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Abstract. While the product of finitely many convex functions has been investigated in the field
of global optimization, some fundamental issues such as the convexity condition and the Legendre-
Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper
is aimed at addressing the question: When is the product of finitely many positive definite quadratic
forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of
the product is determined intrinsically by the condition number of so-called ‘scaled matrices’ associated
with quadratic forms involved. The main result claims that if the condition number of these scaled
matrices are bounded above by an explicit constant (which depends only on the number of quadratic
forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel
transform for the product of positive definite quadratic forms can be expressed, and the computation of
the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer’s
fixed point of a mapping) with a special structure. Thus, a broader question than the open “Question
11” in [SIAM Review, 49 (2007), 225-273] is addressed in this paper.
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1 Introduction

Optimization problems having a product of convex functions as an objective or a constraint
are called ‘multiplicative programming’ problems which have been extensively investigated
in the field of global optimization (see e.g. [3, 4, 19, 20, 21, 32, 34, 35]). The multiplicative
programming problem may find applications in such areas as microeconomics, geometric design,
finance, VLSI chip design, and system reliability [4, 11, 20]. The product function is not only
used in optimization, but in other areas as well. For instance, the product of finitely many
quadratic forms in random variables has been widely studied in probability and statistics
[9, 10, 16, 18, 27, 28, 29].
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Matsui [30] showed that the linear multiplicative programming problem is NP-hard. Thus
the multiplicative programming is not an ‘easy’ class of optimization problems. Part of the
reason can be understood from the fact that the product of convex functions is not convex
in general. For instance, the product (yT Ay)(yT A−1y), where A is an n × n positive definite
matrix, is not convex in general. While the general multiplicative programming problem is
NP-hard, for a given problem it is not always so negative if we can prove that the problem
is convex. Thus a natural and fundamental question is: when is the product of finitely many
convex functions convex? It is interesting to address this question since answering it may iden-
tify a subclass of multiplicative optimization problems that can be computationally tractable.
However, developing a convexity condition for the product function is not straightforward,
and very limited progresses on this issue were made so far: The product of univariate convex
functions and the product of two positive definite quadratic forms in Rn were studied in [13]
and [36], respectively.

On the other hand, the Legendre-Fenchel transform (LF-transform for short) plays a vital
role in developing optimization theory and algorithms (see e.g. [1, 5, 6, 14, 33]), and it has
wide applications also in other areas of applied mathematics [7, 24]. Recall that for a given
function h : Rn → R, the LF-transform of h is defined by

h∗(x) = sup
y∈Rn

xT y − h(y).

From a practical application point of view, it is important to obtain an explicit expression
of the LF-transform. Unfortunately, for the product of convex functions, the question of
whether its LF-transform can be explicitly expressed remains open in many situations even
for the product of quadratic forms. So another fundamental issue associated with the product
function is: what is the LF-transform of the product of finitely many convex functions? It
is worth mentioning that some recent efforts on effective computation and expression of the
LF-transform, stimulated by different needs, can be found in [2, 7, 13, 15, 23, 24, 25, 26, 37].

As in the situation of the convexity condition, there is very little knowledge about the
LF-transform of the product of convex functions so far. The initial discussion on the product
of univariate convex functions was given in [13], and the LF-transform of the product of two
positive definite quadratic forms was posted as an open question in the field of nonlinear
analysis and optimization (see ‘Question 11’ in [12]). Recently, this open question has been
addressed in [36]. Let qA denote the quadratic form qA(y) = (1/2)yT Ay, where A is an n× n
symmetric positive definite matrix. The following result was established in [36]: (i) If A, B
are positive definite and f = qAqB is convex, then f∗ can be expressed explicitly as a function
which is homogeneous of degree 4

3 , and the computation of f∗ can be implemented via finding
a root of a univariate polynomial equation; (ii) there exists a positive constant γ > 0 (which
can be given explicitly) such that if the condition number of the scaled matrix B−1/2AB−1/2

is less than or equal to the constant γ, then the product f = qAqB is convex.
However, it is quite challenging to provide a general answer to the aforementioned ques-

tion concerning the convexity and LF-transform for the product of general convex functions.
The aim of this paper is to address the question in the case of finitely many positive definite
quadratic forms: when is the product of finitely many positive definite quadratic forms convex,
and what is the LF-transform for it? The contribution of this paper is twofold: a general
sufficient convexity condition for the product of quadratic forms is established and an explicit
expression of its LF-transform is derived in this paper. First, the convexity result claims that if
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the condition number of ‘scaled matrices’ are not too large (bounded above by a constant which
depends on the number of quadratic forms), then the product function is convex. To our knowl-
edge, this is the first general convexity condition for the product of finitely many quadratic
forms. Secondly, we prove that if the product function is convex then its LF-transform can
be explicitly expressed as a nonnegative function which is positively homogeneous of degree

2m
2m−1 , where m is the number of quadratic forms (see Theorem 3.6 and Remark 3.7). Thus, a
broader question than the open “Question 11” in [12] is addressed. The analysis in this paper
shows that the computation of the LF-transform can be implemented via solving a system
of smooth equations (or equally, finding a fixed-point of a smooth mapping) with a special
structure. It should be mentioned that many discussions and the proof for the case of only two
quadratic forms in [36] cannot be directly generalized to the case of more than two quadratic
forms.

This paper is organized as follows. In Section 2, we establish a general sufficient convexity
condition for the product of finitely many quadratic forms. In Section 3, a series of useful
technical results are proved, based on which an explicit formula for the LF-transform of the
product function is derived. Conclusions are given in the last section.

2 When is the product function convex?

Throughout this paper, Rn
++ is used to denote the positive orthant of the n-dimensional Eu-

clidean space Rn, i.e., the set of all vectors with positive components, and I is used to de-
note the identity matrix with an appropriate dimension. If M is a matrix, M Â 0 means
a symmetric, positive definite matrix, and κ(M) denotes the condition number of M, i.e.,
κ(M) = λmax(M)/λmin(M), the ratio of its largest and smallest eigenvalues.

Let f : Rn → R denote the product of finitely many quadratic forms, i.e.,

f(y) =
m∏

i=1

(
1
2
yT Aiy

)
=

m∏

i=1

qAi(y)

where m ≥ 2 and Ai, i = 1, ..., m, are n× n symmetric matrices (n ≥ 1). Clearly, the gradient
and the Hessian matrix of f are given by

∇f(y) =
m∑

i=1




m∏

j=1,j 6=i

qAj (y)


 Aiy, (1)

∇2f(y) =
m∑

i=1




m∏

j=1,j 6=i

qAj (y)


 Ai +

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

qAk
(y)


 AiyyT Aj . (2)

When m = 2, we see that (2) is reduced to

∇2f(y) = qA1(y)A2 + qA2(y)A1 + A1yyT A2 + A2yyT A1,

and when m = 3, (2) is reduced to

∇2f(y) = qA2(y)qA3(y)A1 + qA1(y)qA3(y)A2 + qA1(y)qA2(y)A3

+qA1(y)
(
A2yyT A3 + A3yyT A2

)
+ qA2(y)

(
A1yyT A3 + A3yyT A1

)

+qA3(y)
(
A1yyT A2 + A2yyT A1

)
.
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Given the two positive definite matrices Ai and Aj , the term AiyyT Aj is not necessarily
positive semi-definite, and hence the product function f(y) may lose its convexity. Since f is
twice continuously differentiable in Rn, to develop a convexity condition for f , it is sufficient
to identify the condition under which its Hessian matrix is positive semi-definite at any point
y ∈ Rn. By (2), for any x ∈ Rn, we have

xT∇2f(y)x

=
m∑

i=1






 1

2m−1

m∏

j=1,j 6=i

yT Ajy


 xT Aix +

m∑

j=1,j 6=i


 1

2m−2

m∏

k=1,k 6=i,j

yT Aky


 xT AiyyT Ajx





=
1

2m−1
Φ(x, y) (3)

where

Φ(x, y) :=
m∑

i=1




m∏

j=1,j 6=i

yT Ajy


 xT Aix + 2

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 (xT Aiy)(yT Ajx). (4)

Thus, to prove that (2) is positive semi-definite for any y ∈ Rn, it suffices to show that
Φ(x, y) ≥ 0 for any x, y ∈ Rn. We will make use of the result below.

Lemma 2.1 ([17], Theorem 7.4.34). Let M be a given n× n matrix and M Â 0. Then

(
xT My

)2 ≤
(

λmax(M)− λmin(M)
λmax(M) + λmin(M)

)2

(xT Mx)(yT My)

for every pair of orthogonal vectors x, y ∈ Rn, i.e., xT y = 0.

It should be stressed that the vectors x, y in the lemma above are required to be orthogonal.
For any M Â 0, in the remainder of this paper we denote by

χ(M) =
λmax(M)− λmin(M)
λmax(M) + λmin(M)

=
κ(M)− 1
κ(M) + 1

.

For any pair of matrices A, B Â 0, it is easy to verify that κ(B−1/2AB−1/2) = κ(A−1/2BA−1/2),
and thus χ(B−1/2AB−1/2) = χ(A−1/2BA−1/2). Hence, when we consider the condition number
of these matrices, we do not distinguish between B−1/2AB−1/2 and A−1/2BA−1/2.

The next result plays a key role in developing our main convexity condition for the product
function.

Lemma 2.2. Let η > 0 be any given positive number. For any n× n matrices A Â 0 and
B Â 0, if χ(B−1/2AB−1/2) ≤

√
2η

η+1 , then

Γ(A,B,η)(x, y) := η
(
xT AxyT By + xT BxyT Ay

)
+ 2(xT Ay)(xT By) ≥ 0

for any vectors x, y ∈ Rn.
Proof. Denote by P = B−1/2AB−1/2. By the nonsingular linear transformation

(
x
y

)
=

(
B−1/2 0

0 B−1/2

) (
u
v

)
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we may reformulate Γ as follows:

Γ(A,B,η)(x, y)

= η
[
uT (B−1/2AB−1/2)uvT v + uT uvT (B−1/2AB−1/2)v

]
+ 2uT (B−1/2AB−1/2)vuT v

= η
[
(uT Pu)vT v + uT u(vT Pv)

]
+ 2(uT Pv)uT v

=: θ(P,η)(u, v).

Thus, to prove Γ(A,B,η)(x, y) ≥ 0 for any x, y ∈ Rn, it is sufficient to show that

θ(P,η)(u, v) ≥ 0 (5)

for any u, v ∈ Rn. In fact, if uT v = 0, it is evident from (5) that θ(P,η)(u, v) ≥ 0. Thus, in what
follows we assume that uT v 6= 0. Let Lu denote the subspace generated by u and L⊥u be the
orthogonal subspace of Lu, i.e.,

Lu = {tu : t ∈ R}, L⊥u = {w : uT w = 0, w ∈ Rn}.

Since uT v 6= 0 (i.e., v /∈ L⊥u ), the vector v can be represented as v = û+ v̂ for some û ∈ Lu and
v̂ ∈ L⊥u . By the structure of Lu, the vector û = tu for some t ∈ R where t 6= 0 (since otherwise
v = v̂ ∈ L⊥u ). From (5), we see that θ(P,η) is homogeneous of degree 2 in v. Thus,

θ(P,η)(u, v) = θP,η(u, tu + v̂) = θP,η(u, t(u + v̂/t)) = t2θ(P,η)(u, u + v̂/t).

Notice that v̂/t ∈ L⊥u . Thus, to prove θP,η(u, v) ≥ 0 it is sufficient to prove that

θ(P,η)(u, u + z) ≥ 0 for any z such that uT z = 0.

First, for any z such that uT z = 0, we note that

θ(P,η)(u, u + z)

= η
[
uT Pu(u + z)T (u + z) + uT u(u + z)T P (u + z)

]
+ 2uT P (u + z)uT (u + z)

= η
[
uT Pu(uT u + zT z) + uT u(uT Pu + 2uT Pz + zT Pz)

]
+ 2uT PuuT u + 2uT PzuT u

= (uT Pu)uT u

{
2(η + 1) + η

zT z

uT u
+ 2(η + 1)

uT Pz

uT Pu
+ η

zT Pz

uT Pu

}
. (6)

Since uT z = 0, by Lemma 2.1 we see that |uT Pz| ≤ χ(P )
√

uT PuzT Pz which implies that
uT Pz ≥ −χ(P )

√
uT PuzT Pz. Therefore, from (6) we have

θ(P,η)(u, u + z)

≥ (uT Pu)uT u

(
2(η + 1) + η

zT z

uT u
− 2(η + 1)χ(P )

√
uT PuzT Pz

uT Pu
+ η

zT Pz

uT Pu

)

= (uT Pu)uT u



η

zT z

uT u
+


2(η + 1)− 2(η + 1)χ(P )

√
zT Pz

uT Pu
+ η

zT Pz

uT Pu








≥ 0.
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The last inequality follows from the fact that when χ(P ) ≤
√

2η
η+1 , the quadratic function

2(η + 1)− 2(η + 1)χ(P )t + ηt2 ≥ 0 for any t ∈ R. 2

It should be mentioned that Lemma 2.2 is also true for η = 0, in which case A and B are
collinear. We now prove the main result of this section.

Theorem 2.3. Let Ai Â 0, i = 1, ..., m, be n× n matrices. If

κ(A−1/2
j AiA

−1/2
j ) ≤ (2m + 1) + 2

√
4m− 2

2m− 3
for all i, j = 1, ..., m, i 6= j (7)

(which is equivalent to χ(A−1/2
j AiA

−1/2
j ) ≤

√
2

2m−1 for all i, j = 1, ..., m, i 6= j), then the
product of m quadratic forms f =

∏m
i=1 qAi is convex.

Proof. Denote by

Ω(x, y) :=
m∑

i=1




m∏

k=1,k 6=i

yT Aky


 (xT Aix).

Note that for any vectors x, y we have

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 xT AixyT Ajy =

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i

yT Aky


 xT Aix

= (m− 1)
m∑

i=1




m∏

k=1,k 6=i

yT Aky


 xT Aix

= (m− 1)Ω(x, y). (8)

On the other hand, we have

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 (yT Aiy)(xT Ajx)

=
m∑

i=1

m∑

j=1,j 6=i

xT Ajx




m∏

k=1,k 6=j

yT Aky




=
m∑

i=1





m∑

j=1

xT Ajx




m∏

k=1,k 6=j

yT Aky


− xT Aix




m∏

k=1,k 6=i

yT Aky








=
m∑

i=1



Ω(x, y)− xT Aix




m∏

k=1,k 6=i

yT Aky








= (m− 1)Ω(x, y). (9)

Thus, (8) and (9) imply that

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 xT AixyT Ajy =

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 yT AiyxT Ajx,
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and hence

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 xT AixyT Ajy

=
1
2

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aiy




{
(xT Aix)yT Ajy + (yT Aiy)xT Ajx

}
. (10)

By (4), (8) and (10), we have

Φ(x, y)

= Ω(x, y) + 2
m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky




(
xT Aiy

)
xT Ajy

=
1

(m− 1)

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 (xT Aix)yT Ajy

+ 2
m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky




(
xT Aiy

) (
xT Ajy

)

=
1

2(m− 1)

m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky




{
(xT Aix)yT Ajy + yT Aiy(xT Ajx)

}

+ 2
m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky




(
xT Aiy

) (
xT Ajy

)

=
m∑

i=1

m∑

j=1,j 6=i

m∏

k=1,k 6=i,j

yT Aky

{
1

2(m− 1)

[
xT AixyT Ajy + yT AiyxT Ajx

]
+ 2xT AiyxT Ajy

}

=
m∑

i=1

m∑

j=1,j 6=i




m∏

k=1,k 6=i,j

yT Aky


 Γ(Ai,Aj , 1

2(m−1)
)(x, y), (11)

where Γ(Ai,Aj , 1
2(m−1)

)(x, y) is defined as in Lemma 2.3 by setting A = Ai, B = Aj and η =

1
2(m−1) . Since η = 1

2(m−1) , we have that
√

2η
η+1 =

√
2

2m−1 . If

χ(A−1/2
j AiA

−1/2
j ) ≤

√
2

2m− 1
=

√
2η

η + 1

for all i, j = 1, ..., m and i 6= j, then by applying Lemma 2.2 to the matrix pair (Ai, Aj) and
η = 1

2(m−1) we deduce that

Γ(Ai,Aj , 1
2(m−1)

)(x, y) ≥ 0 for any x, y ∈ Rn.

Thus, it follows from (11) that Φ(x, y) ≥ 0 for any vectors x, y ∈ Rn. Notice that

χ
(
A
−1/2
j AiA

−1/2
j

)
=

κ
(
A
−1/2
j AiA

−1/2
j

)
− 1

κ
(
A
−1/2
j AiA

−1/2
j

)
+ 1

,
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which implies that χ(A−1/2
j AiA

−1/2
j ) ≤

√
2

2m−1 if and only if κ(A−1/2
j AiA

−1/2
j ) satisfies (7).

By (3), we conclude that the Hessian matrix of the product function f is positive semi-definite,
and thus f is convex. 2

It is worth noting that the upper bound (7) of condition numbers depends on the number
of quadratic forms involved. Intuitively, the more functions are involved, the more likely the
product function loses its convexity. Note that the upper bound (7) decreases as m increases.
So (7) does indicate that the more quadratic forms are involved, the more restrictive conditions
need to be imposed on the condition number of scaled matrices in order to retain the convexity
of the product function.

When m = 3 (the product of three quadratic forms), we see that

(2m + 1) + 2
√

4m− 2
2m− 3

=
7 + 2

√
10

3
≈ 4.4415.

Corollary 2.4. Let A,B, C be n× n matrices. If A,B, C Â 0 and

κ(B−1/2AB−1/2), κ(C−1/2BC−1/2, κ(A−1/2CA−1/2) ≤ 7 + 2
√

10
3

,

then the product f = qAqBqC is convex.

When m = 2, we have

(2m + 1) + 2
√

4m− 2
2m− 3

= 5 + 2
√

6 ≈ 9.899.

In this case, Theorem 2.3 is reduced to the next result, which was first proved in [36].

Corollary 2.5. (Zhao [36]) For any n×n matrices A and B, if A,B Â 0 and κ(B−1/2AB−1/2) ≤
5 + 2

√
6, then the product f = qAqB is convex.

Theorem 2.3 provides a sufficient convexity condition for the product of finitely many
quadratic forms (2 ≤ m < ∞). This is the first general sufficient convexity for the product
function. At present, we do not know whether the condition (7) can be further improved in
general cases. Even for the case m = 2, the question about whether or not the threshold
5 + 2

√
6 in Corollary 2.5 can be improved is not clear. However, if the matrix with a special

structure is considered, the threshold can be improved, as indicated by the following result.

Proposition 2.6. Let A,B Â 0 be 2×2 matrices. Suppose that A,B can be simultaneously
diagonalizable, i.e., there exists an orthogonal matrix U such that

A = UT

[
β1 0
0 β2

]
U, B = UT

[
γ1 0
0 γ2

]
U,

and the diagonal entries satisfy β1γ1 = β2γ2. Then f = qAqB is convex if and only if
κ(B−1/2AB−1/2) ≤ 17 + 12

√
2.
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Proof. Without loss of generality, we assume that β1 ≥ β2 which together with β1γ1 = β2γ2

implies that β1

γ1
≥ β2

γ2
. Notice that

B−1/2AB−1/2 = UT

[
β1

γ1
0

0 β2

γ2

]
U

Thus, κ
(
B−1/2AB−1/2

)
=

(
β1

γ1

)
/

(
β2

γ2

)
= β1γ2

β2γ1
. By setting z = Uy, f can be written as

f(y1, y2) =
1
2
(β1z

2
1 + β2z

2
2) ·

1
2

(
γ1z

2
1 + γ2z

2
2

)
=: g(z1, z2).

Clearly, f is convex if and only if g is convex. Consider the Hessian matrix of g, which is given
by

∇2g(z1, z2) =
1
2

[
6β1γ1z

2
1 + (β1γ2 + β2γ1) z2

2 2 (β1γ2 + β2γ1) z1z2

2 (β1γ2 + β2γ1) z1z2 6β2γ2z
2
2 + (β1γ2 + β2γ1) z2

1

]
. (12)

If g is convex in Rn, then (12) must be positive semi-definite at any point in Rn. In particular,
it must be positive semi-definite at (z1, z2) = (1, 1), thus

∇2g(1, 1) =
1
2

[
6β1γ1 + (β1γ2 + β2γ1) 2 (β1γ2 + β2γ1)

2 (β1γ2 + β2γ1) 6β2γ2 + (β1γ2 + β2γ1)

]
º 0

which implies that

0 ≤ det

[
6β1γ1 + (β1γ2 + β2γ1) 2 (β1γ2 + β2γ1)

2 (β1γ2 + β2γ1) 6β2γ2 + (β1γ2 + β2γ1)

]

= (β1γ2 + β2γ1)
2 det

[
6β1γ1

β1γ2+β2γ1
+ 1 2

2 6β2γ2

β1γ2+β2γ1
+ 1

]

= 3 (β1γ2 + β2γ1)
2

(
12

β1γ1β2γ2

(β1γ2 + β2γ1)
2 + 2

β1γ1 + β2γ2

β1γ2 + β2γ1
− 1

)
.

Since β1γ1 = β2γ2, we have that β1γ1+β2γ2 = 2
√

β1γ1β2γ2. Substituting this into the inequality
above, we have

12

( √
β1γ1β2γ2

β1γ2 + β2γ1

)2

+ 4

( √
β1γ1β2γ2

β1γ2 + β2γ1

)
− 1 ≥ 0. (13)

Conversely, if (13) holds, we can prove that g is convex. Indeed, since the diagonal entries of
(12) is nonnegative, it is sufficient to prove that det(∇2g) ≥ 0. In fact, noting that β1γ1 = β2γ2,
we have

det(∇2g(z1, z2))

=
1
4

{[
6β1γ1z

2
1 + (β1γ2 + β2γ1) z2

2

] [
6β2γ2z

2
2 + (β1γ2 + β2γ1) z2

1

]
− 4 (β1γ2 + β2γ1)

2 z2
1z

2
2

}

=
1
4

[
6β1γ1 (β1γ2 + β2γ1) (z4

1 + z4
2) + 36β1γ1β2γ2z

2
1z

2
2 − 3 (β1γ2 + β2γ1)

2 z2
1z

2
2

]

≥ 1
4

[
12β1γ1 (β1γ2 + β2γ1) z2

1z
2
2 + 36β1γ1β2γ2z

2
1z

2
2 − 3 (β1γ2 + β2γ1)

2 z2
1z

2
2

]
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=
1
4

[
12

√
β1γ1β2γ2 (β1γ2 + β2γ1) + 36β1γ1β2γ2 − 3 (β1γ2 + β2γ1)

2
]
z2
1z

2
2

=
3
4

(β1γ2 + β2γ1)
2

[
4
√

β1γ1β2γ2

β1γ2 + β2γ1
+ 12

β1γ1β2γ2

(β1γ2 + β2γ1)
2 − 1

]
z2
1z

2
2

≥ 0.

The first inequality above follows from the fact z4
1 + z4

2 ≥ 2z2
1z

2
2 . Therefore, g is convex if and

only if the positive numbers β1, β2, γ1, γ2 satisfy the inequality (13). Notice that the quadratic
function 12t2 + 4t− 1 ≥ 0 if and only if either t ≤ −1

2 or t ≥ 1
6 . Thus, (13) holds if and only if

1
6
≤
√

β1γ1β2γ2

β1γ2 + β2γ1
=

√
(β1γ2)/(β2γ1)

(β1γ2)/(β2γ1) + 1
=

√
κ(B−1/2AB−1/2)

κ(B−1/2AB−1/2) + 1
(14)

which is equivalent to κ(B−1/2AB−1/2) ≤ 17 + 12
√

2. 2

Remark 2.7. The proposition above shows that if κ(B−1/2AB−1/2) > 17 + 12
√

2, the
product of two quadratic forms considered in Proposition 2.6 is not convex. As we mentioned
earlier, we do not know at present whether the bound ‘5 + 2

√
6’ in Corollary 2.5 can be im-

proved without affecting the result of the Corollary. If it can be improved to a certain level
γ∗ > 5+2

√
6 without damaging the result of Corollary 2.5, then proposition 2.6 indicates that

γ∗ must not exceed 17 + 12
√

2.

Remark 2.8. By setting y = B1/2x, the product function can be written as

(xT Ax)(xT Bx) = yT (B−1/2AB−1/2)y(yT y),

which implies that the convexity of the product function is completely determined by such
a scaled matrix as B−1/2AB−1/2. Thus, from an algebraic point of view, it is natural to
impose a condition on the scaled matrix in order to obtain the convexity of the product
function, as shown by Theorems 2.3 and its corollaries. The condition (7) that is equivalent to
χ(A−1/2

j AiA
−1/2
j ) ≤

√
2

2m−1 , i, j = 1, ...,m, i 6= j can be understood from a geometric point of
view. In fact, denote the angle between A and B as θ(A,B) = arccos〈A,B〉/(‖A‖F ‖B‖F ) where
〈A,B〉 = tr(AB) and ‖·‖F is Frobenius norm. Then it is easy to see that χ(B−1/2AB−1/2) = 0
if and only if θ(A,B) = 0, in which case A and B are collinear. Thus, the condition (7) basically
means the angle between each pair of matrices does not exceed a certain threshold. For the
case m = 2, Proposition 2.6 indicates that the result of Theorem 2.3 does not hold if the
threshold is higher than 17 + 12

√
2. In other words, when the angle between the matrices

exceeds a certain threshold (the worst scennario occurs when θ(A,B) is close to π/2 in which
case ξ(B−1/2AB−1/2) ≈ ∞), then the product function will lose its convexity.

3 Expression of Legendre-Fenchel transform

In this section, we address a more challenging question than the one (Question 11) in [12]:
What is the LF-transform for the product of finitely many positive-definite quadratic forms?
To this end, let us first prove a series of useful technical results concerning the existence and/or
uniqueness of the solution to certain nonlinear equations.
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Lemma 3.1. Let Ai Â 0, i = 1, ...,m, be n × n matrices, and let 0 6= x ∈ Rn be an
arbitrarily given vector. Then for each i (i = 1, ...,m) the nonlinear equation




m∏

j=1,j 6=i

qAj (y)


 Aiy = x (15)

has a unique solution which is given by

y(i) =

(
2m−1

∏m
j=1,j 6=i x

T A−1
i AjA

−1
i x

) 1
2m−1

A−1
i x, (16)

where i = 1, ..., m.
Proof. It is easy to verify that (16) is a solution to (15). Thus, it suffices to prove that

(16) is the only solution to (15). Indeed, let y be an arbitrary solution to (15). Then, we have
Ai

[(∏m
j=1,j 6=i qAj (y)

)
y
]

= x. Let u be the unique solution to Aiu = x, i.e., u = A−1
i x. Thus,




m∏

j=1,j 6=i

qAj (y)


 y = A−1

i x = u,

from which we see that y 6= 0 since x 6= 0. Notice that
∏m

j=1,j 6=i qAj (y) > 0 for all i = 1, ..., m.

Denote by β = 1/
(∏m

j=1,j 6=i qAj (y)
)

. Then the equality above can be written as y = βu.

Substituting it back into (15), we have



m∏

j=1,j 6=i

qAj (βu)


 Ai(βu) = x,

i.e.,

β2(m−1)+1




m∏

j=1,j 6=i

qAj (u)


 Aiu = x.

Since Aiu = x 6= 0, the inequality above implies that β2(m−1)+1
(∏m

j=1,j 6=i qAj (u)
)

= 1. Hence

β =

(
1∏m

j=1,j 6=i qAj (u)

) 1
2(m−1)+1

=

(
2m−1

∏m
j=1,j 6=i x

T A−1
i AjA

−1
i x

) 1
2m−1

,

which implies that

y = βu =

(
2m−1

∏m
j=1,j 6=i x

T A−1
i AjA

−1
i x

) 1
2m−1

A−1
i x.

Thus the solution to (15) is unique and is given by (16). 2

An immediate result from Lemma 3.1 is the following Lemma.
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Lemma 3.2. Let Ai Â 0, i = 1, ...,m, be n× n matrices, and let x(i) 6= 0, i = 1, ..., m, be
given vectors. Then the following system with respect to y





(
∏m

j=1,j 6=1 qAj (y))A1y = x(1),

(
∏m

j=1,j 6=2 qAj (y))A2y = x(2),
...

(
∏m

j=1,j 6=m qAj (y))Amy = x(m)

(17)

has a solution if and only if y(1) = y(2) = · · · = y(m), where

y(i) =

(
2m−1

∏m
j=1,j 6=i(x(i))T A−1

i AjA
−1
i x(i)

) 1
2m−1

A−1
i x(i), i = 1, ..., m.

Moreover, if the system (17) has a solution, its solution must be unique.

Proof. Given a set of vectors x(i) 6= 0, i = 1, ...,m, by Lemma 3.1 each individual equation
of (17) always has a unique solution. Thus, if the system (17) has a solution, such a solution
must be unique. However, the whole system of equations may not have a common solution
unless x(i) 6= 0, i = 1, ...,m, are chosen such that all the vectors y(i), i = 1, ..., m, are equal.
That is, x(i)(i = 1, ...,m) must satisfy the following condition:





(
2m−1∏m

j=1,j 6=2
(x(2))T A−1

2 AjA−1
2 x(2)

) 1
2m−1

A−1
2 x(2) = y(1),

(
2m−1∏m

j=1,j 6=3
(x(3))T A−1

3 AjA−1
3 x(3)

) 1
2m−1

A−1
3 x(3) = y(1),

...(
2m−1∏m

j=1,j 6=m
(x(m))T A−1

m AjA−1
m x(m)

) 1
2m−1

A−1
m x(m) = y(1).

(18)

where y(1) =
(

2m−1∏m

j=1,j 6=1
(x(1))T A−1

1 AjA−1
1 x(1)

) 1
2m−1

A−1
1 x(1). 2

Before we prove the next result, let us first define a useful mapping. Given a vector 0 6=
x ∈ Rn, let F (x) = (F (x)

2 ,F (x)
3 , · · · ,F (x)

m )T be a mapping from Rm−1
++ to Rm−1

++ . Its components
are defined as

F
(x)
j (α2, ..., αm) =

xT D−T A−1
1 AjA

−1
1 D−1x

xT D−T A−1
1 D−1x

, j = 2, ..., m (19)

where Ai Â 0 for i = 1, ...,m and

D = I +
1
α2

A2A
−1
1 + · · ·+ 1

αm
AmA−1

1 =
(

A1 +
1
α2

A2 + · · ·+ 1
αm

Am

)
A−1

1 . (20)

The mapping F (x) plays a key role in the proof of the next result.
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Lemma 3.3. Let Ai Â 0, i = 1, ..., m and let 0 6= x ∈ Rn be an arbitrarily given vector
in Rn. Then the following system of equations in variables α2, ..., αm has a solution in Rm−1

++ :




α2 =
xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

A2

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

A1

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

,

α3 =
xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

A3

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

A1

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

,

...

αm =
xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

Am

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

xT

(
A1+

∑m

k=2
1

αk
Ak

)−1

A1

(
A1+

∑m

k=2
1

αk
Ak

)−1

x

(21)

and any solution (α2, ..., αm) ∈ Rm−1
++ of the system above satisfies that

αi ∈ [λmin(Pi), λmax(Pi)], i = 2, ..., m (22)

where Pi = A
−1/2
1 AiA

−1/2
1 , i = 2, ...,m.

Proof. Given x 6= 0, let the mapping F (x) : Rm−1
++ → Rm−1

++ be defined by (19) where D is
given by (20). Consider the following compact and convex set

S = [λmin(P2), λmax(P2)]× · · · × [λmin(Pm), λmax(Pm)] (23)

which is the Cartesian product of m − 1 intervals. Notice that F (x)(α2, ..., αm) is continuous
on S, and that for any (α2, ..., αm) ∈ S, it follows from (19) that

F (x)
j (α2, ..., αm) =

xT D−T A−1
1 AjA

−1
1 D−1x

xT D−T A−1
1 D−1x

=
zT (A−1/2

1 AjA
−1/2
1 )z

zT z
=

zT Pjz

zT z
,

where z = A
−1/2
1 D−1x, and Pj = A

−1/2
1 AjA

−1/2
1 . By Rayleigh-Ritz Theorem,

λmin(Pj) ≤ F (x)
j (α2, ..., αm) ≤ λmax(Pj), j = 2, ...,m. (24)

Therefore, we conclude that F (x)(S) ⊆ S. By Brouwer’s fixed-point theorem, the mapping F (x)

has a fixed point in S, i.e., there is a vector (α2, ..., αm) in S such that

(α2, ..., αm)T = F (x)(α2, ..., αm),

namely 



α2 = xT D−T A−1
1 A2A−1

1 D−1x

xT D−T A−1
1 D−1x

,

α3 = xT D−T A−1
1 A3A−1

1 D−1x

xT D−T A−1
1 D−1x

,

...

αm = xT D−T A−1
1 AmA−1

1 D−1x

xT D−T A−1
1 D−1x

,



14

which, by (20), is nothing but (21). Thus, the solution of (21) coincides with the fixed point
of the mapping F (x). Notice that (22) follows directly from the fact αj = F

(x)
j (α2, ..., αm) and

(24). 2

Lemma 3.4. Let Ai Â 0, i = 1, ..., m and let 0 6= x ∈ Rn be an arbitrarily given vector in
Rn. For any given positive vector (α2, ..., αm)T ∈ Rm−1

++ , the following system of equations (in
variables x(1), ..., x(m) ∈ Rn)





x(1) + x(2) + · · ·+ x(m) = x,

A2A
−1
1 x(1) − α2x

(2) = 0,

A3A
−1
1 x(1) − α3x

(3) = 0,
...

AmA−1
1 x(1) − αmx(m) = 0

(25)

has a unique solution which is given by




x(1)

x(2)

...
x(m)




=




A1

(
A1 +

∑m
k=2

1
αk

Ak

)−1
x

1
α2

A2

(
A1 +

∑m
k=2

1
αk

Ak

)−1
x

...
1

αm
Am

(
A1 +

∑m
k=2

1
αk

Ak

)−1
x




. (26)

Proof. The system (25) can be written as




I I I · · · I

A2A
−1
1 −α2I 0 · · · 0

A3A
−1
1 0 −α3I · · · 0

...
...

...
. . .

...
AmA−1

1 0 0 · · · −αmI







x(1)

x(2)

x(3)

...
x(m)




=




x
0
0
...
0




. (27)

For any given (α2, ..., αm) > 0, it is easy to check that the coefficient matrix above is nonsin-
gular, and its inverse is given by




D−1 1
α2

D−1 · · · 1
αm

D−1

1
α2

A2A
−1
1 D−1 1

α2

(
1

α2
A2A

−1
1 D−1 − I

)
· · · 1

α2

(
1

αm
A2A

−1
1 D−1

)

...
...

. . .
...

1
αm

AmA−1
1 D−1 1

αm

(
1

α2
AmA−1

1 D−1
)

· · · 1
αm

(
1

αm
AmA−1

1 D−1 − I
)




where D is given by (20). Thus, the solution to the system (27) is unique and given by



x(1)

x(2)

...
x(m)




=




D−1x
1

α2
A2A

−1
1 D−1x
...

1
αm

AmA−1
1 D−1x




.
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Substituting (20) into the above leads to (26). 2

As we have mentioned earlier, to ensure that the system (17) has a solution the vectors
x(i)(i = 1, ..., m) should satisfy certain conditions. The next result shows how to construct
such vectors.

Lemma 3.5. Let Ai Â 0, i = 1, ...,m and let 0 6= x ∈ Rn be an arbitrarily given vector in
Rn. If the vectors x(1), x(2), ..., x(m) are given by (26) where (α2, ..., αm) ∈ Rm−1

++ is a solution
to the system (21), then the system (17) has a unique solution which can be represented as

y∗ =

(
2m−1

∏m
j=2 xT C−1AjC−1x

) 1
2m−1

C−1x, C = A1 +
m∑

k=2

1
αk

Ak. (28)

Proof. Since (x(1), ..., x(m)) is determined by (26), we have

x(1) = A1

(
A1 +

m∑

k=2

1
αk

Ak

)−1

x = A1C
−1x, (29)

x(i) =
1
αi

Ai

(
A1 +

m∑

k=2

1
αk

Ak

)−1

x =
1
αi

AiC
−1x, i = 2, ...,m, (30)

where (α2, ..., αm) is a solution to (21), which always exists by Lemma 3.3. Thus, for each
i = 2, ...,m, by (29) and (30) and we have

( ∏m
j=2(x

(1))T A−1
1 AjA

−1
1 x(1)

∏m
j=1,j 6=i(x(i))T A−1

i AjA
−1
i x(i)

) 1
2m−1

=




∏m
j=2 xT C−1AjC

−1x
(

1
αi

)2(m−1) ∏m
j=1,j 6=i x

T C−1AjC−1x




1
2m−1

=


 xT C−1AiC

−1x
(

1
αi

)2(m−1)
xT C−1A1C−1x




1
2m−1

=


 αi(

1
αi

)2(m−1)




1
2m−1

= αi. (31)

The last second equality follows from the fact that (α2, ..., αm) is a solution to (21). Since
(x(1), ..., x(m)) given by (26) is the solution to (25), it satisfies that





A2A
−1
1 x(1) − α2x

(2) = 0,

A3A
−1
1 x(1) − α3x

(3) = 0,
...

AmA−1
1 x(1) − αmx(m) = 0,

which can be written as 



A−1
1 x(1) = α2A

−1
2 x(2),

A−1
1 x(1) = α3A

−1
3 x(3),

...
A−1

1 x(1) = αmA−1
m x(m).
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This together with (31) implies that (x(1), ..., x(m)) satisfies (18). Thus, we have y(1) = y(2) =
· · · = y(m) where y(i), i = 1, ..., m, are given as in Lemma 3.2. By Lemma 3.2, the nonlinear
system (17) has a unique solution which can be represented as

y∗ =

(
2m−1

∏m
j=2(x(1))T A−1

1 AjA
−1
1 x(1)

)1/(2m−1)

A−1
1 x(1) = y(1).

Substituting (29) into the above yields (28). 2

We have all ingredients to prove the main result of this section.

Theorem 3.6. Let Ai Â 0, i = 1, ..., m, be n × n matrices, and assume that the product
function f =

∏m
i=1 qAi is convex. Then f∗(0) = 0 and for x 6= 0,

f∗(x) = (2m− 1)
(

1∏m
k=2 αk

) 1
2m−1




xT
(
A1 +

∑m
k=2

1
αk

Ak

)−1
x

2m




m
2m−1

(32)

where (α2, ..., αm) ∈ Rm−1
++ is an arbitrary solution to the system (21) at x.

Proof. When x = 0, it is evident that f∗(0) = 0. Thus, in the remainder of this proof, we
assume that x 6= 0. First, let (α∗2, ..., α∗m) ∈ Rm−1

++ be a solution to the system (21). By Lemma
3.3, such a solution always exists. Second, let us consider the following system in variables
x(1), x(2), ..., x(m) ∈ Rn : 




x(1) + x(2) + · · ·+ x(m) = x,

A2A
−1
1 x(1) − α∗2x(2) = 0,

A3A
−1
1 x(1) − α∗3x(3) = 0,

...
AmA−1

1 x(1) − α∗mx(m) = 0.

(33)

By Lemma 3.4, the system (33) has a unique solution, denoted by (x(1)
∗ , x

(2)
∗ , ..., x

(m)
∗ ), which

can be represented as (26) with (α2, ..., αm) = (α∗2, ..., α∗m). Based on this fact, by Lemma 3.5,
the following system 


m∏

j=1,j 6=i

qAj (y)


 Aiy = x

(i)
∗ , i = 1, ...,m (34)

has a unique solution which can be represented as

y∗ =

(
2m−1

∏m
j=2 xT C−1AjC−1x

) 1
2m−1

C−1x, (35)

where

C = A1 +
m∑

k=2

1
α∗k

Ak.
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Since (x(1)
∗ , x

(2)
∗ , ..., x

(m)
∗ ) is the solution to (33), from the first equation of (33), we have x

(1)
∗ +

x
(2)
∗ + · · ·+ x

(m)
∗ = x. Thus, substituting y∗ into (34) and adding them up, we have

m∑

i=1




m∏

j=1,j 6=i

qAj (y
∗)


 Aiy

∗ =
m∑

i=1

x
(i)
∗ = x,

which by (1) indicates that
x = ∇f(y∗). (36)

Since f is convex, (36) implies that for the given x the function xT y−f(y) attains its maximum
value at y∗. Thus,

f∗(x) = sup
y∈Rn

xT y − f(y) = xT y∗ − f(y∗). (37)

Note that f is homogenous of degree 2m, by (36) again it is easy to verify that have

xT y∗ = ∇f(y∗)T y∗ = 2mf(y∗). (38)

Therefore, by (37), (38) and (35), we have

f∗(x) = xT y∗ − f(y∗) =
(

1− 1
2m

)
xT y∗

=
(

2m− 1
2m

) (
2m−1

∏m
j=2 xT C−1AjC−1x

) 1
2m−1

xT C−1x. (39)

Since (α∗2, ..., α∗m) ∈ Rm−1
++ is a solution to (21), we have

xT C−1AjC
−1x = α∗jx

T C−1A1C
−1x, j = 2, ..., m,

which implies that

m∑

j=2

1
α∗j

xT C−1AjC
−1x = (m− 1)xT C−1A1C

−1x, (40)

and
m∏

j=2

xT C−1AjC
−1x =

(
xT C−1A1C

−1x
)m−1

m∏

j=2

α∗j . (41)

By (40), we have

xT C−1A1C
−1x = xT C−1

(
A1 +

m∑

k=2

1
α∗k

Ak −
m∑

k=2

1
α∗k

Ak

)
C−1x

= xT C−1

(
C −

m∑

k=2

1
α∗k

Ak

)
C−1x

= xT C−1x−
m∑

k=2

1
α∗k

xT C−1AkC
−1x

= xT C−1x− (m− 1)xT C−1A1C
−1.
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Thus,

xT C−1A1C
−1x =

1
m

xT C−1x. (42)

Combining (42) and (41) leads to

m∏

j=2

xT C−1AjC
−1x =

(
1
m

xT C−1x

)m−1 m∏

j=2

α∗j .

Substituting this into (39), we have

f∗(x) =
(

2m− 1
2m

)

 2m−1

(
1
mxT C−1x

)m−1 ∏m
j=2 α∗j




1
2m−1

xT C−1x

=
(

2m− 1
2m

) (
(2m)m−1

∏m
j=2 α∗j

) 1
2m−1 (

xT C−1x
) m

2m−1

= (2m− 1)

(
1∏m

j=2 α∗j

) 1
2m−1

(
xT C−1x

2m

) m
2m−1

,

as desired. 2

Remark 3.7. Let α(x) = (α2(x), ..., αm(x)) denote a solution to the system (21) at x.
Then it is also a solution to the system (21) at λx for any λ ∈ R, i.e., α(λx) = α(x) for any
λ ∈ R. Thus, it is easy to see that f∗, given by (32), is positively homogeneous of degree 2m

2m−1 .
This is consistent with a general result concerning the LF-transform of a convex function that
is homogeneous of degree 2m. In fact, Lasserre [22] showed that if a function which is positively
homogeneous of p degree (convexity of the function is not required), then its LF-transform is
positively homogeneous of q degree, where 1/p + 1/q = 1. Thus, if the product function f
is not convex, its LF-transform remains homogeneous of degree 2m

2m−1 , in which case, how-
ever, the formula for f∗ is not clear at present (Theorem 3.6 above provides the formula of
f∗ when f is convex). Moveover, if the product function f is strictly convex, then f∗ given
by (32) will be differentiable and strictly convex. While this property cannot be seen imme-
diately from (32), it can follow from a well known result in [8] (see also, Corollary 4.1.3 in [14]).

Remark 3.8. We see from Theorem 3.6 that f∗ is finite everywhere and f∗ > 0 for all
x ∈ Rn\{0}. It should be noted that the convexity assumption on f is only needed in our anal-
ysis in order to derive the formula (32). The finiteness and nonnegativeness of f∗ do not rely on
this assumption. The finiteness can follow directly from the coercivity of the product function
f (see e.g., Proposition 1.3.8 in [14]). Noting that f∗ is convex and homogeneous of degree
2m/2m−1 > 1, the nonnegativeness of f∗ follows directly from Lemma 5.1 in [2] (which claims
that any function that is convex and homogeneous of degree p > 1 must be nonnegative in its
domain). Due to the special structure of the production function f , the finiteness and nonneg-
ativeness of f∗ can also be verified by the following estimate: From (22) and (32), it is easy to
see that there exist two positive constants ξ1, ξ2 such that ξ1‖x‖

2m
2m−1 ≤ f∗(x) ≤ ξ2‖x‖

2m
2m−1 .
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It is interesting to consider two special cases: m = 2, 3. First, by setting m = 2 in (32), we
have

f∗(x) = 3
(

1
α2

) 1
3

[
xT

(
A1 +

1
α2

A2

)−1

x/4

] 2
3

= 3(α2)
1
3

(
xT (α2A1 + A2)

−1 x/4
) 2

3 ,

and the system (18) collapses to

α2 =
xT

[
A1 + 1

α2
A2

]−1
A2

[
A1 + 1

α2
A2

]−1
x

xT
[
A1 + 1

α2
A2

]−1
A1

[
A1 + 1

α2
A2

]−1
x

=
xT (α2A1 + A2)

−1 A2 (α2A1 + A2)
−1 x

xT (α2A1 + A2)
−1 A1 (α2A1 + A2)

−1 x
.

Thus, an immediate result from Theorem 3.6 is as follows.

Corollary 3.8. ([36]) Let A Â 0 and B Â 0 and the product f = qAqB be convex. Then

f∗(0) = 0 and for x 6= 0, f∗(x) = 3α
1
3

(
xT (A + αB)−1 x/4

) 2
3 , where α is a root to the uni-

variate equation at x: α = xT (A+αB)−1A(A+αB)−1x

xT (A+αB)−1B(A+αB)−1x
.

Similarly, when m = 3, Theorem 3.6 is reduced to the next result.

Corollary 3.9. Let A1 Â 0, A2 Â 0, A3 Â 0 be n × n matrices and let the product
f = qA1qA2qA3 be convex. Then f∗(0) = 0 and for x 6= 0,

f∗(x) = 5
(

1
αγ

) 1
5

(
xT (A1 + 1

αA2 + 1
γ A3)−1x

6

) 3
5

,

where (α, γ) > 0 is a solution to the following system of equations at x:

α =
xT

(
A1 + 1

αA2 + 1
γ A3

)−1
A2

(
A1 + 1

αA2 + 1
γ A3

)−1
x

xT
(
A1 + 1

αA2 + 1
γ A3

)−1
A1

(
A1 + 1

αA2 + 1
γ A3

)−1
x

,

γ =
xT

(
A1 + 1

αA2 + 1
γ A3

)−1
A3

(
A1 + 1

αA2 + 1
γ A3

)−1
x

xT
(
A1 + 1

αA2 + 1
γ A3

)−1
A1

(
A1 + 1

αA2 + 1
γ A3

)−1
x

.

Roughly speaking, the computation of the LF-transform for the product of m quadratic
forms amounts to finding a solution to the system (21). From the proof of Lemma 3.3, this also
amounts to computing a fixed point of the mapping F (x)(α2, ..., αm). As the size of the system
(21) dependents proportionally on the number of quadratic forms involved, the computational
complexity of f∗ also depends directly on the number of quadratic forms. The more quadratic
forms are involved, the more efforts are required for the evaluation of the LF-transform. It is
not difficult to see that (21) is actually a polynomial system and hence it is sufficiently smooth.
Newton’s method can be employed to solve the system (21). Since the solution of the system
lies in the box (23), the bisection method may be applied, and some fixed-point methods can
be used as well.
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4 Conclusions

A general sufficient convexity condition for the product of finitely many quadratic forms was
developed in this paper. The main result claims that the product function is convex if the
condition numbers of the so-called ‘scaled matrices’ are bounded above by a certain constant
which can be explicitly given in terms of the number of quadratic forms. This result indicates
that the more distinct quadratic forms are involved, the more restrictive condition should be
imposed on these quadratic forms in order to retain the convexity of the product function (in
another word, the more quadratic forms are involved, the more likely the product function loses
its convexity). The convexity condition developed in this paper makes it possible to identify
the computationally tractable multiplicative optimization problems, and makes it also possible
to employ some efficient modern convex optimization methods [31] to solve some (quadratic)
multiplicative programming problems instead of relying merely on global optimization meth-
ods. On the other hand, a more general question than the open ‘Question 11’ in [12] has
been addressed in this paper. The main result (Theorem 3.6) shows that the Legendre-Fenchel
transform of the product of finitely many quadratic forms can be explicitly expressed as a
finite function with some parameters which can be obtained by solving a system of equations
with a special structure (or equivalently, by computing a fixed point of a smooth mapping).
This result makes it possible to compute efficiently the LF-transform for the product of finitely
many quadratic forms. From a duality point of view, this result might also lead to an effective
duality-type algorithm for some multiplicative optimization problems.
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