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Abstract. We propose a fast population game dynamics, motivated by
the analogy with infection and immunization processes within a popula-
tion of “players,” for finding dominant sets, a powerful graph-theoretical
notion of a cluster. Each step of the proposed dynamics is shown to have
a linear time/space complexity and we show that, under the assumption
of symmetric affinities, the average population payoff is strictly increas-
ing along any non-constant trajectory, thereby allowing us to prove that
dominant sets are asymptotically stable (i.e., attractive) points for the
proposed dynamics. The approach is general and can be applied to a
large class of quadratic optimization problems arising in computer vi-
sion. Experimentally, the proposed dynamics is found to be orders of
magnitude faster than and as accurate as standard algorithms.

1 Introduction

Dominant sets are a graph-theoretical notion of a cluster [1], which have found
application in problems as diverse as the analysis of fMRI data [2], content-
based image retrieval [3], detection of anomalous activities in video streams [4],
bioinformatics [5], human action recognition [6] and matching problems [7, 8].

Computationally, the standard approach to finding dominant sets in an edge-
weighted graph is to use replicator dynamics, a class of evolutionary game-
theoretic algorithms inspired by Darwinian selection processes. However, a typ-
ical problem associated with these algorithms is the scaling behavior with the
number of data. On a dataset containing N examples, the computationally com-
plexity of each replicator dynamics step is O(N?), thereby hindering their ap-
plicability to problems involving very large data sets, such as high-resolution
imagery and spatio-temporal data.

In order to avoid this drawback, in this paper we propose a new popula-
tion game dynamics for finding dominant sets which turns out to be dramati-
cally faster and even more accurate than standard approaches from evolutionary
game theory. Our approach is motivated by the analogy with infection and im-
munization processes within a population of “players.” The selection mechanism
governing our dynamics iteratively performs an infection step, which consists
of spreading (or suppressing) the most successful (unsuccessful) strategies in
the population. The infection phase is then protracted as long as the selected
“infective” strategy performs better (or worse, if not extinct) than the average



population’s payoff. As opposed to standard techniques, such as the replica-
tor dynamics or best-response dynamics, which can be considered interior-point
methods, our algorithm resembles a vertex-pivoting method. Each step of the
proposed dynamics is shown to have a linear time/space complexity and we show
that, under the assumption of symmetric affinities, the average population payoff
is strictly increasing along any non-constant trajectory, thereby allowing us to
prove that dominant sets (i.e., ESS equilibria of the underlying “grouping game”
[9]) are asymptotically stable points for the proposed dynamics.

We provide experimental evidence that the proposed algorithm is orders of
magnitude faster than standard dynamics on two computer vision applications,
namely image segmentation and region-based hierarchical image matching, while
preserving the quality of the solutions found.

Although the main focus in this paper is dominant sets, we note that the
proposed approach is general and can be applied to a large class of optimization
problem, instances of which abound in computer vision and pattern recognition
(e.g., graph matching, stereo matching, image labeling, etc. ).

2 Basics of evolutionary game theory

Evolutionary game theory considers an idealized scenario whereby pairs of in-
dividuals are repeatedly drawn at random from a large, ideally infinite, popu-
lation to play a symmetric two-player game. Let O = {1,...,n} be the set of
pure strategies available to the players and let A be the n x n payoff or utility
matrix [10], where a;; is the payoff that a player gains when playing the strategy
1 against an opponent playing strategy j. A mized strategy is a probability distri-
bution x = (z1,2,...,7,)" over the available strategies in O. Mixed strategies
lie in the standard simplex A of the n-dimensional Euclidean space, which is
defined as

A:{XE[R”: Zmizlandxizo,izl,...,n}.

i=1

We denote by e’ the ith column of the identity matrix. The support of a mixed
strategy x € A, denoted by o(x), defines the set of elements with non-zero
probability: o(x) = {i € O : 2; > 0}. The expected payoff that a player obtains
by playing the pure strategy i against an opponent playing a mixed strategy x
is (ef|x) = (Ax); = > ; aijzj Hence, the expected payoff received by adopting
a mixed strategy y is given by 7(y|x) = y ' Ax while the population expected
payoff is 7(x) = m(x|x) = x" Ax. For notational compactness, in the sequel we
will write 7(y — x|z) for the payoff difference 7 (y|z) — 7(x|z), and 7(y — x) for
m(y = x[y) = 7(y — x[x).

A mixed strategy x is a (symmetric) Nash (equilibrium) strategy if for all
y € A, we have (y — x|x) < 0. This implies that m(e’ —x|x) < 0 for all i € O,
which in turn implies that 7(e’ — x|x) = 0 for all i € o(x). Hence, the payoff
is constant across all (pure) strategies in the support of x, while all strategies
outside the support of x earn a payoff that is less than or equal 7(x).



A strategy x is said to be an Evolutionary Stable Strategy (ESS) if it is a Nash
strategy (equilibrium condition) and for all y € A\ {x} satisfying 7(y — x|x) =0
we have 7(y — x|y) < 0 (stability condition). Intuitively, ESS’s are strategies
such that any small deviation from them will lead to an inferior payoff. ESS’s
can be found by replicator dynamics (RD), a classic formalization of a natural
selection process [10].

3 Dominant sets and their characterizations

The dominant set framework is a pairwise clustering approach [1] that is based
on the notion of a dominant set, which can be seen as an edge-weighted general-
ization of a clique. The framework is based on a recursive characterization of the
weight Ws(4) of element ¢ with respect to a set S of elements, and characterizes
a group as a dominant set, i.e., a set that satisfies:

1. Ws(i) >0, foralli € S,
2. Wsugiy(i) <0, foralli ¢ S.

These conditions correspond to the two main properties of a cluster: the first
regards internal homogeneity, whereas the second regards external heterogeneity.
The characteristic vector x° of a set S C V is defined as

Ws(i)  sp -
5 s ities,
! 0 otherwise .

The following result establishes a one-to-one correspondence between ESS’s
and dominant sets [9].

Theorem 1. If S CV is a dominant set with respect to affinity matriz A, then
x° is an ESS for a two-player game with payoff matriz A.

Conversely, if x is an ESS for a two-person game with payoff matrixz A, then
S = o(x) is a dominant set with respect to A, provided that Wgygy (i) # 0 for

alli ¢ S.

Under the assumption of a symmetric affinity matrix A there exists a one-
to-one correspondence between dominant sets and the (strict) local solutions of
the following so-called standard quadratic program (StQP) [1]:

max {x' Ax : x € A} . (1)

4 A new class of evolutionary dynamics

Let x € A be the incumbent population state, y be the mutant population
invading x and let z = (1 — €)x + €y be the population state obtained by
injecting into x a small share of y-strategists. The score function of y versus x
[11] is given by:

hx(y,€) = m(y —x|z) = em(y — %) + 7(y — x|x).



Following [12], we define the (neutral) invasion barrier bx(y) of x € A against
any mutant strategy y as the largest population share €, of y-strategists such
that for all smaller positive population shares €, x earns a higher or equal payoff
than y in the post-entry population z. Formally:

bx(y) = inf({e € (0,1) : hx(y,e) >0} U{1}).

Given populations x,y € A, we say that x is immune against y if by (y) > 0.
Trivially, a population is always immune against itself. Note that, x is immune
against y if and only if either 7(y — x|x) < 0 or 7(y — x|x) = 0 and 7(y—x) < 0.
If 7(y — x|x) > 0 we say that y is infective for x. We denote the set of infective
strategies for x as

Y(x)={yeA: n(y —x|x) > 0}.

Consider y € T'(x); clearly, this implies bx(y) = 0. If we allow for invasion of
a share € of y-strategists as long as the score function of y versus x is positive,
at the end we will have a share of dy(x) mutants in the post-entry population,
where

Oy (x) =inf ({e € (0,1) : hx(y,e) <0}U{1}).

Note that if y is infective for x, then dy(x) > 0, whereas if x is immune against
y, then dy(x) = 0. Since score functions are (affine-)linear, there is a simpler

expression Jy(x) = min [7:({’(‘;7_3'5‘), 1}, if 7(y —x) < 0, and dy(x) = 1, otherwise.
Proposition 1. Let y € T(x) and z = (1 — 6)x + dy, where § = 0y(x). Then

y ¢ 7(z).

The proof of this result is straightforward by linearity and can be found, e.g.,
in [13].

The core idea of our method is based on the fact that x € A is a Nash
equilibrium if and only if 7(x) = () (we prove this in Theorem 2). Therefore, as
long as we find a strategy y € 7(x), we update the population state according
to Proposition 1 in order obtain a new population z such that y ¢ 7'(z) and we
reiterate this process until no infective strategy can be found, or in other words,
a Nash equilibrium is reached.

The formalization of this process provides us with a class of new dynam-
ics which, for evident reasons, is called Infection and Immunization Dynamics
(INIMDYN ):

<+ — 6S(X<t>)(x(t))[8(x(t)) —x®] +x® (2)

Here, S : A — A is a generic strategy selection function which returns an
infective strategy for x if it exists, or x otherwise:

S(x) = {y for som-e yeET(x) HT(x)#0,
x otherwise.

3)

By running these dynamics we aim at reaching a population state that can
not be infected by any other strategy. In fact, if this is the case, then x is a



Nash strategy, which happens if and only if it is fixed (i.e., stationary) under
dynamics (2):

Theorem 2. Let x € A be a strategy. Then the following statements are equiv-
alent:

(a) T(x) = (: there is no infective strategy for x;

(b) x is a Nash strategy;

(c) x is a fized point under dynamics (2).

Proof. A strategy x is a Nash strategy if and only if 7n(y — x|x) < 0 for all
y € A. This is true if and only if 7’(x) = 0. Further, 6 = 0 implies S(x) = x.
Conversely, if S(x) returns x, then we are in a fixed point. By construction of
S(x) this happens only if there is no infective strategy for x.

The following result shows that average payoff is strictly increasing along any
non-constant trajectory of the dynamics (2), provided that the payoff matrix is
symmetric.

Theorem 3. Let {x"},5¢ be a trajectory of (2). Then for all t >0,
R(x) > 7(x9),

with equality if and only if X = xU*+1)  provided that the payoff matriz is
symmetric.

Proof. Again, let us write x for x(*) and ¢ for 0s(x)(x). As shown in [13], we
have

7r(X(t+1)) _ 7r(X(t)) =6 [hy(x,0) +7(y — x|x)] .

If x(**D £ x() | then x is no Nash strategy, and y = S(x) returns an infective
strategy. Hence § > 0 and

hy(x,0) + m(y — x|x) > 7(y — x|x) >0

(in fact, if 6 < 1, then even hy(x,d) = 0), so that we obtain a strict increase
of the population payoff. On the other hand, if 7(x*t1) = 7(x(*)), then the
above equation implies § = 0 or hy(x,0) = 7(y — x|x) = 0, due to nonnegativity
of both quantities above. In particular, we have § = 0 or 7(y — x|x) = 0. In
both cases, y = S(x) cannot be infective for x. Thus 7’(x) = @ and x must be
a fixed point, according to Theorem 2. This establishes the last assertion of the
theorem.

Theorem 3 shows that by running INIMDYN , under symmetric payoff func-
tion, we strictly increase the population payoff until we reach a Nash equilibrium
at a fixed point. This of course holds for any selection function S(x) satisfying
(3). However, the way we choose S(x) may affect the efficiency of the dynam-
ics. The next section introduces a particular selection function that leads to a
well-performing dynamics for our purposes.



5 A pure strategy selection function

Depending on how we choose the function S(x) in (2), we may obtain different
dynamics. One in particular, which is simple and leads to nice properties, consists
in allowing only infective pure strategies.
Given a population x, we define the co-strategy of e* with respect to x as
— Ty

elx:xiil(ei—x)—l—x.

Note that if 7(e’ — x|x) # 0 then either e’ € T'(x) or eiy € T'(x).

Consider the strategy selection function Spy...(x), which finds a pure strategy
i maximizing |7 (e’ — x|x)|, and returns e’, e’y or x according to whether (e’ —
x|x) is positive, negative or zero. Let M(x) be a pure strategy such that

M(x) € arg max (e’ —x|x)|.

i=1,...,n

Then Spyre(x) can be written as

el if (e’ —x|x) >0 and i = M(x)
Spure(x) = ¢ eix if T(e’ — x[x) < 0 and i = M(x)
x  otherwise.

Note that the search space for an infective strategy is reduced from A to a
finite set. Therefore, it is not obvious that Spy.e(x) is a well-defined selection
function, i.e., it satisfies (3). The next theorem shows that indeed it is.

Proposition 2. Let x € A be a population. There exists an infective strategy
forx, i.e., T(x) # 0, if and only if Spure(x) € T(x).

Proof. Let y € T(x). Then 0 < w(y —x|x) = >, y;m(e’ — x|x). But this
implies that there exists at least one infective pure strategy for x, i.e., e! € 1'(x)
for some ¢ = 1,...,n. The converse trivially holds.

A fixed point of INIMDYN is asymptotically stable if any trajectory starting
sufficiently close to x converges to x.

Theorem 4. A state x is asymptotically stable for INIMDYN with Spyre as
strategy selection function if and only if x is an ESS, provided that the payoff
matriz is symmetric.

Proof. If the payoff matrix is symmetric, every accumulation point of INIM-
DyN with Spyre is a Nash equilibrium [13]. Moreover ESSs are strict local
maximizers of 7(x) over A and vice versa [10].

If x is asymptotically stable, then there exists a neighborhood U of x in A
such that any trajectory starting in U converges to x. By Theorem 3 this implies
that m(x) > 7(y) for all y € U, y # x. Hence, x is a strict local maximizer of
m(x) and therefore x is an ESS.



Conversely, if x is an ESS then x is a strict local maximizer of m(x) and an
isolated Nash equilibrium. Hence, there exists a neighborhood U of x in A where
7(x) is strictly concave and x is the only accumulation point. This together with
Theorem 3 implies that any trajectory starting in U will converge to x. Hence,
x is asymptotically stable.

This selection function exhibits the nice property of rendering the complexity
per iteration of our new dynamics linear in both space and time, as opposed
to the replicator dynamics, which have quadratic space/time complexity per
iteration.

Theorem 5. Given the iterate x®) and its linear transformation Ax®, both
space and time requirement of one iteration step is linear in n, the number of
objects.

Proof. Again abbreviate x = x(). Now, given Ax we can straightforwardly com-
pute in linear time and space 7(x) and Spyre(X). Assume that Spy,e(x) = €,
then the computation of Je:(x) has a linear complexity, since m(x — ef|x) =
(Ax); — 7(x) and 7(e’ — x) = a;; — 2Ax + 7(x). Moreover, Ax**1) can be also
computed in linear time and space since

AxY = 6. (x) [A; — Ax] + Ax,

where A; is the ith column of A. Similar arguments hold if Spy.e(x) = eiy.
Indeed,

— T '
m(e'x — x[x) = . - 17r(ez —x[x),

et = (2 )2w<ei—x>,

1'2'7].

and finally,

xi—l

Ax(t+D) = <$> 5= (x)[A; — Ax] + Ax.
Hence the result.

The only step of quadratic complexity is the first one, where we need to
compute Ax(?). Even this can be reduced to linear complexity, if we start from
a pure strategy e, in which case we have Ax(®) = A;. Note that the latter is
impossible, e.g., for the replicator dynamics.

6 Experimental results

In order to test the effectiveness of our algorithm, we present experiments on
some computer vision problems, which have been attacked using the dominant-
set framework or related quadratic optimization problems. Our aim is to show the
computational gain over the standard algorithm used in the literature, namely
the replicator dynamics (RD). Specifically, we present comparisons on image
segmentation [1] and region-based hierarchical image matching [8].



(a) s.r. 0.005 (b) s.r. 0.015 (c) s.r. 0.03 (d) s.r. 0.05

Fig. 1. Precision/Recall plots obtained on the Berkeley Image Database (s.r.=sampling
rate)
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Fig. 2. Average execution times (in logarithmic scale) for the image segmentation and
region-based hierarchical image matching applications.

The stopping criterion adopted with our dynamics is a measure of the accu-
racy of the Nash equilibrium, which is given by €(x) = -, min {z;, 7(x — €'|x) }2.
Indeed, €(x) is 0 if and only if x is a Nash equilibrium. In the experiments, we
stopped the dynamics at accurate solutions, namely when e(x) < 10710, As for
RD, we stopped the dynamics either when e(x) < 107!° or when a maximum
number of iterations was exceeded.

6.1 Image segmentation

We performed image segmentation experiments over the whole Berkeley dataset
[14] using the dominant-set framework as published in [1]. The affinity between
two pixels 7 and j was computed based on color and using the standard Gaussian
kernel. Our INIMDYN algorithm was compared against standard replicator dy-
namics (RD) [1] (using the out-of-sample extension described in [15]) as well as
the Nystrom method [16]. The algorithms were coded in C and run on a AMD
Sempron 3 GHz computer with 1GB RAM. To test the behavior of the algo-
rithms under different input sizes we performed experiments at different pixel
sampling rates, namely 0.005, 0.015, 0.03 and 0.05, which roughly correspond to
affinity matrices of size 200, 600, 1200 and 2000, respectively. Since the Nystrom
method, as opposed to the dominant set approach, needs as input the desired
number of clusters, we selected an optimal one after a careful tuning phase.

In Figure 2(a) we report (in logarithmic scale) the average computational
times (in seconds) per image obtained with the three approaches. The computa-
tional gain of INIMDYN over the replicator dynamics is remarkable and it clearly
increases at larger sampling rates. It is worth mentioning that INIMDYN other
than being faster, achieved also better approximations of Nash equilibriums as



opposed to RD. As for the quality of the segmentation results, we report in
Figure 1 the average precision/recall obtained in the experiment with the differ-
ent sampling rates. As can be seen, all the approaches perform equivalently, in
particular RD and INIMDYN achieved precisely the same results as expected.

6.2 Region-based hierarchical image matching

In [8] the authors present an approach to region-based hierarchical image match-
ing, aimed at identifying the most similar regions in two images, according to a
similarity measure defined in terms of geometric and photometric properties. To
this end, each image is mapped into a tree of recursively embedded regions, ob-
tained by a multiscale segmentation algorithm. In this way the image matching
problem is cast into a tree matching problem, that is solved recursively through
a set of sub-matching problems, each of which is then attacked using replicator
dynamics (see [8] for details). Given that typically hundreds of sub-matching
problems are generated by a single image matching instance, it is of primary
importance to have at one’s disposal a fast matching algorithm. This makes our
solution particularly appealing for this application.

We compared the running time of INIMDYN and RD over a set of images
taken from the original paper [8]. We run the experiments on a machine equipped
with 8 Intel Xeon 2.33 GHz CPUs and 8 GB RAM. Figure 2(b) shows the average
computation times (in seconds) needed by RD and INIMDYN to solve the set of
sub-matching problems generated from 10 image matching instances. Since each
image matching problem generated sub-matching problems of different sizes, we
grouped the instances having approximately the same size together. We plotted
the average running time within each group (in logarithmic scale) as a function
of the instance sizes and reported the standard deviations as error bars. Again,
as can be seen, INIMDYN turned out to be orders of magnitude faster than RD.

7 From QPs to StQPs

Although in this paper we focused mainly on dominant sets, which lead to
quadratic optimization problems over the standard simplex (StQPs), the pro-
posed approach is indeed more general and can be applied to a large class of
quadratic programming problems (QPs), instances of which frequently arise in
computer vision and pattern recognition.

In fact, consider a general QP over a bounded polyhedron

1
max{QxTQx+ch tXE M} ) (4)

where M = conv{vy,...,vi} C R” is the convex hull of the points v;, which
form the columns of a n x k-matrix V. Then we can write the QP in (4) as the
following StQP:

max {yTQy 1y € A} ,
where Q = % (VTQV +e'Vie+ cTVe).
Thus every QP over a polytope can be expressed as an StQP. This approach
is of course only practical if the vertices V are known and k is not too large. This



is the case of QPs over the ¢! ball, where V = [I|—1I], I the n x n identity matrix
and A C R?™ and, more generally, for box-constrained QPs [17]. However, even
for general QPs, where the constraints are expressed as M = {x € R} : Ax = b},
we can use StQP as a relaxation without using all vertices (see [18] for details).
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