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Abstract  

This article extends a previous work focused on a mixed integer programming (MIP) based heuristic approach, 
aimed at solving non-standard three-dimensional problems with additional conditions. The paper that follows 
considers a mixed integer non-linear (MINLP) reformulation of the previous model, to improve the former 
heuristic, based on linear relaxation. The approach described herewith is addressed, in particular, to standard 
MINLP solvers up to exploiting linear substructures of the mathematical model. 
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1. Introduction 

A number of specialist works in the Operations Research framework deal with mixed integer 
programming (MIP) formulations of packing problems (see e.g. Chen, Lee, Shen 1995; 
Fasano 2010; Padberg 1999; Pisinger, Sigurd 2006; Onodera, Taniguchi, Tmaru 1991). The 
subject discussed herewith extends the approach proposed by Fasano (2008) to solve non-
standard 3D-packing problems, involving tetris-like items, convex domains (with possible 
holes and separation planes), in the presence of additional conditions, such as balancing. An 
MIP-based heuristic was described there to efficiently tackle real-world instances. Its first step 
consists of an LP-relaxation of the non-intersection constraints between items and the 
adoption of an ad hoc objective function aimed at providing the further steps of the process 
with an approximated solution to the original problem, expressed in term of a feasibility one. 
 Vast literature is available nowadays on mixed integer non-linear programming and 
global optimization (MINLP, GO, see e.g. Borchers, Mitchell 1997; Floudas 1995; Floudas et 
al. 1999; Floudas, Pardalos 2001; Floudas et al. 2005; Grossmann, Kravanja 1997; Horst, 
Pardalos 1995; Horst, Tuy 1996; Horst, Pardalos 1997; Hussain et al. 2004; Kallrath, 
Schreieck 1995; Kallrath 1999; Kallrath, Maindl 2006; Kallrath 2008; Liberti L, Maculan N 
2005; Pardalos, Resende 2002; Pardalos, Romeijn 2002; Pintér 1996; Pintér 2006; Pintér 
2009; Rebennack, Kallrath, Pardalos  2009) encouraging their application to several class of 
challenging optimization problems, including hard packing issues (see e.g. Addis, Locatelli, 
Schoen 2008a; Addis, Locatelli, Schoen 2008b; Caprara, Locatelli, Monaci 2005; Castillo, 
Kampas, Pintér 2008; Chernov, Stoyan, Romanova 2010; Kallrath 2009; Kampas, Pintér 
2005; Locatelli, Raber 2002; Stoyan, Yaskov, Scheithauer 2001; Stoyan, Zlotnick 2007).  

The Φ function concept (Stoyan et al. 2004; Chernov, Stoyan, Romanova 2010) has 
been introduced to solve arduous irregular nesting problems, involving complex 2D-objects 
and, following a different point of view, Birgin et al. (2006), Cassioli and Locatelli (2010) 
investigated a non-linear-based approach for the packing of rectangles inside a convex region.  
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A novel non-linear approach is outlined herewith. It is aimed at improving the 
approximate initial LP-relaxed solution of the MIP-based heuristic previously introduced 
(Fasano 2008). The approach that is going to be proposed in the following stresses the linear 
structure of the packing MIP model. This approach is addressed in particular to standard 
MINLP solvers (see e.g. Bussieck, Vigerske 2010) with special algorithmic features aimed at 
exploiting the presence of linear constraint sets.   

Section 2 briefly reviews the previous MIP-based approach (Fasano 2008, 2010). 
Section 3.1 discusses the non-linear re-formulation of its model, focusing on the non-
intersection constraints. This reformulation is described in Section 3.2 to improve the 
previous MIP-based heuristic. 

   

2. MIP formulation and LP-relaxed approximation  

In the following, we refer to the (three-dimensional) loading problem taken into account in the 
author’s previous work (Fasano 2008). It was focused on the orthogonal packing of tetris-like 
items within a convex domain (with possible separation planes and forbidden zones), subject 
to further additional conditions, such as balancing. Nevertheless, for the sake of simplicity, 
the discussion herewith will consider only items consisting of a single parallelepiped to load 
inside a convex domain, neglecting any possible further conditions (e.g. separation planes, 
forbidden zones, balancing). In the following, the only packing rules to consider are then:   
 

• each item (parallelepiped) side has to be parallel to an axis of a prefixed orthonormal 
reference frame (orthogonality   conditions); 

• each item  has to be contained within the given domain D (domain conditions); 
• items cannot overlap (non-intersection conditions). 

 
In the previous work, the objective function consisted of maximizing either the loaded 

volume or the mass. As pointed out there, the MIP formulation of the packing issue stated 
above gives rise, when dealing with real-world instances, to optimization problems extremely 
hard to solve. This is caused in particular by the non-intersections conditions, consisting of 
big-M constraints (given a set of n items, O(6n) big-M constraints with their relative binary 
variables have to be generated). 

In the previous work, to efficiently solve the above packing problem (or even more 
complex versions of it), a heuristic approach was proposed. The first step of the process 
considers the problem in terms of feasibility (i.e. all the given items have to be picked) and 
performs a linear relaxation of the non-intersection constraints, in order to obtain an 
approximate solution (with possible intersections between items). An ad hoc (linear) target 
function, aimed at minimizing the intersection between items has been introduced. The 
approximated solution so obtained is utilized to generate an abstract configuration, that is, a 
set of relative positions (each one for each couple of items) that would be feasible in any 
unbounded domain (see Fasano 2008). The abstract configuration is then imposed to the 
original problem, eliminating a number of items, if necessary. The loaded volume or mass is 
maximized, combining, by a recursive process, exchange and hole-filling techniques.  

The feasibility model on which the first step of the heuristic process is based, is briefly 
outlined herewith, referring the reader to the author’s previous works (Fasano 2008, 2010) for 
more details. The constraints relative to the basic packing rules (orthogonality, domain and 
non-intersection conditions) are reported here below. 
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where:  
given the reference frame O, wβ, β∈{1,2,3}, for each item i∈{1,…,n} of sides Lαi, α∈{1,2,3}, 
the variables δαβi α∈{0,1} have been introduced with the condition δαβi  = 1 if  Lαi  is parallel 
to the wβ  axis and δαβi  =  0 otherwise; 
E i is the set of vertexes associated to item i, Vβγ are the vertexes of the convex domain D, iγηψ  

are non negative variables; 
Dβ are the sides of the parallelepiped of minimum volume enveloping D; 

],0[, βββ Ddd ijij ∈−+ , +
hijβσ , }1,0{∈−

hijβσ .  

Constraints (1) and (2) represent the orthogonality conditions; (3) and (4) the domain ones; 
(5), (6), (7) the non-intersection ones.   

The goal of the first step of the heuristic process is to obtain a good approximate initial 
solution. The MIP model described above is adopted and the integrality conditions on the σ 

variables are dropped. In this case constraints (6) and (7) can be replaced by: 1
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The ad hoc objective function (aimed at minimizing the intersection between items) is the 
following:  
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Figure 1 depicts an approximate solution (with possible intersections between items) obtained 
by the linear relaxation described above. 
      

 

             Fig. 1 Linear-relaxed approximate solution 

3. MINLP-based approach 

3.1 Non-intersection constraint non-linear formulation 
 
We introduce here a possible non-linear reformulation of the non intersection constraints 
reported in Section 2. Keeping the same meaning of the symbols previously adopted, it is 
straightforward to prove that the following non-linear constraints are equivalent to (5), (6), 
(7):     
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Indeed for each couple i,j (i<j) equations (10) guarantee that the terms rβij are nil for at 
least one β and equation (9), corresponding to such β, is equivalent to the non-intersection 
condition: 
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Constraints (5) and (6) correspond then to equations (9) and vice versa, while equations (7) 

correspond to (10) and vice versa.    
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3.2 Non-linear approximation 
 
In the following, we reformulate the feasibility problem reported in Section 2, on the basis of 
what was discussed in Section 3.1, by introducing a new ad hoc non-linear target function 
aimed at minimizing the intersection between items. As the non-intersection constraints (9) 
and (10) are most likely quite hard to tackle, they are considered in terms of penalty terms in 
the new objective function. All remaining constraints, on the contrary, as they are linear 
(MIP), are maintained as such. The MINLP model so obtained is then addressed, in particular, 
to standard (MINLP) solvers with special features to exploit the presence of linear constraints. 

To reformulate the original feasibility (MIP) problem, we shall consider the following 
MINLP one:   
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subject to constraints (1), (2), (3), (4) reported in Section 2. 
It is immediately seen that the objective function is non-negative and that any zero global 
optimal solution exists if and only if the constraints (1), (2), (3), (4), (5), (6), (7) of the MIP 
problem reported in Section 2 delimit a feasible region.  

The above target function thus minimizes the non-intersection between items, but 
differently from target function (8), its global optima guarantee, at least theoretically, an 
ultimate (non approximate) solution to the feasibility problem of Section 3.1 and its adoption 
is therefore a priori preferable. 

Since obtaining a global optimal solution to the above MINLP problem is, in general, 
an extremely hard task, we do not however expect to solve it tout court. A joint use of the LP-
relaxation of the MIP feasibility model reported in Section 2 and the above MINLP approach, 
within the heuristic process outlined in Section 2, could nevertheless be of advantage. The 
LP-relaxed solution can be improved by the MINLP process to further reduce the overall 
intersection between items (generally, in the LP-relaxed solution intersections between items 
are admissible). The values of variables w, δ in the LP-relaxed solution are then taken as 
initial guesses for the MINLP instance, while the initial guesses for variable s and r can be 
derived directly from them on the basis of equations 9 (with no loss of generality, we assume 
that, for each β,i,j, at least one of the variable sβij , rβijr  is set to zero, as initial guess).  

The MINLP model described above maintains all the MIP constraints present in the 
original model, so that, even its suboptimal solutions guarantee to satisfy all orhogonality and 
domain conditions. Further MIP constraints could be directly added to the MINLP model in 
order to contemplate additional conditions, such as balancing. The extension to include tetris-
like items would also be straightforward (see Fasano 2008, 2010). 

4. Conclusive remarks  

This article refers to an author’s previous work aimed at solving non-standard three-
dimensional orthogonal packing problems with additional conditions. It focused on an MIP 
formulation and an MIP-based heuristic, introduced to efficiently solve hard real-world 
instances in practice.  

The initial phase of this heuristic process addresses an LP-relaxation of the non-
intersection constraints of the MIP model. The relaxed MIP model considers the original 
problem in terms of feasibility and an ad hoc (linear) objective function, aimed at minimizing 
the intersection between items, is adopted. The approximate solutions to this reformulated 
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problem (with possible intersections) are taken as an initial step of the whole heuristic 
process.   

In the article presented here, we have proposed an MINLP reformulation of the 
original MIP model expressed in terms of feasibility. This reformulation is aimed at 
improving the approximate LP-relaxed solution of the MIP-based heuristic process, by 
looking into sub-optima of the MINLP problem. The former MIP model has been reviewed in 
brief in Section 2, to make the introduction of the proposed non-linear approach 
comprehensive.  

A non-linear reformulation of the non-intersection constraints has been described. The 
MINLP model does not consider any longer the non-intersection conditions in terms of 
constraints, but through a non-negative penalty function that is nil if and only if no 
overlapping between items occurs. The orthogonality and domain conditions are, on the 
contrary, actually still treated as model constraints.  

A joint use of the MINLP formulation with the former LP-relaxed one has been 
proposed to improve the initial phase of the heuristic process. The MINLP formulation 
discussed here is addressed in particular to standard MINLP solvers up to exploiting linear 
sub-structures. In the author’s opinion the approach proposed deserves an in-depth 
experimental investigation that could represent the goal of a dedicated future activity. 
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