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Abstract. A Euclidean distance matrix is one in which the (i, j) entry specifies the squared
distance between particle i and particle j. Given a partially-specified symmetric matrix A with
zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the
unspecified entries to make A a Euclidean distance matrix.

We survey three different approaches to solving the EDMCP. We advocate expressing the EDMCP
as a nonconvex optimization problem using the particle positions as variables and solving using a
modified Newton or quasi-Newton method. To avoid local minima, we develop a randomized initial-
ization technique that involves a nonlinear version of the classical multidimensional scaling, and a
dimensionality relaxation scheme with optional weighting.

Our experiments show that the method easily solves the artificial problems introduced by Moré
and Wu. It also solves the 12 much more difficult protein fragment problems introduced by Hen-
drickson, and the 6 larger protein problems introduced by Grooms, Lewis, and Trosset.
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1. Introduction. Given the distances between each pair of n particles in R
r, n ≥

r, it is easy to determine the relative positions of the particles. In many applications,
though, we are given only some of the distances and we would like to determine the
missing distances and thus the particle positions. We focus in this paper on algorithms
to solve this distance completion problem.

In this paper we use Euclidean distances ‖x‖ =
√

xT x, where x is a column vector
with r components. We call D ∈ R

n×n a Euclidean distance matrix (EDM)1 if there
are points p1, p2, . . . , pn such that dij = ‖pi − pj‖2 for i, j = 1, 2, . . . , n. In particular,
every EDM is a nonnegative symmetric matrix with zeros on its main diagonal, but
not vice versa.

To define the Euclidean distance matrix completion problem (EDMCP), let Sn

denote the set of n×n real symmetric matrices and call a matrix A symmetric partial
if some entries are unspecified but all specified entries occur in pairs aij = aji. The
set of completions of a symmetric partial matrix A is defined as

C(A) := {D ∈ Sn : dij = aij for all specified entries aij in A.}.

A matrix D ∈ C(A) is called an EDM completion of A if D is an EDM. The EDMCP
is to find an EDM D that completes a given symmetric partial matrix A.

EDMs have been well-studied (e.g., [12, 13, 29, 35]), and some theoretical prop-
erties for EDMCPs have been developed (e.g., [1, 4, 16, 18]). Numerical optimization
is widely used to solve EDMCPs (e.g., [2, 14, 17, 24, 33, 36]), but current approaches
can be quite expensive and often fail to solve difficult problems. Applications of the
EDMCP include determining the conformation of molecules (e.g., [11, 32]) and, in
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particular, proteins (e.g., [14, 15, 25]), using incomplete measurements of interatomic
distances.

Following [17, 24, 36], we transform the EDMCP into a nonconvex optimization
problem involving particle positions. Our contribution is to develop an efficient and
reliable algorithm for solving this problem. We develop a randomized initialization
scheme that reduces the iteration count and increases the chance of reaching the
global minimum. We also develop a dimensionality relaxation scheme, related to
those proposed by Crippen [6, 7], Havel [15], and Purisima and Scheraga [26], to
continue the iteration in case a local minimizer is found. To deal with nonconvexity,
our system is solved using the modified Newton methods from [9] as well as the BFGS
quasi-Newton method [21]. The resulting method allows us to solve very challenging
EDMCPs with a high number of unspecified distances.

The rest of this paper is organized as follows. Section 2 reviews the basic prop-
erties of EDMs. In Section 3 we present three different optimization problems equiv-
alent to the EDMCP. Section 4 gives our randomized initialization scheme. Section 5
presents our dimensionality relaxation method. Experimental results are reported in
Section 6. A conclusion is given in Section 7.

2. The geometry of EDMs. If matrix D ∈ Sn has zero diagonal, we call it a
pre-EDM. Clearly every EDM is a pre-EDM but not vice versa, even if all entries are
nonnegative, since, for example, the distances might violate the triangle inequality.
It is well-known [2, 13, 29, 35] that a pre-EDM D ∈ Sn is an EDM if and only if D
is negative semidefinite on the subspace {x ∈ R

n : xT e = 0}, where e is the column
vector of ones. If V ∈ R

n×(n−1) is a matrix whose columns form an orthonormal basis
for this subspace, then the orthogonal projection matrix J onto this subspace is

J := V V T = I − eeT

n
∈ Sn.

Although the choice of V is not unique, J is unique and J2 = J .
Now define the linear operator

T (D) := −1

2
JDJ(2.1)

with domain Sn. Note that D ∈ Sn is an EDM if and only if D is a pre-EDM and
T (D) is positive semidefinite.

An n×r matrix P is called a realization of an EDM D if PPT = T (D) =: B. The
ith row of P , denoted pT

i , specifies the position of the ith particle. The Gram matrix B
contains the inner products bij = pT

i pj for i, j = 1, . . . , n. Thus, determining positions
from a given distance matrix is a matrix factorization problem. Three properties of
an EDM D are of interest to us:

• If P is a realization of D, then since Je = 0, we see that Be=0 and PT e=0.
Thus the centroid of the points p1, p2, . . . , pn is at the origin.

• If P is a realization of D, then so is PU for any orthogonal U .
• If B = T (D) has rank r, then there exists a realization P ∈ R

n×r of D, and
P must also have rank r. Thus there is no proper hyperplane in R

r that
contains the points p1, p2, . . . , pn.

We use X � 0 to indicate that matrix X is positive semidefinite. Denote the set
of n×n symmetric positive semidefinite matrices by

S
+
n := {S ∈ Sn : S � 0}.
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Fig. 2.1. Relationships among the linear operators.

We denote the column vector formed from the diagonal elements in D by diag(D).
The two sets

B
+
n := {B ∈ Sn : Be = 0, B � 0}

D
−

n := {D ∈ Sn : diag(D) = 0 and xT Dx ≤ 0 for xT e = 0}

will be of particular interest to us. S
+
n , B

+
n , and D

−

n are subspaces of Sn and convex.
Now define the linear operator

K(B) := diag(B) eT + e diag(B)T − 2B,(2.2)

where B ∈ Sn. The operators T defined in (2.1) and K have an interesting relation-
ship, explained in the following lemma.

Lemma 2.1. The linear operators T and K satisfy

T (D−

n ) = B
+
n and K(B+

n ) = D
−

n .

Moreover, T on D
−

n is the inverse function of K on B
+
n .

Proof. Any matrix D ∈ D
−

n is negative semidefinite on {x ∈ R
n : xT e = 0} =

{Jy : y ∈ R
n}. This implies that T (D) = − 1

2JDJT is positive semidefinite and

therefore in B
+
n , so T (D−

n ) ⊆ B
+
n .

Now suppose that B ∈ B
+
n . Observe that by the definition of K we see that K(B)

is symmetric with zero diagonal. For any x ∈ R
n with xT e = 0, xTK(B)x = −2xT Bx.

Therefore, K(B) ∈ D
−

n , so K(B+
n ) ⊆ D

−

n .
The fact that T on D

−

n is the inverse function of K on B
+
n follows from (2.1) and

(2.2), and from this we conclude that T (D−

n ) = B
+
n and K(B+

n ) = D
−

n .
We now study the two composite linear operators

TV (D) := V TT (D)V = − 1
2V T DV

KV (X) := K(V XV T ).

Lemma 2.2. The linear operators TV and KV satisfy

TV (D−

n ) = S
+
n−1 and KV (S+

n−1) = D
−

n .

Moreover, TV on D
−

n is the inverse function of KV on S
+
n−1.

Proof. This follows from Lemma 2.1 and the fact that V T V = I.
We summarize our notation in Table 2.1 and summarize the relationships among

the linear operators T , K, TV , and KV in Figure 2.1. By Lemma 2.1 and Lemma 2.2,
we conclude that for a given pre-EDM D, the following four conditions are equivalent:
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1. D is an EDM.
2. D ∈ D

−

n .
3. T (D) ∈ B

+
n .

4. TV (D) ∈ S
+
n−1.

These equivalences give us several approaches to the EDMCP, presented in the next
section.

n×n real symmetric matrices Sn

symmetric positive semidefinite matrices S
+
n := {S ∈ Sn : S � 0}

completions of a symmetric partial matrix C(A) := {D ∈ Sn : dij = aij

for all specified entries aij in A}
a subspace of centered matrices B

+
n := {B ∈ Sn : Be = 0, B � 0}

a subspace of hollowed matrices D
−

n := {D ∈ Sn : diag(D) = 0 and
xT Dx ≤ 0 when xT e = 0}

Orthog. projector onto {x ∈ R
n : xT e = 0} J := V V T = I − eeT

n ∈ Sn, with V T V = I
linear operators on Sn: T (D) := − 1

2JDJ
TV (D) := V TT (D)V = − 1

2V T DV
K(B) := diag(B) eT + e diag(B)T − 2B
KV (X) := K(V XV T )

D is a pre-EDM if D ∈ Sn and diag(D) = 0
D is an n × n EDM if D is a pre-EDM and B = T (D) ∈ B

+
n .

n × r position matrix P
n × n Gram matrix B = PPT = T (D), where D is an EDM
n × n partial EDM A
n × n weighting matrix H
minimization function fA,H(P ) := ‖H ◦ (A −K(PPT ))‖2

F
Table 2.1

Summary of notation.

3. Solving the EDMCP via numerical optimization. The EDMCP has
been formulated in the literature as several different but related optimization prob-
lems, taking advantage of the relationships in Figure 2.1. We present three of these
formulations in Sections 3.1–3.3 in order to give reasons for our own choice. In all
cases, the given n × n symmetric partial matrix A has a distance matrix completion
if and only if the global minimum of these problems is zero.

3.1. The dissimilarity parameterized formulation. Trosset [33] and Grooms,
Lewis, and Trosset [14] started from the formulation

{
minimize

B,D
‖B − T (D)‖2

F

subject to D ∈ C(A), B ∈ B
+
n , rank(B) ≤ r.

(3.1)

This approach is related to the classical multidimensional scaling (MDS) described
in [12, 31]. Both transform a distance matrix D to T (D) and find a Gram matrix
B ∈ B

+
n that best matches T (D).

Given a symmetric matrix B ∈ R
n×n, define

Fr(B) =
n∑

i=r+1

λi(B)2 +
r∑

i=1

(λi(B) − max{λi(B), 0})2,
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where λi(B) is the ith largest eigenvalue of B. Then a pre-EDM D is an EDM with
rank(T (D)) ≤ r if and only if Fr(T (D)) = 0. Hence problem (3.1) can be transformed
into

{
minimize

D
Fr(T (D))

subject to D ∈ C(A).
(3.2)

The distance matrix D is indeed a dissimilarity matrix. Therefore, solving the
EDMCP via the nonconvex formulation (3.2) is called the dissimilarity parameterized
approach [14]. The number of variables in this formulation is proportional to the
number of unspecified distances, so it is favored when this is small (i.e., less than
O(n2)). With efficient computational treatment [14], it can also be applied to solve
problems with a large number of unspecified distances.

3.2. Convex semidefinite programming. Alfakih, Khandani and Wolkowicz
[2] solved the EDMCP via semidefinite programming. They compute the solution as
D = KV (X), where X solves

{
minimize

X
‖H ◦ (A −KV (X))‖2

F

subject to X ∈ S
+
n−1,

(3.3)

where ‘◦’ denotes the Hadamard (elementwise) product and H is a weight matrix
such that hij > 0 if aij is specified, and otherwise hij = 0. If hij := 1 for all
specified entries, then we minimize the Frobenius norm of the partial error matrix.
Alternatively, if relative distance errors are the concern, set hij := 1/aij . The weights
of the distances may also depend on their relative uncertainty.

This optimization problem is convex; hence any local minimizer will also be a
global minimizer, a very desirable property. On the other hand, the domain is S

+
n−1,

so the number of variables is O(n2), which can be quite large.
Note that the embedding dimension r is not specified in problem (3.3). As a result,

the minimization algorithm might converge to a minimizer X to (3.3) with high rank.
In this case, an algorithm in [3] can be applied to reduce the rank of X to some extent
without leaving the minimum. This issue also occurs in our dimensionality relaxation
scheme, which we will discuss in Section 5.

3.3. The nonconvex position formulation. Instead of solving the optimiza-
tion problem (3.2) or (3.3), our work uses the formulation

{
minimize

B
‖H ◦ (A −K(B))‖2

F

subject to B ∈ B
+
n , Be = 0, rank(B) = r,

(3.4)

where H is a weight matrix. Here we explicitly impose the embedding dimension r in
the constraints.

We use the relation between an EDM D and its realization P ∈ R
n×r, with

B = PPT and Pe = 0. We rewrite problem (3.4) as the following problem which we
call the position formulation:

{
minimize

P
‖H ◦ (A −K(PPT ))‖2

F =: fA,H(P )

subject to P ∈ R
n×r.

(3.5)

A careful reader may notice that the equality constraints Pe = 0 are not present
in (3.5). Lemma 3.1 shows that removing these equality constraints does not change
the global minimum, and therefore they are dispensable.
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Lemma 3.1. Suppose we are given P ∈ R
n×r with each row representing a point

in Euclidean space. Let P1 = PU + eqT where U ∈ R
r×r is an orthogonal matrix and

q is an arbitrary vector.. Then

K(P1P
T
1 ) = K(PPT ),

where the linear operator K is defined in (2.2).
Proof. Using the fact that UUT = I, we calculate

K(P1P
T
1 ) −K(PPT ) = K(P1P

T
1 − PPT )

= K(PUqeT + eqT UT PT + eqT qeT )

= K(PUqeT + eqT UT PT ) + qT qK(eeT )

= 0.

The last equality follows from the fact that K(peT + epT ) = 0 for all vectors p.
By Lemma 3.1, the objective function in (3.5) is invariant under the rigid transfor-

mation of coordinates, i.e., applying an orthogonal transformation UT to each point
and then translating by a fixed vector q. Therefore, it is not necessary to have the
centroid of the points in P at the origin, so the constraints Pe = 0 are dispensable.

Compared with (3.2) and (3.3), problem (3.5) has the key advantage of a relatively
small number of variables, since P ∈ R

n×r. For real problems such as protein structure
prediction, r is a small constant (e.g., r = 3), and therefore the problem size is O(n).
On the other hand, since the problem (3.5) is not convex, a minimization algorithm
can converge to a local minimizer, whereas a global minimizer is required to solve the
EDMCP.

3.4. Previous use of the position formulation. The objective function in
(3.5) can be written as

fA,H(P ) =

n∑

i=1

n∑

j=1

h2
ij(aij − dij)

2 =

n∑

i=1

n∑

j=1

h2
ij(aij − ‖pi − pj‖2)2.(3.6)

The last term has been frequently used in the literature (e.g., [17, 24, 25, 36]). Some
authors (e.g., [36]) also minimize the related function

max
i,j=1,...,n

h2
ij(aij − ‖pi − pj‖2)2(3.7)

to solve the EDMCP. Another alternative (e.g., [6, 7, 11, 15]) is to minimize

n∑

i=1

n∑

j=1

hij(
√

aij − ‖pi − pj‖)2.(3.8)

This is sometimes called the energy function (e.g., [6, 7]).
Note that (3.6), (3.7), and (3.8) are three different distance constraint violation

measurements. They are all bounded below by zero, and any zero value of them
implies that the other two also have value zero.

Several methods have been proposed to solve the EDMCPs via the position for-
mulation. For example, Crippen [6, 7] suggested a dimensionality relaxation scheme,
which he called energy embedding. Glunt, Hayden, and Raydan [11] proposed the spec-
tral gradient method and the data box algorithm. Havel [15] used simulated annealing
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optimization. Hendrickson [17] presented a divide-and-conquer algorithm. Moré and
Wu [24] used a smoothing and continuation method via a Gaussian transformation.
Zou, Bird, and Schnabel [36] developed a stochastic/perturbation algorithm. The au-
thors in [17, 24, 36] minimize (3.6), whereas the authors in [6, 7, 11, 15] minimize (3.8).
Our method consists of multiple ingredients. Two of the most important ones are a
randomized initialization technique and a dimensionality relaxation scheme that will
be described in Sections 4 and 5, respectively. Our implementation minimizes (3.6)
or (3.7) but can be adapted to minimize (3.8).

4. Randomized initialization. Consider the position formulation (3.5). A
good initial estimate of the configuration can speed up the convergence and increase
the chance of reaching the global minimum. Our initialization method is essentially
a multistart algorithm. However, rather than randomly generating the coordinates in
the sampling domain (e.g., [24, 36]), we use the existing information from the partial
EDM for a better estimation of the configuration. More specifically, our approach
is to fill the unspecified entries of A to form a pre-EDM F and then use metric
multidimensional scaling to obtain an initial configuration P ∈ R

n×r. The details
come next.

4.1. Nonlinear multidimensional scaling. Our observation is that each n×n
partial EDM A is canonically associated with an undirected graph G = (V, E) with
vertices in V = {1, . . . , n} corresponding to the particles. For every specified entry
dij , we place an edge between the ith and jth vertices (i, j) ∈ E with weight equal to
the distance

√
dij . This graph G is connected if and only if A0, with zeros entered

for missing distances, is irreducible. If A0 is reducible, then this EDMCP can be
partitioned into two or more independent EDMCPs. Hence we assume that G is
connected.

Using this graph, we initialize each missing entry aij to be the squared length
of the shortest path between vertices i and j to obtain a pre-EDM F ∈ R

n×n. This
requires solving the all-pairs shortest path problem. In our implementation we use
the Floyd-Warshall algorithm [10, 34].

Recall that a pre-EDM F ∈ R
n×n is an EDM corresponding to a configuration P ∈

R
n×r in the r-dimensional space if and only if T (F ) ∈ R

n×n is positive semidefinite
of rank r. Therefore, we consider the problem

{
minimize

B
‖T (F ) − B‖2

F

subject to B ∈ S
+
n , rank(B) ≤ r.

(4.1)

The minimizer is the truncated spectral decomposition of T (F ), formed from the
r largest positive eigenvalues and the corresponding eigenvectors. If there are fewer
than r positive eigenvalues, we take only the positive ones. The result is denoted by

B := UrΛrU
T
r , which yields the configuration P := UrΛ

1/2
r . This discussion leads to

Algorithm 1.

This initialization method is particularly relevant to molecular problems, where
the specified entries are from the measurement of interatomic distances, mostly the
shorter ones. In this case the lengths of the shortest paths approximate the geodesic
distances which are upper bounds on the actual distances.

It is worth noting that algorithmically, the method just described is very similar to
ISOMAP, a nonlinear version of multidimensional scaling applied to manifold learning
[30]. The difference is that we use the graph from the partial EDM, whereas in [30]
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function P=config init(F , r)
{Purpose: obtain a configuration P ∈ R

n×r from pre-EDM F ∈ R
n×n by solving

(4.1).}
Compute the lead eigenvalues λ1, . . . , λr of T (F ) and their eigenvectors

u1, . . . , ur;
λi := max{0, λi} for i = 1, . . . , r;
Λr := diag(λ1, . . . , λr);
Ur := [u1, . . . , ur];

P := UrΛ
1/2
r ; ⊲ B := PPT is the minimizer of (4.1)

end function
Algorithm 1: Configuration initialization.

the graph of the all-pairs shortest path problem is a k-nearest-neighbor graph of the
high-dimensional input data.

4.2. Randomized geodesic distance scaling. Our numerical experience indi-
cates that the initialization method in Section 4.1 is very effective for easier EDMCPs.
For example, coupled with appropriate local minimization algorithms, it solves all the
artificial problems from Moré and Wu [23, 24]; see Section 6.1 for details. However,
for challenging EDMCPs, such as the difficult protein fragment problems presented
by Hendrickson [17], this initialization method is far from sufficient.

The problem is that the all-pairs shortest path problem can greatly overestimate
the missing distances, especially if the paths are long. We have used D to denote the
EDM and F to denote the pre-EDM from solving the all-pair shortest path problem.
In molecular problems, the measured distances are generally the shortest ones. In
this case, if the shortest path between particles i and j in the graph has k segments,
then

fij

k2
≤ dij ≤ fij .(4.2)

Let sij := fij/dij . We collect all scalars sij with fij consisting of k segments
and compute the cumulative distribution. Figure 4.1 shows the result of the smallest
(20.unique) and largest (124.reduced) EDMCPs from Hendrickson’s test set [17]
for k = 2, 3, 4, 5. We can see that most often dij ≥ fij/1.5, demonstrating that the
denominator value k2 in (4.2) tends to be too pessimistic.

Motivated by these considerations, we propose forming a pre-EDM matrix F̂ with
filled entries set to

f̂ij =
fij

sij
,

where fij is determined from the shortest path problem, sij ∈ [1, kij ] is normally
distributed with mean 1.5 and standard deviation 0.3 (tails truncated), and kij is the
number of segments in the shortest path between particle i and particle j.

Once the pre-EDM F̂ is obtained from scaling the filled entries in F , we can
obtain an initial configuration P := config init(F̂ , r) by Algorithm 1. The scaling
is randomized so it naturally leads to a multistart algorithm for solving the position
formulation.
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Fig. 4.1. Probability that s ≤ x for two EDMCPs from Hendrickson’s test set.

4.3. Alternate initializations for our algorithm. The observations of Sec-
tions 4.1 and 4.2 lend insight into initializations that may improve the chance to solve
difficult EDMCPs.

Firstly, to solve (3.5), we randomly generate a number of configurations P by the
method described in Section 4.2, and pick the one with the smallest value fA,H(P ).
The selected configuration potentially has a better chance than the rest to reach the
global minimum.

An alternative to our first heuristic is to keep generating configurations P until
fA,H(P ) is below a given cutoff; see, for example, [36]. For simplicity, in our experi-
ments, we initialize each local minimization using the best configuration P (i.e., the
one with least fA,H(P )) among 100 randomly generated configurations.

Secondly, we may stretch the generated configuration P (i.e., multiply it by a
scaling factor) and use the stretched configuration to initialize the minimization. In-
tuitively, the stretching would be inappropriate, since it results in serious violations of
distance constraints. However, we found that in practice the stretching may increase
the chance to lead to the global minimum of (3.5).

The idea of stretching in distance geometry problems is not new. For example, it
has been applied in the local minimization phase of the algorithm in [36], where the
stretching factor is randomly chosen from the range [1.25, 2.5]. In our experiments, we
use either the stretching factor 2.0 or no stretching. A randomized stretching factor
might improve our results.

4.4. The resulting algorithm. We summarize these ideas in Algorithm 2. We
choose to minimize fA,H(P ) in (3.6); alternatively, one may also use (3.7) or (3.8).
A local minimization algorithm is required in (*) and (**) and there are many pos-
sible choices. Our implementation uses the optimization package OPT++ [22], and we
have included Newton’s method implemented with various modified Cholesky algo-
rithms for generating descent search directions [9], as well as the BFGS quasi-Newton
method [21]. For difficult problems, this is not sufficient, so we consider an alternative,
dim relax local min, in the next section.

5. Dimensionality relaxation. We present in this section a local minimization
algorithm that uses dimensionality relaxation. This algorithm can improve the chance
of reaching the global minimizer.
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Input: an n×n partial EDM A; the embedding dimension r; and a weight matrix
H ∈ R

n×n associated with A.
Output: a configuration P ∈ R

n×r such that K(PPT ) is an EDM completion to
A.

Get pre-EDM F by solving the all-pairs shortest path problem from A; ⊲ Sec. 4.1
P := config init(F, r); ⊲ Alg. 1
Optionally stretch P ; ⊲ Sec. 4.3
Psol = local min(fA,H(P ), P ); ⊲ (*)

or Psol = dim relax local min(A, H, F ); ⊲ Sec. 5
while fA,H(Psol) > 0 do

Generate 100 matrices F̂ by randomly scaling entries in F ; ⊲ Sec. 4.2
Compute P := config init(F̂ , r) for all F̂ ; ⊲ Algorithm 1
Pick the P with least fA,H(P ); ⊲ see (3.6)

{The corresponding pre-EDM is denoted by F̃ ;}
Optionally stretch P ; ⊲ Sec. 4.3
Psol = local min(fA,H(P ), P ); ⊲ (**)

or Psol = dim relax local min(A, H, F̃ ); ⊲ Sec. 5
end while

Algorithm 2: A multistart algorithm to solve the position formulation.

5.1. The framework. When the embedding dimension is artificially large, it
can be easier to reach the global minimum. For example, there may be no way to
pass between two local minimizers for a set of particles in two dimensions without
increasing the objective function; but if we allow the same set of particles to move
in three dimensions, there may be such a path. This observation leads to the idea of
artificially relaxing the embedding dimension when local minimization cannot solve
the position formulation in the desired r-dimensional space.

With a pre-EDM F̃ , we can obtain an initial configuration by Algorithm 1 and
then hopefully a solution by a local minimization program in the larger-dimension
space. This solution may be utilized to initialize a guess in a reduced-dimension
space, repeating until we reach the desired dimension. We are aided by the fact
that our minimization function is 0 for a global minimizer, so we can easily recognize
failure. If failure occurs, we could restart in an even higher-dimensional space.

There are three issues to be resolved: how much to increase the dimension,
how fast to reduce the dimension, and how to use the global minimizer in a higher-
dimensional space to initialize a minimization algorithm in a lower-dimensional space.

Regarding the first issue, to avoid extra work, we always first start with dimension
r. If this fails to find a global minimizer, we restart the algorithm from dimension
r+1, then from r+2, and repeat up to rmax (a user-defined parameter) if necessary.

Regarding the second issue, we again let the user define the dimension reduction
parameter d. The extreme cases are to reduce directly from the increased dimension
r′ to r (i.e., d := r′ − r) or to use the most gradual reduction (i.e., d := 1). As will be
seen from Table 6.4, gradual reduction is more reliable but also more costly.

The remaining issue is how to extract lower-dimensional coordinates from the
higher-dimensional ones. Alfakih and Wolkowicz [3] gave an iterative algorithm based
on semidefinite programming. Crippen [6, 7] projected along the direction of the
eigenvector corresponding to the smallest eigenvalue of the weighted inertial tensor
matrix of the interatomic separation vectors. Havel [15] used four-dimensional relax-
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ation and simulated annealing to find a rigid transformation to approximately project
back to three-dimensional space. Purisima and Scheraga [26] used Cayley-Menger de-
terminants to reduce the dimensionality. In addition, some standard dimensionality
reduction techniques for data mining, such as principal component analysis (PCA),
are also applicable here.

In our work, we use linear projection or nonlinear programming to extract the
lower-dimensional coordinates. We discuss these approaches in the next two sections.

5.2. Dimensionality reduction by linear projection. We now present a
linear projection method for dimensionality reduction and relate it to some meth-
ods in the literature. The problem is formulated as follows. We are given a higher-
dimensional configuration P ∈ R

n×r′

, and want to find a lower dimensional configura-
tion Q ∈ R

n×r by projection Q = PU , such that Q preserves the distance information
as best as possible, where U ∈ R

r′
×r is the projection matrix.

In EDMCP, only distances specified in the n×n partial EDM A are of interest,
and the distance information to preserve is H ◦ K(PPT ) where H contains the given
weights. We choose to limit ourselves to orthogonal projections, and determine Q by
solving the optimization problem:

{
minimize

Q
‖H ◦ (K(PPT ) −K(QQT ))‖S

subject to Q = PU, UT U = I, U ∈ R
r′
×r,

(5.1)

where ‖ · ‖S is the sum of the magnitudes of the elements in the matrix.
Denote the rows of P by pT

i and those of Q by qT
i . Since K(PPT ) and K(QQT )

are the EDMs of the configurations P and Q, respectively, the objective function in
(5.1) is

n∑

i=1

n∑

j=1

hij | ‖pi − pj‖2
2 − ‖qi − qj‖2

2 | .(5.2)

Let the columns of Ū ∈ R
r′
×(r′

−r) be an orthogonal basis for the orthogonal comple-
ment of the space spanned by the columns of U ∈ R

r′
×r. Then for i, j = 1, . . . , n,

‖pi − pj‖2
2 − ‖qi − qj‖2

2 = ‖
[

UT

ŪT

]
(pi − pj)‖2

2 − ‖UT (pi − pj)‖2
2 = ‖ŪT (pi − pj)‖2

2.

Therefore, we can simplify (5.2) by observing that

n∑

i=1

n∑

j=1

hij(‖pi − pj‖2
2 − ‖qi − qj‖2

2)

=
n∑

i=1

n∑

j=1

hij‖ŪT (pi − pj)‖2
2

=

n∑

i=1

n∑

j=1

hij(pi − pj)
T Ū ŪT (pi − pj)

=

n∑

i=1

n∑

j=1

hij trace(ŪT (pi − pj)(pi − pj)
T Ū)

= trace(ŪT (

n∑

i=1

n∑

j=1

hij(pi − pj)(pi − pj)
T )Ū).



12 H.-R. FANG AND D. P. O’LEARY

The minimum is obtained by choosing the columns of Ū to span the subspace defined
by the eigenvectors of

n∑

i=1

n∑

j=1

hij(pi − pj)(pi − pj)
T(5.3)

corresponding to the r′− r smallest eigenvalues. Equivalently, we choose the columns
of U ∈ R

r′
×r to span the subspace defined by the eigenvectors corresponding to the

r largest eigenvalues of (5.3). Then Q = PU minimizes (5.1).
This method of dimensionality reduction is related to some methods in the liter-

ature:
• The formula used here is mathematically the same as that used by Crippen

[6, 7] in energy embedding, where the weighted inertial tensor matrix is our
(5.3). Crippen [6] showed that when r′− r = 1 (i.e., the dimension is reduced
by one), the formula minimizes (5.1). Our analysis is more general.

• If hij = 1 for i, j = 1, . . . , n (i.e., unit weights), then (5.3) simplifies to

n∑

i=1

n∑

j=1

(pi − pj)(pi − pj)
T =

n∑

i=1

n∑

j=1

pip
T
i − pip

T
j − pjp

T
i + pjp

T
j

= nPT P − PT eeT P − PT eeT P + nPT P = 2nPT (I − 1

n
eeT )P = 2nP̄T P̄ ,

where P̄ = (I − 1
neeT )P . The resulting method is the same as principal com-

ponent analysis, which is known to be equivalent to classical multidimensional
scaling. See, for example, [12].

• Now allow negative and unsymmetric weights. If the weights are normalized
such that

∑
j hij = 1 for i = 1, . . . , n, and if HT H is diagonal, then the ma-

trix in (5.3) is the one used in orthogonal neighborhood preserving projections
(ONPP) [19, 20]. The difference is that here we compute the eigenvectors that
correspond to the largest eigenvalues, whereas ONPP projects with eigenvec-
tors associated with the smallest eigenvalues. The weights are also obtained
differently.

5.3. Dimensionality reduction by nonlinear programming. We now give
a new nonlinear dimensionality-reduction method, solving the following nonlinear
programming problem:

{
minimize

W
‖W2‖2

F

subject to fA,H(W ) ≤ 0, W = [W1, W2] ∈ R
n×r′

,
(5.4)

where W ∈ R
n×r′

is a configuration in r′-dimensional space, W1 has dimension n×r,
and fA,H(W ) is the distance constraint violation measurement of the EDMCP defined
in (3.6), which again can be replaced by (3.7) or (3.8). The objective function ‖W2‖2

F

is the sum of squared coordinate values in the dimensions higher than r.
The constraint fA,H(W ) ≤ 0 forces W ∈ R

n×r′

to be a solution to the EDMCP
in the r′-dimensional space. We use the configuration W1 resulting from (5.4) as the
estimated solution in the lower r-dimensional space. If the EDMCP has a solution in
r-dimensional space, then the global minimum of (5.4) is zero and the corresponding
W1 is a solution. Since fA,H(W ) is nonconvex, a local optimization algorithm may
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fail to find a global minimizer, but the solution it computes still gives an estimate of
the solution.

We can use the solution P ∈ R
n×r′

to the EDMCP in the higher r′-dimensional
space as our initial guess in (5.4). It is a feasible initial guess since fA,H(P ) = 0. In
our system, we use an interior point method implemented in OPT++ [22] to solve (5.4).
We have also incorporated the modified Cholesky algorithms listed in [9] to promote
global convergence.

The linear dimensionality reduction method in Section 5.2, applied to the solution
to the EDMCP in the higher r′-dimensional space, can be used to find a better initial
feasible point P̃ := PŨ for solving (5.4). Two points deserve discussion. Firstly, since

the orthogonal transformation Ũ preserves distances between particles, fA,H(P̃ ) = 0,

so P̃ is a feasible starting point for (5.4). Secondly, we can measure the quality of an
estimate W by how closely W1 satisfies fA,H(W1) ≤ 0. The discussion in Section 5.2

indicates that the matrix formed from the first r columns P̃ gives a global minimizer
of (5.1). Therefore, this matrix nearly solves the constraint and is a good starting
guess.

We used this guess in our experiments. As will be seen from Table 6.4, dimen-
sionality reduction by nonlinear programming requires significantly more computation
but is more robust than dimensionality reduction by linear projection.

Recall that the ultimate goal is to satisfy the distance constraints defined by
the partial distance matrix A. Requiring W2 to be zero does not differentiate the
constrained distances from the zero-weighted ones. Therefore, a better alternative is
to replace the objective function ‖W2‖2

F in (5.4) by

‖H ◦ K(W2W
T
2 )‖2

F ,(5.5)

where H is the weight matrix in (3.5). All the discussion above remains valid with
this change.

5.4. Minimization using dimensionality relaxation. Algorithm 3, the rou-
tine dim relax local min, incorporates dimensionality reduction, using either the
linear projection of Section 5.2 or the nonlinear programming approach of in Sec-
tion 5.3. This algorithm can be used instead of local min in Algorithm 2.

6. Experimental results. We now discuss our implementation and numerical
results on two sets of test problems, those of Moré and Wu, those of Hendrickson, and
those of Grooms Lewis, and Trosset.

Algorithm 2 and Algorithm 3 both make use of local min, a local minimization
algorithm. In addition, if we use nonlinear programming for dimensionality reduction
(5.4) in Algorithm 3, then a (local) nonlinear programming method is needed. In
all cases, we use the nonlinear optimization package OPT++ [22], into which we have
incorporated all the modified Cholesky algorithms listed in [9]. We minimize the
objective function fA,H(P ) from (3.6) and use binary weights in H (i.e., hij = 1 if
aij is specified, and otherwise hij = 0, where A is the partial EDM that defines the
EDMCP).

We measure the quality of the solution using the maximum relative-squared-
distance-error

ǫA(P ) = max
aij specified

|(dij − aij)/aij |, D = K(PPT ).(6.1)
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function P=dim relax local min(A, H, F )
Input: an n×n partial EDM A; a weight matrix H ∈ R

n×n, and a pre-EDM
F ∈ R

n×n.
Parameters: the embedding dimension r; the maximum embedding dimension

rmax, and the dimension-reduction step d.
Output: If successful: a solution P ∈ R

n×r to the EDMCP.
for r2 = r, r+1, . . . , rmax do

r′ := r2;
Compute P := config init(F, r′); ⊲ Alg. 1
Stretch P , if desired; ⊲ Sec. 4.3
Apply local min to minimize fA,H(P ), starting from P ∈ R

n×r′

;

while a global minimizer P ∈ R
n×r′

of fA,H(P ) is found do
if r′ = r then

Return P as a solution to EDMCP;
else

Reduce the dimensionality of P to r′ := max(r, r′ − d); ⊲ Sec. 5.2, 5.3
Apply local min to minimize fA,H(P ), starting from P ;

end if
end while

end for
end function
Algorithm 3: A local minimization algorithm using dimensionality relaxation.

We say that the EDMCP defined by the partial EDM A is solved if ǫA(P ) < 0.01
[36] and finely solved if ǫA(P ) < 10−5. We measure computational cost by counting
function, gradient, and Hessian evaluations.

6.1. The Moré and Wu problems [23, 24]. These artificial problems concern
m = s3 particles placed on a three-dimensional lattice

{(i1, i2, i3) : i1, i2, i3 = 0, . . . , s−1}.

The atom at (i1, i2, i3) is indexed uniquely by

i = 1 + i1 + i2s + i3s
2.

There are two sets of problems. In the Type-1 problems, the distance between
atoms i and j is specified in the partial EDM A if |i−j| ≤ s2. In the Type-2 problems,
all distances greater than 2 are unspecified and distances less than or equal to 2 are
specified.

These problems are relatively easy and can all be solved for s = 3, 4, 5, 6, 7 by a
minimization program with the initialization technique in Section 4.1. The costs are
summarized in Tables 6.1 and 6.2. We used various minimization algorithms: BFGS
and the 10 modified Newton methods from [9] (our methods are named in boldface).
In all cases the problems are finely solved.

Table 6.1 shows the well-known convergence difficulties of the SE90 algorithm
[27]. This issue is resolved by the SE99 algorithm [28], a revision proposed by the
same authors, Schnabel and Eskow. From Table 6.2 we see that our initialization
scheme in Section 4.1 is more effective for the Type-2 problems. An explanation is
that for these problems, the specified distances are the shortest ones. Therefore the
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Table 6.1

Cost to solve the Moré and Wu Type-1 problems.

local min method
s 3 4 5 6 7

# specified 198 888 2800 7110 15582

distances (56.41%) (44.05%) (35.13%) (30.62%) (26.57%)

BFGS
# f eval. 48 100 182 292 424
# g eval. 47 99 182 292 424

GMW81, GMW-I, GMW-II, SE99, SE-I # f eval. 7 7 8 9 10
MS79, CH98, LTL

T
-MS79, LTL

T
-CH98 # g, H eval. 7 7 8 9 10

SE90
# f eval. 12 13 64 114 201

# g, H eval. 12 13 64 114 201

Table 6.2

Cost to solve the Moré and Wu Type-2 problems.

local min method
s 3 4 5 6 7

# specified 185 564 1261 2372 3993

distances (52.71%) (27.98%) (16.27%) (10.22%) (6.81%)

BFGS
# f eval. 12 14 16 21 23
# g eval. 11 13 16 21 22

GMW81, GMW-I, GMW-II, SE99, SE-I # f eval. 5 5 5 5 5
MS79, CH98, LTL

T
-MS79, LTL

T
-CH98 # g, H eval. 5 5 5 5 5

SE90
# f eval. 11 5 5 5 5

# g, H eval. 11 5 5 5 5

pre-EDM from solving the all-pairs shortest path problem is a very good estimate of
the EDM. Tables 6.1 and 6.2 indicate that the 9 modified-Cholesky algorithms other
than SE90 are comparably efficient, taking the same numbers of function, gradient,
and Hessian evaluations to solve the test problems.

Our method is significantly more efficient than the global continuation method of
Moré and Wu [24] and the stochastic/perturbation global optimization algorithm of
Zou, Bird, and Schnabel [36] on these test problems.

6.2. The Hendrickson problems [17]. These 12 problems were derived from
a typical small protein, bovine pancreatic ribonuclease A, which consists of 124 amino
acids, and after discarding end chains, 1849 atoms. The data set consists of all dis-
tances between pairs of atoms in the same amino acid, together with 1167 additional
distances between hydrogen atoms that are closer than 3.5 Å. The problems were gen-
erated by taking fragments consisting of the first 20, 40, 60, 80, and 100 amino acids,
as well as the complete protein with 124 amino acids. After graph reduction, there are
at least 63 and at most 777 atoms in each problem. See [17] for details. The numbers
of atoms and specified distances for these problems are listed in Table 6.3. Note that
specifying only a small percentage distances makes the problem more difficult, so we
can foresee that the Hendrickson test problems are significantly more difficult than
the Moré and Wu test problems. We used these problems to test the use of Algorithm
3 in Algorithm 2.

We now specify some implementation details. We use the deterministic initializa-
tion from Section 4.1 and 100 random initializations from Section 4.2 for each setting
and count how many times the solution is found. To do this, we replace the while
loop in Algorithm 2 by a for loop for 100 random initializations. Also, in Algorithm 3,
we continue the for and while loops even if a coarse but not fine solution is found.

The small yet still interesting problem 20.unique provides a good test bed for
exploring various parameter settings in our algorithms. We use the SE-I algorithm as
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Table 6.3

Sizes and specified distances for the Hendrickson problems.

problem # atoms # specified dist. problem # atoms # specified dist.
20.unique 63 236 (12.1%) 20.reduced 102 336 (6.52%)
40.unique 174 786 (5.22%) 40.reduced 236 957 (3.45%)
60.unique 287 1319 (3.21%) 60.reduced 362 1526 (2.34%)
80.unique 377 1719 (2.43%) 80.reduced 480 2006 (1.74%)

100.unique 472 2169 (1.95%) 100.reduced 599 2532 (1.41%)
124.unique 695 3283 (1.36%) 124.reduced 777 3504 (1.16%)

Table 6.4

Number of successful runs for 20.unique using 100+1 initializations.

max. dim. dim. no stretching stretching by 2.0
dim. reduct. reduct. # coarse # fine # coarse # fine
rmax rate method sol. sol. sol. sol.

3 N/A 7 7 15 15

4 d = 1
linear 39 36 31 28
nlp 54 53 51 50

5
d = 2

linear 43 39 35 31
nlp 70 68 63 62

d = 1
linear 46 41 37 33
nlp 76 76 62 60

local min, since it was very effective in our early tests on distance geometry problems
(e.g., [8, chapter 6]). We use either the stretching factor 2.0 or no stretching. We set
the maximum dimensionality relaxation rmax = 3 (i.e., no relaxation), 4, or 5. For
rmax = 5, we use d = 1 to reduce the dimension to 4 and then 3, or d = 2 to reduce
directly to 3-dimensions. In reducing the dimension, we use the linear projection from
Section 5.2 or the nonlinear programming (nlp) method of Section 5.3.

The results on 20.unique are summarized in Table 6.4. Stretching improves the
result, and it is clear that dimensionality relaxation is a powerful technique to increase
the number of successful trials. Using nonlinear programming to reduce the dimension
outperforms the linear projection method, albeit at a higher computational cost.

Note that dimensionality relaxation is an expensive scheme, increasing not only
the number of function, gradient, and Hessian evaluations, but also the cost of each
evaluation, due to the increased dimension. In subsequent experiments, we limit the
dimensionality relaxation to rmax = 4 and we use the nonlinear programming method
to reduce the dimension.

For 9 of the 12 Hendrickson test problems, we used the deterministic initializa-
tion plus 100 random initializations. For the two largest problems, 124.unique and
124.reduced, costs are quite high. We found the solution within the first 20 ran-
dom initializations, so we did not continue. We had difficulty solving the problem
80.unique, so we used 1000 random initializations on this problem.

Tables 6.5 and 6.6 show the results of successful runs without stretching and with
stretching factor 2.0, respectively.2 We separate the numbers of evaluations into those

2Note that the reported function evaluations count only those used in the OPT++ solvers [22]
and do not include the 100 function evaluations for each initialization to select the pre-EDM in
Algorithm 2. The cost of the eigencomputation in Algorithm 1, invoked by Algorithm 2, is also
omitted in the tables. Neither of these neglected costs is significant, compared to the computational
cost of the optimization algorithms.
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in the three-dimensional space, those in the four-dimensional space, and those used in
solving the nonlinear programming problem (5.4) that projects from one to the other.
We set the maximum number of nonlinear programming iterations to 200, using up to
201 gradient/Hessian evaluations for each minimization. The nonlinear programming
algorithm often goes the maximum number of iterations without terminating, but
the quality of the resulting projection is usually sufficient to obtain a coarse solution.
If all 100+1 runs reach 200 iterations, then the total number of gradient/Hessian
evaluations is (100+1)× 201 = 20301, as seen in a few problems.

From Tables 6.5 and 6.6, we see that the multistart algorithm can solve the
three smallest problems 20.unique, 20.reduced, and 40.unique. If we include the
dimensionality relaxation scheme from Algorithm 3, we also solve the next three
problems 40.reduced, 60.unique, and 60.reduced. The stretching heuristic was
particularly useful for the larger problems. Coupled with dimensionality relaxation,
it solved all of those problems plus 100.unique, 100.reduced, 124.unique, and
124.reduced. The remaining two unsolved problems are 80.unique and 80.reduced;
see Table 6.7.

The best configuration P obtained for 80.reduced has ǫA(P ) = 0.01211, slightly
bigger than our tolerance. To refine this solution, we can apply local minimization
to minimize the square of ǫA(P ), defined by (6.1), using the solution from Algorithm
2 as a starting guess. Note that the squared ǫA(P ) is indeed (3.7) with weights
hij = 1/aij. This scheme may not always succeed in obtaining significant reduction of
ǫA(P ). However, it is inexpensive and therefore we can apply various local minimizers
and choose the best result. In this case, the best result is ǫA(P ) = 0.00651, obtained
with the SE90 algorithm.

For 80.unique, the best configuration obtained has ǫA(P ) = 0.03187, more than
three times our tolerance. Therefore we adopted another method to refine the solution.
The pre-EDM F leading to the best configuration P is potentially useful, but so far
we used only the SE-I algorithm for the local minimizer with stretching factor 1.0 (i.e.,
no stretching) or 2.0. To improve this solution, we applied Algorithm 3 with this pre-
EDM F , with stretching factors 1.0, 1.5, 2.0, 2.5, 3.0, using the 10 modified Cholesky
algorithms local minimization algorithms from [9], as well as the BFGS quasi-Newton
method. The maximum dimensionality relaxation was set to rmax = 4. Two of
the runs were successful. We obtained ǫA(P ) = 0.00248 with the MS79 algorithm
and stretching factor 3.0, and ǫA(P ) = 0.00786 with the LTLT-MS79 algorithm and
stretching factor 2.5.

It is interesting to see the effectiveness of the dimensionality reduction, the stretch-
ing, and the combination of them. Recall that we used 20+1 initializations for
124.unique and 124.reduced each. Figure 6.1 shows the resulting ǫA(P ) of each
run. The runs without random scaling of distances are indexed by 0. It is clear that
dimensionality relaxation is more effective than stretching to approach the global min-
imum, albeit at a higher computational cost. The combination of the two schemes
further improves the result.

We also used the BFGS quasi-Newton method instead of SE-I for local minimiza-
tions. Since it is significantly more time-consuming, we tested with only the four
smallest Hendrickson problems. Comparing Tables 6.5 and 6.8, we see that without
stretching, this algorithm succeeds more often than SE-I. However, it never succeeded
when using stretching.

In comparison, Moré and Wu [23] applied their global continuation method to
the smallest problem 20.unique. Using 100 random runs, they reached ǫA(P ) = 0.02
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Table 6.5

Successful results with no stretching using local min (SE-I) for rmax = 3 and Algorithm 3
with SE-I for rmax = 4. In each case, 100+1 initializations were used.

problem
max. dim. dim. total # total # # coarse # fine best

rmax extra f eval. g, H eval. sol. sol. ǫA(P )

20.unique

3 0 6225 4410 7 7 < 1e-6
0 8472 6156

4 nlp 79995 16007 54 53 < 1e-6
1 27828 18345

20.reduced

3 0 8863 5611 1 0 0.00022
0 15976 10222

4 nlp 93656 17672,17676 6 1 < 1e-6
1 14496 9746

40.unique

3 0 5536 3723 8 3 < 1e-6
0 8507 5764

4 nlp 78871 16072 20 11 < 1e-6
1 31352 19698

40.reduced

3 0 11961 7273 0 0 0.01907
0 16995 10576

4 nlp 95648 18447,18448 11 3 < 1e-6
1 31928 20301

60.unique

3 0 5827 3820 0 0 0.01047
0 8711 5811

4 nlp 94354 17219 56 18 < 1e-6
1 33607 20301

60.reduced

3 0 16492 10123 1 0 0.00512
0 29243 17996

4 nlp 98590 17811,17812 38 2 < 1e-6
1 33378 20301
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Fig. 6.1. Probability that s ≤ x for two EDMCPs from Hendrickson’s test set.

but were not able to solve or to finely solve the problem. We were consistently able
to finely solve this problem even without dimensional relaxation (Table 6.4). Zou,
Bird, and Schnabel [36] solved the smallest 7 of the 12 problems, using their stochas-
tic/perturbation global optimization algorithm applied to a position formulation. We
solved all 12 problems, at lower cost. Zou et al. [36] used the BFGS quasi-Newton
method as the local minimization algorithm. For the smallest problem 20.unique,
they used 692,448 function evaluations. We were able to solve this problem without
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Table 6.6

Successful results with stretching by 2.0 using local min (SE-I) for rmax = 3 and Algorithm
3 with SE-I for rmax = 4. In each case, 100+1 initializations were used except for 124.unique and
124.reduced (20+1).

problem
max. dim. dim. total # total # # coarse # fine best

rmax extra f eval. g, H eval. sol. sol. ǫA(P )

20.unique

3 0 5416 3964 15 15 0.00022
0 8280 6015

4 nlp 61860 13185,13187 51 50 < 1e-6
1 25493 16807

20.reduced

3 0 8330 5292 1 0 0.00022
0 15756 10114

4 nlp 96280 18503,18504 6 2 < 1e-6
1 11893 8080

40.unique

3 0 5251 3541 18 9 < 1e-6
0 8712 5882

4 nlp 71522 15006 33 18 < 1e-6
1 29600 18492

40.reduced

3 0 10444 6319 0 0 0.05034
0 16447 10149

4 nlp 94451 18453,18454 15 2 < 1e-6
1 32283 20301

60.unique

3 0 5318 3617 15 2 < 1e-6
0 8151 5511

4 nlp 91169 17369 47 11 < 1e-6
1 33097 19899

60.reduced

3 0 13620 8544 5 1 < 1e-6
0 24329 15221

4 nlp 95295 17342,17345 29 1 < 1e-6
1 33016 20100

100.unique

3 0 7260 4667 0 0 0.21854
0 13240 8497

4 nlp 40656 7442 1 1 < 1e-6
1 33778 20301

100.reduced

3 0 14095 8368 0 0 0.11454
0 26570 15861

4 nlp 32974 7727,7728 1 1 3.01e-6
1 33741 20301

124.unique

3 0 1175 771 1 0 0.00859
0 1931 1271

4 nlp 19611 3624 3 0 0.00859
1 7138 4174

124.reduced

3 0 2511 1564 0 0 0.06708
0 3774 2342

4 nlp 18731 3605 1 0 0.00508
1 7190 4221

dimensional relaxation using BFGS with 47,830 function evaluations, and using SE-I
with 6,225 function evaluations. For the next smallest problem 20.reduced, Zou et
al. used 498,500 function evaluations, and we used 170,492 for BFGS and 15,976 for
SE-I.

6.3. The Grooms, Lewis, and Trosset problems [14]. This synthetic prob-
lem set was created from 6 molecules from the Protein Data Bank [5] by dropping
distances larger than 6 Å. For each molecule, when multiple structures are known,
the first is used.
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Table 6.7

Best results with stretching by 2.0 using local min (SE-I) for rmax = 3 and Algorithm 3 for
rmax = 4 with SE-I for problems 80.unique (1000+1 initializations) and 80.reduced (100+1).
Postprocessing (see text) yielded coarse solutions for both problems.

problem
max. dim. dim. total # total # # coarse # fine best

rmax extra f eval. g, H eval. sol. sol. ǫA(P )

80.unique

3 0 92845 56643 0 0 0.19871
0 171388 105227

4 nlp 450238 99089 0 0 0.03187
1 336040 201182

80.reduced

3 0 13923 8323 0 0 0.01211
0 27463 16322

4 nlp 56479 12373 0 0 0.01211
1 33465 20248

Table 6.8

Results with no stretching using local min (BFGS) for rmax = 3 and Algorithm 3 with BFGS
for rmax = 4. In each case, 100+1 initializations were used.

problem
max. dim. dim. total # total # # coarse # fine best

rmax extra f eval. g eval. sol. sol. ǫA(P )

20.unique

3 0 47830 47135 18 18 < 1e-6
0 97454 67746

4 nlp 220626 27196 67 65 < 1e-6
1 95485 92492

20.reduced

3 0 102350 101930 2 2 < 1e-6
0 170492 156113

4 nlp 297566 22909 13 6 < 1e-6
1 148407 148172

40.unique

3 0 83352 82539 19 7 < 1e-6
0 166341 131493

4 nlp 282704 19509 31 14 < 1e-6
1 141159 141094

40.reduced

3 0 144270 143226 0 0 0.03409
0 246489 222376

4 nlp 303789 20936 12 5 2.10e-6
1 152073 151601

Table 6.9

Results using local min (SE-I) for rmax = 3.

molecule # atoms # specified dist.
stretch. total # total #

ǫA(P )
factor f eval. g, H eval.

2IGG 973 31287 (6.62%)
1.0 12 11 < 1e-6
2.0 10 10 < 1e-6

1RML 2064 76830 (3.61%)
1.0 23 15 < 1e-6
2.0 9 9 < 1e-6

1AK6 2738 112284 (3.00%)
1.0 35 26 2.53
2.0 18 16 < 1e-6

1A24 2952 106182 (2.44%)
1.0 13 13 < 1e-6
2.0 11 11 < 1e-6

3MSP 3980 131438 (1.66%)
1.0 35 24 < 1e-6
2.0 18 17 < 1e-6

3EZA 5147 178272 (1.35%)
1.0 26 20 < 1e-6
2.0 14 13 < 1e-6
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Our results are summarized in Table 6.9. Using the SE-I algorithm as local min

and the initialization technique in Section 4.1, we solved all problems except 1AK6 with
no stretching (stretching factor 1.0). Using stretching factor 2.0, all 6 problems were
solved. Compared with the Hendrickson problems, these problems are larger but
easier.

Figure 6.2 gives the plots of the maximum error in the computed distances for each
iteration. It is clear that stretching greatly speeds up the convergence. Compared
to the work of Grooms, Lewis, and Trosset [14], we obtained solutions with higher
accuracy in fewer iterations. Note, however, that the computation cost per iteration
is different.

7. Conclusion. We surveyed three different approaches to solving the EDMCP
and developed algorithms using the position formulation. We used a randomized
initialization scheme and a dimensionality relaxation scheme to enhance convergence
to the global optimizer. Using our algorithms, we were able to rather efficiently solve
all problems in the Moré and Wu test set, the Hendrickson test set, and the Grooms,
Lewis, and Trosset test set.
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Appendix: Derivatives for the Position Formulation. We note that the
gradient and the Hessian matrix of fA,H(P ) in (3.6) are easily computed. By (2.2)
and the fact that B = PPT ,

dij = bii + bjj − 2bij =

r∑

k=1

p2
ik +

r∑

k=1

p2
jk − 2

r∑

k=1

pikpjk

for i, j = 1, 2, . . . , n. Therefore,

∂dij

∂pst
=






2(pst − pjt) if s = i 6= j,
2(pst − pit) if s = j 6= i,
0 otherwise.

and

∂2dij

∂pst∂puv
=






2 if ((s = u = i 6= j) ∨ (s = u = j 6= i)) ∧ (t = v),
−2 if ((s = i 6= u = j) ∨ (s = j 6= u = i)) ∧ (t = v),

0 otherwise.

By (3.6),

∂f

∂pst
= 2

n∑

i=1

n∑

j=1

h2
ij(dij − aij)

∂dij

∂pst

= 4

n∑

j=1

h2
sj(dsj − asj)(pst − pjt) + 4

n∑

i=1

h2
is(dis − ais)(pst − pit)

= 8

n∑

i=1

h2
is(dis − ais)(pst − pit).

If u = s,

∂2f

∂pst∂puv
= 8

n∑

i=1

h2
is(2(psv − piv)(pst − pit) + (dis − ais)

∂

∂puv
(pst − pit))

=

{
16

∑n
i=1 h2

is(psv − piv)(pst − pit) if v 6= t,
8

∑n
i=1 h2

is(2(pst − pit)
2 + (dis − ais)) if v = t.

If u 6= s,

∂2f

∂pst∂puv
= 8h2

us(2(puv − psv)(pst − put) + (dus − aus)
∂

∂puv
(pst − put))

=

{
16h2

us(puv − psv)(pst − put) if v 6= t,
−8h2

us(2(pst − put)
2 + (dus − aus)) if v = t.

Using these formulas, problem (3.5) can be solved using variants of Newton’s method
for minimization.


