
Bilevel Derivative-Free Optimization and its
Application to Robust Optimization

A. R. Conn∗ L. N. Vicente†

March 4, 2010

Abstract
We address bilevel programming problems when the derivatives of

both the upper and the lower level objective functions are unavailable.
The core algorithms used for both levels are trust-region interpola-

tion-based methods, using minimum Frobenius norm quadratic mod-
els when the number of points is smaller than the number of basis
components. We take advantage of the problem structure to derive
conditions (related to the global convergence theory of the underlying
trust-region methods, as far as possible) under which the lower level
can be solved inexactly and sample points can be reused for model
building. In addition, we indicate numerically how effective these ex-
pedients can be. A number of other issues are also discussed, from
the extension to linearly constrained problems to the use of surrogate
models for the lower level response.

One important application of our work appears in the robust opti-
mization of simulation-based functions, which may arise due to imple-
mentation variables or uncertain parameters. The robust counterpart
of an optimization problem without derivatives falls in the category of
the bilevel problems under consideration here. We provide numerical
illustrations of the application of our algorithmic framework to such
robust optimization examples.

Keywords: Bilevel programming, derivative-free optimization (DFO),
robust optimization, simulation-based optimization, trust-region meth-
ods, quadratic interpolation.

∗Department of Mathematical Sciences, IBM T.J. Watson Research Center, Route 134,
P.O. Box 218, Yorktown Heights, New York 10598, USA (arconn@watson.ibm.com).
†CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Por-

tugal (lnv@mat.uc.pt). Support for this author was provided by FCT under grant
PTDC/MAT/098214/2008.

1

1 Introduction

In this paper we address bilevel problems of the form

min
(xu,x`)∈Rnu×n`

fu(xu, x`)

s.t. x` ∈ arg min
{
f `(xu, z`) : z` ∈ Rn`

}
.

(1)

where fu, f ` : Rnu×n` → R are the upper level and lower level objective
functions, respectively. In a similar way, the variables xu and x` are called
the upper level and lower level variables. This paper addresses derivative-free
unconstrained bilevel problems, i.e., problems of the type (1) in the context
where only function values for fu and f ` are available. We refer the reader
to the books on bilevel optimization by Bard [1], Dempe [10], and Shimizu,
Ishizuka, and Bard [16] for theory and algorithms about more general classes
of bilevel programming.

If we define the set of lower level minimizers, for a given xu, by

x`(xu) = arg min
{
f `(xu, z`) : z` ∈ Rn`

}
,

and assume that this set is a singleton, we can rewrite the bilevel problem,
equivalently, using only the upper level variables

min
xu∈Rnu

fu(xu, x`(xu)). (2)

In an analogy to the nomenclature used in optimal control, we refer to for-
mulation (2) as the reduced formulation of the original problem (1). We will
call fu(xu, x`(xu)) the reduced upper level function.

An alternative formulation is derived using both upper and lower level
variables. In fact, if the lower level problem is convex and continuously
differentiable in the lower level variables, the bilevel problem is equivalent to

min
(xu,x`)∈Rnu×n`

fu(xu, x`)

s.t. ∇`f
`(xu, x`) = 0,

(3)

where ∇`f
` designates the partial gradient of f ` with respect to x`. Under

no convexity assumption for the lower level problem, the feasible set of prob-
lem (3) is only guaranteed to be contained in the feasible set of the original
problem (1) and therefore the optimal value of (3) is only guaranteed to be
a lower bound for the optimal value of (1), if both optimal values exist. The
formulation (3) is called, again using the same comparison to optimal con-
trol, the all-at-once formulation. In this paper, we chose to work with the

2

reduced formulation (2) rather than the all-at-once formulation (3). Given
the derivative-free, possibly nonconvex context in which the lower level prob-
lem is posed, we felt this was a more direct place to begin.

We do not address bilevel problems with general (upper level or lower
level) constraints. One of the reasons being that a good understanding of
the unconstrained case seems to be necessary to tackle the constrained one.
Also, as it can be seen from the current paper, derivative-free unconstrained
bilevel optimization already introduces a number of nontrivial issues and
a considerable amount of technical detail. However, as we will see, linear
upper and lower level constraints (and nonlinearities in terms of the upper
level variables in the lower level constraints) can be easily incorporated in
our approach.

In Sections 2 and 3, we review some aspects of trust-region methods re-
quired for this paper. Using known facts related to the global convergence of
these methods and error bounds for polynomial interpolation of perturbed
functions, we show in Section 4 how to develop conditions to inexactly solve
the lower level problem and reuse points at which the lower level function has
been previously evaluated. An interpolation-based trust-region framework is
developed in Section 5 for the derivative-free solution of bilevel optimiza-
tion problems, incorporating the techniques for inexactness and re-usage of
points previously mentioned. We will show in Section 6 how effective these
techniques can be in terms of saving lower level function evaluations. In Sec-
tions 5 and 6 we also address issues like the use of surrogate models for the
lower level response and the extension to linearly constrained problems. The
application of our algorithmic framework to derivative-free robust optimiza-
tion problems is discussed in Section 7. The paper is concluded in Section 8
with some final remarks.

2 Trust-region interpolation-based models for

DFO

In this section and in the next we consider the unconstrained minimization
of a smooth function f : Rn → R:

min
x∈Rn

f(x).

In addition, assume the existence of a quadratic model m(x+s) for f around
a point x,

m(x+ s) = f(x) + 〈g, s〉+
1

2
〈s,Hs〉,

3

where ∆ is the trust-region radius and g and H are some approximations to,
respectively, the gradient and Hessian of f at x. The algorithmic framework
described later is based on the trust-region technique, where the step s is
computed by approximately solving the trust-region subproblem

min
s∈B(0;∆)

m(x+ s). (4)

Typically, trial points are accepted in trust-region methods when the ratio
between the actual reduction in the function and the reduction predicted by
the model,

ρ =
f(x)− f(x+ s)

m(x)−m(x+ s)
,

is above a positive threshold η0. In this case, one achieves a sufficient decrease
in the function, in the sense that f(x)− f(x+ s) > η0(m(x)−m(x+ s)).

The design of trust-region methods based on interpolation models re-
ceived some attention before the late nineties but mostly from a practical
point of view (with original contributions from Winfield and Powell; see [9,
Section 10.9]). The idea is simple and consists of building quadratic inter-
polation models m(x + s) out of sample sets which are updated along the
minimization process.

Later, Conn, Scheinberg, and Toint [6] introduced the so-called criticality
step and designed and analyzed the first interpolation-based derivative-free
trust-region method globally convergent to first-order critical points. The
criticality step, taken at the beginning of each trust-region iteration, con-
sists of improving the geometry of the sample set (and consequently of the
interpolation model) for a possible smaller, pre-specified trust-region radius,
whenever the model gradient gets sufficiently small.

Conn, Scheinberg, and Vicente [8] studied the appropriate incorpora-
tion of fully linear and fully quadratic models, global convergence when ac-
ceptance of iterates is based on simple decrease of the objective function
(f(x)−f(x+s) > 0), and global convergence for second-order critical points.
Due to the use of the criticality step, they proved that the trust-region radius
converges to zero.

From a more practical point-of view, Powell has intensively studied these
methods, bringing to the attention of the community the advantage of using
quadratic models based on minimum Frobenius norm minimization [15] when
the number of points is smaller than the number of basis components.

4

3 Trust-region interpolation-based models for

DFO with inexact function values

In the context that we are interested, the function f cannot be evaluated
exactly but the absolute error between the true function value and the inexact
function value is controllable. Instead of f(x) we compute f̄(x; εx) and we
can enforce, if we wish, that

|f(x)− f̄(x; εx)| ≤ εx. (5)

The tolerance εx > 0 associated with x might not be even specified when
computing f̄(x; εx). The point here is that we assume that if a tolerance εx
is given we can compute an inexact f̄(x; εx) corresponding to f(x) with an
absolute error satisfying (5).

The amount of inexactness allowed in the function calculation is measured
by a fraction η0 of the decrease m(x) − m(x + s) predicted by the model
(of f̄(x; εx), now, rather than f(x)). Let ε and εx+s be upper bounds on the
absolute values of the errors incurred while approximating f(x) and f(x+s),
respectively. These errors must satisfy:

max{εx, εx+s} ≤ η′0 (m(x)−m(x+ s)) . (6)

It can be easily checked (see [5, Section 10.6]) that if the ratio ρ between
actual and predicted reductions for the inexact function f̄ satisfies

f̄(x; εx)− f̄(x+ s; εx+s)

m(x)−m(x+ s)
≥ η0

then
f(x)− f(x+ s)

m(x)−m(x+ s)
≥ η′0 − 2η0 > 0,

with 0 < η0 < η′0/2 and η0 < 1.

4 How to reduce the lower level solution ef-

fort

We start by stating two results on errors bounds for quadratic interpolation
models when the functions being interpolated are subject to error. The first
result ensures that such models, when using (n+ 1)/(n+ 2)/2 interpolation
points, can exhibit the accuracy of fully quadratic models (in the sense of [9,
Definition 6.2]) and requires the following assumption.

5

Assumption 4.1 We assume that Y = {y0, y1, . . . , yp} ⊂ Rn, with p1 =
p+1 = (n+1)(n+2)/2, is a poised set of sample points (in the quadratic in-
terpolation sense, d = 2) contained in the (smallest possible) ball B(y0; ∆(Y))
of radius ∆ = ∆(Y).

Further, we assume that the function f is twice continuously differentiable
in an open domain Ω containing B(y0; ∆) and ∇2f is Lipschitz continuous
in Ω with constant ν2 > 0.

The proof of the following result is essentially an adaptation of the proof
of [7, Theorem 3.16] (see also [9, Theorem 5.4]).

Theorem 4.1 Let Assumption 4.1 hold. Assume that the error in function
values is of the order of ∆(Y)3. Then, for all points y in B(y0; ∆(Y)), we
have that

• the error between the Hessian of the quadratic interpolation model and
the Hessian of the function satisfies

‖∇2f(y)−∇2m(y)‖ ≤ κeh ∆,

• the error between the gradient of the quadratic interpolation model and
the gradient of the function satisfies

‖∇f(y)−∇m(y)‖ ≤ κeg ∆2, (7)

• the error between the quadratic interpolation model and the function
satisfies

|f(y)−m(y)| ≤ κef ∆3,

where κeh, κeg, and κef are positive constants depending, essentially, on the
geometry of the sample set (i.e., on the corresponding Λ–poisedness constant)
and the Lipschitz constants of the second-order derivatives of f .

The next result ensures that quadratic interpolation models built using
less than (n + 1)/(n + 2)/2 points can exhibit the accuracy of fully linear
models (in the sense of [9, Definition 6.2]) and is derived under the following
assumption.

Assumption 4.2 We assume that Y = {y0, y1, . . . , yp} ⊂ Rn is a set of
sample points poised in the linear interpolation sense (or in the linear regres-
sion sense if p > n) contained in the (smallest possible) ball B(y0; ∆(Y)) of
radius ∆ = ∆(Y).

Further, we assume that the function f is continuously differentiable in
an open domain Ω containing B(y0; ∆) and ∇f is Lipschitz continuous in Ω
with constant ν > 0.

6

The following result can be derived by making the appropriate changes
in [9, Theorem 5.4].

Theorem 4.2 Let Assumption 4.2 hold. Assume that the error in function
values is of the order of ∆(Y)2. Then, for all points y in B(y0; ∆(Y)), we
have that

• the error between the gradient of the quadratic interpolation model and
the gradient of the function satisfies

‖∇f(y)−∇m(y)‖ ≤ κeg ∆,

• the error between the quadratic interpolation model and the function
satisfies

|f(y)−m(y)| ≤ κef ∆2,

where κeh, κeg, and κef are positive constants depending, essentially, on the
norm of ∇2m(y), the geometry of the sample set (i.e., on the corresponding
Λ–poisedness constant), and the Lipschitz constants of the first-order deriva-
tives of f .

4.1 Inexact solution of the lower level problem

If the inexact solution x`
dfo(x

u) of the lower level problem is sufficiently close

to the true solution x`(xu) in the sense of the inverse function theorem (see,
e.g., [14, Paragraph 5.2.1]), meaning that both points are in a neighbor-
hood U where ∇`f

` is continuously differentiable and ∇2
``f

` is nonsingular,
then

‖x`(xu)− x`
dfo(x

u)‖ ≤ c`∇‖∇`f
`(xu, x`

dfo(x
u))‖,

where the constant c`∇ depends essentially on the bound of the inverse of
∇2

``f
` in U . If (7) is valid for f = f ` and m = m` at (xu, x`

dfo(x
u)), then

(with c`g = κeg)

‖x`(xu)− x`
dfo(x

u)‖ ≤ c`∇‖∇`m
`(xu, x`

dfo(x
u))‖+ c`∇c

`
g(∆`)2.

Then,
|fu(xu, x`(xu))− fu(xu, x`

dfo(x
u))|

≤ νu
f ‖x`(xu)− x`

dfo(x
u)‖

≤ νu
f c

`
∇‖∇`m

`(xu, x`
dfo(x

u))‖+ νu
f c

`
∇c

`
g(∆`)2.

7

4.1.1 Interpolation requirements

Thus, if
‖∇`m

`(xu, x`
dfo(x

u))‖ = O((∆u)2)

and
∆` = O(∆u),

then
|fu(xu, x`(xu))− fu(xu, x`

dfo(x
u))| = O((∆u)2),

and this provide us a sufficient condition to solve inexactly the lower level
problem whilst ensuring that the upper level model stays fully linear (see
Theorem 4.2).

4.1.2 Dynamic accuracy requirements

One way to approximately enforce the dynamic accuracy requirement1 (6) is
to consider only εxu+su ≤ η′0(mu(xu) − mu(xu + su)) which, from above, is
satisfied if

‖∇`m
`(xu + su, x`

dfo(x
u + su))‖ = O

(
min(‖su‖2, ‖su‖‖gu‖)

)
and

∆` = O
(√

min(‖su‖2, ‖su‖‖gu‖)
)
.

4.2 Reusing previous (upper level perturbed) evalu-
ated points

Especially close to the termination of the overall optimization process, when
the upper level variables change little, it might be advantageous to use, in
the solution of the lower level problem, points where the lower level function
has been evaluated for slightly different values of the upper level variables.
According to Theorem 4.1, the lower level model stays fully quadratic pro-
vided the difference in upper level variables is of the order of ∆3. In fact,
suppose that the lower level function f ` has been evaluated at (xu

pert, x
`) and

that we are interested in solving the lower level problem for xu. Since

|f `(xu, x`)− f `(xu
pert, x

`)| ≤ νu
f ‖xu − xu

pert‖,

if
‖xu − xu

pert‖ = O((∆`)3),

1Note that we are identifying f with fu(·, x`(·)), f̄ with fu(·, x`
dfo(·)), m with mu, x

with xu, and s with su.

8

then
|f `(xu, x`)− f `(xu

pert, x
`)| = O((∆`)3).

This provides us a criterion to decide whether to accept previously evaluated
points in the building of the lower level model (see Theorem 4.1).

5 A practical DFO algorithm for bilevel op-

timization

5.1 Description of a practical DFO algorithm

The algorithm described below follows some of the basic ideas of the algo-
rithm in Fasano, Morales, and Nocedal [11]. The main similarity lies in the
way the sample set is updated. When the iteration is successful, the new
point always enters the sample set. However, unlike [11], we discard the
sample point farthest away from the new iterate (rather than the sample
point farthest away from the current iterate).

In the approach used in this paper we allow the algorithm to start with less
points than those needed to build a determined quadratic model. Whenever
there are less points than pmax = (n+1)(n+2)/2, we use minimum Frobenius
norm interpolation to build our models. This poses additional issues to those
considered in [11], where pmax points are always used. For instance, until the
cardinality of the sample set reaches pmax, we never discard points from the
sample set and always add new trial points independently of whether or not
they are accepted as new iterates.

Another difference from [11] is that we discard points that are too far
from the current iterate when the trust-region radius becomes small (this is
a kind of weak criticality condition), hoping that the next iterations refill
the sample set resulting in a similar effect as a criticality step. Thus, the
cardinality of our sample set might fall below pmin = n + 1, the number
required to build fully linear models. In such situations, we never reduce the
trust-region radius.

Algorithm 5.1 (A practical DFO algorithm)
Step 0: Initialization.

Initial values. Select values for the constants εg(= 10−5) > 0, δ(=
10−5) > 0, 0 < η0(= 10−4) < η1(= 0.25) < 1, η2(= 0.75) > η1, and 0 <
γ1(= 0.5) < 1 < γ2(= 2). Set pmin = n+1 and pmax = (n+1)(n+2)/2.
Set the initial trust radius ∆0(= 1) > 0.

9

Initial sample set. Let the starting point x0 be given. Select as an
initial sample set Y0 = {x0, x0 ±∆0ei, i = 1, . . . , n}.

Function evaluations. Evaluate the objective function at all y ∈ Y0.

Set k = 0.
Step 1: Model building.

Form a quadratic model m(xk + s) of the objective function from Yk,
using quadratic interpolation if |Yk| = pmax, and using minimum Frobe-
nius norm quadratic interpolation if |Yk| < pmax.

Step 2: Stopping criteria.

Stop if ‖gk‖ ≤ εg or ∆k ≤ δ.

Step 3: Step calculation.

Compute a step sk by solving (approximately) the trust-region subprob-
lem mins∈Rnm(xk + s) s.t. ‖s‖ ≤ ∆k.

Step 4: Function evaluation.

Evaluate the objective function at xk + sk.

Step 5: Selection of the next iterate and trust radius update.

If ρk < η0, reject the trial step, xk+1 = xk, and reduce the trust-region
radius if |Yk| ≥ pmin, ∆k = γ1∆k (unsuccessful iteration).

If ρk ≥ η0, accept the trial step xk+1 = xk +sk (successful iteration).
(Possibly decrease trust-region radius, ∆k = γ1∆k, if ρk < η1 and
|Yk| ≥ pmin.)

Increase the trust-region radius, ∆k+1 = γ2∆k, if ρk > η2.

Step 6: Update the sample set.

If |Yk| = pmax, set yout
k ∈ argmax ‖y − xk+1‖ (break ties arbitrarily).

If the iteration was successful:

If |Yk| = pmax, Yk+1 = Yk ∪ {xk+1} \ {yout
k }.

If |Yk| < pmax, Yk+1 = Yk ∪ {xk+1}.

If the iteration was unsuccessful:

10

If |Yk| = pmax, Yk+1 = Yk ∪{xk + sk} \ {yout
k } if ‖(xk + sk)−xk‖ ≤

‖yout
k − xk‖.

If |Yk| < pmax, Yk+1 = Yk ∪ {xk + sk}.

Step 7: Model improvement.

When ∆k+1 < 10−3, discard from Yk+1 all the points outside B(xk+1;
100∆k+1)

Increment k by 1 and return to Step 1.

5.2 Description of the algorithm (upper level)

We are now in a position to describe our main derivative-free algorithm for
bilevel optimization. Essentially, we will apply the algorithm described above
to the minimization of the reduced upper level function fu(xu, x`(xu)). A
number of relevant issues need to be taken into consideration when evaluating
this function, since it requires some, possibly inexact, solution of the lower
level problem. This is addressed in the algorithm below and in the next
section.

Another point of deviation from the basic Algorithm 5.1 is the compu-
tation of initial points for the initial lower level minimizations at Step 0.
One possibility is to use whatever is supplied by the user. What we sug-
gest below, however, does not require a user suggestion for the initial lower
level variables. Instead, we build a linear surrogate model x`

m(xu) for x`(xu)
(from setting to zero the gradient with respect to x` of a quadratic model
of f `(xu, x`) in xu and x`) and then plug in different values for xu whenever
needed.

Algorithm 5.2 (A practical DFO algorithm for bilevel optimization)

Step 0: Initialization.

Initial values. As in Algorithm 5.1 (the constants are εug , δu, ηu
0 , ηu

1 ,
ηu

2 , γu
1 , γu

2 , nu, and ∆u
0).

Initial sample set. As in Algorithm 5.1 (the initial points is xu
0 and

the initial sample set is Y u
0).

Computing initial starting points for the lower level. Let the
lower level starting point x`

0 be given. Evaluate the lower level function
at Y0 = {x0, x0±∆ei, i = 1, . . . , n}, for some ∆ > 0, with x0 = (xu

0 , x
`
0)

and n = nu + n`. Form the minimum Frobenius quadratic model of

11

f ` (now considered as a function of both the upper and lower level
variables) at Y0. From this model, form the linear model x`

m(xu).

Function evaluations. For all yu ∈ Y u
0 , evaluate (possibly inexactly)

the reduced upper level function fu(yu, x`(yu)):

– Solve the lower level problem by applying a similar algorithm start-
ing at x`

m(yu) (see next subsection). Let x`
dfo(y

u) be the result of
this lower level optimization.

– Evaluate fu at (yu, x`
dfo(y

u)).

Set k = 0.
Step 1: Model building. As in Algorithm 5.1 (the new model is mu(xu

k +
su)).
Step 2: Stopping criteria. As in Algorithm 5.1.
Step 3: Step calculation. As in Algorithm 5.1 (the new step is su

k).
Step 4: Function evaluation. Evaluate (possibly inexactly) the reduced
upper level function fu(xu

k + su
k , x

`(xu
k + su

k)):

Solve the lower level problem for xu
k +su

k by applying a similar algorithm
(see next subsection). Let x`

dfo(x
u
k + su

k) be the result of this lower level
optimization.

Evaluate fu at (xu
k + su

k , x
`
dfo(x

u
k + su

k)).

Step 5: Selection of the next iterate and trust radius update. As in
Algorithm 5.1 (the new iterate is xu

k+1 and the new trust radius is ∆u
k+1).

Step 6: Update the sample set. As in Algorithm 5.1 (the new sample
set is Y u

k+1).
Step 7: Model improvement. As in Algorithm 5.1. Increment k by 1
and return to Step 1.

5.3 Description of the algorithm (lower level)

The derivative-free algorithm used for the lower level minimization is es-
sentially the basic version (Algorithm 5.1) applied to f `(xu, ·), with some
differences that we describe below.

Let us consider first the case where the solution of the lower level problem
has been requested for xu = xu

k + su
k in Step 4 of Algorithm 5.2.

Reusing previous (upper level perturbed) evaluated points.

12

The initial lower level sample set is formed by first attempting to in-
corporate points (zi

u, z
i
`) for which the value of f `(zi

u, z
i
`) has been com-

puted and such that

‖zi
u − (xu

k + su
k)‖ ≤ min(10−2(∆`

0)3, 10−2). (8)

Then, if needed (i.e., if there are not 2n+1 points in this situation), the
rest of the sample set Y `

0 is completed with points in {x`
0, x

`
0±∆`

0ei, i =
1, . . . , n`}.

Inexact solution of the lower level problem.

The gradient model stopping tolerance is set to

ε`g = max(min(10−2‖su
k‖, 10−2‖gu

k‖2, 10−2), 10−5). (9)

Note that this meets the requirements for both reduced upper level
interpolation and upper level dynamic accuracy (except for the size of
the lower level trust-region radius) — see the previous section.

The lower level problem is also required to be solved for xu = yu, for all
yu ∈ Y u

0 , in Step 0 of Algorithm 5.2. In this case, xu
k + su

k is replaced by yu

in (8) and ε`g is set to max(min(10−2∆u
0 , 10−2), 10−5) in (9).

6 Implementation and examples

We have developed a relatively sophisticated Matlab implementation, along
the lines described above (Algorithm 5.2 and Subsection 5.3), for the derivati-
ve-free solution of bilevel optimization problems.

6.1 The linearly constrained case

Although in principal the algorithmic approach followed in this paper could
be generalized to more general constraints, the code we implemented handles
bilevel problems with any type of linear constraints except upper level con-
straints on the lower level variables. In the reduced formulation, this latter
type of constraints becomes nonlinear in the upper level variables and that
poses an additional level of difficulty that we wish to avoid for the present.

13

More specifically, our code can handle bilevel optimization problems with
linear constraints of the form:

min
(xu,x`)∈Rnu×n`

fu(xu, x`)

Auxu ≤ bu,

Au
eqx

u = bueq,

`u ≤ xu ≤ uu,

s.t. x` ∈ arg min
{
f `(xu, z`) : A`z` +B`xu ≤ b`,

A`
eqz

` +B`
eqx

u = b`eq,

`` +B`
blsx

u ≤ z` ≤ `u +B`
blsx

u
}
,

(10)

where z` ∈ Rn`
, Au ∈ Rmu×nu

, bu ∈ Rmu
, Au

eq ∈ Rmu
eq×nu

, bueq ∈ Rmu
eq ,

`u ∈ (−∞,R)nu
, uu ∈ (R,+∞,)nu

, `u < uu, A` ∈ Rm`×n`
, B` ∈ Rm`×nu

,
b` ∈ Rm`

, A`
eq ∈ Rm`

eq×n`
, B`

eq ∈ Rm`
eq×nu

, b`eq ∈ Rm`
eq , `` ∈ (−∞,R)n`

,

u` ∈ (R,+∞,)n`
, `` < u`, and B`

bls, B
u
bls ∈ Rn`×nu

.
In fact, Algorithm 5.2 can be easily adapted to solve problems of the

form (10) by essentially bringing a homogenous form of the linear constraints
into the solution of the corresponding trust-region subproblems. In such
cases, we change the shape of the trust-region constraints from `2 to `∞ to
make the resulting trust-region subproblem a quadratic program. The lower
level constraints `` + B`

blsx
u ≤ z` ≤ `u + B`

blsx
u are considered separately

from inequality linear constraints since they still model simple bounds on
the lower level variables (despite the fact that the bounds depend on the
values of the upper level variables).

Also, whenever the gradient of the model is used in Algorithm 5.2 as an
indication of stationarity, we need to replace it by the projected gradient.
Here, again, we measure distance in the most convenient norm. When only
bounds are present, the `2-projection is computationally light. If there are
only equality constraints, then the `2-projection can be computed by solving
a linear system. In the more general cases, we replace the `2-norm by the `1

one in order to compute the projection from a linear, rather than a quadratic,
program.

Note that our code could also handle any form of nonlinearity in terms
of the upper level variables in the lower level constraints, since that would
not change the linear form of those constraints in the lower level problem.

14

6.2 Some illustrative examples

We first tested the application of our derivative-free bilevel method (Algo-
rithm 5.2) on two simple examples. In both cases nu = n`. The first ex-
ample has no constraints and is defined by fu(xu, x`) =

∑nu

i=1(xu
i)2 + (x`

i)
2

and f `(xu, x`) = ‖H`,`x
` − xu‖4

2, where H`,` = QDQ> with Q orthogo-
nal and D = diag(1, . . . , n`). In the second one (taken from [4, Problem
4 in Appendix A4]), we have fu(xu, x`) =

∑nu

i=1 x
`
i(x

u
i + 1)2, f `(xu, x`) =∑n`

i=1 x
`
i(x

`
i − xu

i), −2 ≤ xu
i ≤ 1, i = 1, . . . , nu as upper level constraints, and

xu
i ≤ x`

i , i = 1, . . . , n` as lower level constraints.
The result of the application of the algorithm to these two examples is

described in Figure 1 when nu = n` = 5. For the first example, where
the lower level function is quartic, it is apparent that the lower level effort
reduction obtained by the techniques of Section 4 (detailed in Section 5),
especially the inexact solution of the lower level problem, is significant. This
effect is not so visible in the second example since the lower level function is
quadratic (and thus mildly nonlinear) in the lower level variables. We ran our
algorithm for larger instances of this problem (nu = n` = 20; see Figure 2)
to give an indication of the overall effort needed to solve a larger problem.

Figure 1: Result of the application of Algorithm 5.2 to the bilevel examples
of Subsection 6.2 for nu = n` = 5. Both plots show the value of the reduced
upper level function in terms of the number of lower level function evalua-
tions. The black ‘◦’ curve correspond to the basic version. The red ‘×’ curve
correspond to the version where the lower level problem is solved inexactly.
The blue ‘+’ curve correspond to the version where the lower level problem
is solved inexactly and one reuses previous (upper level perturbed) evaluated
points.

15

Figure 2: Result of the application of Algorithm 5.2 to the second bilevel
example of Subsection 6.2 for nu = n` = 20. The plots show the value
of the reduced upper level function in terms of the number of upper level
function evaluations (left) and lower level function evaluations (right). (See
the caption of Figure 1 for information about the curves.)

7 Robust derivative-free optimization

In many real-world optimization problems, one is faced with data that is un-
certain and one only has a representation of the problem determined by some
form of estimation. When formulating such problems as robust optimization
ones, immunization against data uncertainty is made by allowing the un-
certain parameters to become variables in uncertainty sets. One then looks
for a safe, worst case scenario, hence the term robust. Robust optimization
also provides a tool for dealing with parameters for which the optimal values
must be later implemented in some practical context. Often such an imple-
mentation is error prone and, again, one would like to be protected against
an unsuitable worst case scenario by a suitable choice of these parameters.

We are interested in the robust optimization of functions arising from sim-
ulation, where derivatives are difficult or expensive to compute. The function
being minimized has the form f(x, p), where x are traditional variables and p
represents either an estimation of uncertain data or implementation param-
eters. We consider an uncertainty set P for the possible values of p. The
robust optimization problem of interest to us can be then formulated as

min
(x,p)∈Rn×P

max
p∈P

f(x, p).

This problem can be reformulated as a bilevel optimization problem of the

16

form
min

(x,p)∈Rn×P
f(x, p)

s.t. p ∈ arg min {−f(x, p̄) : p̄ ∈ P} .

7.1 A simple example

We tested our algorithm in the example reported in [2]. In this example, the
robust function is of the form f(x, p) = g(x+ p), where x, p ∈ R2 and

g(x) = 2x6
1 − 12.2x5

1 + 21.2x4
1 − 6.4x3

1 − 4.7x2
1 + 6.2x1

+x6
2 − 11x5

2 + 43.3x4
2 − 74.8x3

2 + 56.9x2
2 − 10x2

− 0.1x2
1x

2
2 + 0.4x2

1x2 + 0.4x2
2x1 − 4.1x1x2.

The problem has one lower level constraint of the form ‖p‖ ≤ 0.5 describing
the set of possible implementation errors:

min
x∈R2,p∈R2

g(x+ p)

s.t. p ∈ arg min {−g(x+ p̄) : p̄ ∈ R2, ‖p̄‖ ≤ 0.5} .

We ran our derivative-free bilevel method (Algorithm 5.2) for this prob-
lem starting from the same initial points as considered in [2] (namely point
A = (−0.4 0.1)> and point B = (1.8 2.4)>). The results are plotted in
Figure 3. In both cases, the algorithm identified a local minimizer of the
original problem. The number of local minima of this robust optimization
problem seems to be 5. We made a number of other tests for this small yet
interesting problem. Convergence was observed in the vast majority of the
cases to the closest local minimizer and was reasonably efficient in terms of
the overall number of function evaluations.

7.2 An example from portfolio optimization

Let the random variable R model the return of some asset or financial instru-
ment. Consider a return level or threshold L. The performance of the asset
can be measured by the so-called Omega function (introduced by Cascon,
Keating, and Shadwick [3]), which is defined by the ratio of the weighted
gains (above L) over the weighted losses (below L):

Ω(R;L) =

∫ Lmax

L
P(R ≥ r)dr∫ L

Lmin
P(R ≤ r)dr

.

For portfolio optimization (see the recent papers [12, 13]), one can con-
sider the returns R1, . . . , Rn for n assets and define the Omega function

17

Figure 3: Result of the application of Algorithm 5.2 to the robust optimiza-
tion example [2] (starting points A and B). Both plots show the value of the
reduced upper level function in terms of the number of lower level function
evaluations. (See the caption of Figure 1 for information about the curves.)

as Ω(x1R1 + · · ·+ xnRn;L), where x1, . . . , xn denotes the invested fractions.
One can consider a normalization constraint of the form x1 + · · · + xn = 1
and rule out short selling by imposing x1, . . . , xn ≥ 0.

We applied our derivative-free bilevel method (Algorithm 5.2) to the ro-
bust optimization of the Omega function for the example reported in [13]
which has 8 financial assets (leading to 7 upper level variables after eliminat-
ing xu

8 = 1− xu
1 − · · · − xu

7). We considered only one robust parameter (the
threshold L), which is the single lower level variable x` = L (along with the
lower level constraint 0 ≤ x` ≤ 0.04). The specific problem we tried to solve
can be formulated as

min
(xu,x`)∈R7×R

−Ω(xu;x`)

s.t. xu
1 + · · ·+ xu

7 ≤ 1, 0 ≤ xu
i ≤ 0.75, i = 1, . . . , 7,

x` ∈ arg min
{

Ω(xu; z`) : 0 ≤ z` ≤ 0.04
}
,

where

Ω(xu;x`) = Ω(xu
1R1 + · · ·+ xu

7R7 + (1− xu
1 − · · · − xu

7)R8;x`).

The performance of the algorithm on this example is described in Figure 4.
Optimization without derivatives of portfolio selection problems involving the
Omega function will be the subject of a separate study. Note that the prob-
lem stated above is a simplification of more complex models since typically

18

one would like to maximize the Omega function subject to a given maximum
level of risk or other constraints (more complex than just limiting the contri-
bution of each asset as we did above by setting 0 ≤ xu

i ≤ 0.75, i = 1, . . . , 7).

Figure 4: Result of the application of Algorithm 5.2 to the maximization of
the Omega function from [13] (8 assets), robustly with respect to the return
level/threshold. The plots show the value of the reduced upper level function
in terms of the number of upper level function evaluations (left) and lower
level function evaluations (right). (See the caption of Figure 1 for information
about the curves.)

8 Conclusions

This paper represents a first contribution to the derivative-free numerical so-
lution of bilevel optimization problems. We chose to solve both optimization
levels by trust-region interpolation based methods, using a similar core algo-
rithm where the use of minimum Frobenius norm quadratic models plays a
relevant role. We have taken advantage of the structure of bilevel optimiza-
tion given by the existence of a lower, inner optimization problem to explore
ways of saving objective function evaluations.

One technique that appears to be promising is to solve the lower level
inexactly, tightening the accuracy of its solution as the upper level itera-
tions evolve. This idea is related to truncated or inexact Newton and SQP
methods, which has proved to be both effective and robust. Another tech-
nique we studied and tested consisted of reusing points, for the lower level
optimization, that have been previously evaluated, even if they correspond

19

to different, slightly perturbed values of the upper level variables. This ap-
proach has also shown some capability of reducing the overall effort. However
it does not appear to be as robust as the previous idea, and we recommend
it only when the lower level function evaluations are relatively expensive.

The overall number of lower level function evaluations required to solve
the problems we tested (those reported in this paper and others) can still
be considered high. However, per lower level solution this number is rel-
atively low even when considering the most efficient existing trust-region
interpolation-based codes for derivative-free optimization.

Finally, we showed how our bilevel approach can be used to solve ro-
bust derivative-free optimization problems, and we applied it to the robust
maximization of the Omega function in portfolio optimization. One possible
difficulty that arises in this approach is that when the (upper level) objective
function is convex, the lower level problem results in the minimization of a
concave function. This did not apparently give rise to undue difficulty in our
limited numerical experiments. Instead, the problem seems rather to lie in
the nonconvexity of the reduced upper level function.

An astute reader will notice that there are no comparisons with competing
methods — this is because such methods appear not to exist.

Acknowledgments

We thank Katya Scheinberg for suggestions regarding Algorithm 5.1 (parts
of Steps 5 and 7).

References

[1] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applica-
tions, Kluwer Academic Publishers, Dordrecht, 1998.

[2] D. Bertsimas, O. Nohadani, and K. M. Teo, Robust optimiza-
tion for unconstrained simulation-based problems, Oper. Res., (2010, to
appear).

[3] A. Cascon, C. Keating, and W. Shadwick, The Omega function,
tech. report, The Finance Development Centre, London, 2002.

[4] L. M. Case, An `1 Penalty Function Approach to the Nonlinear Bilevel
Programming Problem, PhD thesis, University of Waterloo, Canada,
1997.

20

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region
Methods, MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2000.

[6] A. R. Conn, K. Scheinberg, and Ph. L. Toint, On the con-
vergence of derivative-free methods for unconstrained optimization, in
Approximation Theory and Optimization, Tributes to M. J. D. Pow-
ell, M. D. Buhmann and A. Iserles, eds., Cambridge University Press,
Cambridge, 1997, pp. 83–108.

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of
interpolation sets in derivative free optimization, Math. Program., 111
(2008), pp. 141–172.

[8] , Global convergence of general derivative-free trust-region algo-
rithms to first and second order critical points, SIAM J. Optim., 20
(2009), pp. 387–415.

[9] , Introduction to Derivative-Free Optimization, MPS-SIAM Series
on Optimization, SIAM, Philadelphia, 2009.

[10] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Pub-
lishers, Dordrecht, 2002.

[11] G. Fasano, J. L. Morales, and J. Nocedal, On the geometry
phase in model-based algorithms for derivative-free optimization, Optim.
Methods Softw., 24 (2009), pp. 145–154.

[12] S. J. Kane, M. C. Bartholomew-Biggs, M. Cross, and M. De-
war, Optimizing Omega, J. Global Optim., 45 (2009), pp. 153–167.

[13] B. Minsky, M. Obradovic, Q. Tang, and R. Thapar, Applying
a global optimisation algorithm to fund of hedge funds portfolio. 2009.

[14] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Non-
linear Equations in Several Variables, Academic Press, New York, 1970.

[15] M. J. D. Powell, Least Frobenius norm updating of quadratic mod-
els that satisfy interpolation conditions, Math. Program., 100 (2004),
pp. 183–215.

[16] K. Shimizu, Y. Ishizuka, and J. F. Bard, Nondifferentiable and
Two-Level Mathematical Programming, Kluwer Academic Publishers,
Boston, 1997.

21

