
A heuristic approach for packing rectangles in convex

regions

Andrea Cassioli

Dipartimento di Sistemi e Informatica, Università di Firenze
Via di Santa Marta, 3, 50139 Firenze, Italy

e-mail: cassioli@dsi.unifi.it

Marco Locatelli

Dipartimento di Ingegneria Informatica, Università di Parma
Via G.P. Usberti, 181/A, 43124 Parma, Italy

e-mail: locatell@ce.unipr.it

Abstract

In this paper we propose a heuristic approach for the problem of packing equal

rectangles within a convex region. The approach is based on an Iterated Local

Search scheme (or, using a terminology employed for continuous problems, a

Monotonic Basin Hopping), in which the key step is the perturbation move.

Different perturbation moves, both combinatorial and continuous ones, are pro-

posed and compared through extensive computational experiments on a set of

test instances. The overall results are quite encouraging.

Keywords: Packing Problems, Mixed Integer Global Optimization, Iterated

Local Search, Monotonic Basin Hopping

1. Introduction

In packing problems some objects have to be placed into some containers in such

a way that the overall unused space within the container (the so called waste)

is minimized. The objects and the containers have a fixed (usually two- or

three-dimensional) shape, while their dimensions and positions can vary. More

formally, let us consider N objects. For each object i we introduce the parameter

vectors xi, αi, respectively a position and a size vector, which allow to uniquely

Preprint submitted to Computers & Operations Research June 1, 2010

identify the portion of the space where the object lies, denoted by

Di = Di(xi, αi), i = 1, . . . , N.

For instance, if the objects are circles, we have a two-dimensional position vector

corresponding to the coordinates of the center of the circle, while we have a single

size parameter, corresponding to the radius of the circle. Although the shapes

of the objects might be different from each other, in most cases the shape is the

same for all of them. Possible shapes are convex objects such as circles, squares,

rectangles, but also nonconvex ones are sometimes considered.

Next, we consider a container

C = C(x0, α0)

with some fixed shape (not necessarily equal to those of the objects), and also

depending on a position and a size vector. In some applications the vectors,

identifying the portion of the space occupied by the container, are replaced by

a description of such portion through proper inequalities and/or equalities.

A packing problem can be formulated as an optimization problem. The con-

straints of the problem are the following

• the objects may touch each other but can not overlap, i.e.,

D0

i (xi, αi) ∩ D0

j (xj , αj) = ∅ ∀ i 6= j, (1)

where D0

i ,D0

j denote the interior of Di,Dj ;

• the objects must lie within the container, i.e.,

Di(xi, αi) ⊆ C(x0, α0) ∀ i. (2)

The decision variables depend on the problem at hand. Usually, the position

vectors xi are variables, while the size vectors αi can either be variables or fixed

values. The position vector x0 for the container is usually fixed, while its size

vector may either be variable or fixed. The objective of the problem should

state the fact that we aim at minimizing the waste. This can be accomplished

in different ways depending on the nature of the position and size vectors:

2

• objects: variable xi, fixed αi; container: fixed x0, variable α0 - in this

case we aim at minimizing the area (or volume) of the container, which is

usually obtained as some function of the variable parameter α0;

• objects: variable xi, variable αi; container: fixed x0, fixed α0 - in this case

we aim at maximizing the sum of the areas (or volumes) of the objects,

where the area of each object i is usually obtained as some function of the

variable parameter αi;

• objects: variable xi, fixed αi; container: fixed x0, fixed α0 - in this case we

aim at maximizing the number N of objects which can be placed within

the container without violating the constraints.

Many packing problems have been tackled in the literature. Most papers present

heuristic approaches, although some exact approaches have also been proposed.

A detailed survey about methods and applications of packing problems can be

found in [1], while a problem typology is extensively presented in [2].

Probably, the most widely studied cases are those involving circular objects

within containers having some regular form such as a circle or a square. In

the field of circular objects/square container we recall some heuristic (see, e.g.,

[3, 4, 5, 6, 7]) and exact approaches (see, e.g., [8, 9, 10, 11]). We also refer

to survey [12] and a book [13]. Heuristic approaches for the case of circular

objects/circular container include those discussed in [14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24]. In [25] the problem of placing circles with different sizes into a

rectangular container with fixed width and minimum height is considered. An

even more general problem is tackled in [26], aiming to cut several different

shapes (circles and convex polygons) from rectangular plates of raw material.

Benchmark results for the problem of packing equal circles in a container whose

shape is a square, a circle or an equilateral triangle are reported and continuously

updated in E. Specht’s web site1. Test instances for the problem of packing

unequal circles in a circle include those in [17] and the quite challenging instances

1http://www.packomania.com

3

from the Circle Packing Contest2. The problem of packing irregular polygons

has also been well studied (see [27] for an overview), considering either fixed

size containers or infinite length strips (the so–called Irregular Strip Packing

Problem). The latter has been tackled, for instance, in [28] using a local search–

based method, while in [29] linear programming relaxations are solved in a

Simulated–Annealing framework.

In this paper we deal with the case of rectangular objects/ convex container.

In a series of paper [30, 31, 32] different variants of this problem have been

considered. In all variants the size parameters of the rectangles, a and b (a ≥ b)

denoting the length of the two edges of the rectangles, are fixed and equal for

all the rectangles. Moreover, the portion of the space occupied by the convex

container is fixed and described by (convex) inequalities, i.e.,

C = {(y1, y2) ∈ R
2 : gj(y1, y2) ≤ 0, j = 1, . . . ,m}, (3)

where functions gj , j = 1, . . . ,m, are convex ones. In the first variant [30] the

position vector xi is made up by three components ci
x, ci

y, θi, where the first

two identify the center of the rectangle, while θi denotes the rotation of the

rectangle with respect to its horizontal position (the one where the basis of the

rectangle is its longest edge). In the second variant [31] the position vector xi

still has three components ci
x, ci

y, pi, where the first two are as before, while the

third one is a binary variable equal to 0 if the rectangle is in horizontal position

(θi = 0), and to 1 if the rectangle is in vertical position (θi = 90◦). Finally, the

third variant [32] is similar to the first one, but the parameter θi is imposed to

be equal for all the rectangles, (i.e., all rectangles can be rotated by a common

rotation angle).

In this paper we will explore the second variant, although the proposed technique

can be extended also to the other two variants. The paper is structured as

follows. In Section 2 we will report the model for the problem proposed in

[31]. In Section 3 the main components of the proposed heuristic approach are

2http://www.recmath.org/contest/CirclePacking/index.php

4

presented and discussed. Extensive computational experiments and their results

are presented in Section 4.

2. Mathematical model of the problem

In this section we report the mathematical model proposed in [31] for the pack-

ing of equal rectangles into a convex region, when rectangles are allowed to be

either in horizontal or vertical position. Therefore, the container is identified by

a finite number of convex inequalities as in (3), while each object i has fixed size

parameters a, b, and variable position parameters ci
x, ci

y, corresponding to the

center of the rectangles, and pi, a binary variable giving the orientation (hori-

zontal, if equal to 0, or vertical, if equal to 1) of the rectangle. As commented

in Section 1, position and size parameters allow to identify the portion of the

space (R2 in this case) occupied by the object. In particular, for object i such

portion is the rectangle with the four vertices

V sw
i =

(

ci
x − a

2
(1 − pi) − b

2
pi, c

i
y − b

2
(1 − pi) − a

2
pi

)

V se
i =

(

ci
x + a

2
(1 − pi) + b

2
pi, c

i
y − b

2
(1 − pi) − a

2
pi

)

V nw
i =

(

ci
x − a

2
(1 − pi) − b

2
pi, c

i
y + b

2
(1 − pi) + a

2
pi

)

V ne
i =

(

ci
x + a

2
(1 − pi) + b

2
pi, c

i
y + b

2
(1 − pi) + a

2
pi

)

Constraints (1) are equivalent to

| ci
x − cj

x | ≥ a
2
(1 − pi) + b

2
pi + a

2
(1 − pj) + b

2
pj

or ∀ i 6= j

| ci
y − cj

y | ≥ b
2
(1 − pi) + a

2
pi + b

2
(1 − pj) + a

2
pj .

(4)

Constraints (2) are equivalent to

gk(V t
i) ≤ 0 i = 1, . . . , N, k = 1, . . . ,m, t ∈ {sw, se, nw, ne}. (5)

We denote by FN the region identified by constraints (4)-(5) with respect to

the variables ci
x, ci

y, pi, i = 1, . . . , N . We aim at maximizing N , i.e., we would

5

like to detect

N∗ = max{N : FN 6= ∅}.

Therefore, we need to solve some nonlinear feasibility subproblems. Following

[31], we transform such feasibility problems into an unconstrained mixed integer

global optimization ones. Indeed, we can define for each i, j, i 6= j,

fx
ij(c

i
x, pi, c

j
x, pj) = max

{

0, (ci
x − cj

x)2 −
[

a − a − b

2
(pi + pj)

]2
}2

≥ 0,

fy
ij(c

i
y, pi, c

j
y, pj) = max

{

0, (ci
y − cj

y)2 −
[

b +
a − b

2
(pi + pj)

]2
}2

≥ 0,

so that

(4) are satisfied ⇔
∑

i<j

fx
ij × fy

ij = 0.

Moreover, we can define functions

hi(c
i
x, ci

y, pi) =

m
∑

k=1

∑

t∈{sw,se,nw,ne}

max{0, gk(V t
i)}2 ≥ 0,

so that

(5) are satisfied ⇔
N

∑

i=1

hi = 0.

If we finally define function

fN (c1

x, c1

y, . . . , cN
x , cN

y , p1, . . . , pN) =
∑

i<j

fx
ij × fy

ij +

N
∑

i=1

hi = 0,

we will have that

FN 6= ∅ ⇔ min fN = 0,

i.e., N∗ is the largest value N such that the unconstrained global minimum of

function fN , which is certainly ≥ 0, is exactly equal to 0. Therefore, the solution

of the packing problem goes through the solution of a series of unconstrained

mixed integer global minimization problems. It is worthwhile to make a couple

of remarks. Due to the convexity of the container, it is straightforward to derive

trivial lower and upper limits on the ci
x, ci

y variables: such limits do not reduce

the feasible region, so we do not include them in the mathematical formulation,

6

keeping the problem an unconstrained one, but they can be used to generate

initial configurations as explained in Section 3.1. Moreover, once the container

area is known, an upper bound to N⋆ can be easily computed.

3. The proposed heuristic approach

The heuristic approach proposed in this paper belongs to the class of Iterated

Local Search (ILS) approaches (see, e.g., [33]), if we employ the terminology

of combinatorial optimization problems, or Monotonic Basin Hopping (MBH)

approaches (see, e.g., [34, 35]) if we employ the terminology of continuous op-

timization problems. Due to the mixed nature (discrete and continuous) of the

problem at hand, we report both terminologies. A general scheme of the ap-

proach is depicted in Algorithm 1.

7

Algorithm 1: The proposed Monotonic Basin Hopping scheme.

Y0 = RanGen() ;1

X0 = Refine(Y0) ;2

k = 1, noimp = 0 ;3

repeat4

Yk = Perturb(Xk−1) ;5

Zk = Refine(Yk) ;6

if f(Zk) < f(Xk−1) then7

Xk = Zk ;8

noimp = 0 ;9

end10

else11

Xk = Xk−1;12

noimp = noimp + 1;13

end14

k = k + 1 ;15

until noimp ≤ MaxNoImp ;16

return Xk;17

Steps 1-3 perform the initialization using procedure RanGen to generate an

initial random configuration which is then refined by procedure Refine. Steps

4-16 define the main loop: the current iterate Xk−1 (which is also the best

observed configuration during the current run of the algorithm) is perturbed

through procedure Perturb (Step 5); the result of the perturbation Yk is refined

into Zk through procedure Refine (Step 6); if the function value at Zk improves

that at Xk−1, then the next iterate is set equal to Zk and the counter noimp

(which gives the number of iterations with no improvement) is reset to 0 (Steps

7-10); otherwise (Steps 11-14) the next iterate is left unchanged and noimp is

8

increased by 1; finally, if no improvement has been observed for MaxNoImp

iterations, then the algorithm exits the cycle (Step 16) and the current iterate

Xk is returned (Step 17).

A single run of Algorithm 1 may not be enough to reach a solution. Therefore,

multiple runs are started in a Multistart fashion.

Different definitions are possible for the three procedures RanGen, Refine,

Perturb and their choice might have a considerable impact on the performance

of the approach. In what follows we will discuss our choices for such procedures.

3.1. RanGen procedure

Procedure RanGen generates an initial random configuration both for the bi-

nary variables pi and for the continuous ones ci
x, ci

y, i = 1, . . . , N . For what

concerns the continuous variables, we randomly place the center of each rectan-

gle within the box containing the convex region. A little bit more critical is the

random generation of the binary variables. One straightforward possibility is a

uniform random generation for the value of each binary variable pi: the value of

pi is set equal to 0 with probability 0.5, otherwise it is set equal to 1. However,

it turns out that this simple generation has a relevant drawback. An alternative

(and, according to our experiments, more robust) random generation is based

on the uniform random generation between 0 and N of the number of binary

variables whose value is equal to 0. Note that the first proposed generation gives

rise to a binomial distribution with parameter 0.5 for the number of variables

whose value is equal to 0. Such distribution tends to be more concentrated

around the value 0.5N and, as we will see in Section 4, this might have some

negative implications.

3.2. Refine procedure

For the refinement procedure we exploited the continuous component of the

problem. Given some configuration Y , we fixed the value of the binary variables

and then started a local search with respect to the continuous ones. In other

words, recalling the meaning of the variables, we fixed the orientation of the

9

rectangles, allowing to move their centers. In particular, given the fact that the

problem is an unconstrained one with respect to the continuous variables, we

used L-BFGS (Limited Memory BFGS, see [36]) as a local search procedure.

We also point out that at the end of each run of the approach we also used the

returned solution as the starting point of a sort of local search with respect to

the binary variables: the orientation of each rectangle in turn is changed and

a continuous local search from the resulting configuration is started; if the new

solution is better than the current one, we move to the new one, otherwise we

do not move from the current point; this is repeated until no improvement is

obtained after having changed the orientation of all the rectangles. Note that

this final search can be viewed as a further run of the proposed approach where

at each iteration the perturbation changes the orientation of a single rectangle.

3.3. Perturb procedure

As usual in ILS (or MBH), the perturbation procedure has a great impact on

the performance of the heuristic. The perturbation should be large enough

to escape from the region of attraction of the current iterate (in order to avoid

that the refinement procedure takes the search back to the current iterate itself),

but at the same time not too large, in order to avoid that the perturbation is

close to a completely random generation. In other words, the perturbation

should be small enough in order to retain, at least partially, the structure of the

current configuration, in the hope that what is retained is the ”good” part of

the structure, while the ”bad” part is somehow ”adjusted”, so that a ”better”

configuration is obtained. Of course, it is quite relevant to have some criterion in

order to decide when the newly generated configuration is indeed a ”better” one.

Here we employed a simple monotonic criterion, i.e., Zk is ”better” then Xk−1

when it has a better function value. However, other, possibly non monotonic,

criteria could be employed.

In defining perturbations for the problem at hand, we considered two basic

moves, one related to the binary variables pi, the other related to the continu-

ous variables ci
x, ci

y. The former simply switches the value of one binary variable

10

pi, i.e., it changes the orientation of rectangle i. The latter moves the center

(ci
x, ci

y) of rectangle i into some new position. These basic moves can be com-

bined in different ways to define perturbations. In this work we considered the

following combinatorial (only involving the binary variables) and continuous

(only involving the continuous variables) perturbations.

Comb1 this is a combinatorial perturbation defined as follows: let

N0 = {i : pcurr
i = 0}, N1 = {i : pcurr

i = 1},

where pcurr
i denotes the value of pi in the current iterate; randomly select

i0 ∈ N0 and i1 ∈ N1; perform the following basic moves


































pnew
i0

= 1, pnew
i1

= 0 with prob. 1/3

pnew
i0

= 1 with prob. 1/3

pnew
i1

= 0 with prob. 1/3

if N0 = ∅ (N1 = ∅), then we simply set pnew
i1

= 0 (pnew
i0

= 1). There-

fore, this perturbation swaps two elements in N0 and N1 with probability

1/3, moves an element in N0 into N1 with probability 1/3, and moves an

element in N1 into N0 with probability 1/3.

Comb2(η) η ∈ [0, 1]: this is another combinatorial move defined as follows: for

each i = 1, . . . , N , set pnew
i = 1 − pcurr

i with probability η, and pnew
i =

pcurr
i with probability 1−η. Probability η is usually chosen small in order

to avoid a too large perturbation of the current configuration.

Cont1 This is a continuous perturbation where we randomly select i ∈ {1, . . . , N}
and α ∈ [ℓx, ux] and set

ci
x = α

(ℓx, ux are, respectively, a lower and upper limit for the value of the con-

tainer’s first coordinate). Thus, the perturbation selects a rectangle and

moves it in a new random position (completely unrelated with the current

one) along the first coordinate;

11

Cont2(d), d ≥ 0 this is another continuous perturbation defined as follows

ci,new
x = ci,curr

x + βi

ci,new
y = ci,curr

y + γi

where βi, γi are randomly sampled within the interval [−d, d]. While per-

turbation Cont1 involves a single rectangle which might be moved far

away from its current position, perturbation Cont2(d) involves all rectan-

gles but, at least for small d values (which is the recommended choice),

only slightly moves them.

We remark that all the suggested perturbations follow the previously stated

principle: the perturbation should not be ”too large”, i.e., it should not com-

pletely disrupt the structure of the current configuration. This is accomplished

either by moving few rectangles (Comb1, Comb2, Cont1) or by moving all of them

(Cont2) but all by a small displacement. Of course, it is possible to define fur-

ther perturbations but, as we will see in Section 4, the four defined here already

allow to get good results.

4. Computational experiments

For the computational experiments we considered the set of problem instances

employed in [31] and [32]. The details of the problem instances are reported in

Table 1. These include the convex functions describing the container (column

Container Data, subcolumn Constraints), the area of the container (column

Container Data, subcolumn Area), the width a and height b of the rectangles

(column Piece Data, subcolumn a × b), the area of the rectangles (column

Piece Data, subcolumn Area), the best value Nbest observed in [31] for the

instance (column Nbest).

Following [31], a variant of problem instances # 12-# 16 has also been consid-

ered, where the value of b is halved (b = 0.5). The resulting new five instances

have been numbered from # 17 to # 21 (the Nbest values for these instances

are respectively 55, 57, 62, 64, 64).

12

The code used for the experiments is written in C++ programming language,

using liblbfgs3 for local searches. Tests have been performed on standard

desktop machines running Linux, equipped with Intel(R) Pentium(R) 4 CPU

3.40GHz, 1Gbyte RAM. The code has been compiled with gcc 4.3.3 using stan-

dard optimization flags.

For each test problem we performed 10 random runs. In each run we went

through all the N values from 1 up to Nbest, where Nbest denotes the best value

observed in [31]. Following [32], we increased the value of N (or stopped the

run if N = Nbest) as soon as a time limit of 22000 seconds was reached (which,

however, almost never occurred), or when the objective function value fell below

10−8. In fact, as already observed in [31], most of the computational cost is due

to the solution for the case N = Nbest, while all problems with N < Nbest are

solved quite quickly.

Local searches have been first executed with low accuracy (10−6), and if the

objective function value was smaller than 10−4 a further refinement with higher

accuracy (10−9) has been performed.

We performed tests with different strategies, corresponding to different combi-

nations of the perturbation operators defined in Section 3, and different choices

of the MaxNoImp parameter. In the following table we report the details of

the strategies for which we report complete results over all the test problems

(for the continuous move Cont2(d) we have always set d = 0.2 ∗
√

a2 + b2).

Strategy MaxNoImp Perturbation

1 100 Comb1

2 25 Comb1 + Cont1

3 100 Comb1 + Cont1

4 500 Comb1 + Cont1

5 500 Comb2(0.05) + Cont2(d)

6 500 Comb2(0.1) + Cont2(d)

3freely available at www.chokkan.org/software/liblbfgs/

13

For the remaining tested strategies we just give some comments.

The results for Strategies 1-6 are reported in Table 2 together with those re-

ported in [31]. Being a comparison in terms of running times, we remark that

the machine used in [31] (in that paper a 1.8 GHz AMD Opteron 244 processor,

with 2 Gb of RAM was used, which is a dual-core machine) as well as the im-

plementation (in FORTRAN77) is comparable with those employed here. For each

test instance and each strategy we report the average computation time over

the 10 random runs. In Figure 1 we display the performance profile for the six

strategies and for the approach presented in [31]. In the performance profile

a curve is drawn for each of the tested strategies and for the approach in [31].

The curve represents the fraction of instances (over the 21 considered) for which

the average computation time is within x times from the lowest average com-

putation time among all tested strategies (i.e., at x = 1 we have the number of

distinct instances for which a single strategy has the lowest computation time,

at x = 2 we have the number of instances for which the average computation

time is within twice the lowest average computation time, and so on).

The performance profile clearly indicates that Strategies 2-4 outperform the

other ones and the approach proposed in [31] (in particular, these strategies

turn out to be better, and often much better, than the approach proposed in

[31] over each test instance). Strategies 2-4 all perform the same perturbation

and just differ for the MaxNoImp value. If we choose a small MaxNoImp

value we tend to perform many short runs where we often randomly restart the

search, while by increasing the MaxNoImp value we increase the time we are

ready to spend in exploring the neighborhood of the incumbent solution, thus

increasing the length of a run but decreasing the number of runs. The results

in Table 2 show that there is no optimal MaxNoImp value, the best choice is

related to the problem to be solved. On the other hand, it also appears that the

results are not strongly affected by the choice of this parameter, i.e., at least for

this kind of perturbation, ’impatient’ strategies, where a small time is dedicated

to the exploration of the neighborhood of the incumbent solution, and ’patient’

ones have comparable performance.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

fr
ac

tio
n

of
 in

st
an

ce
s

ratio with respect to the best

Birgin
strategy 1
strategy 2
strategy 3
strategy 4
strategy 5
strategy 6

Figure 1: Performance profiles of the proposed strategies and the results in [31].

Strategy 1 performs reasonably well. It is similar to Strategy 3 but without the

continuous move Cont1 in the perturbation. On most problems this turns out

to be an effective strategy (sometimes even the best one), but it has a poor per-

formance on the most challenging (with respect to computation times) instances

(instances # 3 and # 11). It seems that for such problems the combinatorial

move alone is not sufficient and coupling it with the continuous move Cont1 can

really make a difference. We remark here that we also performed some tests

with the continuous move Cont1 alone but in this case the results are much

worse, probably because this move alone does not guarantee a large enough

perturbation.

Strategies 5-6 display some good results but overall they perform clearly worse

than Strategies 1-4. Although we do not display complete results, more tests

have been performed with MaxNoImp = 100 and others with no continuous

move. Mixed results (sometimes better, sometimes worse than those for Strate-

gies 5-6) have been obtained. Extremely bad results (also with some failures

15

to reach the solution) have been obtained when we tested the continuous move

alone. The overall impression is that the perturbation employed in these strate-

gies are not as effective as those employed for Strategies 1-4. However, we report

also these strategies because they offer good results on instances # 11, which is

one of the two most challenging ones. These results get even more significative if

we complete them with a series of tests in which instance # 11 has been tackled

with MaxNoImp = 500 and perturbation where the continuous move Cont2(d)

is combined with the combinatorial move Comb2(η) for different values of η (the

average cumulative computational times are reported in Table 3).

It is interesting to note that the results improve for η up to 0.15 (for which

the results are also considerably better than those for Strategies 2-4), and then

get worse for larger η values. Increasing η corresponds to an enlargement of

the neighborhood explored at each iteration. Therefore, these results offer a

significative example of the impact on the performance of the ’size’ of the per-

turbation.

Another experiment that we performed is related to the generation of the initial

solution. In all the above experiments the initial solution has been generated

by randomly sampling the number of rectangles in horizontal position (i.e., the

number of pi variables whose value is equal to 0). As already commented in

Section 3.1, an alternative is that of setting to 0 each binary variable pi with

probability 0.5, and to 1 otherwise. On some test problems such alternative

performs quite badly. In particular for instance # 6 we ran Strategy 3 with

this alternative initial generation and we got clearly worse computation times

(312.779 seconds on average). For these instances it seems that the initial num-

ber of horizontal rectangles is crucial for the detection of the solution. To

confirm this, we performed an experiment where the initial solution has been

generated with a fixed number num horiz of horizontal rectangles. The results

are reported in the following table (in the last row we report the result for the

alternative initial generation mentioned above).

16

num horiz Avg.Comp.Time

0 9.499

3 9.6

6 39.321

9 81.254

12 446.535

15 1320.626

18 3704.692

21 4117.019

24 1565.815

27 1255.423

30 2198.947

50% 312.779

It seems that there is a small range of num horiz values for which the algorithm

performs quite well (the values close to the number of horizontal rectangles in

an optimal solution, which is low as it can be seen from Figure 2), but for

the other values the performance is quite bad (including values around Nbest/2,

which are the most likely ones for the alternative initial generation). Probably,

when starting with a ’bad’ initial value for num horiz, the perturbations are

not large enough to drive the number of horizontal rectangles towards that in

an optimal solution of the problem.

For some other instances this is a less serious issue. E.g., in optimal solutions

for instances # 17-# 21, there are many pairs of rectangles forming a square

with edge length 1 (see Figure 3). If we change the orientation of both these

rectangles, an alternative optimal solution is obtained, so that the range of

num horiz values for which an optimal solution with that number of horizontal

rectangles exists, is quite large.

17

(a)

Figure 2: Optimal configuration for instance # 6.

(a) (b) (c)

(d) (e)

Figure 3: Optimal configurations for instances #17-#21.

4.1. Improved solutions

For all the test instances we also checked whether the best values Nbest reported

in [31] could be improved. We ran Strategy 3 through all the instances with

N = Nbest +1. By this experiment we were able to detect quite rapidly (average

computation time : 230.106 sec.) a new best solution with N = 33 for instance

8, and with much more difficulties (average computation time: 31023 sec. per

success and 5 failures, i.e., time limit reached, over 10 runs) a new best solution

with N = 27 for instance # 4. In both cases we reached a global optimal

solution for N = Nbest + 1 with minimum value exactly equal to 0. The new

solutions are displayed in Figure 4.

18

(a) Solution for instance # 4 with

27 items.

(b) Solution for instance # 8 with

33 items.

Figure 4: New optimal configurations found.

5. Conclusion

In this paper we tackled the problem of packing equal rectangles within a convex

region. Following [31] the problem can be reduced to the solution of mixed

integer global optimization problems. We proposed a heuristic approach to

solve such problems. The approach is an Iterated Local Search (or Monotonic

Basin Hopping) one. The components of the heuristic have been defined and for

the main one, the perturbation operation, different options, based on continuous

and combinatorial moves, have been proposed. Many variants of the approach

have been compared through extensive computational experiments on a set of

test instances. We point out here that improvements over the obtained results

are certainly possible, e.g., by defining new perturbation moves, which could be

an interesting subject for future research. All the same the current results are

quite encouraging and, in our opinion, show that the approach is particularly

suitable for these packing problems.

References

[1] I. Castillo, F. J. Kampas, J. D. Pinter, Solving circle packing problems by

global optimization: Numerical results and industrial applications, Euro-

pean Journal of Operational Research 191 (2008) 786–802.

19

[2] G. Wäscher, H. Haußner, H. Schumann, An improved typology of cutting

and packing problems, European Journal of Operational Research 183 (3)

(2007) 1109–1130.

[3] B. Addis, M. Locatelli, F. Schoen, Disk packing in a square: A new global

optimization approach, INFORMS J. on Computing 20 (4) (2008) 516–524.

[4] D. V. Boll, J. Donovan, R. L. Graham, B. D. Lubachevsky, Improving dense

packings of equal disks in a square, The Electronic Journal of Combinatorics

7 (R46) (2000) 1–9.

[5] L. G. Casado, I. Garcia, P. Szabö, T. Csendes, Equal circles packing in

square II: new results for up to 100 circles using the TAMSASS-PECS

algorithm, in: F. Giannessi, P. M. Pardalos, T. Rapcsak (Eds.), Optimiza-

tion Theory: Recent developements from Mátraháza, Kluwer Academic

Publishers, 1998, pp. 207–224.

[6] R. L. Graham, B. D. Lubachevsky, Repeated patterns of dense packings of

equal disks in a square, The Electronic Journal of Combinatorics 3 (1996)

1–16.

[7] K. J. Nurmela, P. R. J. Oestergard, Packing up to 50 equal circles in a

square, Discrete Computational Geometry 18 (1997) 111–120.

[8] C. de Groot, R. Peikert, D. Würtz, M. Monagan, Packing circles in a square:

a review and new results, in: System Modelling and Optimization, Proc.

15th IFIP Conf., Zürich, 1991, pp. 45–54.

[9] M. Locatelli, U. Raber, Packing equal circles in a square: a deterministic

global optimization approach, Discrete Applied Mathematics 122 (2002)

139–166.

[10] M. C. Markót, T. Csendes, A new verified optimization technique for the

”packing circles in a unit square” problem, SIAM J. on Optimization 16

(2005) 193–219.

20

[11] K. J. Nurmela, P. R. J. Oestergard, More Optimal Packings of Equal Circles

in a Square, Discrete Computational Geometry 22 (1999) 439–457.

[12] P. G. Szabó, M. C. Markót, T. Csendes, Global optimization in geometry -

circle packing into the square, in: C. Audet, P. Hansen, G. Savard (Eds.),

Essays and Surveys in Global Optimization, Kluwer, 2005, pp. 233–266.

[13] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, I. Gar-

cia, New Approaches to Circle Packing in a Square With Program Codes,

Springer, 2007.

[14] B. Addis, M. Locatelli, F. Schoen, Efficiently packing unequal disks in a

circle, Operations Research Letters 36 (1) (2008) 37–42.

[15] E. Birgin, F. Sobral, Minimizing the object dimensions in circle and sphere

packing problems, Computers and Operations Research 35 (7) (2008) 2357–

2375.

[16] A. Grosso, A. Jamali, M. Locatelli, F. Schoen, Solving the problem of

packing equal and unequal circles in a circular container, Journal of Global

Optimization 47 (1) (2010) 63–81.

[17] M. Hifi, R. M’Hallah, Adaptive and restarting techniques-based algorithms

for circular packing problems, Computational Optimization and Applica-

tions 39 (1) (2008) 17–35.

[18] H. Huang, W. Huang, Q. Zhang, D. Xu, An improved algorithm for the

packing of unequal circles within a larger containing circle, European Jour-

nal of Operational Research 141 (2002) 440–453.

[19] W. Huang, Y. Li, B. Jurkowiak, C. M. Li, R. C. Xu, A two-level search

strategy for packing unequal circles into a circular container, in: Proceed-

ings of the International Conference on Principles and Practice of Con-

straint Programming, Springer-Verlag, 2003, pp. 868–872.

21

[20] A. Müller, J. Schnedier, E. Schömer, Packing a multidisperse system of

hard discs in a circular environment, Physical Review E 79 (2009) 021102.

[21] J. D. Pinter, F. J. Kampas, Nonlinear optimization in Mathematica using

MathOptimizer Professional, Mathematica in Education and Research 10

(2005) 1–18.

[22] Y. Stoyan, G. Yaskov, A mathematical model and a solution method for

the problem of placing various-sized circles into a strip, European Journal

of Operational Research 156 (3) (2004) 590–600.

[23] Wang, H. and Huang, W. and Zhang, Q. and Xu, D., An improved algo-

rithm for the packing of unequal circles within a larger containing circle,

EJOR 141 (2002) 440–453.

[24] D. Zhang, A. Deng, An effective hybrid algorithm for the problem of pack-

ing circles into a larger containing circle, Computers & Operations Research

32 (2005) 1941–1951.

[25] Y. G. Stoyan, G. N. Yaskow, Mathematical model and solution method

of optimization problem of placement of rectangles and circles taking into

account special constraints, International Transactions in Operational Re-

search 5 (1998) 45–57.

[26] J. Kallrath, Cutting circles and polygons from area-minimizing rectangles,

Journal of Global Optimization 43 (2-3) (2009) 1–30.

[27] J. A. Bennell, J. F. Oliveira, The geometry of nesting problems: A tutorial,

European Journal of Operational Research 184 (2) (2008) 397 – 415.

[28] T. Imamichi, M. Yagiura, H. Nagamochi, An iterated local search algorithm

based on nonlinear programming for the irregular strip packing problem,

Discrete Optimization 6 (4) (2009) 345–361.

[29] A. M. Gomes, J. F. Oliveira, Solving irregular strip packing problems by

hybridising simulated annealing and linear programming, European Jour-

nal of Operational Research 171 (2006) 811–829.

22

[30] E. Birgin, J. Mart́ınez, W. Mascarenhas, D. Ronconi, Method of sentinels

for packing items within arbitrary convex regions, Journal of the Opera-

tional Research Society 57 (6) (2006) 735–746.

[31] E. Birgin, J. Mart́ınez, F. Nishihara, D. Ronconi, Orthogonal packing of

rectangular items within arbitrary convex regions by nonlinear optimiza-

tion, Computers & Operations Research 33 (12) (2006) 3535–3548.

[32] E. Birgin, R. Lobato, Orthogonal packing of rectangles within isotropic

convex regions.

URL {http://www.ime.usp.br/~egbirgin/publications/bl.pdf}

[33] H. R. Lourenço, O. C. Martin, T. Stülze, Iterated local search, in: F. W.

Glover, G. A. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer

Academic Publishers, Boston, Dordrecht, London, 2003, pp. 321–353.

[34] R. H. Leary, Global optimization on funneling landscapes, Journal of Global

Optimization 18 (2000) 367–383.

[35] D. J. Wales, J. P. K. Doye, Global optimization by basin-hopping and the

lowest energy structures of Lennard-Jones clusters containing up to 110

atoms, Journal of Physical Chemistry A 101 (1997) 5111–5116.

[36] D. Liu, J. Nocedal, On the limited memory bfgs method for large scale

optimization, Mathematical Programming B 45 (1989) 503–528.

23

Container Data Piece Data

Constraints Area a × b Area Nbest

1

g1(x1, x2) = −x1

74.1 2 × 1 2 32
g2(x1, x2) = −x2

g3(x1, x2) = −x1 − x2 + 3

g4(x1, x2) = x2
1 + x2

2 − 100

2

g1(x1, x2) = −7x1 + 6x2 − 24

21.7 1.1 × 0.65 0.61 28g2(x1, x2) = 7x1 + 6x2 − 108

g3(x1, x2) = (x1 − 6)2 + (x2 − 8)2 − 9

3

g1(x1, x2) = −x1

54.4 2 × 0.6 1.2 40
g2(x1, x2) = x1 − 8

g3(x1, x2) = (x1 − 6)2 − x2
2 − 81

g4(x1, x2) = (x1 − 1.7)2 + (x2 − 10)2 − 81

4
g1(x1, x2) = x2

1 − x2
13.3 1 × 0.4 0.4 26

g2(x1, x2) = x2
1/4 + x2 − 5

5

g1(x1, x2) = x2
1 − x2

10.9 0.9 × 0.3 0.27 33g2(x1, x2) = −x1 + x2
2 − 6x2 + 6

g3(x1, x2) = x1 + x2 − 6

6
g1(x1, x2) = −x1 + x2

2 − 6x2 + 6
10.2 0.9 × 0.3 0.27 30

g2(x1, x2) = x1 + x2
2 − 3x2 − 3/4

7 g1(x1, x2) = (x1 − 2)2/4 + (x2 − 4)2/16 − 1 25.1 2 × 0.5 1.00 19

8

g1(x1, x2) = (x1 − 6)2/4 + (x2 − 6)2/36 − 1

13.2 0.7 × 0.5 0.35 32
g2(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1

g3(x1, x2) = x1 − x2 − 3

g4(x1, x2) = −x1 + x2 − 2

9

g1(x1, x2) = (x1 − 3)2/4 + (x2 − 4)2/16 − 1

13.7 0.8 × 0.6 0.48 22

g2(x1, x2) = (x1 − 2.65)2/4 + (x2 − 4)2/16 − 1

g3(x1, x2) = −x1 + 1

g4(x1, x2) = x1 − x2 − 1

g5(x1, x2) = x1 + x2 − 9

10
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1

13.6 0.95 × 0.35 0.33 34
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 8)2/9 − 1

11
g1(x1, x2) = (x1/6)4 + (x2/2)4 − 1

34.7 1.9 × 0.5 0.95 31
g2(x1, x2) = 8x1 − 11x2 − 26

12

g1(x1, x2) =
√

3x1 + x2 −
√

3(3/2 +
√

3)

32.3 1.0 × 1.0 1.0 25g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

13

g1(x1, x2) =
√

3x1 + x2 −
√

3(2 + 4/
√

3)

33.3 1.0 × 1.0 1.0 26g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

14

g1(x1, x2) =
√

3x1 + x2 −
√

3(3 + 4/
√

3)

36.3 1.0 × 1.0 1.0 29g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

15

g1(x1, x2) =
√

3x1 + x2 −
√

3(2 + 2
√

3)

37.5 1.0 × 1.0 1.0 29g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

16

g1(x1, x2) =
√

3x1 + x2 −
√

3(4 + 4
√

3)

37.5 1.0 × 1.0 1.0 30g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

Table 1: Test problems

24

Test [31] Str.1 Str.2 Str.3 Str.4 Str. 5 Str.6

1 6453.80 366.206 450.518 392.754 679.709 1435.169 535.969

2 31.94 20.976 18.245 17.642 23.34 38.254 102.628

3 19508.71 6515.556 3828.85 2676.894 1939.775 4171.407 7584.423

4 485.29 8.921 7.041 2.931 1.847 16.432 12.227

5 329.65 32.99 20.139 17.688 12.105 40.3 53.129

6 780.77 103.719 93.508 52.722 95.259 543.054 652.275

7 157.71 3.24 3.823 3.168 3.327 5.323 2.705

8 880.40 4.894 7.886 6.183 6.276 15.133 16.972

9 108.11 5.414 2.934 5.715 3.345 8.094 2.495

10 5554.20 48.969 58.381 26.601 60.766 50.415 61.889

11 4199.44 10965.528 2131.46 2879.064 2398.138 6259.294 2666.744

12 1.13 1.329 0.347 0.293 0.345 8.467 8.464

13 1.21 1.912 0.724 0.657 0.757 5.699 5.651

14 0.35 0.627 0.184 0.152 0.186 12.333 12.445

15 0.34 1.429 0.268 0.25 0.275 3.063 3.084

16 1.19 0.872 0.232 0.2 0.257 20.318 20.477

17 2812.07 171.818 201.619 212.127 270.67 2044.37 6092.715

18 13575.78 144.806 192.872 224.046 233.947 873.257 1702.235

19 640.35 52.384 66.599 72.15 55.392 236.278 389.718

20 14811.55 139.276 187.932 94.423 101.573 260.315 713.423

21 1126.21 60.585 101.246 93.277 78.946 138.99 212.7

Table 2: Complete results over the 21 test instances for the approach presented in [31] and

Strategies 1-6.

η 0.05 0.1 0.15 0.2 0.25

Avg.Comp.Time 6259.294 2666.744 996.425 5617.58 5567.151

Table 3: Average computation times over instance # 11 for strategies with MaxNoImp = 500

and perturbation where the continuous move Cont2(d) is combined with the combinatorial

move Comb2(η).

25

