
ALTERNATING PROXIMAL ALGORITHMS

FOR CONSTRAINED VARIATIONAL INEQUALITIES.

APPLICATION TO DOMAIN DECOMPOSITION FOR PDE’S

H. ATTOUCH, A. CABOT, P. FRANKEL, AND J. PEYPOUQUET

ABSTRACT. Let X ,Y ,Z be real Hilbert spaces, let f : X → R ∪ {+∞}, g : Y →
R ∪ {+∞} be closed convex functions and let A : X → Z , B : Y → Z be linear
continuous operators. Let us consider the constrained minimization problem

(P) min{ f (x) + g(y) : Ax = By}.

Given a sequence (γn) which tends toward 0 as n → +∞, we study the following
alternating proximal algorithm

(A)





xn+1 = argmin
{

γn+1 f (ζ) +
1

2
‖Aζ − Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X

}

yn+1 = argmin
{

γn+1 g(η) +
1

2
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y

}
,

where α and ν are positive parameters. It is shown that if the sequence (γn) tends
moderately slowly toward 0, then the iterates of (A) weakly converge toward a solu-
tion of (P). The study is extended to the setting of maximal monotone operators,
for which a general ergodic convergence result is obtained. Applications are given
in the area of domain decomposition for PDE’s.

1. INTRODUCTION

Let X ,Y ,Z be real Hilbert spaces respectively endowed with the scalar prod-
ucts 〈., .〉X , 〈., .〉Y and 〈., .〉Z and the corresponding norms. Let f : X → R ∪
{+∞}, g : Y → R ∪ {+∞} be closed convex proper functions and let A : X → Z ,
B : Y → Z be linear continuous operators. In this study, our aim is to solve convex
structured minimization problems of the form

(P) min{ f (x) + g(y) : Ax = By}.

In order to find a point that minimizes the map (x, y) 7→ Φ(x, y) = f (x) + g(y) on
the subspace {(x, y) ∈ X × Y , Ax = By} we propose the following alternating
algorithm:

(A)





xn+1 = argmin
{

γn+1 f (ζ) +
1

2
‖Aζ − Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X

}

yn+1 = argmin
{

γn+1 g(η) +
1

2
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y

}
,
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where α, ν are positive real numbers and (γn) is a positive sequence that tends1

toward 0 as n → +∞. Due to the structured character of the objective function
Φ(x, y) = f (x) + g(y), alternating algorithms imply a reduction on the size of the
subproblems to be solved at each iteration. Our particular choice of (A) is based
on the following ideas:

a) Alternating algorithms with costs-to-move. Consider the convex function Φγ : X ×
Y → R ∪ {+∞} defined by

Φγ(x, y) = f (x) + g(y) +
1

2γ
‖Ax− By‖2Z ,

where γ is a positive real parameter. The minimization of the function Φγ is stud-
ied in [12], where the authors introduce the alternating algorithm with costs-to-
move





xn+1 = argmin{ f (ζ) +
1

2γ
‖Aζ − Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X}

yn+1 = argmin{g(η) +
1

2γ
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y},

α and ν being positive coefficients. If argminΦγ 6= ∅, it is shown in [6] that the
sequence (xn, yn) converges weakly toward a minimum of Φγ. The framework
of [6, 12] extends the one of [1, 17] from the strong coupled problem to the weak

coupled problem with costs-to-change. More precisely, Q(x, y) = ‖x − y‖2Z is a
strong coupling function with X = Y = Z and A = B = I while Q(x, y) =
‖Ax − By‖2Z is now a weak coupling function which allows for asymmetric and
partial relations between the variables x and y. The interest of the weak coupling
term is to cover many situations, ranging from decomposition methods for PDE’s
to applications in game theory. In decision sciences, the term Q(x, y) = ‖Ax −
By‖2Z allows to consider agents who interplay, only via some components of their
decision variables. For further details, the interested reader is referred to [6].

Observing that problem (P) corresponds formally to the minimization of the
function Φγ with γ → 0, it is natural to consider a vanishing sequence (γn) in
algorithm (A).

b) Prox-penalization methods. Setting Ψ(x, y) = 1
2‖Ax − By‖2Z and x = (x, y) ∈

X × Y = X , we can rewrite problem (P) as

min{ Φ(x) : x ∈ argminΨ }.

This situation is studied in [11, 21], where the authors use a diagonal proximal
point algorithm combined with a penalization scheme. This kind of technique can
be traced back to the pioneering work [14]. The algorithm of [11, 21] applied to
our setting reads as

(A′) xn+1 ∈ argmin

{
γn Φ(x) + Ψ(x) +

1

2
‖x− xn‖

2
X

}
.

1In another direction, algorithm (A) has been recently studied in [22] in the case of a sequence (γn)
increasing toward +∞ as n → +∞.
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Under suitable conditions on the sequence (γn), it is shown in [11, 21] that the
iterates of algorithm (A′) converge weakly to a solution of (P).

These ideas lead us to the formulation of algorithm (A), which has the fol-
lowing distinctive marks. First, it uses the structured character of the objective
function to reduce the size of the subproblem solved at each iteration. Second, it
combines proximal iterations with a penalization scheme in a simple way, mean-
ing that no new nonlinearities are introduced by the latter, unlike most penaliza-
tion procedures available in the literature. Consider, for instance, the functions θ
described in [23] (see also the references therein).

The main result of the paper asserts that if the solution set is nonempty and if
(γn) tends moderately slowly toward 0, then the iterates of (A) weakly converge
toward a solution of (P). When the space R(A) + R(B) is closed in Z , the above

condition on (γn) is satisfied if the sequence
(

1
γn+1

− 1
γn

)
is bounded from above

and if (γn) ∈ l2.
We apply our abstract results to the framework of splitting methods for PDE’s.

For that purpose, we consider a domain Ω ⊂ R
N that can be decomposed into two

non overlapping subdomains Ω1, Ω2 with a common interface Γ. The functional

spaces are X = H1(Ω1), Y = H1(Ω2) and Z = L2(Γ), the operators A : X → Z
and B : Y → Z being respectively the trace operators on Γ. The term Au − Bv

corresponds to the jump of the map w =

{
u on Ω1

v on Ω2
through the interface Γ. It

is shown that algorithm (A) allows to solve some given boundary value problem
on Ω by solving separately mixed Dirichlet-Neumann problems on Ω1 and Ω2.

Finally observe that by writing down the optimality conditions satisfied by the
iterates of algorithm (A), we obtain

{
0 ∈ γn+1 ∂ f (xn+1) + A∗(Axn+1 − Byn) + α(xn+1 − xn)
0 ∈ γn+1 ∂g(yn+1) − B∗(Axn+1 − Byn+1) + ν(yn+1 − yn).

This suggests to extend the previous study to the framework of maximal mono-
tone operators, by replacing respectively the subdifferential operators ∂ f and ∂g
with twomaximal monotone operators M and N. Indeed, in this more general set-
ting we are able to prove the convergence of the sequence of weighted averages.

The paper is organized as follows. Section 2 is devoted to fix the general setting
and notations that are used throughout the paper. In section 3, we prove a general
result of weak ergodic convergence for the iterates of (A) in a maximal mono-
tone setting. The key conditions are the closedness of the space R(A) + R(B) and
the assumption (γn) ∈ l2 \ l1. The subdifferential case is analyzed in section 4,
where we establish a result of weak convergence toward a solution of (P). Sec-
tion 5 presents further convergence results for the strongly coupled problem with-
out cost-to-move. Finally, the applications to domain decomposition for PDE’s are
illustrated in section 6.



4 H. ATTOUCH, A. CABOT, P. FRANKEL, AND J. PEYPOUQUET

2. GENERAL SETTING AND NOTATIONS

We recall that X ,Y ,Z are real Hilbert spaces respectively endowed with the
scalar products 〈., .〉X , 〈., .〉Y , 〈., .〉Z and the corresponding norms. LetM : X ⇉ X ,
N : Y ⇉ Y be maximal monotone operators such that domM 6= ∅, domN 6= ∅.
Let A : X → Z , B : Y → Z be linear continuous operators with adjoints A∗ : Z →
X and B∗ : Z → Y . Let (γn) be a positive sequence such that lim

n→+∞
γn = 0. Given

positive coefficients α, ν > 0 and initial data (x0, y0) ∈ X × Y , let us consider the
alternating proximal algorithm defined implicitly by

(A)

{
0 ∈ γn+1 Mxn+1 + A∗(Axn+1 − Byn) + α(xn+1 − xn)
0 ∈ γn+1 Nyn+1 − B∗(Axn+1 − Byn+1) + ν(yn+1 − yn).

Observe that the linear continuous operator A∗A is maximal monotone, hence
the operator γn+1 M + A∗A is also maximal monotone, see for example [18].
Therefore the iterate xn+1 is uniquely defined byMinty’s theorem. The same holds
true for the iterate yn+1.

Remark 2.1 (Strong coupling without cost-to-move). Assume that X = Y = Z
and that A = B = I , which corresponds to a situation of strong coupling. In this
case, algorithm (A) is well-defined even if α = ν = 0. We denote by (A0) the
corresponding algorithm

(A0)

{
0 ∈ γn+1 Mxn+1 + xn+1 − yn
0 ∈ γn+1 Nyn+1 + yn+1 − xn+1,

that can be equivalently rewritten as
{

xn+1 = (I + γn+1 M)−1 yn
yn+1 = (I + γn+1 N)−1 xn+1.

It ensues that the sequences (xn) and (yn) satisfy the following recurrence formu-
lae

xn+1 = (I+ γn+1 M)−1(I+ γn N)−1 xn, yn+1 = (I+ γn+1 N)−1(I+ γn+1 M)−1 yn.

This scheme consisting of a double backward step has been previously studied by
Passty [30]. Algorithm (A) can be viewed as an extension of iteration (A0), so that
our present paper appears as a continuation of the seminal work [30].

Let X = X × Y and denote by V the closed subspace {(x, y) ∈ X , Ax = By}.

The normal cone operator NV takes the constant value NV ≡ V
⊥ on its domain

V . Setting x = (x, y), define the monotone operatorsM : X ⇉ X and T : X ⇉ X

respectively by

Mx = (Mx,Ny)

and

Tx = Mx + NV (x) =

{
Mx + V

⊥ if x ∈ V

∅ if x 6∈ V .

We denote by S = T−10 the null set of T. It is also convenient to define the
bounded linear operator

A : X → Z
(x, y) 7→ Ax− By,
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and the map

Ψ : X → R

(x, y) 7→ 1
2‖Ax− By‖2Z .

Recall that the Fenchel conjugate Ψ∗ : X → R ∪ {+∞} of the map Ψ is defined
by Ψ∗(p) = supx∈X

{〈p, x〉X − Ψ(x)} for every p ∈ X . The next theorem shows
that domΨ∗ = R(A∗) and gives the expression of the function Ψ∗ on its domain.

Proposition 2.2. With the same notations as above, we have domΨ∗ = R(A∗) and

Ψ∗(A∗z) = 1
2d

2
Z (z, Ker(A∗)) for every z ∈ Z .

Proof. Let us fix p ∈ X . From the definition of Ψ and Ψ∗, we have Ψ∗(p) =

supx∈X

{
〈p, x〉X − 1

2‖Ax‖2Z

}
. This maximization problem can be reformulated as

− inf
x∈X

{F(x) + G(Ax)}, (1)

where F : X → R and G : Z → R are respectively defined by F(x) = −〈p, x〉X
and G(z) = 1

2‖z‖
2
Z for every x ∈ X , z ∈ Z . Let us introduce the following

minimization problem

inf
z∗∈Z

{F∗(−A∗z∗) + G∗(z∗)} = inf
z∗∈Z

{
δ{−p}(−A∗z∗) +

1

2
‖z∗‖2Z

}
(2)

= inf
z∗ ∈ Z

A∗z∗ = p

1

2
‖z∗‖2Z . (3)

Since the functions F and G are convex and continuous, problems (1)-(2) are dual
each to other, see for example [24, Chap. III]. Observing that theMoreau-Rockafellar
qualification condition is satisfied, we derive from [24, Theorem 4.1, p. 59] that
the infimum values of problems (1)-(2) are simultaneously finite and in this case
they coincide. Expression (3) shows that the infimum in (2) is finite if and only if
p ∈ R(A∗). Coming back to problem (1), we deduce that p ∈ domΨ∗ if and only
if p ∈ R(A∗). Now assume that p = A∗z for some z ∈ Z . Then we have

inf
z∗ ∈ Z

A∗z∗ = p

1

2
‖z∗‖2Z = inf

z∗ ∈ Z
z∗ − z ∈ Ker(A∗)

1

2
‖z∗‖2Z =

1

2
d2Z (z, Ker(A∗)) ,

which ends the proof. �

3. MAXIMAL MONOTONE FRAMEWORK: ERGODIC CONVERGENCE RESULTS

The notations and hypotheses are the same as in the previous section. Given
any initial point (x0, y0) ∈ X , the iterates generated by algorithm (A) are denoted
by (xn, yn), n ∈ N.

3.1. Preliminary results. Let us start with an estimation that is at the core of the
convergence analysis. For (x, y) ∈ X set

hn(x, y) = α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn − By‖2Z . (4)

Then we have the following:
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Lemma 3.1. For every (x, y) ∈ V and (ζ, η) ∈ T(x, y), there exists p ∈ V
⊥ such that

hn+1(x, y) − hn(x, y) + 2γn+1

[
〈ζ, xn+1 − x〉X + 〈η, yn+1 − y〉Y

]

+ α‖xn+1 − xn‖
2
X + ν‖yn+1 − yn‖

2
Y + ‖Axn+1 − Byn‖

2
Z ≤ 2γ2

n+1Ψ∗(p). (5)

Proof. To simplify the notation we set hn = hn(x, y). The definition of (xn+1) gives

α

γn+1
(xn+1 − xn) +

1

γn+1
A∗(Axn+1 − Byn) ∈ −Mxn+1.

On the other hand since (ζ, η) ∈ T(x, y), there exists p = (p, q) ∈ V
⊥ such that

ζ ∈ Mx + p and η ∈ Ny + q.

In particular, we have p− ζ ∈ −Mx, which by the monotonicity of M implies

α

γn+1
〈xn+1− xn, xn+1− x〉X +

1

γn+1
〈A∗(Axn+1− Byn), xn+1− x〉X ≤ 〈p− ζ, xn+1− x〉X .

This is equivalent to

α‖xn+1 − x‖2X + α‖xn+1 − xn‖
2
X ≤ α‖xn − x‖2X − 2〈Axn+1 − Byn, Axn+1 − Ax〉Z

+ 2γn+1〈p, xn+1 − x〉X − 2γn+1〈ζ, xn+1 − x〉X .

In a similar way we obtain

ν‖yn+1 − y‖2Y + ν‖yn+1 − yn‖
2
Y ≤ ν‖yn − y‖2Y − 2〈Byn+1 − Axn+1, Byn+1 − By〉Z

+ 2γn+1〈q, yn+1 − y〉Y − 2γn+1〈η, yn+1 − y〉Y .

Using the properties of the inner product and the fact that Ax = By, we let the
reader check that

−2〈Axn+1 − Byn, Axn+1 − Ax〉Z − 2〈Byn+1 − Axn+1, Byn+1 − By〉Z =

‖Byn − By‖2Z − ‖Byn+1 − By‖2Z − ‖Axn+1 − Byn‖
2
Z − ‖Axn+1 − Byn+1‖

2
Z .

Since (x, y) ∈ V and p = (p, q) ∈ V
⊥, we have

〈p, xn+1 − x〉X + 〈q, yn+1 − y〉Y = 〈p, xn+1〉X + 〈q, yn+1〉Y = 〈p, (xn+1, yn+1)〉X .

Gathering all this information and writing

cn = hn+1 − hn + 2γn+1 [〈ζ, xn+1 − x〉X + 〈η, yn+1 − y〉Y ]

+ α‖xn+1 − xn‖
2
X + ν‖yn+1 − yn‖

2
Y + ‖Axn+1 − Byn‖

2
Z

we deduce that

cn ≤ 2γn+1〈p, (xn+1, yn+1)〉X − ‖Axn+1 − Byn+1‖
2
Z

= 2 [〈γn+1p, (xn+1, yn+1)〉X − Ψ(xn+1, yn+1)] .

By definition of Ψ∗, the term between brackets is majorized by Ψ∗(γn+1p). Since
Ψ∗(γn+1p) = γ2

n+1Ψ∗(p), inequality (5) immediately follows. �

In order to exploit inequality (5), we may assume that Ψ∗(p) < +∞ for every

p ∈ V
⊥. In view of Proposition 2.2, this amounts to saying that V

⊥ ⊂ domΨ∗ =

R(A∗). Since V
⊥ = Ker(A)⊥ = R(A∗), this condition is equivalent to the closed-

ness of the space R(A∗), which is in turn equivalent to the closedness of R(A) in
Z . From now on, we assume in this section that

R(A) = R(A) + R(B) is closed in Z .
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By using Lemma 3.1, we now prove the boundedness of the sequence (xn, yn)
along with the summability of the sequences (‖xn+1− xn‖2X ), (‖yn+1− yn‖2Y ) and

(‖Axn − Byn‖2Z ).

Proposition 3.2. Assume that the space R(A) is closed inZ and that (γn) ∈ l2. Suppose
that the set S is non empty and let (x, y) ∈ S . We have the following

(i) lim
n→+∞

hn(x, y) exists, hence the sequence (xn, yn) is bounded.

(ii) The sequences (‖xn+1 − xn‖2X ), (‖yn+1 − yn‖2Y ) and (‖Axn − Byn‖2Z ) are
summable. In particular,

lim
n→+∞

‖xn+1 − xn‖X = lim
n→+∞

‖yn+1 − yn‖Y = lim
n→+∞

‖Axn − Byn‖Z = 0 (6)

and every weak cluster point of the sequence (xn, yn) lies in V .

Proof. (i) Taking (ζ, η) = (0, 0) in inequality (5) and setting hn = hn(x, y), we
obtain

hn+1 − hn + α‖xn+1 − xn‖
2
X + ν‖yn+1 − yn‖

2
Y + ‖Axn+1 − Byn‖

2
Z ≤ 2γ2

n+1 Ψ∗(p).
(7)

In particular, hn+1 − hn ≤ 2γ2
n+1 Ψ∗(p). Since (γn) ∈ l2 and Ψ∗(p) < +∞, the fol-

lowing lemma shows that (hn) converges, which in turn implies that the sequence
(xn, yn) is bounded.

Lemma 3.3. Let (an) and (εn) be two real sequences. Assume that (an) is minorized,

that (εn) ∈ l1 and that an+1 ≤ an + εn for every n ∈ N. Then (an) converges.

Proof of Lemma 3.3. Define the sequence (wn) by wn = an − ∑
n−1
k=0 εk. The sequence

(wn) is bounded from below and nonincreasing, hence convergent. It follows that
limn→+∞ an = ∑

+∞
k=0 εk + limn→+∞ wn. �

(ii) Let us sum up inequality (7) from n = 0 to +∞. Recalling that (γn) ∈ l2,
that Ψ∗(p) < +∞ and that hn ≥ 0, we immediately deduce the summability of the

sequences (‖xn+1− xn‖2X ), (‖yn+1− yn‖2Y ) and (‖Axn+1− Byn‖2Z ). Since ‖Axn −

Byn‖2Z ≤ 2‖Axn+1 − Byn‖2Z + 2‖Axn+1 − Axn‖2Z , the sequence (‖Axn − Byn‖2Z )

is also summable. For the last part use the fact that lim
n→+∞

‖Axn − Byn‖2Z = 0 and

the weak lower-semicontinuity of the function (x, y) 7→ ‖Ax− By‖2Z . �

Remark 3.4. Proposition 3.2 still holds if one assumes only that R(A∗) ∩ R(M) ⊂
R(A∗), a condition that is weaker than the closedness of R(A). The reason is that
one uses Lemma 3.1 for (x, y) = (x, y) ∈ S .

3.2. Ergodic convergence. From now on we assume that (γn) ∈ l2 \ l1. Condition
(γn) /∈ l1 is standard and common to most proximal-type algorithms. Roughly
speaking it states that the corresponding time σn = ∑

n
k=1 γk goes to +∞. It also

means that the sequence (γn) does not tend to 0 too fast as n → +∞ while condi-

tion (γn) ∈ l2 \ l1 expresses that the sequence (γn) tendsmoderately slowly toward
0. This kind of assumption appears in several works related to proximal algo-
rithms involving maximal monotone operators with alternating features. See for
example the seminal work [30]. Let us define the averages

x̃n =
1

σn

n

∑
k=1

γkxk and ỹn =
1

σn

n

∑
k=1

γkyk, (8)
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and prove that the sequence (x̃n, ỹn) converges weakly to a point in S .

Theorem 3.5. Assume that the space R(A) is closed in Z and that (γn) ∈ l2 \ l1.

Assume moreover that the operator T is maximal monotone with S = T−10 6= ∅. Then
the sequence (x̃n, ỹn) of averages converges weakly as n → +∞ to a point in S .

Proof. Let us first prove that every weak cluster point of the sequence (x̃n, ỹn) is
in S . Fix (ζ, η) ∈ T(x, y). By summing up inequality (5) of Lemma 3.1 for k =
0, . . . , n− 1, we obtain

〈ζ, x̃n − x〉X + 〈η, ỹn − y〉Y ≤
1

σn

[
h0(x, y) + 2Ψ∗(p)

n

∑
k=1

γ2
k

]
.

Let (x̃∞, ỹ∞) be a weak cluster point of (x̃n, ỹn) as n → +∞ and let n tend to +∞

in the above inequality. By using the fact that Ψ∗(p) < +∞ and that (γn) ∈ l2 \ l1,
we deduce that

〈ζ, x̃∞ − x〉X + 〈η, ỹ∞ − y〉Y ≤ 0. (9)

Since this holds whenever (ζ, η) ∈ T(x, y) we conclude (x̃∞, ỹ∞) ∈ S by maximal-
ity of the monotone operator T.

Now observe that the sequence (x̃n, ỹn) is bounded by Proposition 3.2. In order
to establish the weak convergence of the sequence (x̃n, ỹn) it suffices to prove that

it has at most one weak cluster point2. Indeed, let (x, y) and (x′, y′) be two such

points, which must belong to S . Define the quantity Q(u, v) = α‖u‖2X + ν‖v‖2Y +

‖Bv‖2Z for every (u, v) ∈ X . From Proposition 3.2 (i), the limits

ℓ(x, y) = lim
n→+∞

Q(xn − x, yn − y) and ℓ(x′, y′) = lim
n→+∞

Q(xn − x′, yn − y′)

exist. Observe that

Q(xn − x, yn − y) = Q(xn − x′, yn − y′) + Q(x− x′, y− y′)

+ 2 α〈xn − x′, x′ − x〉X + 2 ν〈yn − y′, y′ − y〉Y

+ 2 〈B(yn − y′), B(y′ − y)〉Z . (10)

Taking the average and letting (x̃nk , ỹnk ) ⇀ (x′, y′) as k → +∞ we obtain

ℓ(x, y) = ℓ(x′, y′) + Q(x− x′, y− y′).

In a similar fashion we deduce that

ℓ(x′, y′) = ℓ(x, y) + Q(x− x′, y− y′)

and hence Q(x− x′, y− y′) = 0 which implies (x, y) = (x′, y′). �

3.3. Links with Passty theorem. Assume that X = Y = Z and that A = B = I ,
along with α = ν = 0. This induces a situation of strong coupling without cost-
to-move. The corresponding algorithm is denoted by (A0), see Remark 2.1. Since
R(A) = X , the closedness of R(A) is automatically satisfied. It is immediate that
0 ∈ T(x, y) if and only if x = y and Mx + Nx ∋ 0. Therefore we have

S = T−10 =
{
(x, x) ∈ X 2, x ∈ (M + N)−10

}
.

Assume that the operator M + N is maximal monotone with (M + N)−10 6= ∅.

Let (γn) be a positive sequence such that (γn) ∈ l2 \ l1. By arguing as in the proof
of Proposition 3.2, we obtain that

2This idea, inspired by the Opial lemma [29] (see Lemma 4.9 below), can also be found in [30].
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(a) lim
n→+∞

‖yn − y‖2X exists for every y ∈ (M + N)−10.

(b) The sequence
(
‖xn+1 − yn‖2X

)
is summable, hence lim

n→+∞
‖xn+1− yn‖X = 0.

Take ζ = 0 and x = y in the proof of Theorem 3.5. Observe that (0, η) ∈ T(y, y)
holds if and only if η ∈ (M+N)y. Hence formula (9) implies that 〈η, ỹ∞ − y〉Y ≤ 0

for every η ∈ (M + N)y. We deduce that ỹ∞ ∈ (M + N)−10 by maximality of the
monotone operator M + N. This proves that every weak cluster point of the se-

quence (ỹn) lies in (M+ N)−10. Then we prove that the sequence (ỹn) has at most
one weak cluster point. It suffices to adapt the proof of Theorem 3.5 by invoking

point (a) above and by using the quantity Q(v) = ‖v‖2X (instead of Q(u, v)). We

obtain that the sequence (ỹn) weakly converges toward some ỹ∞ ∈ (M + N)−10.
By using point (b) above, we infer that the sequence (x̃n) weakly converges to-
ward x̃∞ = ỹ∞. As a conclusion, we recover the following result

Theorem (Passty [30]) Assume that the operator M + N is maximal monotone with

(M + N)−10 6= ∅. Let (γn) be a positive sequence such that (γn) ∈ l2 \ l1 and let
(xn, yn) be any sequence generated by algorithm (A0). Then there exists x̃∞ ∈ (M +
N)−10 such that both sequences of averages (x̃n) and (ỹn) converge weakly toward x̃∞.

3.4. Strong monotonicity. Under strong monotonicity assumptions, we are able
to prove the strong convergence of the sequence (xn, yn) itself (not only in av-
erage). Let us recall that the operator M is said to be strongly monotone with
parameter a if, for every x1, x2 ∈ domM and every ξ1 ∈ Mx1, ξ2 ∈ Mx2, we have

〈ξ2 − ξ1, x2 − x1〉X ≥ a ‖x2 − x1‖
2
X .

Assuming in the same way that the operator N is strongly monotone, we obtain
that the operators M and T = M + NV are strongly monotone. Hence if the set

S = T−10 is nonempty it must be reduced to a single point, say S = {(x, y)}.

Proposition 3.6. Assume that the space R(A) is closed in Z and that (γn) ∈ l2 \ l1. If
the operators M and N are strongly monotone and if S 6= ∅ then the sequence (xn, yn)
converges strongly to the unique (x, y) ∈ S .

Proof. Let us suppose that the operators M and N are strongly monotone, respec-
tively with parameters a, b > 0. We let the reader check that this assumption leads
to a stronger form of inequality (5), which in turn implies

hn+1(x, y)− hn(x, y) + 2aγn+1‖xn+1 − x‖2X + 2bγn+1‖yn+1 − y‖2Y ≤ 2γ2
n+1 Ψ∗(p).

Since (γn) ∈ l2 and Ψ∗(p) < +∞, and recalling that hn(x, y) ≥ 0, the summation
of the above inequality implies

+∞

∑
n=1

γn

[
‖xn − x‖2X + ‖yn − y‖2Y

]
< +∞

and hence
+∞

∑
n=1

γnhn(x, y) ≤ α
+∞

∑
n=1

γn‖xn − x‖2X + (ν + ‖B‖2)
+∞

∑
n=1

γn‖yn − y‖2Y < +∞.

Since (γn) 6∈ l1 and since lim
n→+∞

hn(x, y) exists, this limit must be equal to 0 and we

deduce that lim
n→+∞

(xn, yn) = (x, y). �
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Remark 3.7. Observe that the maximality of the operator T does not come into
play in the previous proof. Notice also that if the operator T is both maximal
and strongly monotone, then condition S 6= ∅ is automatically satisfied, see for
example [18, Cor. 2.4] or [34, Prop. 12. 54].

4. THE SUBDIFFERENTIAL CASE: WEAK CONVERGENCE RESULTS

4.1. Preliminaries. Let f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} be closed convex
proper functions. Define the maximal monotone operators M and N respectively
by M = ∂ f and N = ∂g. The operator M coincides with the subdifferential of the
function Φ defined by Φ(x, y) = f (x) + g(y) for every (x, y) ∈ X . Observe that
the monotone operator T = ∂Φ + NV = ∂Φ + ∂δV is maximal if, and only if,

∂Φ + ∂δV = ∂ (Φ + δV ) .

Maximality is guaranteed if one assumes some qualification condition such as
the Moreau-Rockafellar one [28, 33] or the Attouch-Brézis one [7]. In order to
cover various applications to PDE’s (see paragraph 6.2), we assume the following
Attouch-Brézis qualification condition

(QC)
⋃

λ>0

λ(dom f × dom g− V) is a closed subspace of X ×Y .

Under (QC) the following claim shows that the set S = T−10 can be interpreted
as the set of minima of a suitable function.

Claim 4.1. We have

S ⊂ argminV Φ = argmin{ f (x) + g(y) : Ax = By}.

If condition (QC) is satisfied, the above inclusion holds true as an equality.

Proof. First recall that the inclusion ∂Φ + ∂δV ⊂ ∂ (Φ + δV ) is always satisfied. It
ensues immediately that

S = T−10 = [∂Φ + ∂δV ]−1 0 ⊂ [∂ (Φ + δV )]−1 0 = argminV Φ.

If condition (QC) is satisfied, the set
⋃

λ>0 λ(domΦ − domδV ) is a closed sub-
space of X . This classically implies that ∂Φ + ∂δV = ∂(Φ + δV ) and the conclusion
follows. �

Recall that the iterate (xn+1, yn+1) of algorithm (A) is implicitly defined by
{

0 ∈ γn+1 ∂ f (xn+1) + A∗(Axn+1 − Byn) +α(xn+1 − xn)
0 ∈ γn+1 ∂g(yn+1) − B∗(Axn+1 − Byn+1) +ν(yn+1 − yn).

(11)

These are the optimality conditions associated to the followingminimization prob-
lems

(A)





xn+1 = argmin{γn+1 f (ζ) +
1

2
‖Aζ − Byn‖

2
Z +

α

2
‖ζ − xn‖

2
X ; ζ ∈ X}

yn+1 = argmin{γn+1g(η) +
1

2
‖Axn+1 − Bη‖2Z +

ν

2
‖η − yn‖

2
Y ; η ∈ Y}.

For each (x, y) ∈ X , define

hn(x, y) = α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn − By‖2Z (12)
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as in section 3. Define also the sequence (ϕn) by

ϕn = f (xn) + g(yn) +
1

2γn
‖Axn − Byn‖

2
Z . (13)

Lemma 4.2. With the above notations and hypotheses, we have the following3

(i) For every (x, y) ∈ argminV Φ and for every n ≥ 0,

hn+1(x, y) − hn(x, y) + 2γn+1

(
f (xn+1) + g(yn+1) −min

V
Φ

)
+ ‖Axn+1 − Byn+1‖

2
Z

+‖Axn+1 − Byn‖
2
Z + α‖xn+1 − xn‖

2
X + ν‖yn+1 − yn‖

2
Y ≤ 0. (14)

(ii) For every n ≥ 0,

ϕn+1 − ϕn ≤
1

2

(
1

γn+1
−

1

γn

)
‖Axn − Byn‖

2
Z . (15)

Proof. In view of the optimality conditions (11), for all (x, y) ∈ X ×Y we can write
the subdifferential inequalities

γn+1 ( f (x)− f (xn+1)) ≥ −〈Axn+1− Byn, Ax−Axn+1〉Z − α〈xn+1− xn, x− xn+1〉X
(16)

and

γn+1 (g(y)− g(yn+1)) ≥ 〈Axn+1− Byn+1, By− Byn+1〉Z − ν〈yn+1− yn, y− yn+1〉Y .
(17)

Using the properties of the inner product, the reader can check that

‖By− Byn‖
2
Z − ‖By− Byn+1‖

2
Z = ‖Byn+1 − Axn+1‖

2
Z − ‖By− Ax‖2Z

+‖By− Ax− (Byn − Axn+1)‖
2
Z

+2〈By− Byn+1, Byn+1 − Axn+1〉Z

+2〈Byn − Axn+1, Axn+1 − Ax〉Z .

Combining (16) and (17) we deduce that

‖By− Byn‖2Z − ‖By− Byn+1‖
2
Z

≥ ‖Byn+1 − Axn+1‖
2
Z − ‖By− Ax‖2Z + ‖By− Ax− (Byn − Axn+1)‖

2
Z

+ 2γn+1 [ f (xn+1) − f (x) + g(yn+1) − g(y)]

+ 2α〈xn+1 − xn, xn+1 − x〉X + 2ν〈yn+1 − yn, yn+1 − y〉Y ,

= ‖Axn+1 − Byn+1‖
2
Z − ‖Ax− By‖2Z + ‖By− Ax− (Byn − Axn+1)‖

2
Z

+ 2γn+1( f (xn+1) + g(yn+1) − f (x) − g(y))

+ α(‖xn+1 − xn‖
2
X + ‖xn+1 − x‖2X − ‖xn − x‖2X )

+ ν(‖yn+1 − yn‖
2
Y + ‖yn+1 − y‖2Y − ‖yn − y‖2Y ).

We infer that for all (x, y) ∈ X × Y ,

hn(x, y) − hn+1(x, y) ≥ 2γn+1( f (xn+1) + g(yn+1) − f (x) − g(y)) − ‖Ax− By‖2Z

+ ‖Axn+1 − Byn+1‖
2
Z + ‖By− Ax− (Byn − Axn+1)‖

2
Z

+ α‖xn+1 − xn‖
2
X + ν‖yn+1 − yn‖

2
Y . (18)

3Inequalities (5) and (14) are closely related, even if they rely on different techniques (monotonicity

in the first case and subdifferential inequalities in the second one).
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Now let (x, y) ∈ argminV Φ. Then Ax = By and f (x) + g(y) = minV Φ so that
inequality (18) becomes (14). On the other hand, by using inequality (18) with
x = xn and y = yn, we infer that

2γn+1( f (xn+1)+ g(yn+1)− f (xn)− g(yn))+ ‖Axn+1− Byn+1‖
2
Z ≤ ‖Axn− Byn‖

2
Z .

(19)
We finally divide by 2γn+1 and rearrange the terms to obtain (15). �

4.2. Weak convergence. Assuming that argminV Φ 6= ∅, let us set

ωn = inf
(x,y)∈X×Y

{
1

2
‖Ax− By‖2Z + γn

(
f (x) + g(y) −min

V
Φ

)}

= inf
x∈X

{
Ψ(x) + γn

(
Φ(x) −min

V
Φ

)}
. (20)

Denote by (ω−
n ) the negative part of (ωn). In the sequel, we will assume the key

condition

(ω−
n ) ∈ l1.

This kind of hypothesis was introduced by the second author in [21].

Proposition 4.3. Assuming that argminV Φ 6= ∅, consider the following assertions:

(i) (γn) ∈ l2, the space R(A) is closed in Z and condition (QC) is satisfied.
(ii) (γn) ∈ l2 and there exists x ∈ V and p ∈ R(A∗) such that −p ∈ ∂Φ(x).
(iii) (ω−

n ) ∈ l1.

Then we have the implications (i) =⇒ (ii) =⇒ (iii).

Proof. (i) =⇒ (ii) Let x ∈ argminV Φ. Since condition (QC) is satisfied, we deduce

from Claim 4.1 that x ∈ S =
[
∂Φ + V

⊥]−1
0. Hence there exists p ∈ V

⊥ such that
−p ∈ ∂Φ(x). The closedness of R(A) implies the closedness of R(A∗), hence we

have V
⊥ = Ker(A)⊥ = R(A∗) and finally p ∈ R(A∗).

(ii) =⇒ (iii) The subdifferential inequality gives for every x ∈ X ,

Φ(x) − Φ(x) ≥ 〈−p, x− x〉X = 〈−p, x〉X ,

where the last equality is a consequence of p ∈ R(A∗) ⊂ V
⊥ and x ∈ S ⊂ V .

Since Φ(x) = minV Φ, we deduce that

Ψ(x) + γn

(
Φ(x) −min

V
Φ

)
≥ Ψ(x) − γn〈p, x〉X .

Taking the infimum over x ∈ X , we find

ωn ≥ − sup
x∈X

{γn〈p, x〉X − Ψ(x)} = −Ψ∗(γnp) = −γ2
n Ψ∗(p).

It ensues that ω−
n ≤ γ2

n Ψ∗(p). Since p ∈ R(A∗) = domΨ∗ (see Proposition 2.2),

the conclusion follows from the summability of (γ2
n). �

Notice that in infinite dimensional spaces, conditions (ii) or (iii) can be satisfied
even if the space R(A) is not closed. An example will be provided in the last
section.

Let us now state the main result of the paper.
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Theorem 4.4. Let f : X → R∪{+∞} and g : Y → R∪{+∞} be closed convex proper
functions. Let A : X → Z and B : Y → Z be linear continuous operators. Assume that
the qualification condition (QC) holds and that argmin{ f (x) + g(y) : Ax = By} 6= ∅.

Let (γn) be a positive sequence such that
(

1
γn+1

− 1
γn

)
is majorized by some M > 0.

Finally suppose that condition (ω−
n ) ∈ l1 holds, where the sequence (ωn) is defined by

(20). Then we have

(i) (xn, yn) converges weakly to a point (x∞, y∞) ∈ argmin{ f (x)+ g(y) : Ax = By}.
(ii) lim

n→+∞
f (xn) = f (x∞) and lim

n→+∞
g(yn) = g(y∞).

Proof. Let us start with several preliminary claims.

Claim 4.5. For every (x, y) ∈ argminV Φ,

lim
n→+∞

α‖xn − x‖2X + ν‖yn − y‖2Y + ‖Byn − By‖2Z exists in R.

Proof of Claim 4.5. Fix (x, y) ∈ argminV Φ and set hn = α‖xn − x‖2X + ν‖yn − y‖2Y +

‖Byn − By‖2Z as in (12). From inequality (14) we deduce that

hn+1 − hn + 2ωn+1 + ‖Axn+1 − Byn‖
2
Z + α‖xn+1 − xn‖

2
X + ν‖yn+1 − yn‖

2
Y ≤ 0.

This implies

hn+1 − hn + ‖Axn+1 − Byn‖
2
Z + α‖xn+1 − xn‖

2
X + ν‖yn+1 − yn‖

2
Y ≤ 2ω−

n+1. (21)

It ensues that hn+1 − hn ≤ 2ω−
n+1. Since (ω−

n ) ∈ l1, owing to Lemma 3.3, we
conclude that lim

n→+∞
hn exists. �

Claim 4.6. The sequence (‖Axn− Byn‖2Z ) is summable, and therefore limn→+∞ ‖Axn−
Byn‖Z = 0.

Proof of Claim 4.6. Let us sum up inequalities (21) which are obtained for n = 0

to +∞. Recalling that (ω−
n ) ∈ l1 and that hn ≥ 0, we immediately deduce the

summability of the sequences (‖xn+1 − xn‖2X ), (‖yn+1 − yn‖2Y ) and (‖Axn+1 −

Byn‖2Z ). Since ‖Axn − Byn‖2Z ≤ 2‖Axn+1 − Byn‖2Z + 2‖Axn+1 − Axn‖2Z , the se-

quence (‖Axn − Byn‖2Z ) is also summable. �

Claim 4.7. Setting ϕn = f (xn) + g(yn) + 1
2γn

‖Axn − Byn‖2Z as in (13), we have

lim
n→+∞

ϕn = minV Φ.

Proof of Claim 4.7. Since
(

1
γn+1

− 1
γn

)
≤ M, we derive from inequality (15) that

ϕn+1 − ϕn ≤
M

2
‖Axn − Byn‖

2
Z . (22)

From the previous claim the sequence (‖Axn − Byn‖2Z ) is summable. By applying
Lemma 3.3 we deduce that the sequence (ϕn) converges. Let us now set

aN = 2
N

∑
n=0

{
γn

(
f (xn) + g(yn) −min

V
Φ

)
+

1

2
‖Axn − Byn‖

2
Z

}
.
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From inequality (14), the sequence (hN + aN) is nonincreasing. Moreover the as-

sumption (ω−
n ) ∈ l1 allows us to assert that, for all n ∈ N,

aN ≥ −2
+∞

∑
n=0

ω−
n > −∞.

Thus the sequence (hN + aN) is bounded from below, hence convergent. As a
consequence,

lim
N→+∞

aN = lim
N→+∞

2
N

∑
n=0

γn

(
ϕn −min

V
Φ

)
exists in R. (23)

Since 1
γn+1

− 1
γn

≤ M for every n ≥ 0, we deduce that γn ≥ 1
Mn+ 1

γ0

, hence

(γn) /∈ l1. Recalling that lim
n→+∞

ϕn exists in R, we infer from (23) that lim
n→+∞

ϕn =

minV Φ. �

Claim 4.8. lim
n→+∞

Φ(xn, yn) = minV Φ.

Proof of Claim 4.8. Let (x, y) ∈ argminV Φ. Since condition (QC) holds, we deduce

from Claim 4.1 that (x, y) ∈ S = T−10. Hence there exists (p, q) ∈ V
⊥ such that

−(p, q) ∈ ∂Φ(x, y). The convex subdifferential inequality then gives

Φ(xn, yn) ≥ Φ(x, y) + 〈−(p, q), (xn, yn) − (x, y)〉X×Y

= min
V

Φ − 〈(p, q), (xn, yn)〉X×Y . (24)

Let us prove that lim
n→+∞

〈(p, q), (xn, yn)〉X×Y = 0. From Claim 4.5 the sequence

(xn, yn) is bounded, hence it suffices to prove that 0 is the unique limit point of(
〈(p, q), (xn, yn)〉X×Y

)
. Let

(
〈(p, q), (xnk , ynk )〉X×Y

)
be a convergent subsequence.

We can extract a subsequence of (xnk , ynk ), still denoted by (xnk , ynk ), whichweakly
converges toward (x, y). The weak lower semicontinuity of the function (x, y) 7→
‖Ax− By‖2Z combined with Claim 4.6 implies that

‖Ax− By‖2Z ≤ lim inf
k→+∞

‖Axnk − Bynk‖
2
Z = lim

n→+∞
‖Axn − Byn‖

2
Z = 0,

hence (x, y) ∈ V . Recalling that (p, q) ∈ V
⊥, we infer that

lim
k→+∞

〈(p, q), (xnk , ynk )〉X×Y = 〈(p, q), (x, y)〉X×Y = 0.

We immediately deduce that thewhole sequence
(
〈(p, q), (xn, yn)〉X×Y

)
converges

toward 0. Hence from (24) we obtain that lim inf
n→+∞

Φ(xn, yn) ≥ minV Φ. On the

other hand, since Φ(xn, yn) ≤ ϕn, we have in view of Claim 4.7

lim sup
n→+∞

Φ(xn, yn) ≤ lim
n→+∞

ϕn = min
V

Φ.

We conclude that lim
n→+∞

Φ(xn, yn) = minV Φ. �

The proof of (i) relies on the Opial’s lemma [29], that we recall for the sake of
completeness.

Lemma 4.9 (Opial). Let H be a Hilbert space endowed with the norm N. Let (ξn) be a
sequence of H such that there exists a nonempty set Ξ ⊂ H which verifies
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(a) for all ξ ∈ Ξ, lim
n→+∞

N(ξn − ξ) exists,

(b) if (ξnk ) ⇀ ξ weakly in H as k → +∞, we have ξ ∈ Ξ.

Then the sequence (ξn) weakly converges in H as n → +∞ toward a point of Ξ.

Let us define the norm N(u, v) =
[
α‖u‖2X + ν‖v‖2Y + ‖Bv‖2Z

]1/2
on the space

X × Y . Since the linear operator B is continuous, the norm N is equivalent to the
canonical norm on X × Y . In view of Claim 4.5, the quantity N(xn − x, yn − y)
does have a limit as n → +∞ for every (x, y) ∈ argminV Φ, which shows point (a).
Let (xnk , ynk ) be a subsequence of (xn, yn) which weakly converges towards (x, y).

The weak lower semicontinuity of the function (x, y) 7→ ‖Ax − By‖2Z combined
with Claim 4.6 implies that

‖Ax− By‖2Z ≤ lim inf
k→+∞

‖Axnk − Bynk‖
2
Z = lim

n→+∞
‖Axn − Byn‖

2
Z = 0,

hence (x, y) ∈ V . In the same way, using Claim 4.8 and the weak lower semi-
continuity of Φ, we infer that (x, y) ∈ argminV Φ. This shows point (b) of Opial’s
lemma and ends the proof of (i).

Let us now prove that lim
n→+∞

f (xn) = f (x∞). Using the weak lower semicon-

tinuity of f , we have f (x∞) ≤ lim inf
n→+∞

f (xn). On the other hand, we deduce from

Claim 4.8 that

lim sup
n→+∞

f (xn) = lim sup
n→+∞

( f (xn) + g(yn) − g(yn))

= f (x∞) + g(y∞) − lim inf
n→+∞

g(yn).

By the weak lower semicontinuity of g, we have g(y∞) ≤ lim inf
n→+∞

g(yn). We infer

that lim sup
n→+∞

f (xn) ≤ f (x∞), and finally lim
n→+∞

f (xn) = f (x∞). In the same way, we

have lim
n→+∞

g(yn) = g(y∞), which ends the proof of (ii). �

5. FURTHER CONVERGENCE RESULTS FOR STRONGLY COUPLED PROBLEMS

In this section, we assume that X = Y = Z and that A = B = I , along with
α = ν = 0. Given closed convex functions f , g : X → R ∪ {+∞}, consider the

following particular case4 of algorithm (A)

(A0)





xn+1 = argmin
{

γn+1 f (ζ) +
1

2
‖ζ − yn‖

2
X ; ζ ∈ X

}

yn+1 = argmin
{

γn+1 g(η) +
1

2
‖xn+1 − η‖2X ; η ∈ X

}
.

Using the same notations as in the previous sections, we have

V = {(x, x); x ∈ X} and argminV Φ = {(x, x); x ∈ argmin( f + g)}.

Let us first start with an example.

4See Remark 2.1, where algorithm (A0) has been introduced in the framework of maximal mono-

tone operators.
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Example 5.1. Take X = R and define the functions f , g : R → R respectively

by f (x) = 1
2 (x − 1)2 and g(y) = 1

2 (y + 1)2. We then have argmin( f + g) = {0}.
By writing down the optimality conditions for algorithm (A0), we immediately
obtain the following recurrence formulae (see also Remark 2.1)

{
γn+1(xn+1 − 1) + xn+1 − yn = 0

γn+1(yn+1 + 1) + yn+1 − xn+1 = 0.

We infer that

yn+1 =
1

(1+ γn+1)2
yn −

γ2
n+1

(1+ γn+1)2
.

Let us set an = 1
(1+γn+1)2

and bn =
γ2
n+1

(1+γn+1)2
. We deduce from the above equality

that |yn+1| ≤ an|yn| + bn. To prove the convergence of the sequence (yn), we use
the following lemma borrowed from [31, Lemma 3, p. 45].

Lemma 5.2. Let (an) and (bn) be real sequences such that 0 ≤ an < 1 and bn ≥ 0 for

every n ∈ N. Assume moreover that (1− an) /∈ l1 and that limn→+∞
bn

1−an
= 0. Let

(un) be a real sequence such that un+1 ≤ anun + bn for every n ∈ N. Then we have
lim supn→+∞ un ≤ 0.

It is easy to check that, if the sequence (γn) is not summable, then the sequence

(1− an) is not summable. Moreoverwe have limn→+∞
bn

1−an
= limn→+∞

γn+1
2+γn+1

= 0.

Thus the previous lemma implies that lim supn→+∞ |yn| ≤ 0, hence limn→+∞ yn = 0.

Finally we have proved that if (γn) /∈ l1 then limn→+∞(xn, yn) = (0, 0).

It is worthwhile noticing that the assumption (γn) ∈ l2 does not come into play
in the above example. This is in fact a consequence of a general result that will be
brought to light by Theorem 5.4 (i), see also Remark 5.5. Before stating Theorem
5.4, we need the following preliminary result.

Proposition 5.3. Let f , g : X → R ∪ {+∞} be closed convex functions which are
bounded from below and such that dom f ∩ dom g 6= ∅. Let (γn) be a positive nonin-
creasing sequence such that limn→∞ γn = 0. Then any sequence (xn, yn) generated by
(A0) satisfies limn→+∞ ‖xn − yn‖X = 0.

Proof. Let us define the sequence (ψn) by

ψn = γn

(
f (xn) + g(yn)

)
+

1

2
‖xn − yn‖

2
X . (25)

We have

ψn ≥ γn infΦ +
1

2
‖xn − yn‖

2
X , (26)

hence the sequence (ψn − γn infΦ) is nonnegative. By using inequality (19) with
A = B = I , we deduce that, for every n ∈ N,

ψn+1 − ψn ≤ (γn+1 − γn) infΦ.

This shows that the sequence (ψn − γn infΦ) is nonincreasing, hence convergent.
Since limn→+∞ γn = 0, the sequence (ψn) also converges. Let us apply inequality
(18) with A = B = I , α = ν = 0 and x = y; we find for all x ∈ dom f ∩dom g 6= ∅,

2ψn+1 − 2γn+1( f (x) + g(x)) ≤ ‖yn − x‖2X − ‖yn+1 − x‖2X .
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By summing the above inequalities for n = 0, ...,N, we obtain

2
N

∑
n=0

[ψn+1 − γn+1( f (x) + g(x))] ≤ ‖y0 − x‖2X .

Since this is true for every N ∈ N, we derive that

lim inf
n→+∞

[
ψn+1 − γn+1( f (x) + g(x))

]
≤ 0.

But both terms are convergent, so we have limn→+∞ ψn ≤ 0. From (26) we imme-

diately deduce that lim
n→+∞

‖xn − yn‖2X = 0. �

The approach that we now develop relies on topological ingredients that can

already be found in [5, 9, 16, 21]. The result below shows that if (γn) /∈ l1 and
lim

n→+∞
γn = 0, the iterates xn, yn of algorithm (A0) approach the set argmin( f + g)

as n → +∞. Weak convergence is obtained under the extra assumption (γn) ∈ l2.
In the next statement, we denote by d

(
·, argmin( f + g)

)
the distance function to

the set argmin( f + g).

Theorem 5.4. Let f , g : X → R ∪ {+∞} be closed convex functions which are bounded

from below and such that dom f ∩dom g 6= ∅. Assume that either f or g is inf-compact5.

Let (γn) be a positive nonincreasing sequence such that (γn) /∈ l1 and lim
n→+∞

γn = 0.

Finally, let (xn, yn) be a sequence generated by (A0). Then

(i) lim
n→+∞

dX
(
xn, argmin( f + g)

)
= lim

n→+∞
dX

(
yn, argmin( f + g)

)
= 0.

(ii) If (γn) ∈ l2, and if condition (QC) is satisfied6, then the sequence (xn, yn) con-
verges weakly to a point (x, x) with x ∈ argmin( f + g).

(iii) If moreover the sequence
(

1
γn+1

− 1
γn

)
is majorized by some M > 0, then the

sequence (xn, yn) converges strongly in X .

Proof. Without loss of generality, we can assume that the function f is inf-compact.
Since the function g is bounded from below, we derive that the function f + g is
inf-compact. On the other hand, the assumption dom f ∩ dom g 6= ∅ ensures that
f + g is a proper function. It follows that argmin( f + g) 6= ∅.
(i) In view of Proposition 5.3, it suffices to prove that lim

n→+∞
dX

(
yn, argmin( f +

g)
)

= 0. Set A = B = I and α = ν = 0 in inequality (14) to deduce that for every
y ∈ argmin( f + g) and every n ∈ N we have

‖yn+1− y‖2X −‖yn− y‖2X + 2γn+1

(
Φ(xn+1, yn+1) −min

V
Φ

)
+ ‖xn+1− yn+1‖

2
X ≤ 0.

(27)

5Recall that a function is said to be inf-compact if its sublevel sets are relatively compact.
6In our present setting, it is easy to check that condition (QC) is satisfied if and only if

⋃

λ>0

λ(dom f − dom g) is a closed subspace of X .

This is precisely the Attouch-Brézis condition, which ensures that ∂ f + ∂g = ∂( f + g) and hence

(∂ f + ∂g)−10 = argmin( f + g).
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Let P denote the projection operator onto the closed convex set argmin( f + g) and
take y = P(yn). Setting un = d2X

(
yn, argmin( f + g)

)
, we derive from (27) that

un+1 − un + 2γn+1

(
Φ(xn+1, yn+1) −min

V
Φ

)
≤ 0. (28)

We now follow the same arguments as those used by the second author in [21,
Theorem 3.1]. We distinguish two cases:

(a) There exists n0 ∈ N such that for all n ≥ n0, Φ(xn, yn) > minV Φ.
(b) For all n0 ∈ N, there exists n ≥ n0 such that Φ(xn, yn) ≤ minV Φ.

Case (a). Assume there exists n0 ∈ N such that for all n ≥ n0, Φ(xn, yn) > minV Φ.
From inequality (28), we deduce that the sequence (un)n≥n0 is nonincreasing and
convergent. We must prove that limn→+∞ un = 0. Using again inequality (28), we
can assert that the sequence (γn(Φ(xn, yn) −minV Φ)) is summable. Moreover,

since (γn) /∈ l1, we have lim infn→+∞ Φ(xn, yn) = minV Φ. Consider a subse-
quence of (xn, yn), still denoted by (xn, yn), such that lim

n→+∞
Φ(xn, yn) = minV Φ.

Since the function g is bounded from below, the sequence ( f (xn)) is majorized.
Using the inf-compactness of the map f , we obtain that the sequence (xn) is rel-
atively compact in X . Thus there exist a subsequence (xnk ) along with x ∈ X
such that lim

k→+∞
xnk = x strongly in X . In view of Proposition 5.3 we also have

lim
k→+∞

ynk = x strongly in X . The closedness of the function Φ allows to assert

that Φ(x, x) ≤ lim infk→+∞ Φ(xnk , ynk ) = minV Φ. Hence (x, x) ∈ argminV Φ,
i.e. x ∈ argmin( f + g). Thus

lim
k→+∞

unk = lim
n→+∞

d2X (ynk , argmin( f + g)) = d2X (x, argmin( f + g)) = 0.

Recalling that the sequence (un) is convergent, we conclude that lim
n→+∞

un = 0.

Case (b). We assume that for all n0 ∈ N there exists n ≥ n0 such that Φ(xn, yn) ≤
minV Φ. Let us define

τN = max{n ∈ N, n ≤ N and Φ(xn, yn) ≤ min
V

Φ}.

The integer τN is well-defined for N large enough and limN→+∞ τN = ∞. If τN <

N inequality (28) implies un+1 ≤ un whenever τN ≤ n ≤ N − 1. In particular,

uN ≤ uτN . (29)

Notice that if τN = N this inequality is still true. Therefore it suffices to prove
that lim

n→+∞
uτn = 0. First observe that Φ(xτn , yτn) ≤ minV Φ for all sufficiently

large n by definition. We deduce, as before, that the sequence (xτn) is relatively
compact, hence bounded in X . In view of Proposition 5.3, the sequence (yτn) is
also bounded in X , whence the boundedness of the real sequence (uτn). The proof
will be complete if we verify that every convergent subsequence of (uτn) must
vanish. Indeed, assume that lim

k→+∞
uτnk

exists. We may assume, upon passing to a

subsequence if necessary, that limk→+∞ xτnk
= limk→+∞ yτnk

= x for some x ∈ X .

The closedness of Φ then gives

Φ(x, x) ≤ lim inf
k→∞

Φ(xτnk
, yτnk

) ≤ min
V

Φ,
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which implies (x, x) ∈ argminV Φ. As before, this implies lim
k→+∞

uτnk
= 0 and we

deduce that the whole sequence (uτn) converges toward 0. Then inequality (29)
shows that limn→+∞ un = 0.

(ii) Let us assume that (γn) ∈ l2 and that condition (QC) is satisfied. Observe
that R(A) + R(B) = R(I) = X , so the closedness of the space R(A) + R(B) is
fulfilled. By Proposition 4.3, the sequence (ωn) defined by

ωn = inf
(x,y)∈X 2

{
1

2
‖x− y‖2X + γn

(
f (x) + g(y) −min

V
Φ

)}

satisfies (ω−
n ) ∈ l1. Let y ∈ argmin( f + g). From inequality (27), we obtain

‖yn+1 − y‖2X − ‖yn − y‖2X ≤ 2ω−
n+1.

Since (ω−
n ) ∈ l1 this implies in view of Lemma 3.3 that

∀y ∈ argmin( f + g), lim
n→+∞

‖yn − y‖2X exists. (30)

On the other hand, recalling that lim
n→+∞

dX (yn, argmin( f + g)) = 0, every weak

cluster point of the sequence (yn) lies in argmin( f + g). We infer from Lemma 4.9
that the sequence (yn) weakly converges toward some point in argmin( f + g). Fi-
nally Proposition 5.3 shows that the sequences (xn) and (yn) tend weakly toward
the same limit.

(iii) Let us first prove that the sequence (ϕn) defined by formula (13) is bounded.
By applying inequality (18) with A = B = I , α = ν = 0 and (x, y) = (xn, yn), we
easily find

ϕn+1− ϕn +
1

2γn+1

(
‖xn+1 − xn‖

2
X + ‖yn+1 − yn‖

2
X

)
≤

1

2

(
1

γn+1
−

1

γn

)
‖xn− yn‖

2
X .

(31)
Observe that this inequality is slightly more precise than (15), where two terms

were omitted. Since 1
γn+1

− 1
γn

≤ M by assumption and since ‖xn − yn‖2X ≤

2 ‖xn+1 − yn‖2X + 2 ‖xn+1 − xn‖2X , inequality (31) implies

ϕn+1 − ϕn +
1

2γn+1
‖xn+1 − xn‖

2
X ≤ M

(
‖xn+1 − yn‖

2
X + ‖xn+1 − xn‖

2
X

)
.

From the fact that limn→+∞ γn = 0, we immediately derive that for n large enough

ϕn+1 − ϕn ≤ M ‖xn+1 − yn‖
2
X . (32)

Recall that the sequence (ω−
n ) is summable, see the proof of (ii). The summabil-

ity of (‖xn+1 − yn‖2X ) is then an immediate consequence of inequality (21), with
A = B = I and α = ν = 0. In view of (32), we infer from Lemma 3.3 that the
sequence (ϕn) is convergent, hence bounded. Since the function g is bounded
from below, the sequence ( f (xn)) is majorized. The inf-compactness of f allows
to deduce that the sequence (xn) is relatively compact in X . Hence there exists
x ∈ X along with a subsequence (xnk ) such that limk→+∞ xnk = x strongly in
X . From Proposition 5.3, we also have limk→+∞ ynk = x strongly in X . In view
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of (i), it is clear that x ∈ argmin( f + g). Taking y = x in assertion (30), we de-
duce that limn→+∞ ‖yn − x‖X = 0. Owing to Proposition 5.3, we conclude that
limn→+∞ xn = limn→+∞ yn = x strongly in X . �

Remark 5.5. Observe that if argmin( f + g) = {ξ}, Theorem 5.4 (i) shows that any

sequence generated by (A0) converges strongly to (ξ, ξ), even if (γn) /∈ l2.

Remark 5.6. No qualification condition is required in the proof of Theorem 5.4 (i),
which is a distinctive mark with respect to the proof of Theorem 4.4 (see specially
Claim 4.8).

Remark 5.7. Recall from Remark 2.1 that the iterates of algorithm (A0) satisfy the
following equalities

xn+1 = (I + γn+1 ∂ f )−1(I + γn ∂g)−1 xn,

yn+1 = (I + γn+1 ∂g)−1(I + γn+1 ∂ f )−1 yn.

This corresponds to a double resolvent scheme studied by Passty in [30]. In this
reference, weak ergodic convergence of such sequences is established for general
maximal monotone operators such that the sum is itself maximal, provided that

(γn) ∈ l2 \ l1. Under some inf-compactness assumption, Theorem 5.4 (ii) (resp.
(iii)) shows that weak ergodic convergence is replaced by weak (resp. strong) con-
vergence in the subdifferential framework. Hence our result is an improvement of
Passty theorem when applied to subdifferential operators.

6. APPLICATION TO DOMAIN DECOMPOSITION FOR PDE’S

Let us consider a bounded domain Ω ⊂ R
N with C2 boundary. Assume that

the set Ω is decomposed in two nonoverlapping Lipschitz subdomains Ω1 and Ω2

with a common interface Γ. This situation is illustrated in the next figure.

Ω1 Ω2Γ

6.1. Neumann problem. Given a function h ∈ L2(Ω), let us consider the follow-
ing Neumann boundary value problem on Ω

{
−∆w = h on Ω

∂w
∂n = 0 on ∂Ω,

where ∂w
∂n = ∇w.~n and ~n is the unit outward normal to ∂Ω. We assume that∫

Ω
h = 0, which is a necessary and sufficient condition for the existence of a so-

lution. The weak solutions of the above Neumann problem satisfy the following
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minimization problem

min

{
1

2

∫

Ω
|∇w|2 −

∫

Ω
hw; w ∈ H1(Ω)

}
, (33)

see for example [8, 19, 26, 32]. Moreover, denoting by ŵ a particular solution, the
solution set of (33) is of the form {ŵ + C, C ∈ R}. Assuming that Ω is of class

C2, we know from the regularity theory of weak solutions that ŵ ∈ H2(Ω), see
for instance [3, 4, 25]. Notice that, if w ∈ H1(Ω) then the restrictions u = w|Ω1

and v = w|Ω2
belong respectively to H1(Ω1) and H1(Ω2) and moreover u|Γ = v|Γ.

Conversely, if u ∈ H1(Ω1), v ∈ H1(Ω2) and if u|Γ = v|Γ, then the function w

defined by w =

{
u on Ω1

v on Ω2
belongs to H1(Ω). As a consequence, problem (33) can

be reformulated as

(P) min
{
f (u) + g(v); (u, v) ∈ H1(Ω1) × H1(Ω2) and u|Γ = v|Γ

}
,

where

f (u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

hu and g(v) =
1

2

∫

Ω2

|∇v|2 −
∫

Ω2

hv. (34)

Let us show how the algorithm (A) can be applied so as to solve problem (P). The
set X = H1(Ω1) is equipped with the scalar product 〈u1, u2〉X =

∫
Ω1

(∇u1.∇u2 +

u1u2) and the corresponding norm. The same holds for Y = H1(Ω2) by replacing

Ω1 with Ω2. The set Z = L2(Γ) is equipped with the scalar product 〈z1, z2〉Z =∫
Γ
z1z2 and the corresponding norm. The operators A : X → Z and B : Y → Z

are respectively the trace operators on Γ, which are well-defined by the Lipschitz
character of the boundaries of Ω1 and Ω2 (see [15, Theorem II.46] or [27, Theorem
2]). Algorithm (A) runs as follows





un+1 = argmin{γn+1 f (u) +
1

2
‖Au− Bvn‖

2
Z +

α

2
‖u− un‖

2
X ; u ∈ X}

vn+1 = argmin{γn+1g(v) +
1

2
‖Aun+1 − Bv‖2Z +

ν

2
‖v− vn‖

2
Y ; v ∈ Y},

where α and ν are fixed positive parameters. An elementary directional deriva-
tive computation shows that the weak variational formulation of algorithm (A) is
given by

γn+1

∫

Ω1

∇un+1.∇u + α
∫

Ω1

(∇un+1 −∇un).∇u

+ α
∫

Ω1

(un+1 − un)u +
∫

Γ
(Aun+1 − Bvn)Au = γn+1

∫

Ω1

hu

and

γn+1

∫

Ω2

∇vn+1.∇v + ν
∫

Ω2

(∇vn+1 −∇vn).∇v

+ ν
∫

Ω2

(vn+1 − vn)v +
∫

Γ
(Bvn+1 − Aun+1)Bv = γn+1

∫

Ω2

hv



22 H. ATTOUCH, A. CABOT, P. FRANKEL, AND J. PEYPOUQUET

for all u ∈ X and v ∈ Y . These are the variational weak formulations of the
followingmixed Dirichlet-Neumann boundary value problems respectively on Ω1




−(γn+1 + α)∆un+1 + αun+1 = γn+1h− α∆un + αun on Ω1

(γn+1 + α) ∂un+1
∂n = α ∂un

∂n on ∂Ω1 ∩ ∂Ω

(γn+1 + α) ∂un+1
∂n + un+1 = α ∂un

∂n + vn on Γ,

and Ω2





−(γn+1 + ν)∆vn+1 + νvn+1 = γn+1h− ν∆vn + νvn on Ω2

(γn+1 + ν) ∂vn+1
∂n = ν ∂vn

∂n on ∂Ω2 ∩ ∂Ω

(γn+1 + ν) ∂vn+1
∂n + vn+1 = ν ∂vn

∂n + un+1 on Γ.

Let us now check the validity of the assumptions of Theorem 4.4. The qualifi-
cation condition (QC) is automatically satisfied since dom f = X and dom g = Y .

In view of Proposition 4.3, assumption (ω−
n ) ∈ l1 is verified7 if (γn) ∈ l2 and if

there exist (û, v̂) ∈ X ×Y such that û|Γ = v̂|Γ along with z ∈ Z satisfying

−A∗z ∈ ∂ f (û) and B∗z ∈ ∂g(v̂). (35)

Take û = ŵ|Ω1
and v̂ = ŵ|Ω2

the restrictions of ŵ respectively to Ω1 and Ω2. Let

us multiply the equality −∆û = h by u ∈ H1(Ω1) and integrate on Ω1. Using

Green’s formula and the fact that ∂û
∂n = 0 on ∂Ω ∩ ∂Ω1, we obtain

∀u ∈ H1(Ω1),
∫

Ω1

∇û.∇u−
∫

Γ

∂û

∂n
u =

∫

Ω1

hu.

Hence we deduce that for every u ∈ H1(Ω1),

f (u) =
1

2

∫

Ω1

|∇u|2 −
∫

Ω1

∇û.∇u +
∫

Γ

∂û

∂n
u

and therefore

f (u)− f (û) =
1

2

∫

Ω1

|∇u−∇û|2 +
∫

Γ

∂û

∂n
(u− û)

≥
∫

Γ

∂û

∂n
(u− û) =

〈
A∗ ∂û

∂n
, u− û

〉

X
.

This shows that A∗ ∂û
∂n ∈ ∂ f (û) and we find in the same way B∗ ∂v̂

∂n ∈ ∂g(v̂). Since
∂û
∂n |Γ

= − ∂v̂
∂n |Γ

, condition (35) is proved with z = ∂v̂
∂n , which belongs to L2(Γ) since

v̂ ∈ H2(Ω2).

We conclude fromTheorem 4.4 (i) and the preceding argument that if
(

1
γn+1

− 1
γn

)

is bounded from above and if (γn) ∈ l2, then any sequence (un, vn) generated by

7Observe that we have R(A) = R(B) = H1/2(Γ). Hence the set R(A) + R(B) = H1/2(Γ) is dense
in Z = L2(Γ) and condition (ω−

n ) ∈ l1 cannot be verified by using assertion (i) of proposition 4.3. This

remark may suggest to take Z = H1/2(Γ) endowed with the corresponding norm. In this case, the
closedness of the set R(A) + R(B) is automatically ensured. However the practical implementation of

algorithm (A) will be more complicated due to the use of the H1/2(Γ) norm. The details are out of the

scope of the paper.
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(A) weakly converges in H1(Ω1) × H1(Ω2) to a minimum point (û + C, v̂ + C),
(C ∈ R) of problem (P). Without loss of generality, we can assume that C = 0.

Since Ω1 and Ω2 are Lipschitz domains, the injections H1(Ω1) →֒ L2(Ω1) and

H1(Ω2) →֒ L2(Ω2) are compact by the Rellich-Kondrachov Theorem (see [2, The-
orem 6.2] or [15, Theorem II.55]). It ensues that the sequence (un, vn) converges

to (û, v̂) strongly in L2(Ω1) × L2(Ω2). Moreover, from Theorem 4.4 (ii), we have

lim
n→+∞

f (un) = f (û) and lim
n→+∞

g(vn) = g(v̂), hence lim
n→+∞

∫
Ω1

|∇un|2 =
∫

Ω1
|∇û|2

and lim
n→+∞

∫
Ω2

|∇vn|2 =
∫

Ω2
|∇v̂|2. As a consequence, we have

lim
n→+∞

‖(un, vn)‖H1(Ω1)×H1(Ω2)
= ‖(û, v̂)‖H1(Ω1)×H1(Ω2)

.

Since (un, vn) weakly converges in H1(Ω1) × H1(Ω2) toward (û, v̂), the conver-

gence is strong in H1(Ω1) × H1(Ω2). We have proved the following:

Theorem 6.1. Let Ω ⊂ R
N be a bounded domain which can be decomposed in two

nonoverlapping Lipschitz subdomains Ω1 and Ω2 with a common interface Γ. We assume
that the set Ω is of class C2. Let h ∈ L2(Ω) be such that

∫
Ω
h = 0 and define the

functions f : H1(Ω1) → R and g : H1(Ω2) → R by formulas (34). Assume that

(γn) is a positive sequence such that (γn) ∈ l2 and the sequence
(

1
γn+1

− 1
γn

)
is bounded

from above. Then any sequence (un, vn) generated by algorithm (A) strongly converges

in H1(Ω1) × H1(Ω2) and the limit (û, v̂) is such that the map ŵ =

{
û on Ω1

v̂ on Ω2
is a

solution of the Neumann problem (33).

Algorithm (A) allows to solve the initial Neumann problem on Ω by solving
separately mixed Dirichlet-Neumann problems on Ω1 and Ω2. A similar method
is developped in [13], where the authors consider alternating minimization algo-
rithms based on augmented Lagrangian approach.

6.2. Problem with an obstacle. As a model situation, let us consider the varia-
tional problem with an obstacle constraint

min

{
1

2

∫

Ω
|∇w|2 −

∫

Ω
hw; w ∈ H1(Ω), w ≥ 0 on Ω

}
. (36)

It can be cast into our framework by taking

f (u) =
1

2

∫

Ω1

|∇u|2−
∫

Ω1

hu+ δC1
(u) and g(v) =

1

2

∫

Ω2

|∇v|2−
∫

Ω2

hv+ δC2
(v),

where δC1
is the indicator function of the convex set C1 = {u ≥ 0; u ∈ H1(Ω1)}

and δC2
is the indicator function of the convex set C2 = {v ≥ 0; v ∈ H1(Ω2)}.

Problem (36) can be reformulated as

(P) min
{
f (u) + g(v); (u, v) ∈ H1(Ω1) × H1(Ω2) and u|Γ = v|Γ

}
.

Let us show that Attouch-Brézis qualification condition (QC) is satisfied in this
situation (by contrast withMoreau-Rockafellar conditionwhich fails to be satisfied
for N ≥ 2). Indeed, we are going to verify that

dom f × dom g− V = H1(Ω1) × H1(Ω2).
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To that end we introduce two trace lifting operators

r1 : H1/2(Γ) → H1(Ω1)

r2 : H1/2(Γ) → H1(Ω2)

such that for every z ∈ H1/2(Γ), z ≥ 0 ⇒ ri(z) ≥ 0, i = 1, 2. Such operators
can be easily obtained by taking any lifting operator and then taking its positive

part. Precisely, we use that for any u ∈ H1(Ω1), u
+ = max{u, 0} ∈ H1(Ω1),

u− = max{0,−u} ∈ H1(Ω1) and u = u+ − u−. Similarly, for any v ∈ H1(Ω2),
v+ ∈ H1(Ω2), v

− ∈ H1(Ω2) and v = v+ − v−. For any u ∈ H1(Ω1) and v ∈
H1(Ω2), we denote respectively by u|Γ and v|Γ their Sobolev traces on Γ. Let us

now perform the following decomposition: for any (u, v) ∈ H1(Ω1) × H1(Ω2)

(u, v) = (u+ − u−, v)

=
(
u+, v + r2

(
(u−)|Γ

))
−

(
u−, r2

(
(u−)|Γ

))
. (37)

Let us notice that
(
u−, r2

(
(u−)|Γ

))
belongs to V because u− and r2

(
(u−)|Γ

)
have

the same trace on Γ. Let us perform once more this operation: set v = v +
r2

(
(u−)|Γ

)
which belongs to H1(Ω2).

(u+, v) = (u+, v+ − v−)

=
(
u+ + r1

(
(v−)|Γ

)
, v+

)
−

(
r1

(
(v−)|Γ

)
, v−

)
. (38)

Combining (37) and (38) we finally obtain

(u, v) =
(
u+ + r1

(
(v−)|Γ), v+

)
−

[(
r1

(
(v−)|Γ

)
, v−

)
+

(
u−, r2

(
(u−)|Γ

))]
.

By construction of the trace lifting operator, and by v− ≥ 0 we have r1
(
(v−)|Γ

)
≥

0. Thus, we have obtained a decomposition of (u, v) as a difference of an element

of H1(Ω1)
+ × H1(Ω2)

+ and an element of H1(Ω). The decomposition algorithm
can now be developped in a very similar way as in the unconstrained case.
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