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Summary. We solve a class of convex infinite-dimensional optimization problems
using a numerical approximation method that does not rely on discretization. In-
stead, we restrict the decision variable to a sequence of finite-dimensional linear
subspaces of the original infinite-dimensional space and solve the corresponding
finite-dimensional problems in a efficient way using structured convex optimization
techniques. We prove that, under some reasonable assumptions, the sequence of these
optimal values converges to the optimal value of the original infinite-dimensional
problem and give an explicit description of the corresponding rate of convergence.

1 Introduction

Optimization problems in infinite-dimensional spaces, and in particular in
functional spaces, were already considered in the 17th century: the develop-
ment of the calculus of variations, motivated by physical problems, focused on
the development of necessary and sufficient optimality conditions and finding
closed-form solutions. Much later, the advent of computers in the mid-20th

century led to the consideration of finite-dimensional optimization from an
algorithmic point of view, with linear and nonlinear programming. Finally,
a general theory of optimization in normed spaces began to appear in the
70’s [8, 2], leading to a more systematic and algorithmic approach to infinite-
dimensional optimization.

Nowadays, infinite-dimensional optimization problems appear in a lot of
active fields of optimization, such as PDE-constrained optimization [7], with
applications to optimal control, shape optimization or topology optimization.
Moreover, the generalization of many classical finite optimization problems to
a continuous time setting lead to infinite-dimensional problems.

† The first author is a F.R.S.-FNRS Research Fellow. This text presents research
results of the Belgian Program on Interuniversity Poles of Attraction initiated
by the Belgian State, Prime Minister’s Office, Science Policy Programming. The
scientific responsibility is assumed by the authors.
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From the algorithmic point of view, these problems are often solved using
discretization techniques (either discretization of the problem or discretization
of the algorithm). In this work, we consider a different method of resolution
that does not rely on discretization: instead, we restrict the decision variables
to a sequence of finite-dimensional linear subspaces of the original infinite-
dimensional space, and solve the corresponding finite-dimensional problems.

2 Problem class and examples

Consider a normed vector space (X, ‖.‖X) of infinite dimension and its topo-
logical dual (X ′, ‖.‖X′) equipped with the dual norm. We focus on the follow-
ing class of convex infinite-dimensional optimization problems:

P ∗ = inf
x∈X
〈c, x〉 s.t 〈ai, x〉 = bi ∀i = 1, . . . , L and ‖x‖X ≤M (P)

where c ∈ X ′, ai ∈ X ′, M ∈ R++, bi ∈ R for all i = 1, . . . , L (L is finite)
and P ∗ denotes the optimal objective value. This problem class, with a linear
objective, linear equalities and a single nonlinear inequality bounding the
norm of the decision variable, is one of the simplest that allows us to outline
and analyze our approximation technique. Nevertheless, it can be used to
model many applications, among which the following simple continuous-time
supply problem, which we describe for the sake of illustration.

A company buys a specific substance (for example oil or gas) in continuous
time. Assume that this substance is made of L different constituents and that
its composition continuously changes with time. In the same way, the price of
this substance follows a market rate and therefore also changes in continuous
time.

The finite time interval [0, T ] represents one production day. Assume that,
for each constituent i, a specific daily demand bi must be satisfied at the end
of the day. We want to compute a purchase plan x(t), i.e. the quantity of
substance to buy at each time t, such that it meets the daily demands for a
minimal total cost. For this application, the decision functional space X can
be taken as the space of continuous functions on [0, T ] (see also Section 5
for other examples of suitable functional spaces). Denoting the price of the
substance at time t by γ(t), the amount of constituent i in the substance at
time t by αi(t), we obtain the following infinite-dimensional problem

inf
x∈X

∫ T

0

γ(t)x(t)dt s.t

∫ T

0

αi(t)x(t)dt = bi ∀i and 0 ≤ x(t) ≤ K ∀t ∈ T

where we also impose a bound for the maximal quantity that we can buy at
each moment of time. The objective function and equality constraints are lin-
ear, so that we only need to model the bound constraints as a norm constraint.
This is easily done with a linear change of variable: letting x(t) = 1

2K+x̄(t) ∀t,
the bound constraint becomes ‖x̄‖∞ ≤

1
2K, which now fits the format of (P).

This model can also be used to compute how to modify an existing pur-
chase plan when changes in the demands occur. Denote the modification of
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the daily demand for the constituent i by ∆bi and the change in our purchase
quantity at time t by x̃(t), and assume we do not want to modify the existing
planning too much, so that we impose the constraint ‖x̃‖ ≤ M for a given
norm. We obtain the following infinite-dimensional problem:

inf
x∈X

∫ T

0

γ(t)x̃(t)dt s.t

∫ T

0

αi(t)x̃(t)dt = ∆bi ∀i = 1, . . . , L and ‖x̃‖ ≤M

which also belongs to problem class (P). Finally, note that this problem class
allows the formulation of continuous linear programs (CLPs, see [2]), such as

inf
x∈X

∫
γ(t)x(t)dt s.t

∫
αi(t)x(t)dt = bi ∀i and x(t) ≥ 0 ∀t

provided we know an upper bound K on the supremum of x(t), so that the
nonnegativity constraint can be replaced by 0 ≤ x(t) ≤ K ∀t, which can be
rewritten using the infinity norm with a linear change of variables as in first
example above.

3 Finite-dimensional approximations

We propose to approximate infinite-dimensional problem (P) by a sequence
of finite-dimensional approximations. Let {p1, . . . , pn, . . .} ⊂ X be an in-
finite family of linearly independent elements of X and denote by Xn =
span{p1, . . . , pn}, the finite-dimensional linear subspace generated by the first
n elements of this family.

Replacing the infinite-dimensional space X in (P) by Xn, we obtain the
following family of problems with optimal values P ∗n

P ∗n = inf
x∈Xn

〈c, x〉 s.t 〈ai, x〉 = bi ∀i = 1, . . . , L and ‖x‖X ≤M . (Pn)

Expressing function x as x =
∑n
i=1 xipi and denoting the finite vector of

variables xi by x leads to the following family of equivalent finite-dimensional
formulations
P ∗n = inf

x∈Rn
〈c(n),x〉 s.t 〈a(n)i ,x〉 = bi ∀i = 1, . . . , L and

∥∥∥ n∑
i=1

xipi

∥∥∥
X
≤M ,

where c(n) and a
(n)
i are vectors in Rn whose components are defined by

[c(n)]j = 〈c, pj〉 and [a
(n)
i ]j = 〈ai, pj〉 ∀j = 1, . . . , n and ∀i = 1, . . . , L.

For our approach to be effective, these problems must be solvable by ex-
isting algorithms for finite-dimensional optimization. In particular, we would
like to ensure that the bounded norm inequality can be handled by existing
efficient optimization methods (the other components of the problem, namely
the linear objective and linear equalities, are usually easily handled). We now
list some explicit situations where this is indeed the case.

1. The easiest case corresponds to situations where X is a Hilbert space. In-
deed, if we choose in that case {p1, . . . , pn} to be an orthonormal basis of
Xn, we have that ‖

∑n
i=1 xipi‖X = ‖x‖2, where the last norm is the stan-

dard Euclidean norm of Rn. The bounded norm inequality becomes a sim-
ple convex quadratic constraint, hence the approximation problem (Pn)
can easily be solved (in fact, it admits a solution in closed form).
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In the rest of this list, we focus on situations where functional space X is a
Lebesgue or Sobolev space (see Section 5 for some properties) and where the
basis elements p1, p2, . . . are polynomials (hence the title of this work), because
this leads in many situations to problems that can be efficiently solved. We
can take for example the monomial basis Xn = span{1, t, . . . , tn−1}, which

means that variable x in problem (Pn) can be written x(t) =
∑n−1
i=0 xit

i and
becomes a polynomial of degree n− 1.

2. Let [a, b] denote a bounded, semi-infinite or an infinite interval. When
X = L∞([a, b]), the norm inequality ‖x‖∞ ≤ M can be formulated as
−M ≤ x(t) ≤ M ∀t ∈ [a, b], which is equivalent to requiring positivity of
both polynomials x(t) + M and M − x(t) on interval [a, b]. This in turn
can be formulated as a semidefinite constraint, using the sum of squares
approach (see e.g. [10]). Therefore, problems (Pn) can be efficiently solved
as a semidefinite programming problem, using interior-point methods with
polynomial-time worst-case algorithmic complexity.

3. When X is the Sobolev space W k,∞([a, b]), we have that constraint
‖x‖k,∞ ≤ M is equivalent to −M ≤ x(l)(t) ≤ M∀t ∈ [a, b] and ∀l ≤ k,
where x(l)(t) is the lth derivative of x(t), whose coefficients depend lin-
early on those of vector x. Therefore, as in the previous case, we solve the
corresponding (Pn) as a semidefinite programming problem.

4. In the case of X = Lq([a, b]) where q is an even integer, we use Gaussian
quadrature to obtain an suitable finite-dimensional representation of the

constraint ‖x‖q = (
∫ b
a
|x(t)|qdt)1/q ≤ M . We use the following result (see

e.g. [6]):

Theorem 1. Given an integer m, there exists a set of m abscissas
{z1, z2, . . . , zm} and a set of m positive weights {w1, w2, . . . , wm} such

that the quadrature formula
∫ b
a
f(x)dx ≈

∑m
i=1 wif(zi) is exact for all

polynomials of degree less or equal to 2m− 1.

We now use the fact that, since x(t) is a polynomial of degree at most
n − 1, |x(t)|q is a polynomial of degree at most q(n − 1), so that we

can choose m = 1
2q(n − 1) + 1 and have

∫ b
a
|x(t)|qdt =

∑ 1
2 q(n−1)+1
i=1 wiλ

q
i

where λi = x(zi) ; note that quantities λi depend linearly on the coeffi-
cients x of polynomial x(t). The bound constraint can now be written as∑ 1

2 q(n−1)+1
i=1 wiλ

q
i ≤Mq, which is a structured convex constraint on vector

of variables x. Because a self-concordant barrier is known for this set [9,
Ch. 6], it can be solved in polynomial time with an interior-point method.
The same kind of approach can be used to obtain an explicit translation in
finite dimension of the polynomial approximation when X = W k,q([a, b])
for even integers q.

Now that we know how to solve problems (Pn) efficiently, we show in
the next section that, under some reasonable assumptions, the sequence of
their optimal values P ∗n converges to the optimal value of the original infinite-
dimensional problem P ∗ when n→ +∞.
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4 Convergence of the approximations

The optimal values of problems (P) and (Pn) clearly satisfy P ∗ ≤ P ∗n ; more-
over, P ∗n+1 ≤ P ∗n holds for all n ≥ 0. In order to prove that P ∗n converges to
P ∗, we also need to find an upper bound on the difference P ∗n−P ∗. Our proof
requires the introduction of a third problem, a relaxation of problem (Pn)
where the equality constraints are only satisfied approximately. More specifi-
cally, we define the linear operator A : X → RL by [Ax]i = 〈ai, x〉, form the
vector b = (b1, b2, . . . , bL) and impose that the norm of the residual vector
Ax− b is bounded by a positive parameter ε:

P ∗n,ε = inf
x∈Xn

〈c, x〉 s.t ‖Ax− b‖q ≤ ε and ‖x‖X ≤M (Pn,ε)

(we equip RL, the space of residuals, with the classical q-norm ‖.‖q norm and

define the conjugate exponent q′ by 1
q + 1

q′ = 1). We clearly have P ∗n,ε ≤ Pn.

Our proof of an upper bound for the quantity P ∗n−P ∗ = (P ∗n−P ∗n,ε)+(P ∗n,ε−
P ∗) proceeds in two steps: we first prove an upper bound on P ∗n,ε − P ∗ for a
specific value of ε depending on n, and then use a general regularity theorem
to establish a bound on the difference P ∗n − P ∗n,ε.

We use the following notations: for x ∈ X, an element of best approx-
imation of x in Xn is denoted by PXn(x) = arg minp∈Xn ‖x− p‖X (such
kind of elements exists as X is a normed vector space and Xn is a finite-
dimensional linear subspace see e.g. section 1.6 in [4]; in case it is not
unique, it is enough to select one of these best approximations in the fol-
lowing developments), while the corresponding best approximation error is
En(x) = minp∈Xn ‖x− p‖X = ‖x− PXn(x)‖X .

4.1 Upper bound on P ∗
n,ε − P ∗

Assume that problem (P) is solvable. This is true for example if X is a reflexive
Banach space or the topological dual of a separable Banach space (see [12]
and Section 5 for further comments on this issue). Let xopt be an optimal
solution to (P) and let us consider PXn(xopt), its best approximation in Xn

(note that if (P) is not solvable, we can consider for all µ > 0 a µ-solution
xµ of this problem, i.e. a feasible solution such that < c, xµ >≤ P ∗ + µ, and
replace P ∗ by P ∗ + µ in the following developments).

First, ‖PXn(xopt)‖X can be bigger than ‖xopt‖X , and does not neces-
sarily satisfy the norm inequality constraint, but we have ‖PXn(xopt)‖X ≤
‖xopt‖X + ‖xopt − PXn(xopt)‖X ≤ M + En(xopt). Therefore, if we choose

λ = M
M+En(xopt)

and p = λPXn(xopt), we obtain ‖p‖X ≤ M . Moreover,

we have ‖p− xopt‖X ≤ 2En(xopt) because we can write ‖p− xopt‖X ≤
‖p− PXn(xopt)‖X + ‖PXn(xopt)− xopt‖X , and ‖p− PXn(xopt)‖X = ‖(λ −
1)PXn(xopt)‖X ≤ (1− λ)(M + En(xopt)) ≤ En(xopt).

On the other hand, we have for all i = 1, . . . , L that |〈ai, p〉 − bi| =
|〈ai, p− xopt〉| ≤ ‖ai‖X′ ‖p− xopt‖X ≤ ‖ai‖X′ 2En(xopt). Therefore, choos-

ing ε(n) = 2En(xopt)
(∑L

i=1 ‖ai‖
q
X′

)1/q
, we obtain that p is feasible for the
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problem (Pn,ε(n)). Similarly, we have |〈c, xopt〉 − 〈c, p〉| ≤ ‖c‖X′ 2En(xopt),
and we have proved the following lemma:

Lemma 1. For ε(n) = 2En(xopt)
(∑L

i=1 ‖ai‖
q
X′

)1/q
, the optimal values of

problems (P) and (Pn,ε(n)) satisfy P ∗n,ε(n) − P
∗ ≤ ‖c‖X′ 2En(xopt).

4.2 Upper bound on P ∗
n − P ∗

n,ε

We first introduce a general regularity theorem that compares the optimal
value of a problem with linear equality constraints with the optimal value of its
relaxation, and then apply it to the specific pair of problems (Pn) and (Pn,ε).

Regularity Theorem

Let (Z, ‖.‖Z) and (Y, ‖.‖Y ) be two normed vector space, A : Z → Y be a linear
operator, Q ⊂ Z be a convex bounded closed subset of Z with nonempty
interior, b ∈ Y and L = {z ∈ Z : Az = b}. We denote the distance between a
point z and subspace L by d(z,L) = infy∈L ‖z − y‖Z .

Lemma 2. Assume that there exists a point ẑ ∈ Z such that Aẑ = b and
B(ẑ, ρ) ⊂ Q ⊂ B(ẑ, R) for some 0 < ρ ≤ R. Then, for every point z ∈ Q such

that d(z,L) ≤ δ, there exists z̃ ∈ L ∩Q such that ‖z − z̃‖Z ≤ δ
(

1 + R
ρ

)
.

Proof. Denote Qz = conv(z,B(ẑ, ρ)) ⊂ Q. The support function of this set is
σQz (s) = supy∈Qz 〈s, y〉 = max{〈s, z〉, 〈s, ẑ〉 + ρ ‖s‖Z′}. Let π be any element
of best approximation of the point z into L. Define α = ρ

ρ+δ and consider

z̃ = απ + (1− α)ẑ. Then we have for any s ∈ Z ′ that

〈s, z̃〉 = α〈s, z〉+ (1− α)〈s, ẑ〉+ α〈s, π − z〉

≤ α〈s, z〉+ (1− α)

[
〈s, ẑ〉+

αδ

1− α
‖s‖Z′

]
= α〈s, z〉+ (1− α) [〈s, ẑ〉+ ρ ‖s‖Z′ ] ≤ σQz (s)

and hence z̃ ∈ Qz ⊂ Q. Since we also have z̃ ∈ L, it remains to note that

‖z − z̃‖Z ≤ ‖z − π‖Z + ‖π − z̃‖Z = δ + (1− α) ‖π − ẑ‖Z
≤ δ + (1− α)(‖π − z‖Z + ‖z − ẑ‖Z) ≤ δ + (1− α)(δ +R)

= δ

(
1 +

R+ δ

ρ+ δ

)
≤ δ

(
1 +

R

ρ

)
ut

We consider now the following optimization problem:

g∗ = inf
z∈Z
〈c, z〉 s.t Az = b and z ∈ Q (G)

and its relaxed version

g∗ε = inf
z∈Z
〈c, z〉 s.t ‖Az − b‖Y ≤ ε and z ∈ Q. (Gε)

The following Regularity Theorem links the optimal values of these two prob-
lems.
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Theorem 2 (Regularity Theorem). Assume that

A1. (Gε) is solvable,
A2. there exists ẑ ∈ Z s.t Aẑ = b and B(ẑ, ρ) ⊂ Q ⊂ B(ẑ, R) for 0 < ρ ≤ R,
A3. the operator A : Z → Y is non degenerate, i.e. there exists a constant

σ > 0 such that ‖Az − b‖Y ≥ σd(z,L) ∀z ∈ Z.

Then g∗ ≥ g∗ε ≥ g∗ −
ε‖c‖Z′
σ

(
1 + R

ρ

)
.

Proof. The first inequality is evident. For the second one, consider z∗ε , an op-
timal value of the problem (Gε). Since d(z∗ε ,L) ≤ δ := ε

σ , in view of Lemma 2,

there exists a point z̃ ∈ L ∩ Q such that ‖z∗ε − z̃‖Z ≤ δ
(

1 + R
ρ

)
. Therefore,

we can conclude g∗ε = 〈c, z∗ε 〉 = 〈c, z̃〉+ 〈c, z∗ε − z̃〉 ≥ g∗ − ‖c‖Z′ δ
(

1 + R
ρ

)
ut

Satisfying the hypotheses of the Regularity Theorem

We want to apply the Regularity Theorem to the pair of problems (Pn)
and (Pn,ε). First, we note that, as Xn is finite-dimensional, the set {x ∈ Xn :
‖x‖X ≤M, ‖Ax− b‖q ≤ ε} is compact. As the functional c is continuous, we
conclude that problem (Pn,ε) is solvable, i.e. hypothesis A1 is satisfied.

In order to prove hypothesis A2, we assume that there exists x̂ ∈ Xn

such that Ax̂ = b and ‖x̂‖X < M (a kind of Slater condition). If we denote
Rn = minx∈Xn,Ax=b ‖x‖X , x̃ = arg minx∈Xn,Ax=b ‖x‖X and Qn = {x ∈ Xn :
‖x‖X ≤M} = BXn(0,M), we have : BXn(x̃,M −Rn) ⊂ Qn ⊂ BXn(x̃, 2M).

Regarding hypothesis A3, denote Ln = {x ∈ Xn : Ax = b} and write

d(x,Ln) = min
u∈Xn,Au=b

‖x− u‖X = min
λ∈Rn,A(n)λ=b

∥∥∥∥∥x−
n∑
i=1

λipi

∥∥∥∥∥
X

= min
u∈Xn

max
y∈RL

[
‖x− u‖X + 〈y,−Au+ b〉

]
where we defined [A(n)]i,j = 〈ai, pj〉. Since a linearly constrained optimization
problem in Rn with convex objective function always admits a zero duality
gap (see e.g. [3]), we have

d(x,Ln) = max
y∈RL

min
u∈Xn

[
‖x− u‖X + 〈y,−Au+ b〉

]
= max

y∈RL

(
〈y, b−Ax〉+ min

u∈Xn
‖x− u‖X + 〈y,A(x− u)〉

)
.

Consider now the Lagrangian dual functional γ(y) = minu∈Xn ‖x− u‖X +
〈y,A(x − u)〉. If we define A′ : RL → X ′ by 〈y,Ax〉 = 〈A′y, x〉 ∀x ∈
X,∀y ∈ RL, we can check that A′y =

∑L
i=1 yiai. Denoting ‖A′y‖X′,n =

supw∈Xn
|〈A′y,w〉|
‖w‖X

, it follows from the definition of the dual norm that γ(y) = 0

if ‖A′y‖X′,n ≤ 1 and −∞ otherwise. We conclude that
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d(x,Ln) = max
{y∈RL s.t. ‖A′y‖X′,n≤1}

〈y, b−Ax〉

≤ max
{y∈RL s.t. ‖A′y‖X′,n≤1}

‖y‖q′ ‖b−Ax‖q .

Therefore, choosing a σn > 0 such that 1
σn

= max{y∈RL s.t. ‖A′y‖X′,n≤1} ‖y‖q′
ensures degeneracy of A, and we have

Lemma 3. If σn = min{y∈RL,‖y‖q′=1} ‖A′y‖X′,n is strictly positive then oper-

ator A : Xn → RL is non-degenerate with constant σn.

Remark 1. If X is a Hilbert space and if we work with the Euclidean norm
for RL, we can obtain a more explicit non-degeneracy condition, by iden-
tifying all x′ ∈ X ′ with the corresponding element of X given by the
Riesz representation theorem such that X ′ is identified with X. Suppose
{p1, . . . , pn} is an orthonormal basis of Xn. Using A(n) as defined above, we

have supw∈Xn
|〈A′y,w〉|
‖w‖X

= supw∈Rn
|〈A(n)T y,w〉|
‖w‖2

=
∥∥A(n)T y

∥∥
2
. Furthermore,

if ∪Xn is dense in X,
∥∥A(n)T y

∥∥2
2

=
∑n
j=1

(
〈
∑L
i=1 aiyi, pj〉

)2
converges to∥∥AT y∥∥2

X
=
∥∥∥∑L

i=1 aiyi

∥∥∥2
X

= λmin(AAT ) when n tends to infinity. Operator

AAT : RL → RL is positive semidefinite and corresponds to a matrix with
components [AAT ]i,j = 〈ai, aj〉. It is therefore enough to assume it is nonsin-
gular or, equivalently, the linear independence of all ai in X ′ = X, to show
that there exists N such that for all n ≥ N , σn > 0.

We are now able to apply the Regularity Theorem to (Pn) and (Pn,ε).

Lemma 4. Assume that

1. there exists x̂ ∈ Xn such that Ax̂ = b and ‖x̂‖X < M ,
2. σn = min{y∈RL,‖y‖q′=1} ‖A′y‖X′,n > 0.

Then the optimal values of the problems (Pn) and (Pn,ε) satisfy for all ε > 0

P ∗n −
ε‖c‖X′
σn

(
1 + 2M

M−Rn

)
≤ P ∗n,ε ≤ P ∗n with Rn = minx∈Xn,Ax=b ‖x‖X .

4.3 Convergence result

In order to combine the two bounds we have obtained, we need to assume
that hypotheses of Lemmas 1 and 4 are satisfied for some values of n. In fact,

• If there exists N1 such that RN1 < M then Rn < M for all n ≥ N1.
• If there exists N2 such that σN2

> 0 then σn > 0 for all n ≥ N2.

Therefore, we have proved the following convergence result:

Theorem 3. Assume that

1. the infinite-dimensional problem (P) is solvable
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2. there exists N1 and x̂ ∈ XN1
such that Ax̂ = b and ‖x̂‖X < M

3. there exists N2 such that σN2
> 0.

Then we have for all n ≥ N = max{N1, N2} that

P ∗ ≤ P ∗n ≤ P ∗ + 2En(xopt) ‖c‖X′

(
1 +

(
∑L
i=1‖ai‖

q

X′)
1/q

σn

(
1 + 2M

M−Rn

))
where xopt is an optimal solution of (P) and Rn = minx∈Xn,Ax=b ‖x‖X .

To summarize, we have obtained a convergence result for our polynomial
approximation scheme provided that En(xopt), the best approximation error
of the optimal solution of (P), converges to zero when n goes to infinity,
which is is a natural condition from the practical point of view. This holds for
example if the linear subspace span{p1, . . . , pn, . . .} = ∪nXn is dense in X.

5 Specific classes of infinite-dimensional problems

To conclude, we provide a few examples of specific functional spaces X and
comment on their solvability and the expected rate of convergence described
by Theorem 3.

X is the Lebesgue space Lq

These functional spaces are suitable for use in the supply problems consid-
ered in Section 2. Let Ω be a domain of RN and 1 ≤ q ≤ ∞. Let X be
the Lebesgue space Lq(Ω) = {u ∈ M(Ω) :

∫
Ω
|u(t)|q dt < +∞} with norm

‖u‖X = ‖u‖q =
(∫
Ω
|u(t)|q dt

)1/q
in the case 1 ≤ q <∞, and ‖u‖X = ‖u‖∞ =

ess supt∈Ω |u(t)| when q = ∞. We take as linear and continuous functionals
c : Lq(Ω) → R, u →

∫
Ω
u(t)γ(t)dt and ai : Lq(Ω) → R, u →

∫
Ω
u(t)αi(t)dt

where γ and αi ∈ Lq
′
(Ω) for all i = 1, . . . , L.

Concerning the solvability of this problem, note that Lq(Ω) is reflexive for
all 1 < q < ∞ and that L∞(Ω) = (L1(Ω))′ where L1(Ω) is separable ([1]).
Therefore, we can conclude that the infinite-dimensional problem has at least
one optimal solution for all 1 < q ≤ ∞. Similar results can be otained if we
consider the sequence space lq.

If Ω is a bounded interval [a, b] and Xn = span{1, t, . . . , tn−1}, we have
the following well-known results about the convergence of the best polynomial
approximation error of a function u ∈ X, see e.g. [11, 5]:

• En(u)q → 0 iff u ∈ Lq([a, b]) for all 1 ≤ q <∞
• En(u)∞ → 0 iff u ∈ C([a, b])
• En(u)q = O( 1

nr ) if u ∈ Cr−1,r−1([a, b]) for all 1 < q ≤ ∞

where En(u)q = infv∈Xn ‖u− v‖q and Ck,r = {u ∈ Ck([a, b]) s.t u(r) is Lip-
schitz continuous } with r ≤ k.

Recall that these quantities, that describe the best approximation error of
the optimal solution of (P), have a direct influence on the convergence rate
of P ∗n to P ∗ (cf. Theorem 3).
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X is the Sobolev space W k,q

If we want to include derivatives of our variable in the constraints or in the
objective, we need to work in Sobolev spaces. Let Ω be a domain of RN ,
1 ≤ q ≤ ∞ and k ∈ N. For all multi-indices (β1, . . . , βN ) ∈ NN , we note

|β| =
∑N
i=1 βi and Dβu = ∂|β|u

∂t
β1
1 ...∂t

βN
N

in the weak sense. We choose for X the

Sobolev space W k,q(Ω) = {u ∈ M(Ω) : Dβu ∈ Lq(Ω) ∀0 ≤ |β| ≤ k} with

the norm ‖u‖X = ‖u‖k,q =
(∑

0≤|β|≤k
∥∥Dβu

∥∥q
q

)1/q
in the case 1 ≤ q < ∞

and ‖u‖k,∞ = max0≤|β|≤k
∥∥Dβu

∥∥
∞ when q = ∞. Our linear and continuous

functionals are c : W k,q(Ω) → R, u →
∑

0≤|β|≤k
∫
Ω
Dβu(t)γβ(t)dt and ai :

W k,q(Ω)→ R, u→
∑

0≤|β|≤k
∫
Ω
Dβu(t)αi,β(t)dt where γβ and αi,β ∈ Lq

′
(Ω)

for all i = 1, . . . , L and for all 0 ≤ |β| ≤ k.
Since the space W k,q is reflexive for all k ∈ N and for all 1 < q < ∞ [1],

existence of an optimal solution to (P) is guaranteed. Furthermore, when Ω
is a bounded interval [a, b], it is well-known that the polynomials are dense in
the Sobolev space W k,q([a, b]) for all k ∈ N and for all 1 ≤ q <∞. Therefore,
Theorem 3 guarantees convergence of the polynomial approximation scheme
in this case.
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