to
(UBk? + LBk?)/2, UBk? and LBk? being the upper and lower bounds on the
capacity of resource k?, while all other resource bounds remain fixed. We try
list scheduling, and on failure fall back to ready scheduling to prove the bounds
feasible. If neither ready scheduling nor list scheduling yield a feasible schedule,
we consider the current upper bound for the selected resource as a new lower
bound, and the next iteration begins.

Algorithm 2: Resource Leveling

Input: Set R of resource types to be leveled, project duration T .
Output: Leveled resource utilization Rk for each resource type k ∈ R.
Set LBk and UBk to initial values for each resource type k ∈ R.1

while ∃ k ∈ R : LBk < UBk do2

Choose resource type k? ∈ R with LBk? < UBk? and µk? maximum.3

Perform binary search using list scheduling and ready scheduling in4

order to decrease the capacity bounds of k?.

LP solution and ready scheduling heuristics. In each node of the branch-
and-bound tree these heuristics set the maximal capacity of each resource to
the LP solution value rounded up, and fix the earliest and latest start and
completion times for each job to the global bounds of the corresponding variables.
We perform list scheduling using the LP solution with jobs sorted by earliest
completion times, and each job’s mode is chosen as the one matching Ci − Si
best. If no feasible solution is obtained we try ready scheduling. Both of these
heuristics produce solutions that are not necessarily feasible w.r.t. the current
primal bound, since resource capacities are rounded up. Regardless of this, if a
feasible schedule is found new columns representing that schedule are added to
the master problem, in order to reduce the total number of pricing steps.

5 Computational Study

5.1 Experimental Setup

As there is no publicly available set of instances reflecting the precise setup of our
problem, we needed to compile our own. The PSPLib [PSP] guided our design.
Our set is composed of three sets of job scenarios, with 10 instances each. Each
job can run in 3 different modes, using 1 to 3 units of its resource, with durations

10 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

Table 1. Comparison of the BP approach with the standard MIP (|J | = 30).

Branch-and-Price B&P w/o heur. CPLEX RL

Calendar time LB UB † time LB UB † time LB UB † UB

C1 446 9 9 1 435 10 10 0 1350 6 3 7 6
C2 326 9 10 1 360 9 9 1 435 9 9 2 5
C3 9 10 10 0 11 10 10 0 1 10 10 0 9
C4 81 10 10 0 81 10 10 0 494 9 10 1 8
C5 72 10 10 0 146 10 10 0 1631 3 4 7 6
Total 187 48 49 2 207 49 49 1 782 37 36 17 34

ranging from 5 to 12. In the first scenario instances have 30 jobs and 60 edges,
and in the second (third) scenario instances contain 50 jobs with 70 (100) edges,
respectively. The maximal width W of the precedence graph is 5 for scenario one,
and 6 for the other two. These width bounds are achieved by constructing W
chains of length |J |/W , and randomly choosing the remaining edges.

There are two different resources which come in 5 calendar configurations,
called C1 to C5. These calendars are described schematically in Fig. 3. In the
top row, calendars C1 to C3 are shown. In each of these, the length of the
shifts is 60. In C1 and C3 shift breaks are 60 units long, in C2 only 20. Both
resources are available at the same time in C1, while in C3 availability periods
are complementary. In C2 the second resource is offset at 40 units. Calendars C4
and C5 show shifts with length 20 and breaks having length 5. In C5 one of
the resources is offset by 10. All scenarios are tested with each of the 5 different
calendars. Time horizons were chosen by computing a minimal and maximal
makespan heuristically using simple list scheduling, and averaging these.

Our algorithm was tested on an Intel 2.66 GHz processor, and each test run
had a time-limit of 30 minutes. The implementation uses SCIP 1.2.0.6 [SCI], to
perform the branch-and-bound process, with custom plug-ins for the heuristics,
branching rules, and the pricer. For the standard MIP (1)–(6) we used CPLEX
12 with quad-core parallelization on a stronger machine.

Our empirical results can be seen in Tabs. 1 and 2. These tables show four
columns per algorithm. The first column contains the average time in seconds to
solve the instance with a limit of 1800. The second and third columns represent
the number of times the algorithm reached the best known lower and upper
bounds over all algorithms, denoted by “LB” and “UB.” The fourth column is
the number of timeouts, marked by “†.” An additional last column “RL” per
table shows the number of times the resource leveling heuristic reached the best

Figure 3. Calendar configurations C1–C3 (top) and C4 and C5 (bottom) used in our
test set. Black bars symbolize the temporal location of shifts.

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 11

Table 2. Comparison of the BP approach with the standard MIP (|J | = 50).

|J | = 50, |E| = 70

Branch-and-Price CPLEX RL

Calendar time LB UB † time LB UB † UB

C1 1660 10 9 7 1800 6 1 10 7
C2 1662 4 7 8 1361 7 6 7 5
C3 27 10 10 0 4 10 10 0 10
C4 719 10 10 2 1800 6 0 10 5
C5 1293 8 8 5 1335 7 6 7 5
Total 1072 42 44 22 1260 36 23 34 32

|J | = 50, |E| = 100

Calendar time LB UB † time LB UB † UB

C1 1137 9 10 3 1800 3 0 10 7
C2 1224 6 9 5 1622 5 4 9 6
C3 9 10 10 0 2 10 10 0 9
C4 254 10 10 0 1800 1 0 10 8
C5 365 10 10 0 1451 5 5 6 6
Total 598 45 49 8 1335 24 19 35 36

known upper bound for each set of instances. The rows in each table represent
the calendar configurations used.

In the first table, three different algorithms are compared on the first scenario.
“Branch-and-price” refers to the general scheme presented here, while “B&P w/o
heur.” does not use the LP solution or ready scheduling heuristics during the
branch-and-bound process. However, it does start with the solution found by the
resource leveling heuristic. The “CPLEX” columns correspond to the results of
the standard MIP (1)–(6). The “Branch-and-price” algorithm, as well as CPLEX
and the resource leveling heuristic, are tested on the second and third scenarios
in Tab. 2.

Impact of calendars. Obviously, the calendar choice has a big influence on
running time. For 30 jobs we observe that with the one hour shifts the makespan
generally increases as the resources overlap less. Interestingly, for the short shifts
the makespan increases with more overlap (C4 instances generally have larger
makespan than those in C5), yet these instances can nevertheless be solved faster.
The “hardness” of a problem does not solely depend on the makespan though,
as CPLEX shows the worst behavior on instances with 50 jobs and calendars C1
and C4, where the shifts are overlapping completely. This is not the case for the
branch-and-price algorithm, which actually performs much better on C4 and C1,
see also Tab. 2. All approaches easily solve instances using C3, because many
jobs have a successor of a different resource, introducing long waiting times.

Usefulness of the heuristics. Our heuristics exploit problem specific knowl-
edge during the branch-and-bound process, however, this does not appear to
have a big impact on the number of problems solved, as can be seen in Tab. 1.
Still, the average solving time decreases noticeably across all instances with the
heuristics enabled. The running times of all our heuristics are negligible, and in
contrast to the exact methods, the resource leveling heuristic is able to handle

12 Eamonn T. Coughlan, Marco E. Lübbecke, and Jens Schulz

instances of practically relevant size, while still achieving the best found upper
bound in 68% of all instances.

Influence of the network complexity. When the number |E| of edges in G
is increased, the makespan typically increases as well, so that the time-indexed
MIP formulation grows fairly large and CPLEX generally fares better on the
instances with less edges. For 50 jobs and 70 edges CPLEX finds the best lower
bound 36 times and the best upper bound 23 times, in contrast to 24 best lower
and 19 best upper bounds for 100 edges (Tab. 2). In contrast the branch-and-
price algorithm does not suffer from this, and the computation times actually
decrease on the instances with more edges.

As expected, CPLEX has considerable problems as the instances get larger.
One of the main features of the turnaround scheduling problem is the presence of
availability periods, which motivated this branch-and-price approach. It achieves
the best results across all shift configurations, in the worst case 88% of the best
upper bounds are found. In most cases lower bounds computed by CPLEX are
of poor quality. Proving optimality succeeded in 80% of cases for branch-and-
price , whereas CPLEX only manages 43%. Summarizing, our branch-and-price
algorithm significantly outperforms the standard time-indexed MIP formulation
solved by the state-of-the-art solver CPLEX on large instances.

6 Summary

Our own experiments and instance sizes as reported e.g., in [DK01] or [PSP]
for scheduling problems of comparable complexity give good reasons to believe
that even today instances with only 30 jobs are hard to solve to optimality. We
are encouraged to further investigate branch-and-price algorithms for this type
of problem, as we do not only report better results on similarly sized instances,
but are also able to optimally solve some instances with up to 50 jobs.

References

[Ach09] T. Achterberg. SCIP: solving constraint integer programs. Math. Program-
ming Computation, 1(1):1–41, 2009.

[BC09] L. Bianco and M. Caramia. A new lower bound for the resource-constrained
project scheduling problem with generalized precedence relations. Comput-
ers and Operations Research, In Press, Corrected Proof:–, 2009.

[BDM+99] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-
constrained project scheduling: Notation, classification, models, and meth-
ods. European J. Oper. Res., 112:3–41, 1999.

[BK00] P. Brucker and S. Knust. A linear programming and constraint propagation-
based lower bound for the RCPSP. European J. Oper. Res., 127(2):355–362,
2000.

[Dem95] E. Demeulemeester. Minimizing resource availability costs in time-limited
project networks. Management Sci., 41:1590–1598, 1995.

[DH02] E.L. Demeulemeester and W.S. Herroelen. Project Scheduling: A Research
Handbook. Kluwer, 2002.

A Branch-and-Price Algorithm for Multi-Mode Resource Leveling 13

[DK01] A. Drexl and A. Kimms. Optimization guided lower and upper bounds for
the resource investment problem. The Journal of the Operational Research
Society, 52(3):340–351, 2001.

[DL05] J. Desrosiers and M.E. Lübbecke. A primer in column generation. In G. De-
saulniers, J. Desrosiers, and M.M. Solomon, editors, Column Generation,
pages 1–32. Springer-Verlag, Berlin, 2005.

[FNS01] B. Franck, K. Neumann, and C. Schwindt. Project scheduling with calen-
dars. OR Spektrum, 23:325–334, 2001.

[Har01] S. Hartmann. Project scheduling with multiple modes: A genetic algorithm.
Ann. Oper. Res., 102(1-4):111–135, 2001.

[HB09] S. Hartmann and D. Briskorn. A survey of variants and extensions of the
resource-constrained project scheduling problem. European J. Oper. Res.,
In Press, 2009.

[MMS10] N. Megow, R.H. Möhring, and J. Schulz. Decision support and optimization
in shutdown and turnaround scheduling. INFORMS J. Computing, 2010.
Fothcoming.

[Möh84] R.H. Möhring. Minimizing costs of resource requirements in project net-
works subject to a fixed completion time. Oper. Res., 32(1):89–120, 1984.

[MVH08] L. Mercier and P. Van Hentenryck. Edge finding for cumulative scheduling.
INFORMS J. Computing, 20(1):143–153, 2008.

[NSZ03] K. Neumann, C. Schwindt, and J. Zimmermann. Project scheduling with
time windows and scarce resources. Springer, 2003.

[PSP] Project Scheduling Problem LIBrary. http://129.187.106.231/psplib/.
Last accessed 2010/02/01.

[PWW69] A.A.B. Pritsker, L.J. Watters, and P.M. Wolfe. Multi project scheduling
with limited resources: A zero-one programming approach. Management
Sci., 16:93–108, 1969.

[SCI] Solving Constraint Integer Programs. http://scip.zib.de/.
[Zha92] J. Zhan. Calendarization of time planning in MPM networks. ZOR –

Methods and Models for Oper. Res., 36(5):423–438, 1992.

