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Abstract

This article extends a previous work focused onix@edhinteger programming (MIP) based heuristic apph,
aimed at solving non-standard three-dimensionablpros with additional conditions. The paper thdlofes
considers a mixed integer non-linear (MINLP) refafation of the previous model, to improve the forme
heuristic, based on linear relaxation. The apprades$cribed herewith is addressed, in particulastémdard
MINLP solvers up to exploiting linear substructucgdghe mathematical model.
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1. Introduction

A number of specialist works in the Operations Rede framework deal with mixed integer
programming (MIP) formulations of packing problerfsee e.g. Chen, Lee, Shen 1995;
Fasano 2010; Padberg 1999; Pisinger, Sigurd 2066d€a, Taniguchi, Tmaru 1991). The
subject discussed herewith extends the approaghoged by Fasano (2008) to solve non-
standard 3D-packing problems, involvitgris-like items, convex domains (with possible
holes and separation planes), in the presence of addlticonditions, such as balancing. An
MIP-based heuristic was described there to efftydackle real-world instances. Its first step
consists of an LP-relaxation of the non-intersectmonstraints between items and the
adoption of an ad hoc objective function aimed rawviging the further steps of the process
with an approximated solution to the original peshl expressed in term of a feasibility one.

Vast literature is available nowadays on mixeeget non-linear programming and
global optimization (MINLP, GO, see e.g. Borchdvstchell 1997; Floudas 1995; Floudas et
al. 1999; FloudasPardalos 2001; Floudas et al. 2005; Grossmann, affav1997; Horst,
Pardalos 1995; Horst, Tuy 1996; Horst, Pardalos71%9ussain et al. 2004; Kallrath,
Schreieck 1995; Kllrath 1999; Kallath, Maindl 2006; Kallrath 2008; Liberti L, Maculdh
2005; Pardalos, Resende 2002; Pardalos, Romeij@; Zidtér 1996; Pintér 2006; Pintér
2009; Rebennack, Kallrath, Pardalos 2009) encingateir application to several class of
challenging optimization problems, including ham@cking issues (see e.g. Addis, Locatelli,
Schoen 2008a; Addis, Locatelli, Schoen 2008b; Gapraocatelli, Monaci 2005; Castillo,
Kampas, Pintér 2008; Chernov, Stoyan, Romanova ;2Ba0rath 2009; Kampas, Pintér
2005; Locatelli, Raber 2002; Stoyan, Yaskov, S¢faeier 2001; Stoyan, Zlotnick 2007).

The @ function concept (Stoyan et al. 2004; Chernovy&to Romanova 2010) has
been introduced to solve arduous irregular negtmodplems, involving complex 2D-objects
and, following a different point of view, Birgin ei. (2006), Cassioli and Locatelli (2010)
investigated a non-linear-based approach for tkekipg of rectangles inside a convex region.



A novel non-linear approach is outlined herewith.id aimed at improving the
approximate initial LP-relaxed solution of the MiRased heuristic previously introduced
(Fasano 2008). The approach that is going to bpgsed in the following stresses the linear
structure of the packing MIP model. This approashaddressed in particular to standard
MINLP solvers (see e.g. Bussieck, Vigerske 201@hwpecial algorithmic features aimed at
exploiting the presence of linear constraint sets.

Section 2 briefly reviews the previous MIP-basegrapch (Fasano 2008, 2010).
Section 3.1 discusses the non-linear re-formulaténits model, focusing on the non-
intersection constraints. This reformulation is atgged in Section 3.2 to improve the
previous MIP-based heuristic.

2. MIP formulation and LP-relaxed approximation

In the following, we refer to the (three-dimensihri@ading problem taken into account in the
author’s previous work (Fasano 2008). It was foduse the orthogonal packing tetris-like
items within a convex domain (with possible sepamaplanes and forbidden zones), subject
to further additional conditions, such as balanciNgvertheless, for the sake of simplicity,
the discussion herewith will consider only itemsigisting of a single parallelepiped to load
inside a convex domain, neglecting any possibléh&irconditions (e.g. separation planes,
forbidden zones, balancing). In the following, tdy packing rules to consider are then:

« each item (parallelepiped) side has to be parallel to an axis of a prefixed orthonormal
reference frame (orthogonality conditions);

» eachitem hasto be contained within the given domain D (domain conditions);

* items cannot overlap (non-intersection conditions).

In the previous work, the objective function cotesisof maximizing either the loaded
volume or the mass. As pointed out there, the Milimiilation of the packing issue stated
above gives rise, when dealing with real-worldanses, to optimization problems extremely
hard to solve. This is caused in particular by ribe-intersections conditions, consisting of
big-M constraints (given a set of n iten@¥6n) big-M constraints with their relative binary
variables have to be generated).

In the previous work, to efficiently solve the alopacking problem (or even more
complex versions of it), a heuristic approach wasppsed. The first step of the process
considers the problem in terms of feasibility (iedl.the given items have to be picked) and
performs a linear relaxation of theon-intersection constraints, in order to obtain an
approximate solution (with possible intersectiomgween items). An ad hoc (linear) target
function, aimed atminimizing the intersection between items has been introducée.
approximated solution so obtained is utilized taeyate arabstract configuration, that is, a
set of relative positions (each one for each cowbléems) that would be feasible in any
unbounded domain (see Fasano 2008). dlstract configuration is then imposed to the
original problem, eliminating a number of itemsnécessary. The loaded volume or mass is
maximized, combining, by a recursive process, exgaand hole-filling techniques.

The feasibility model on which the first step oétheuristic process is based, is briefly
outlined herewith, referring the reader to the atithprevious works (Fasano 2008, 2010) for
more details. The constraints relative to the basicking rules drthogonality, domain and
non-intersection conditions) are reported here below.
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where:

given the reference fran®@®, ws, f{1,2,3}, for each item[}{1,...,n} of sidesL, a(}{1,2,3},
the variables),s alJ{0,1} have been introduced with the conditidgs = 1 if Ly is parallel
to thewp axis andd,z = 0O otherwise;

Eiis the set of vertexes associated to ite¥y, are the vertexes of the convex domainy,,;

are non negative variables;
D are the sides of the parallelepiped of minimunuied envelopindp;
Ay, 05 O[0.D5], Oy Oy D{0L} .
Constraints (1) and (2) represent thr¢hogonality conditions; (3) and (4) thdomain ones;
(5), (6), (7) thenon-intersection ones.

The goal of the first step of the heuristic prodes®e obtain a good approximate initial
solution. The MIP model described above is adoptadl the integrality conditions on tlee

variables are dropped. In this case constraintsau@)(7) can be replaced % g, 94 iy
7\ Dy Dy

The ad hoc objective function (aimed ratnimizing the intersection between items) is the
following:

max >’ (dj, +dj). (8)
Bi<ij



Figure 1 depicts an approximate solution (with gaesntersections between items) obtained
by the linear relaxation described above.

Fig. 1 Linear-relaxed approximate solu

3. MINLP-based approach

3.1 Non-intersection constraint non-linear formulation

We introduce here a possible non-linear reformomatdf thenon intersection constraints
reported in Section 2. Keeping the same meaninth@fsymbols previously adopted, it is
straightforward to prove that the following nondar constraints are equivalent to (5), (6),

(7):

1 3
DAOLOLi<] (W —Wy)? _[EZ(LMJD/Q L0501 = 55 — 1y ©)
a=1

3

0i,0,i < j rg =0, (20)
i,0j,i<j ﬁl:l Ai

WheresﬂjEI[O, Dzlg] andrmD[O, Dzﬁ.
Indeed for each couplg (i<j) equations (10) guarantee that the tergysre nil for at

least oneS and equation (9), corresponding to sy£hs equivalent to th@on-intersection
condition:
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Constraints (5) and (6) correspond then to equsit{®h and vice versa, while equations (7)
correspond to (10) and vice versa.



3.2 Non-linear approximation

In the following, we reformulate the feasibilityginlem reported in Section 2, on the basis of
what was discussed in Section 3.1, by introducing a new acl fon-linear target function
aimed at minimizing the intersection between iteAs.the non-intersection constraints (9)
and (10) are most likely quite hard to tackle, theg considered in terms of penalty terms in
the new objective function. All remaining consttainon the contrary, as they are linear
(MIP), are maintained as such. The MINLP model s@ined is then addressed, in particular,
to standard (MINLP) solvers with special featur@exploit the presence of linear constraints.

To reformulate the original feasibility (MIP) prash, we shall consider the following
MINLP one:

min{ > {(w, —w,)* _[%Z(Lmdaﬁi L0 )" =g + 15} + 2 [ 7a} (11)
Bii<j a=1 B

i<j

subject to constraints (1), (2), (3), (4) reporiteection 2.

It is immediately seen that the objective functiemon-negative and that any zero global
optimal solution exists if and only if the constiai (1), (2), (3), (4), (5), (6), (7) of the MIP
problem reported in Section 2 delimit a feasiblgion.

The above target function thus minimizes the ndergection between items, but
differently from target function (8), its global tpa guarantee, at least theoretically, an
ultimate (non approximate) solution to the feagyproblem of Section 3.1 and its adoption
is therefore a priori preferable.

Since obtaining a global optimal solution to the@wd MINLP problem is, in general,
an extremely hard task, we do not however expesbltze it tout court. A joint use of the LP-
relaxation of the MIP feasibility model reportedSection 2 and the above MINLP approach,
within the heuristic process outlined in Sectionc@uld nevertheless be of advantage. The
LP-relaxed solution can be improved by the MINLPgass to further reduce the overall
intersection between items (generally, in the Llaxed solution intersections between items
are admissible). The values of variableso in the LP-relaxed solution are then taken as
initial guesses for the MINLP instance, while tinial guesses for variabkeandr can be
derived directly from them on the basis of equati®nwith no loss of generality, we assume
that, for eacl#,i,j, at least one of the varialdg , r;. is set to zero, as initial guess).

The MINLP model described above maintains all th€ Monstraints present in the
original model, so that, even its suboptimal solsi guarantee to satisfy alhogonality and
domain conditions. Further MIP constraints could be diseadded to the MINLP model in
order to contemplate additional conditions, suchaancing. The extension to inclutbtris-
like items would also be straightforward (see Fasz008, 2010).

4. Conclusive remarks

This article refers to an author’'s previous workned at solving non-standard three-
dimensional orthogonal packing problems with adddl conditions. It focused on an MIP
formulation and an MIP-based heuristic, introdudedefficiently solve hard real-world
instances in practice.

The initial phase of this heuristic process addresan LP-relaxation of the non-
intersection constraints of the MIP model. The xeth MIP model considers the original
problem in terms of feasibility and an ad hoc @neobjective function, aimed at minimizing
the intersection between items, is adopted. Theoappate solutions to this reformulated



problem (with possible intersections) are takenaasinitial step of the whole heuristic
process.

In the article presented here, we have proposed/BNLP reformulation of the
original MIP model expressed in terms of feasipiliiThis reformulation is aimed at
improving the approximate LP-relaxed solution ot tMIP-based heuristic process, by
looking into sub-optima of the MINLP problem. Trarer MIP model has been reviewed in
brief in Section 2, to make the introduction of thpeoposed non-linear approach
comprehensive.

A non-linear reformulation of the non-intersecticonstraints has been described. The
MINLP model does not consider any longer the ndargection conditions in terms of
constraints, but through a non-negative penaltyction that is nil if and only if no
overlapping between items occurs. Torhogonality and domain conditions are, on the
contrary, actually still treated as model constsain

A joint use of the MINLP formulation with the formd.P-relaxed one has been
proposed to improve the initial phase of the hégriprocess. The MINLP formulation
discussed here is addressed in particular to stard&8NLP solvers up to exploiting linear
sub-structures. In the author's opinion the approgmoposed deserves an in-depth
experimental investigation that could represenigibe of a dedicated future activity.
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