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Abstract

We consider the capacity planning of telecommunication networks with linear invest-
ment costs and uncertain future tra�c demands. Transmission capacities must be large
enough to meet, with a high quality of service, the range of possible demands, after ad-
equate routings of messages on the created network. We use the robust optimization
methodology to balance the need for a given quality of service with the cost of invest-
ment. Our model assumes that the tra�c for each individual demand �uctuates in an
interval around a nominal value. We use a re�ned version of a�ne decision rules based on
a concept of demand proximity to model the routings as a�ne functions of the demand
realizations. We then give a probabilistic analysis assuming the random variables follow a
triangular distribution. Finally, we perform numerical experiments on network instances
from SNDlib and measure the quality of the solutions by simulation.

Keywords. Capacity expansion problem, Telecommunication networks, Robust opti-
mization.

1 Introduction

Two con�icting criteria guide operators when they design or reinforce telecommunications
networks: the costs of investment and the quality of service (QoS) (expressed here as a level
of rejected requests). On an existing network, failure to achieve full service is caused by
an excessive tra�c load in conjunction with insu�cient installed capacity. When facing
uncertain tra�c demands, the network designers may be tempted to over-estimate the
tra�c demand in order to achieve the required QoS. This is likely to result in over-sized
networks entailing unnecessarily large investment costs. Our goal is to show that an
approach based on robust optimization is able to achieve the required QoS at a lesser cost.

The need for new capacity occurs when the telecommunications operator o�ers new
services or has to cope with a growing tra�c. For strategical and operational reasons
those investments must be planned well in advance and decisions must rely on tra�c
forecasts, which, by essence, are uncertain. Analysis of real-life data have revealed large
errors between marketing forecasts and the actual future tra�c in the network. Even at
a one year horizon term, the di�erence can easily be larger than 10%. It is thus often the
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case that when the planned network becomes operational, it turns out to be inadequately
sized. Capacity adjustments must be made, at possibly much higher costs.

The capacity planning problem for telecommunications networks is essentially a mul-
ticommodity �ow problem. Its objective involves the investment cost and possibly some
cost associated with the tra�c routing (e.g. travel times). Additional constraints to ensure
tra�c diversi�cation may also be included. When demands are uncertain, the adequate
formulation is a two-stage stochastic problem. In the �rst stage, capacities are allocated
(deterministic variables) and routings to meet the uncertain demands are set in a second
stage. Routings are thus stochastic by construction. This problem is a special case of more
general formulations of network design under uncertain demands and possibly uncertain
travel times with a single commodity and multiple sources and sinks or with multiple
commodities with single source and a single sink for each commodity.

In the present paper we concentrate on capacity expansion for the multicommodity
�ow problem with capacity costs only and uncertain demands. Therefore, we do not
review the literature on other related problems, unless the contributions are relevant to our
problem. A �rst issue concerns the modeling of uncertain demands. Some contributions
use a scenario based description with the condition that for each demand scenario there
is a feasible �ow that meets the demand and the capacity constraint on the installed
capacities [17, 19, 20, 10, 21]. A solution that satis�es this requirement is claimed to be
robust. In view of the linearity of all constraints, a solution that is robust with respect to
all scenarios is also robust with respect to the convex hull of the scenarios. Therefore the
demand uncertainty can be described via a polyhedral uncertainty set. This idea has been
speci�cally exploited in [2, 9], where the set of tra�c events is de�ned through inequalities
rather than from a set of discrete scenarios. More general convex-compact uncertainty
sets are considered in [4] (see also [5]). Those sets, just like the scenario-based uncertainty
sets, do not cover the whole of possible demand realizations. A solution is claimed robust
if for each demand in the uncertainty set there is a routing that meets the demands and is
compatible with the installed capacity. A third alternative is to describe uncertainty via
probability distribution and use a chance-constrained programming formulation [12]. It
is known that the feasible set with probabilistic constraints is in general not convex, and
possibly disconnected, a fact that also leads to considerable numerical di�culties.

The second issue concerns the handling of the routing decisions that are recourse de-
cisions adjustable to meet the observed demands. As pointed out in [7, 3] fully adjustable
solutions are liable to make the computation of robust solutions intractable, a fact that
is recognized in [20, 14]. The get around intractability reference [7] propose a revival of
the concept of linear decision rules (or A�ne Decision Rules, ADR). In that framework,
recourse decisions are formulated as a�ne functions of the observed demand uncertainties
(see [18]). In our problem of interest when the number of demands is large this option
can lead to a signi�cant increase of the number of variables. In the present paper, we
use a re�ned version of ADR based on a concept of demand proximity to overcome this
di�culty.

The �nal issue deals with the handling of constraint violations. They can be represented
either by individual 0-1 indicators (depending on whether or not the violation occurs) or
as a the amount of unserved demands. Individual 0-1 indicators are useful in chance-
constrained programming or in standard robust optimization. The latter case enables the
measure of the the total amount of unserved demands; it can be used as objective function
[17, 20], but this formulation unfortunately leads to intractable problems.

The current paper builds on an earlier work [18] of two of the present authors. The
deterministic version of the model is a path-�ow formulation. A set of admissible paths
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is proposed as part of the data. The number of paths used by the solution may be re-
stricted to a �xed cardinality subset of the admissible paths. Individual demands are
modeled as independent1 uncertain variables. Each one varies around a nominal value on
a symmetric interval. First stage decisions deal with the investment for capacity, while the
recourse decisions are the actual routings on the network to meet the observed demands.
Recourse decisions are modeled as A�ne Decision Rules2 (ADR). The uncertainty sets
are polyhedral. We chose not to use ellipsoidal sets in order to remain in the realm of
linear programming and make it easier the handling of �rst stage decision variables with
integrality restrictions. We impose that the ADR's be such that the demand requirement
is satis�ed for all demand scenario within the uncertainty set. However ADR's spread the
uncertainty into the capacity constraints and the �ow nonnegativity constraints. Those
two sets of constraints are robusti�ed. To quantify the immunization factor in the equiv-
alent robust counterpart, we perform a probabilistic analysis under the assumption that
each demand is distributed according to a triangular symmetric distribution. A weaker
assumption could be made, that would very similar, though weaker, results. For a detailed
study, we refer to [4, 5, 3]. By construction, a robust solution tends to be conservative for
three main reasons: i) ADR are suboptimal; ii) the immunization factor that guarantees
a certain probability of satisfaction is over-estimated by the theoretical analysis based on
probabilistic inequalities; iii) the indicators of constraint violation are not independent
random variables from constraint to constraint. Consequently, the practical solution must
be evaluated empirically, using simulations. This complementary study usually con�rms
that the robust solution is conservative, but also behaves consistently well.

The paper is organized as follows. In section 2 we present the basic capacity expansion
problem. In section 3, we propose a model for the uncertainty on the demands and give
the formulation of a�ne decision rules for the recourse. Section 4 formulates the robust
counterpart of an uncertain constraint and collects few known results in robust optimiza-
tion. Section 4 concludes with a probabilistic analysis with the triangular distribution.
In section 5, we model the capacity planning problem with robust constraints. Section 6
is devoted to numerical results on test problems. The QoS achieved by the robust solu-
tions is observed by simulation on a Monte-Carlo sample of demand scenarios, assuming
a triangular distribution. Section 7 is a conclusion with some hints for further research.

2 Capacity expansion problem

Let G(N ,A) be a directed graph where N is the set of nodes and A is the set of arcs.
We denote by K the set of demands, characterized by origin-destination (OD) pairs. Let
dk be the tra�c amount for demand k ∈ K, and let Ik denote the set of available paths
that can be used to route the demand k. This set Ik may contain all paths between the
origin and the destination of demand k. However, it is often desirable, or even required,
to restrict the number of potential paths for a given demand: indeed, not all the paths
are acceptable by network managers; furthermore, from a computational viewpoint, this
restriction will be helpful.

The path-�ow formulation of the capacity expansion problem with linear expansion

1This choice is dictated by the situation that is prevalent in practice. More sophisticated models, involving,
for instance, factors and correlations, can equally be handled by robust optimization. However, it turns out that,
in our problem of interest of new telecommunications services, the in�uence factor matrices and the correlation
matrices are generally not available or not even computable.

2or a�nely adjustable variables in the parlance of [7],
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cost is:

min
f≥0,c≥0

∑
a∈A

laca (1a)

s.t.
∑
k∈K

∑
i∈Ik

πaikfik ≤ ca, a ∈ A (1b)

∑
i∈Ik

fik = dk, k ∈ K. (1c)

In that formulation la is the cost of installing a unit capacity on arc a. The vector πik
has component πaik = 1 if path i ∈ Ik includes arc a, and 0 otherwise. The �ow for the
tra�c demand k on the path i is represented by the variable fik. Finally, variable ca is
the capacity to be installed on the arc a.

In this problem, the number of admissible paths is restricted and is given in explicit
form. Practitioners usually add the further restriction that only a small number of those
admissible paths can be e�ectively used in the proposed solution. Let mk be this number
for the demand k. To deal with this restriction, we add binary variables and reformulate
the original problem as the mixed integer linear problem (MIP)

min
f,c,y

∑
a∈A

laca (2a)

s.t.
∑
k∈K

∑
i∈Ik

πaikfik ≤ ca, a ∈ A (2b)

∑
i∈Ik

fik = dk, k ∈ K (2c)

∑
i∈Ik

yik ≤ mk, k ∈ K (2d)

fik ≤Mkyik, k ∈ K, i ∈ Ik (2e)

f ≥ 0, c ≥ 0, (2f)

yik ∈ {0, 1}, k ∈ K, i ∈ Ik. (2g)

The binary variables y indicate whether a path is opened or not. The parameter Mk is
an upper bound on the �ow fik. One can take Mk = dk or a tighter one if available.
Constraints (2d) limit the number of active paths.

One of the major problems of this model lies in the values of tra�c demand d to be
used. In practice, network operators use statistical models, together with market surveys,
to forecast the evolution of tra�c. However, experience shows that forecasts are always
wrong, and often far from the observed reality. Tra�c measurements on a backbone
network of France Telecom, compared with the amounts forecasted one year before, have
revealed gaps up to 25% on the global amount of tra�c in the network (i.e.,

∑
k∈K dk),

depending on the year. Note that the error may be positive, as well as negative, around
the expected value. If no probablistic assumption is performed, this error of 25% should
be reported on all demands {dk}k∈K.

Under some circumstances, the error on individual demands may be far larger than
that. Indeed, given the successive errors performed year after year, we estimate the average
error and its standard deviation. In our data, we have observed a standard deviation of 17%
for the error on

∑
k∈K dk. For the sake of simplicity, let us assume that the error process

is Gaussian, and that demands {dk}k∈K are independent Gaussian random variables, with
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standard deviations σk = c ·E[dk], for some c > 0. Then we have:
(
17% · E

[∑
k∈K dk

])2
=∑

k∈K (c · E[dk])
2, which implies:

c = 17% ·
∑

k∈K E[dk]√∑
k∈K E[dk]2

.

The relative error c of each individual demand dk may thus be far larger than the relative
error on the global tra�c amount (c could reach 17% ·

√
|K|, if all E[dk] are equal).

Finally, the above quantitative analysis is based on forecasts performed one year in
advance. Of course, the uncertainty is much larger if forecasts are performed earlier:
even only 2 years in advance, we observed errors more than 40% on the global tra�c
amount. Notwithstanding, network operators usually perform network plans several years
in advance.

The models developed in this paper aim at tackling this uncertainty issue.

3 Uncertainty and a�ne decision rules (ADR)

The capacity investment problem is essentially a two-stage problem with recourse. In the
�rst stage, the capacity investment is selected. In the second stage, the decision concerns
the routing of the messages to meet the observed demands. The sequence is thus: invest
in capacities, observe the demands and route the messages. The important feature is the
�exibility brought in by the recourse nature of the routing process. We propose to capture
this feature via decision rules. To do so we must formalize �rst the demand process and
next the decision rule.

In real life, de�ning a probability distribution for the demand may be di�cult. It is
far more natural and easier for practitioners to provide a range around a nominal value
for each individual demand. This information can be captured by the equation:

dk = d̄k + d̂kξk, (3)

where ξk represents a random factor taking values in [-1,1], d̄k is the average demand and
d̂k is the demand dispersion. The demand range is thus [d̄k − d̂k, d̄k + d̂k].

Remark 1 More complex models could be used, in particular to capture correlation. In
that case, one would adopt a model like

d = d̄+ D̂ξ

where d̄ ∈ R|K| is the reference demand (e.g., the estimated average, or the estimated
mode), ξ ∈ Rp is the random factor of perturbation and D̂ is a |K| × p factor matrix. In
general p ≤ |K|. If the �rst two moments of the probability distribution of the demand
are known, d̄ would be the mean demand and D̂ the square root of the covariance matrix.
Unfortunately, those data are not available in practice, and very little information can be
obtained on the possible realizations of the demands. For these reasons, we stick with the
simpler model (3).

Given the demand model, we can now de�ne a decision rule as a function from the
space of demand realizations to the space of recourse decision variables. The concept of
decision rule captures the fact that the recourse decisions need not be �xed before the
demand is realized and can be adjusted to �t the observed demand. An ADR is just a
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special case of this general setting. Linearity makes them computationally tractable, but
possibly sub-optimal. In our case, the decision rule will apply to the routing decisions,
that is to the �ows on the admissible paths. An ADR will make each individual �ow an
a�ne function of all demand uncertainties:

fik = α0ik +
∑
k′∈K

αk′ikξk′ .

In this representation, the new decision variables are the coe�cients α0ik and αk′ik.
In view of the large number of demands, i.e., the large cardinality of K, the number of

variables is large and the robust model to be developed in the later section may become
excessively large. Though well founded in theory, this approach may not lead to signi�-
cantly better results than the simpler one in which the decision rule depends on a lesser
number of factors. In [18], the authors restricted the decision rule for the OD pair k to be
a function of only two factors: the tra�c amount dk and the sum of all other demands.
In the present paper we intend to use a more re�ned version in which for each OD pair
k, the set of other demands are partitioned on the basis of a proximity concept. The OD
pairs k′ ∈ K \ {k} that are deemed �close� to k are gathered in the set Vk. The other
demands are collected into Rk = {k′ ∈ K|k′ 6= k, k′ /∈ Vk}. With these notations we de�ne
the decision rule as the a�ne function:

fik = α0ik + α1ikξk + α2ik

∑
k′∈Vk

ξk′ + α3ik

∑
k′∈Rk

ξk′ . (4)

With this rule, the routing for each demand is de�ned by exactly four coe�cients α. The
key issue is of course the type of proximity to be used. We tried di�erent types, but we
eventually retained the following one.

De�nition 1 The tra�c demand k′ is close to the demand k if their respective shortest
path has at least one arc in common.

This proves to be su�cient in practice.
Denoting ξvk =

∑
k′∈Vk ξk′ and ξ

r
k =

∑
k′∈Rk

ξk′ we may write in a more compact form:

fik = α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k. (5)

Upon replacing the �ow variables by their ADR in problem (2) we get, for any single tra�c
event ξ:

min
α,c≥0,y

∑
a∈A

laca (6a)

s.t.
∑
k∈K

∑
i∈Ik

πaik (α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k) ≤ ca, a ∈ A (6b)

∑
i∈Ik

(α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k) = d̄k + ξkd̂k, k ∈ K (6c)

yikMk ≥ α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k ≥ 0, k ∈ K, i ∈ Ik (6d)∑

i∈Ik

yik ≤ mk, k ∈ K (6e)

yik ∈ {0, 1}, k ∈ K, i ∈ Ik. (6f)

In this model, the uncertainty creeps into most constraints, either by de�nition like in
(6c), or via the decision rule like in (6b) and (6d). We shall use the robust optimization
paradigm to handle uncertainty in those constraints.
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4 Robust counterpart of an uncertain constraint

In this section, we consider the single linear constraint with uncertain coe�cient

ã(ξ)Tx ≤ b

where x is the decision variable and ξ is a random factor. Note that all the constraints of
formulation (6) can be written under this form.

The �rst basic assumption on the uncertain parameters is that they depend on some
random factor ξ in a linear way.

Assumption 1 The uncertain vector ã is written as:

ã(ξ) = ā+ Pξ,

where ξ ∈ [−1, 1]m and P is an n×m matrix.

The certain vector ā is usually named the normal factor. We can thus focus on the
uncertain component of the constraint:

āTx︸︷︷︸ + (P Tx)T ξ︸ ︷︷ ︸ ≤ b.

certain uncertain
(7)

4.1 Robust counterpart

The idea of robust optimization is to focus on a subset of all possible events that it is made
of all realizations of the underlying uncertain factor ξ that the modeler deems necessary
to protect against. This is the so-called uncertainty set. The robust version of the initial
uncertain constraint ã(ξ)Tx ≤ b consists in enforcing the uncertain constraint (7), not
for all possible realizations, but only for those in the uncertainty set; that is, the less
restrictive constraint

āTx+ (P Tx)T ξ ≤ b, for all ξ ∈ Ξ, (8)

where Ξ ⊂ Rm is the uncertainty set. A solution to this constraint is called robust with
respect to Ξ and (8) is the robust counterpart of the uncertain constraint (7). In the
present formulation, the robust counterpart is not numerically tractable. However it can
be given an equivalent form for a large class of uncertainty sets.

In this paper we shall use the general uncertainty set

Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖p ≤ κp} (9)

with p = 1 or p = 2. Using standard duality theory for convex programming one can
easily derive an equivalent form of the robust counterpart of the uncertain constraint.

Theorem 1 The robust equivalent of the robust constraint

āTx+ (P Tx)T ξ ≤ b, for all ξ ∈ Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖p ≤ κp},

is the constraint in x and w

āTx+ κp‖P Tx− w‖q + ‖w‖1 ≤ b (10)

with q =∞ if p = 1 and q = 2 if p = 2.
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For a proof of this standard result, we refer to [6]. The equivalent robust counterpart is
a numerically tractable conic constraint for both values p = 2 and p = 1. In the former
case, the constraint is conic quadratic. In the second case, the constraint is amenable to
a set of linear constraints.

Theorem 2 The conic constraint

āTx+ κ1‖P Tx− w‖∞ + ‖w‖1 ≤ b (11)

has the same set of solutions as the system of linear inequalities

āTx+ κ1t+ eTw ≤ b (12a)

−(w + te) ≤ P Tx ≤ w + te (12b)

w ≥ 0, t ≥ 0. (12c)

The l1 and l∞ norms are easily represented by linear inequalities. As mentioned in [6,
Proposition 1 (p96)] the inequalities −te ≤ P Tx − w ≤ te are in fact equivalent to (12b)
with w ≥ 0.

We now review two special cases of interest for our problem.

4.2 Constraints with upper and lower limits

The robust optimization paradigm implies that each constraint is immunized separately.
However, the two sides of a two-sided inequality can be treated simultaneously. Indeed,
let

b ≤ ã(ξ)Tx ≤ b̄

be a two-sided inequality. It is easy to show that the same dual variable can be used on
the two sides. Thus the set of vectors x satisfying the above two-sided inequality for all
ξ ∈ Ξ is equivalently written as follows:

āTx+ κ1t+ eTw ≤ b̄ (13a)

āTx− κ1t− eTw ≥ b (13b)

te+ w ≥ P Tx (13c)

te+ w ≥ −P Tx (13d)

t ≥ 0, w ≥ 0. (13e)

The practical advantage of this formulation is that the above robust equivalent has only
one more scalar inequality than (12).

4.3 Uncertainty factors with identical coe�cients

In the capacity expansion problem, for some constraints, several random factors in
{ξk}k∈K have the same coe�cient. We propose to exploit this property.

To ease the presentation, we shall denote z = P Tx. Suppose that there exists a
set of indices J ⊂ {1, . . . ,m} such that the {zi}i∈J are all equal. Let l ∈ J , we have:
∀i ∈ J, zi = zl. Denoting I = {1, . . . ,m} \ J , we have:

zT ξ =
∑
i∈I

ziξi + zl
∑
i∈J

ξi.
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Furthermore, from Theorem 1, the robust equivalent is: āTx+ σ∗(x) ≤ b, with:

σ∗(x) = min
w

{
κ1 ·max

{
max
i∈I
|zi − wi|,max

i∈J
|zi − wi|

}
+
∑
i∈I
|wi|+

∑
i∈J
|wi|

}
.

It is easy to see that the condition zi = zl, for all i ∈ J , implies that the optimal solution
w∗ is such that the {w∗i }i∈J take the same value. As a result: ∀i ∈ J,w∗i = w∗l . Hence:

σ∗(x) = min
w

{
κ1 · max

i∈I∪{l}
|zi − wi|+

∑
i∈I
|wi|+ card(J) · |wl|

}
.

Proposition 1 Let z = P Tx. If there exists a set of indices J ⊂ {1, . . . ,m} and l ∈ J
such that: ∀i ∈ J, zi = zl, then the robust equivalent for the robust constraint

(ā+ Pξ)Tx ≤ b, ∀ξ ∈ Ξ = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ κ1}

is the single constraint in variables x and w

āTx+ κ1 max
i∈I∪{l}

|zi − wi|+
∑
i∈I
|wi|+ card(J) · |wl| ≤ b,

with I = {1, . . . ,m} \ J .

4.4 Probabilistic analysis

Theorem 1 does not rely on probabilistic arguments. Nevertheless, it can be given a
probabilistic interpretation provided some assumptions are made on the behavior of the
uncertainty factor ξ. The standard approach, as described in [3, chapter 2], consists in
selecting a class of distributions with some known characteristics, e.g., a �nite support and
a known mean. The typical result consists in showing that for a well-de�ned value of κp,
any solution of the equivalent robust counterpart (10) will satisfy the uncertain constraint
with probability at least 1 − ε, whatever is the true distribution within the considered
class.

In this paper, we shall not consider a class of distribution, but a speci�c one, namely
the symmetric triangular distribution on [−1, 1].

Assumption 2 The random factors ξj are independent, with asymmetric triangular dis-
tribution on the interval [−1, 1].

This assumption may look restrictive. We chose it in order to be consistent with our
simulation study, but weaker assumptions would still leads to very similar results. The
main di�erence is that the coe�cient κp is larger when the assumption is weaker.

Our probabilistic result is as follows.

Theorem 3 Assume that the random variables ξi, i = 1, . . . ,m are i.i.d. with a symmetric
triangular distribution on the range [−1, 1]. If the equivalent robust counterpart (10) is
satis�ed with

κp =



√
1

3
ln

1

ε
if p = 2

√
1

3
ln

1

ε

√
m if p = 1,

then
Prob((ā+ Px)T ξ ≤ b) ≥ 1− ε.
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Proof: We prove the theorem with p = 2 �rst. For the sake of simpler notations, we
�rst rewrite the uncertain constraint (8) as

z0 + zT ξ ≤ 0, (14)

with z0 = āT − b and z = P Tx. We denote Z = z0 + zT ξ.
From the Markov inequality we bound the probability of violation of (14) by Prob(Z ≥

0) = Prob(eZ ≥ 1) ≤ E(eZ). Noting that Prob(Z ≥ 0) = Prob(tZ ≥ 0) holds for all t > 0,
we have the stronger bound

Prob(Z ≥ 0) ≤ inf
t>0

E(etZ).

Let us explicit the right-hand side. Remembering that the ξj are independent random
variables, we may write

E(etZ) = E(et(z0+
∑

j zjξj)) = ez0E

∏
j

etzjξj

 = ez0
∏
j

E(etzjξj ).

We claim that the above quantity is bounded by e
t2

12

∑
j z

2
j . To prove the claim, we focus

on the typical component E(etzjξj ). For the sake of simpler notation, we temporarily drop
the index j and we denote τ = tz. From the triangular distribution assumption on ξ, we
have

E(eτξ) =

∫ 0

−1
eτξ(1 + ξ)dξ +

∫ 1

0
eτξ(1− ξ)dξ (15a)

=
eτ + e−τ − 2

τ2
(15b)

=
1

τ2

[ ∞∑
k=0

τk

k!
+
∞∑
k=0

(−τ)k

k!
− 2

]
(15c)

= 2

∞∑
k=0

(τ2)k

(2k + 2)!
=

∞∑
k=0

ak(τ2)k. (15d)

The next step consists in bounding E(eτξ) by

eα
2τ2 =

∞∑
k=0

(α2τ2)k

k!
=
∞∑
k=0

bk(τ2)k. (16)

To prove the claim, we compare the two series term-wise and show that ak ≤ bk for all k
Clearly, a0/b0 = 1. For k = 1, a1b1 = 2

4×3×2
1
α2 . The smallest value for α2 to ensure a1 ≤ b1

is 1/12. Assume ak/bk ≤ 1 holds for some k and α2 = 1/12. Let us show that it holds for
k + 1. We have

ak+1

bk+1
=
ak
bk

k + 1

(2k + 3)(2k + 4)

1

α2
≤ k + 1

(2k + 3)(2k + 4)

1

α2
≤ 1

2(2k + 4)α2
.

One easily checks that for k ≥ 2, the inequality 2(2k + 4)α2 = (k + 2)/3 > 1 holds. We
conclude that ak ≤ bk for all k. Hence (16) is component-wise larger than (15d). The
claim is proved.
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We can now bound the probability of interest:

Prob(Z ≥ 0) ≤ inf
t>0

etz0
∏
j

E(etzjξj ) (17a)

≤ inf
t>0

etz0
∏
j

e
t2

12
z2j (17b)

≤ einft>0(tz0+
t2

12

∑
j z

2
j ). (17c)

Note that for z0 ≥ 0, the in�mum in the right-hand side of (17c) is 1. In order to derive
a useful bound, we shall assume z0 < 0. Under this condition, the in�mum is achieved at
topt = −6z0

||z||22
> 0 and

Prob(Z ≥ 0) ≤ e
− 3z20
||z||22 .

A su�cient condition to have the probability of constraint violation bounded above by ε
is that the deterministic constraint, or robust equivalent,

z0 +

√
1

3
ln

1

ε
||z||2 ≤ 0 (18)

be satis�ed.
Finally, condition (18) can be made stronger without endangering the probabilistic

statement. Indeed, let w be an arbitrary vector. Remembering that −1 ≤ ξj ≤ 1,

z0 + zT ξ = z0 + (z − w)T ξ + wT ξ ≤ z0 + (z − w)T ξ + ||w||1. (19)

Letting ẑ0 = z0 + ||w||1 and ẑ = z − w, we have by (19)

Prob(z0 + zT ξ > 0) ≤ Prob(ẑ0 + ẑT ξ > 0).

We now apply (18) to the uncertain constraint ẑ0 + ẑT ξ ≤ 0 and obtain

Prob(ẑ0 + ẑT ξ > 0) ≤ ε

whenever

z0 + ||w||1 +

√
1

3
ln

1

ε
||z − w||2 ≤ 0

holds. This completes the �rst part of the proof.
To prove the last statement in the theorem, we just note that for p = 1, the coe�cient√

m in the de�nition of κp comes into play because for any a ∈ Rm the `2-norm is bounded
by ||a||2 ≤

√
mmaxj |aj | =

√
m||a||∞.

Remark 2 Similar results are obtained if Assumption 2 is modi�ed to cover more general
classes of distributions. We refer to [3, chap.2] for an extensive review of various classes.
The main point is that the robust counterpart has almost the same structure as in Theorem
1. The di�erence is usually in the immunization factor κp. For instance, if one considers
the class of distributions with support [−1, 1] and mean E(ξ) = 0, Theorem 3 holds in

its exact form with κ2 =
√

2 ln 1
ε instead of κ2 =

√
1
3 ln 1

ε , that is an increase by a factor

almost 2.5. This increase is the price to pay to compensate for a partial information on the
true distribution. In our experiments, we choose to work with Assumption 2 and perform
simulations for the validation process under the same conditions.
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5 Robust capacity expansion formulation

We now apply the concepts of robust optimization to the capacity expansion problem.

5.1 Demand constraints

The demand constraint requires that the total �ow into a demand node meets the demand
in a perfect equality. Since this demand constraint involves uncertain components, perfect
equality cannot hold unless the equality is an identity with respect to each individual
demand. In the case of the demand constraint associated with k ∈ K, it means that the
equation with uncertain coe�cients∑

i∈Ik

(α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k) = d̄k + ξkd̂k

holds for any possibly demand outcome only if the following equality constraints hold∑
i∈Ik

α0ik = d̄k,
∑
i∈Ik

α1ik = d̂k,
∑
i∈Ik

α2ik = 0,
∑
i∈Ik

α3ik = 0. (20)

In formulation (20), each demand constraint is replaced by 4 equalities and thus we
end up with 4|K| equality constraints.

5.2 Capacity constraints

To obtain the robust counterpart of the capacity constraints, we consider the polyhedral
uncertainty set (9) with p = 1

Ξcap = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ κcap1 }

Hence applying theorems 1 and 2, the equivalent robust counterpart of the single robust
capacity constraint∑

k∈K

∑
i∈Ik

πaik(α0ik + α1ikξk + α2ik

∑
k′∈Vk

ξk′ + α3ik

∑
k′∈Rk

ξk′) ≤ ca, ∀ξ ∈ Ξcap. (21)

with a ∈ A, is the system of linear inequalities∑
k∈K

∑
i∈Ik

πaikα0ik + κcap1 vcapa +
∑
k′∈K

ucapak′ ≤ ca,

ucapak + vcapa ≥ ±
(∑
i∈Ik

πaikα1ik +
∑

k′∈Vk,i∈I′k

πaik′α2ik +
∑

k′∈Rk,i∈I′k

πaik′α3ik

)
, k ∈ K

ucap ≥ 0, vcap ≥ 0.

Finally the robust version of the capacity constraints has 2|A| × |K| additional con-
straints and |A|(1 + |K|) additional variables.

In Section 6, we experiment di�erent values for κcap1 leading to di�erent probabilities
of satisfaction with Theorem 3.
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5.3 Constraints of �ow bounds

The ADR de�nes the �ow in the recourse stage of the problem. This �ow has to satisfy,
for any demand k ∈ K and i ∈ Ik:

yikMk ≥ α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k ≥ 0, ∀ξ ∈ Ξpos (22)

with
Ξpos = {ξ | ‖ξ‖∞ ≤ 1, ‖ξ‖1 ≤ κpos1 }.

According to Proposition 1, the robust counterpart is given by the following set of
constraints:

α0ik − κpos1 vposik − u
pos
ik − n

v
ku

pos
kv − n

r
ku

pos
kr ≥ 0 (23a)

α0ik + κpos1 vposik + uposik + nvku
pos
kv + nrku

pos
kr ≤ yikMk (23b)

uposik + vposik ≥ ±α1ik (23c)

uposikv + vposik ≥ ±α2ik (23d)

uposikr + vposik ≥ ±α3ik (23e)

upos ≥ 0, vpos ≥ 0. (23f)

The above formulation of the �ow bounds yields 6|I| additional constraints and 4|I|
additional variables where |I| is the total number of paths.

In the experiments below, we set κpos1 = 1 ensuring from Theorem 3 a level of satisfac-
tion for each constraint of 95%.

6 Numerical experiments

6.1 Test problems

The set of test problems consists of seven oriented graphs of various sizes. All of them cor-
respond to physical networks, except planar30 that was generated with a tool designed
to produce network instances that simulate telecommunications problems. The corre-
sponding data (topology, costs and demands) are publicly available either from http://

sndlib.zib.de/home.action or from http://www.di.unipi.it/di/groups/optimize/

Data/MMCF.html (in the case of planar30). The networks in the SNDlib being undi-
rected, we chose to duplicate each arc in the graphs polska, nobel-us, atlanta and
france in two arcs with opposite directions. This choice guarantees that there always
exists a feasible path for each OD pair.

For each problem instance, we have constructed a set of distinct paths for each Origin-
Destination (OD) pair according to the shortest distance (cost) criterion. To this end, we
used the k-shortest paths algorithm [11]. In some problem instances it may happen that
for a few OD-pairs the number of paths with distinct intermediary nodes is less than k.
Table 1 provides, in the �rst three columns, for each instance the number of nodes, the
number of arcs and the number of origin-destination pairs of demands. The next column
gives the total number of generated shortest paths with k = 4. The next two columns
give an evaluation of the corresponding number of constraints and number of variables
for the robust model (6) without integer constraints. The last two columns give the same
information for the determistic model (1).

Finally, the tra�c demands are all uncertain with a range of variation ±50% of the
nominal demand d̄k. This range of variation �ts the observed yearly forecast errors.
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robust version (6) determin. version (1)
#nodes #arcs #OD #paths∗ #const∗ #var∗ #const∗ #var∗

pdh 11 34 24 54 2140 1316 146 88
di-yuan 11 42 22 61 2405 1496 167 103
polska 12 36 66 264 6900 4560 402 300
nobel-us 14 42 91 364 10598 6818 539 406
planar30 30 150 92 368 30694 17044 760 518
atlanta 15 44 210 840 25244 16048 1138 884
france 25 90 300 1188 63606 36684 1668 1278

(∗) Indicative values using the k-shortest paths algorithm with k = 4.
The nonnegativity constraints are included in the �gures.

Table 1: Test problems.

6.2 Experiments

For each problem instance we considered four di�erent models. They di�er by the number
of available paths per OD and the restriction on the number of usable paths per OD. The
four models are as follows:

Model 1 The set of available paths for each OD pair reduces to a singleton (k = 1). The
ADR is de facto restricted to a single path. (Results on Table 2.)

Model 2 The set of available paths for each OD pair consists of four paths (k = 4) and
there is no restriction on the number of paths that the ADR can use. (Results on
Table 3.)

Model 3 The set of available paths for each OD pair consists of four paths (k = 4), but
the ADR is restricted to a single path. (Results on Table 4.)

Model 4 The set of available paths for each OD pair consists of four paths (k = 4), but
the ADR is restricted to 2 paths. (Results on Table 5.)

For each model we performed experiments with di�erent level of risk 1− ε. According
to Theorem 3 each level of risk de�nes a immunization coe�cient κcap =

√
1
3 ln 1

ε . Recall

that we do not apply the same risk target to the capacity constraints and the nonnegativity
constraint on the �ows. For the latter we uniformly use κpos = 1 in all experiments; it
implies a level 1− ε = 95%,

Note that Model 1 and 3 both use a single path per OD, but in Model 1 the path is
imposed from the outset, while in Model 3 its selection is to be made among four possible
ones by the optimization process. All instances were solve with Cplex 11.0 on a computer
running an Intel(R) Xeon(TM) processor 2.80GHz with 3Gb of RAM. A time limit of 5
hours was imposed on each instance.

6.3 Validation process

The goal of the validation process is to provide an empirical evaluation of the risk associated
to a solution for the capacity expansion problem. This is done by generating a sample of
demand scenarios and analyzing the performance of the selected solution on each scenario.
The simulations are performed by a Monte-Carlo scheme in accordance with Assumption 2,
that is, the demands dk are assumed to be independent with a symmetrical triangular
distribution on [d̄k − d̂k, d̄k + d̂k], with d̂k = 0.5d̄k. At each simulation, a random matrix
is sampled from the distributions. Recall that an optimal solution is a pair of installed
capacities c∗ and a�ne decision rules for the �ows f∗(d). The rules are such that the
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demand constraints
∑

i∈I∗k
f∗ik(d) = dk are satis�ed by construction, but some capacity

constraint
∑

k∈K
∑

i∈I∗k
f∗ik(d)πaik ≤ c∗a may be violated. To check whether the violation is

really due to insu�cient capacity, we drop the ADR �ow solution and solve the auxiliary
multicommodity �ow problem

min
f≥0,s≥0

∑
k∈K

sk (24a)∑
k∈K

∑
i∈I∗k

fikπ
a
ik ≤ c∗a, a ∈ A (24b)

∑
i∈I∗k

fik = dk − sk, k ∈ K (24c)

where c∗ is the optimal capacity expansion vector and I∗k is the set of paths selected in the
optimization process. If the objective value is positive, the capacities and the selected set
of paths do not allow demand satisfaction in full. We use the ratio ρ =

∑
k∈K sk/

∑
k∈K dk

to measure the fraction of unserved demand in the simulation instance.
For each problem instance, we build a sample of 1000 simulations. We use the following

statistics as indicators of the performance of the solution: i) the proportion of simulations
for which the capacities turn out to be insu�cient as an estimator of the probability of
failure to serve the demands; ii) the relative tra�c over�ow ρ in case of capacity violation,
that is an estimate of the conditional expectation of the proportion of tra�c over�ow,
conditionally to ρ > 0. Note that the unconditional expectation is the product of the
conditional expectation by the probability of failure.

6.4 Results

The results for Model 1 to 4 are reported in Tables 2 to 5. Tables 4 and 5 pertaining to
Model 3 and 4 do not involve the two largest instances atlanta and france, because the
solution time exceeded the time limit (5 hours). The di�culty stems from the complexity
induced by the integral restriction on the number of paths (1 or 2 among 4) to be used for
each OD.

The results for a particular problem are displayed on four rows in each table. The
�rst row displays the solution cost (�Solutions�); the second row displays the proportion
of simulations for which the tra�c to be routed exceeds the installed capacity (�% of
violations�); the third row shows the average conditional excess tra�c in terms of fraction
of lost tra�c (�Rel. cond. viol.�); and �nally, the unconditional average amount of lost
tra�c (�Expected tra�c loss�). We could have dispensed with this last row, as its �gures
are just the product of the two preceding rows. We chose to include them to facilitate the
evaluation.

We comment here on some speci�c points worth noticing.

Controlling feasibility The percentage of violations is always much smaller than the
targeted risk probability ε obtained from the theoretical analysis of Theorem 3. We
can invoke several reasons for this. First, the robust counterpart is built on the as-
sumption that ADR are used, while in the validation process we use fully adjustable
recourse. The latter may be feasible, while the former turn out to be not. (See Table
8 and 9 for a re�ned analysis.) Second, we must recall that Theorem 3 only provides
a lower bound on the probability of constraint satisfaction. The theorem makes it
possible to interpret the equivalent robust counterpart as a �safe tractable approxi-
mation� of the chance constraint (see [3]) at the expense of some conservativeness.
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Total Robust solutions with 1− ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

pdh

Solutions 7.52E+008 7.52E+008 7.52E+008 7.32E+008 6.62E+008 5.02E+008
% of violations 0.00% 0.00% 0.00% 7.50% 79.30% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.06% 0.47% 8.24%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.37% 8.24%

di-yuan

Solutions 5.95E+006 5.94E+006 5.74E+006 5.20E+006 4.82E+006 3.97E+006
% of violations 0.00% 0.00% 0.10% 32.60% 81.80% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.15% 0.53% 0.95% 7.42%
Expected tra�c loss 0.00% 0.00% 0.00% 0.17% 0.78% 7.42%

polska

Solutions 7.04E+006 6.90E+006 6.55E+006 5.66E+006 5.41E+006 4.69E+006
% of violations 0.00% 0.00% 0.00% 41.20% 81.70% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.39% 0.63% 4.32%
Expected tra�c loss 0.00% 0.00% 0.00% 0.16% 0.51% 4.32%

nobel-us

Solutions 1.29E+008 1.28E+008 1.23E+008 1.08E+008 1.03E+008 8.60E+007
% of violations 0.00% 0.00% 0.00% 15.00% 58.50% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.19% 0.29% 4.51%
Expected tra�c loss 0.00% 0.00% 0.00% 0.03% 0.17% 4.51%

planar30

Solutions 6.61E+007 6.44E+007 6.13E+007 5.34E+007 5.07E+007 4.31E+007
% of violations 0.00% 0.00% 0.00% 39.50% 84.00% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.42% 0.66% 5.20%
Expected tra�c loss 0.00% 0.00% 0.00% 0.17% 0.55% 5.20%

atlanta

Solutions 4.59E+011 4.53E+011 4.41E+011 4.04E+011 3.87E+011 3.07E+011
% of violations 0.00% 0.00% 0.00% 0.40% 5.60% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.11% 0.12% 3.90%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.01% 3.90%

france

Solutions 6.65E+008 6.42E+008 6.10E+008 5.43E+008 5.22E+008 4.44E+008
% of violations 0.00% 0.00% 0.00% 1.90% 16.10% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.10% 0.12% 3.07%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.02% 3.07%

Table 2: Robust solutions and performances for Model 1 (k = 1: only one shortest path).
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Total Robust solutions with 1− ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

pdh

Solutions 7.52E+008 7.52E+008 7.52E+008 7.00E+008 6.49E+008 5.02E+008
% of violations 0.00% 0.00% 0.00% 30.10% 72.40% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.53% 0.67% 8.42%
Expected tra�c loss 0.00% 0.00% 0.00% 0.16% 0.49% 8.42%

di-yuan

Solutions 5.95E+006 5.81E+006 5.59E+006 5.07E+006 4.74E+006 3.97E+006
% of violations 0.00% 0.00% 0.50% 24.20% 75.10% 100.00%
Rel. cond. viol. 0.00% 0.00% 1.54% 0.64% 1.04% 7.30%
Expected tra�c loss 0.00% 0.00% 0.01% 0.15% 0.78% 7.30%

polska

Solutions 7.00E+006 6.56E+006 6.10E+006 5.44E+006 5.27E+006 4.69E+006
% of violations 0.00% 0.00% 0.10% 16.40% 34.90% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.48% 0.51% 0.58% 3.97%
Expected tra�c loss 0.00% 0.00% 0.00% 0.08% 0.20% 3.97%

nobel-us

Solutions 1.28E+008 1.22E+008 1.16E+008 1.03E+008 9.92E+007 8.60E+007
% of violations 0.00% 0.00% 0.00% 1.60% 12.30% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.25% 0.27% 4.39%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.03% 4.39%

planar30

Solutions 6.54E+007 6.25E+007 5.91E+007 5.22E+007 4.99E+007 4.31E+007
% of violations 0.00% 0.00% 0.00% 17.10% 57.70% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.31% 0.45% 5.13%
Expected tra�c loss 0.00% 0.00% 0.00% 0.05% 0.26% 5.13%

atlanta

Solutions 4.53E+011 4.41E+011 4.27E+011 3.93E+011 3.77E+011 3.07E+011
% of violations 0.00% 0.00% 0.00% 0.10% 3.20% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.34% 0.11% 3.88%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.00% 3.88%

france

Solutions 6.18E+008 5.86E+008 5.56E+008 5.08E+008 4.92E+008 4.44E+008
% of violations 0.00% 0.00% 0.00% 0.90% 9.80% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.16% 0.14% 3.10%
Expected tra�c loss 0.00% 0.00% 0.00% 0.00% 0.01% 3.10%

Table 3: Robust solutions and performances for Model 2 (k = 4 and all 4 shortest paths can
support the solution).
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Total Robust solutions with 1− ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

pdh

Solutions 7.52E+008 7.52E+008 7.52E+008 7.29E+008 6.62E+008 5.02E+008
% of violations 0.00% 0.00% 0.00% 24.00% 79.90% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.28% 0.49% 8.27%
Expected tra�c loss 0.00% 0.00% 0.00% 0.07% 0.39% 8.27%

di-yuan

Solutions 5.96E+006 5.88E+006 5.67E+006 5.13E+006 4.78E+006 3.97E+006
% of violations 0.00% 0.00% 0.10% 31.30% 81.00% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.43% 0.63% 0.93% 7.43%
Expected tra�c loss 0.00% 0.00% 0.00% 0.20% 0.75% 7.43%

polska

Solutions 7.04E+006 6.85E+006 6.42E+006 5.61E+006 5.37E+006 4.69E+006
% of violations 0.00% 0.00% 0.10% 27.10% 62.60% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.04% 0.36% 0.50% 4.32%
Expected tra�c loss 0.00% 0.00% 0.00% 0.10% 0.31% 4.32%

nobel-us

Solutions 1,29E+008 1,27E+008 1,21E+008 1,06E+008 1,01E+008 8,60E+007
% of violations 0,00% 0,00% 0,00% 5,80% 34,30% 100,00%
Rel. cond. viol. 0,00% 0,00% 0,00% 0,21% 0,24% 4,53%
Expected tra�c loss 0,00% 0,00% 0,00% 0,01% 0,08% 4,53%

planar30

Solutions 6.60E+007 6.38E+007 6.05E+007 5.30E+007 5.04E+007 4.31E+007
% of violations 0.00% 0.00% 0.10% 44.80% 81.00% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.39% 0.43% 0.64% 5.18%
Expected tra�c loss 0.00% 0.00% 0.00% 0.19% 0.52% 5.18%

Table 4: Robust solutions and performances for Model 3 (only one path among the four shortest
paths can be used by the solution).
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Total Robust solutions with 1− ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

pdh

Solutions 7.52E+008 7.52E+008 7.52E+008 7.02E+008 6.50E+008 5.02E+008
% of violations 0.00% 0.00% 0.00% 30.40% 78.60% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.41% 0.72% 8.26%
Expected tra�c loss 0.00% 0.00% 0.00% 0.12% 0.57% 8.26%

di-yuan

Solutions 5.95E+006 5.81E+006 5.59E+006 5.07E+006 4.74E+006 3.97E+006
% of violations 0.00% 0.00% 0.10% 30.70% 74.90% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.84% 0.69% 1.06% 7.32%
Expected tra�c loss 0.00% 0.00% 0.00% 0.21% 0.79% 7.32%

polska

Solutions 7.01E+006 6.58E+006 6.13E+006 5.45E+000 5.27E+006 4.69E+006
% of violations 0.00% 0.00% 0.00% 14.80% 30.20% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.50% 0.60% 4.39%
Expected tra�c loss 0.00% 0.00% 0.00% 0.07% 0.18% 4.39%

nobel-us

Solutions 1.28E+008 >5h >5h 1.03E+008 9.94E+007 8.60E+007
% of violations 0.00% - - 2.40% 7.90% 100.00%
Rel. cond. viol. 0.00% - - 0.22% 0.29% 4.55%
Expected tra�c loss 0.00% - - 0.01% 0.02% 4.55%

planar30

Solutions 6.54E+007 6.26E+007 5.92E+007 5.23E+007 5.00E+007 4.31E+007
% of violations 0.00% 0.00% 0.00% 20.10% 55.70% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.35% 0.43% 5.12%
Expected tra�c loss 0.00% 0.00% 0.00% 0.07% 0.24% 5.12%

Table 5: Robust solutions and performances for Model 4 (at most two paths among the four
shortest paths can be used by the solution).
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A third reason for the discrepancy stems from the fact that the analysis treats the
constraints as independent elements. This is certainly not the case. To handle the
issue of global robustness in a model, one would have to replace the separate ca-
pacity constraints as a single one (for instance by using the maximum of auxiliary
surplus variables). This approach would provide a stronger result, but it leads to an
intractable robust counterpart. Clearly, to work with numerically tractable models,
we have to live with the fact that the robust solution is by construction conservative.
This is why it is suitable to use simulations to assess the experimental risk associated
with the solutions.

The gap between the theoretical guarantee and the simulated feasibility tends to be
larger for big networks, see instances atlanta and france in Table 2 and 3. Observe
that for all instances, targeting theoretically a 50% feasibility (1 − ε = 50%) still
leads to solutions with almost no violated simulation.

Cost analysis Table 6 displays the saving in investment cost as a function of the risk
level for Model 1. The saving is measured in terms of a (negative) percentage of the
total protection cost. Table 6 (Model 1 with only one available path per OD pair)
exhibits an average gain of 5% for a theoretical level 1 − ε = 50% with almost zero
violation across the simulations. We conclude that the 5% saving are achieved at no
risk. If we use the conditional and unconditional average tra�c loss as an alternative
measure of risk, we observe through Tables 2-5 that those values never exceed 0.69%
and 0.21% (and are much lower in most cases) for the solution with a theoretical level
1 − ε = 10%. If these tra�c loss �gures are deemed acceptable, then the solution
with 1− ε = 10% allows for a gain of 14% in the average (Table 6).

Table 7 displays the gain in the overall investment cost when using up to four routed
per demand (Model 2) instead of one (Model 1). Hence, this table gives the impact
of path diversi�cation. The gain can be large (up to 8.8% for network france, when
1− ε = 50%). For the cases of practical interest (1− ε = 50% or 1− ε = 10%), the
average gain related to path diversi�cation is roughly 4%.

To better illustrate the above comments, Figure 1 displays the evolution of the
cost with the expected tra�c loss for four representative instances (diyuan, polska,
nobel-us and france).

Impact of a�ne decision rules A�ne decision rules (ADR) are used to control the
numerical complexity of our models, but they are restrictive. It turns out that in
some simulations the ADR violates the capacity constraints, while a feasible routing
can be shown to exist. To capture the negative impact of the ADR, we use Model 2
(with all four paths available) and report two indicators. Table 8 gives the proportion
of simulations for which the ADR meets the capacity constraints. With a theoretical
risk level 1 − ε ≥ 50%, the ADR solution meets the requirements in nearly 98%
cases. Table 9 complements these results with an information on the average number
of simulations for which the ADR fails (i.e., a positive entry in Table 8), but a feasible
routing has been found. This number increases with 1− ε, but usually remains low
when 1 − ε ≥ 50%. This is a good indication that ADR perform very well, at least
when the taken risk is moderate.

7 Conclusion

In the present study we implemented a robust optimization approach to cope with de-
mand uncertainty in the capacity planning of telecommunications networks. The pro-
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Total 1-ε Deterministic

protection 85% 50% 10% 5% solution

pdh 0% 0% 0% -3% -12% -33%
diyuan 0% 0% -3% -13% -19% -33%
polska 0% -2% -7% -20% -23% -33%
nobel-us 0% -1% -4% -16% -20% -33%
planar30 0% -3% -7% -19% -23% -33%
atlanta 0% -1% -4% -12% -16% -33%
france 0% -3% -8% -18% -22% -33%

average 0% -2% -5% -14% -19% -33%

Table 6: Decrease of the investment cost with respect to the cost for total protection, with
Model 1 (only one shortest path).

Total 1-ε Deterministic

protection 85% 50% 10% 5% solution

pdh 0.00% 0.00% 0.00% -4.37% -1.92% 0.00%
diyuan 0.00% -2.14% -2.66% -2.42% -1.60% 0.00%
polska -0.54% -4.93% -6.80% -3.78% -2.64% 0.00%
nobel-us -0.62% -4.23% -6.09% -4.45% -3.40% 0.00%
planar30 -1.01% -2.87% -3.46% -2.28% -1.52% 0.00%
atlanta -1.42% -2.61% -3.18% -2.80% -2.41% 0.00%
france -7.08% -8.81% -8.80% -6.57% -5.60% 0.00%

average -1.52% -3.66% -4.43% -3.81% -2.73% 0.00%

Table 7: Decrease of the investment cost with Model 2 (routings allowed on the 4 shortest
paths), with respect to Model 1 (routing on the unique shortest path).

Total 1-ε Deterministic

protection 85% 50% 10% 5% solution

pdh 100.00% 100.00% 100.00% 52.50% 17.10% 100.00%
diyuan 100.00% 100.00% 98.20% 40.70% 15.90% 100.00%
polska 100.00% 99.70% 90.80% 22.80% 7.60% 100.00%
nobel-us 100.00% 99.90% 97.10% 37.10% 10.40% 100.00%
planar30 100.00% 100.00% 97.60% 28.70% 5.70% 100.00%
atlanta 100.00% 100.00% 100.00% 75.20% 42.70% 100.00%
france 100.00% 100.00% 99.30% 50.30% 10.00% 100.00%

average 100.00% 99.94% 97.57% 43.90% 15.63% 100.00%

Table 8: Percentage of simulated data for which ADR are su�cient to route �ows. These results
are obtained for Model 2 (all 4 shortest paths can support the solution).
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Total 1-ε Deterministic

protection 85% 50% 10% 5% solution

pdh 0.00% 0.00% 0.00% 17.40% 10.50% 0.00%
diyuan 0.00% 0.00% 1.30% 35.10% 9.00% 0.00%
polska 0.00% 0.30% 9.10% 60.80% 57.50% 0.00%
nobel-us 0.00% 0.10% 2.90% 61.30% 77.30% 0.00%
planar30 0.00% 0.00% 2.40% 54.20% 36.60% 0.00%
atlanta 0.00% 0.00% 0.00% 24.70% 54.10% 0.00%
france 0.00% 0.00% 0.70% 48.80% 80.20% 0.00%

average 0.00% 0.06% 2.34% 43.19% 46.46% 0.00%

Table 9: Percentage of simulated data for which ADR do not enable to route �ows, while there
is a solution. These results are obtained for Model 2 (routings are allowed on the k = 4 shortest
paths).
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Figure 1: Evolution of the investment cost with the expected tra�c loss for instances diyuan,
polska, nobel-us and france. The 100%-cost corresponds to the case of total protection when
routing for Model 1 (worst case).
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posed methodology allows the decision maker to balance between the need of Quality of
Service (QoS) and the investment costs. The main feature of the method is the use of a
re�ned version of A�ne Decision Rules (ADR) to model the recourse decisions, i.e., the
�ow routing, as linear functions of the revealed uncertainty. To reduce the dimension of
the robust model induced by the ADRs, we used the concept of demand proximity. To
calibrate the immunization factor κ in the equivalent robust counterpart of the uncertain
constraints, we performed a probabilistic analysis under the assumption that each demand
is distributed according to a triangular symmetric distribution. Finally we have tested our
approach with numerical experiments on network instances from SNDlib and performed
a validation analysis by simulation to study the quality of the solutions. The results ob-
tained on the test problems suggest several interesting conclusions. First and contrarily
to most of the classical approaches, the proposed robust formulations remain numerically
tractable and even allow the introduction of integer constraints to bound the number of
used paths. Second, although the introduction of re�ned ADRmakes the recourse decisions
very restrictive and conservative in theory, our numerical tests illustrate their relevance in
practice. It appears that in most of the cases of practical signi�cance, ADR are in fact not
restrictive. The performances of the computed solutions are convincing; the investment
cost savings are signi�cant and the QoS very high.

Let us review now some directions for future research. First, we believe that the
proposed methodology can be improved using the concept of globalized robustness [3]
to control the magnitude of possible violations. Actually, our approach concentrates on
solutions that remain feasible for all realizations within the uncertainty sets, but is silent
about realizations that lie outside. Globalized robust optimization proposes an extension
that admits possible constraint violations, but control their magnitude. Second it will be
interesting to see whether our method performs well with others de�nitions of demand
proximity for the ADR. In the present study, a demand is considered close to another if
their respective shortest paths have at least one arc in common. We have tested without
success some alternative de�nitions (using for example all admissible paths) but a more
extensive study should be envisioned.
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