
Fairer Benchmarking of Optimization Algorithms via Derivative

Free Optimization

W. L. Hare∗ Y. Wang†

October 13, 2010

Abstract

Research in optimization algorithm design is often accompanied by benchmarking a new al-
gorithm. Some benchmarking is done as a proof-of-concept, by demonstrating the new algorithm
works on a small number of difficult test problems. Alternately, some benchmarking is done in
order to demonstrate that the new algorithm in someway out-performs previous methods. In
this circumstance it is important to note that algorithm performance can heavily depend on the
selection of a number of user inputed parameters. In this paper we begin by demonstrating that
if algorithms are compared using arbitrary parameter selections, results do not just compare the
algorithms, but also compare the authors’ ability to select good parameters. We further present
a novel technique for generating and providing results using each algorithm’s “optimal parameter
selection”. These optimal parameter selections can be computed using modern derivative free
optimization methods and generate a framework for fairer benchmarking between optimization
algorithms.

Keywords: benchmarking, optimal parameter selection, Derivative Free Optimization

1 Introduction

Algorithm design is one of the pillars of modern optimization research. In order for a new
algorithm to be considered successful, authors are generally encouraged to benchmark their
algorithm against previously established methods. This consists of running several different
algorithms against a collection of test problems and comparing the results. In this work, we ex-
amine an issue that arise during benchmarking and discuss a technique that can help researchers
to provide fairer benchmarking of algorithms. In particular, we explore the question of how to
avoid using arbitrary parameter selections during benchmarking.

In [AO06], Audet and Orban point out that most optimization algorithms rely on a large
quantity of input parameters that are independent of the optimization problem. For example,
most optimization codes include a parameter how step length decreases as it is deemed too
large. In this work we demonstrate that if algorithms are compared using arbitrary parameter
selections, results do not just compare the algorithms, but also compare the authors’ ability to
select good parameters. Thus it is unfair to compare two algorithms using arbitrary parameter
selections. Working on the ideas of Audet and Orban, we suggest a novel methodology in which
each algorithm’s “optimal parameter selection” is determined before benchmarking is performed.

∗Dept of Math, Stats, & Physics, UBC O, warren.hare@ubc.ca.
†Dept of App Math, UWO, ywang767@uwo.ca.

1

In order to illustrate the ideas laid out in this work, we explore two methods of adapting
the Nelder-Mead algorithm to include a very basic line search. It should be noted that the
goal of this research is not to advance the Nelder-Mead algorithm. We select the Nelder-Mead
algorithm for our illustrations for two reasons. First, despite criticisms on its effectiveness
(see for example [McK99]), the Nelder-Mead algorithm is still one of the most widely applied
optimization algorithms for applied problems [CSV09]. Second, as Nelder-Mead algorithm is not
currently a major focus of active research, we are not biased to prove or disprove its effectiveness.

The remainder of this paper is organized as follows. In Section 2 we outline the ideas behind
optimal parameter selection, and outline the algorithms we shall use for our numerical examples.
In Section 3 we discuss the test problems used in this paper, and review the construction and
interpretation of performance profiles. In Section 4 we demonstrate that arbitrary parameter
selections can result in inaccurate benchmarking of optimization algorithm. We then detail our
method for determining the optimal parameter selections (Subsection 4.2) based on the work of
Audet and Orban and argue that this parameter selection provides a fairer benchmark of the
algorithms. We finish with some concluding remarks.

2 Overview and test algorithms

Considerable researcher into optimization focuses on the construction of computer implemented
algorithms to solve minimization problems. Most algorithms include a variety of input param-
eters, to be chosen by the user, which represent aspects such as step-length reduction. With
regards to these parameters, most algorithms can be proven to converge in a generally sense.
That is, algorithms have some constraints on the parameter choice, but generally the number
of options is continuous in nature. For example, a step-length reduction parameters might be
required to be in τ ∈ (0, 1), but it is left to the user to determine whether to be aggressive (e.g.,
τ = 0.01), neutral (e.g., τ = 0.5), or conservative (e.g., τ = 0.95).

From a purely theoretical point of view, this is a very powerful aspect of optimization re-
search. However, from a practical point of view, this generates some difficulty when bench-
marking algorithms. The benchmarking process consists of running several different algorithms
against a collection of test problems and comparing the results. In benchmarking an algorithm,
authors pursue one of two goals.

In some benchmarking research, the goal is to show a proof-of-concept that the algorithm
can be implemented and work in practice. For this goal, it suffices to select any parameter
selection that results in reasonable performance.

In other benchmarking research, the goal is to show that the new algorithm in someway
out-performs previous methods. For this goal, the choice of parameters can be crucial. We shall
see, in Section 4 Subsection 4.1, that small changes in algorithm parameters can vastly alter an
algorithm’s performance. This leads naturally to the question of how to find good parameter
selections for benchmarking, and how to find fair parameter selections for all algorithms.

One option lies in recent results by Audet and Orban involving Derivative Free Optimization
[AO06]. Derivative Free Optimization (DFO) methods are designed to minimize objective func-
tions for which derivative information is not available. (We refer readers to the book of Conn,
Scheinberg, and Vicente for general information on DFO methods [CSV09].) In [AO06], Audet
and Orban demonstrate that parameter selection can be phrased as a DFO problem where the
inputs are the parameters and the goal is to minimize run time.

Of course, in order to apply this idea it is necessary to solve each optimization problem
multiple times. In applied research this appears impractical, however Audet and Orban demon-
strate how the use of a collection of surrogate functions (functions that are small versions of
the original problem and maintain similar problem structure) can lead to a good parameter
selection for the original problem.

2

In the case of benchmarking, the issue of solving the collection of test problems multiple
times is not serious. Indeed, many researchers will attest that they “tinker” with algorithm
parameters before benchmarking in order to attain better results. In this paper we propose that
instead of “tinkering”, researchers apply the techniques of Audet and Orban to formally find
the “optimal parameter selection” for each algorithm being benchmarked, and then compare
algorithms under their optimal performance.

In this paper we will utilize the classic Nelder-Mead algorithm and two simple variations
in order to demonstrate the necessity of proper benchmarking techniques. For the sake of
completeness, our implementation of the Nelder-Mead algorithm and details on our two variants
are discussed in the remainder of this Section.

All algorithms were implemented in MATLAB 7.6.0 (R2008a).

2.1 Classic Nelder-Mead (CNM)

One of the oldest methods in DFO literature is the famous Nelder-Mead algorithm [NM65]. Due
to its ease in implementation, range of applications, and general effectiveness, the Nelder-Mead
algorithm is still one of the most widely applied optimization algorithms [CSV09, Chpt 8]. The
Nelder-Mead algorithm begins with a simplex of potential solution points to an optimization
problem. After evaluating the objective function at each point, the algorithm operates a reflec-
tion, an expansion, a contraction (inside or outside) or a shrink on the simplex. The goal is
to replace the current worst point of the simplex with a newly generated better point (if there
is any) in order to have a potentially better pool of possible solutions. If no better point can
be found, the shrink operation reduces the search area so a more precise local solution can be
determined. A pseudo-code version of the Nelder-Mead algorithm appears in Algorithm 2.1.

Algorithm 2.1 (Classic Nelder-Mead Algorithm: CNM)

0. Initialization: Input an initial simplex SP = {x0, x1, x2, ..xn}, a reflection parameter
0 < α, an expansion parameter 1 < γ, a contraction parameter 0 < β < 1, a shrink parameter
0 < δ < 1, and stopping criteria.

1. Order: Determine the simplex points xb, xs, and xw such that their function values f b =
f(xb), fs = f(xs), and fw = f(xw) are a best, a second worst, and a worst.

2. Stopping: Check stopping criteria and terminate if desired.

3. Reflect: Compute the reflection point and value

xr = c+ α(c− xw), fr = f(xr) where c =
1
n

∑
xi∈SP\xw

xi.

If f b ≤ fr < fs replace xw with xr and return to Order.
If fr < f b proceed to Expand.
Otherwise (fr ≥ fs) proceed to Contract.

4. Expand: (fr < f b) Compute the expansion point and value

xe = c+ γ(c− xw), fe = f(xe).

If fe < fr replace xw with xe and return to Order.
Otherwise replace xw with xr and return to Order.

5. Contract: (fr ≥ fs)
If fs ≤ fr < fw then compute the outside contraction point and value

xc = c+ β(c− xw), f c = f(xc).

3

If f c ≤ fr replace xw with xc and return to Order,
Otherwise continue to Shrink.

If fw ≤ fr then compute the inside contraction point and value

xc = c+ β(xw − c), f c = f(xc).

If f c < fw replace xw with xc and return to Order,
Otherwise continue to Shrink.

6. Shrink: Reconstruct the simplex by setting

xi = xb + δ(xi − xb), for i = 0, 1, 2, ...n.

Return to Order.

Various implementations of Nelder-Mead have arisen in the past 40 years, each of which
differs slightly from the original Nelder-Mead algorithm. Our implementation differs from the
original in several manners. Most importantly, [NM65] does not consider the shrink parameter
δ as a parameter, instead defining it to be 0.5. We also differ from [NM65] in a variety of small
changes. For example, we accept the reflection point when f b ≤ fr < fs, while [NM65] accepted
the reflection point when f b ≤ fr ≤ fs. Other changes of the same magnitude are also present.
Most varieties of the Nelder-Mead algorithm differ from the [NM65] to a similar level (compare
[NM65], [McK99], and [CSV09] for example).

In Step 0, Initialization, we are required to input a starting simplex. However, most test
problems, in particular those in [MGH81], provide a single starting point x0 ∈ IRn. One simple
way of generating a starting simplex from a single point is to generate

xi = x0 + ei for i = 1, 2, ...n,

where {ei}ni=1 is an orthogonal set of unit direction vectors. We use this method, with the
standard set of orthogonal unit vectors (ei contains a 1 in the ith position and 0 elsewhere).

In Step 1, Order, we use the term “a” worst point (second worst, best) as it is possible that
a tie may occur. In our implementation, points just added to the simplex are favoured over
points that were previously in the simplex. Further ties (as could occur after a Shrink step) are
broken by favouring the point with the lowest index.

In Step 2, Stopping, we employ three stopping criteria. First, we stop as soon as more
than 6000 function evaluations are detected (note this may result in slightly over 6000 function
evaluations if, for example, a shrink step occurs at the final iteration). This ensures eventual
stoppage regardless of the test problem. Second, we check the diameter of the simplex and
terminate if the simplex becomes too small (< 10−6). Finally, we examine simplex degeneracy
by implementing the simplex degeneracy test found in [CSV09] (with tolerance of 10−12).

2.2 Double Expansion Nelder-Mead (DENM)

In Step 4, Expand, the reflection point has demonstrated objective function improvement over
the current best point. This effectively demonstrates that c − xw is a descent direction from
the point xw. The expansion step allows the Nelder-Mead algorithm to explore further in that
direction to a limited distance. In our first variant on the Nelder-Mead algorithm, we allow for
a second expansion step when the first expansion point is successful.

Algorithm 2.2 (Double Expansion Nelder-Mead: DENM)

Replace Step 4 in Algorithm 2.1 with

4

4. Expand (DENM): (fr < f b) Compute the expansion point and value

xe = c+ γ(c− xw), fe = f(xe).

If fe ≥ fr then replace xw with xr and return to Order.

Otherwise (fe < fr), compute the second expansion point

xe2 = c+ γ(γ(c− xw))

and continue to 4b.

4b. Expand II: If (SP \ xw) ∪ xe2 is nondegenerate then compute the second expansion value

fe2 = f(xe2).

Otherwise set fe2 =∞.
If fe2 < fe then replace xw with xe2 and return to Order.
Otherwise (fe2 ≥ fe, fe < fr) replace xw with xe and return to Order.

In DENM the second expansion point is only adopted if the resulting geometry is nondegen-
erate and the function value at this new point is improved. This helps prevent the simplex from
becoming degenerate too quickly. We perform a check on the new simplex geometric before
evaluating the function at the second expansion point in order to avoid unnecessary function
evaluations. As in the full algorithm, in Step 4b we implement the simplex degeneracy test from
[CSV09] (with tolerance of 10−12).

2.3 Double Expansion Double Contraction Nelder-Mead (DEDCNM)

This variant is similar to DENM, however, we allow double contraction in additional to double
expansion.

Algorithm 2.3 (Double Expansion Double Contraction Nelder-Mead: DEDCNM)

Replace Step 4 in Algorithm 2.1 with Step 4 of DENM (Algorithm 2.2).

Replace Step 5 in Algorithm 2.1 with

5. Contract: (fr ≥ fs)
If fs ≤ fr < fw then compute the outside contraction point and value

xc = c+ β(c− xw), f c = f(xc).

If f c > fr continue to Shrink
Otherwise (f c ≤ fr), compute the second outside contraction point

xc2 = c+ β(β(c− xw))

and continue to 5b

If fw ≤ fr then compute the inside contraction point and value

xc = c+ β(xw − c), f c = f(xc).

If f c ≥ fw continue to Shrink
Otherwise (f c < fw), compute the second inside contraction point

xc2 = c+ β(β(xw − c))

5

and continue to 5b

5b. Contract II: If (SP \ xw) ∪ xc2 is nondegenerate then compute the second contraction
value

f c2 = f(xc2).

Otherwise set f c2 =∞.
If f c2 < f c then replace xw with xc2 and return to Order.
Otherwise replace xw with xc and return to Order.

Similar to DENM, the second expansion or the second contraction point is only adopted if
the resulting geometry is nondegenerate and the function value at the new point is improved.

3 Test Problems and Performance Profiles

For our tests we use the problems listed in [MGH81]1. In [MGH81], test problems are listed with
a dimension (number of input variables) and a number of sub-functions; or a range of possible
dimensions and number of sub-functions. Sub-functions describe the complexity of the problem
within a fixed dimension. In particular, each test problem is given of the form

∑m
i=1(fi)2, where

m is the number of sub-functions. The problems examined are listed in Table 1, Appendix A,
along with the dimension and number of sub-functions each uses. Problem number is used for
referencing, and refers to the problem number as provided in [MGH81]. In some cases, the
problem listed in [MGH81] has options on the dimension or number of sub-functions. In such
cases we report the numbers that we used. For further details on these test problems we refer
readers to [MGH81].

In order to provide a visual comparison of each algorithms performance, we employ per-
formance profiles as follows. Let tp,s represent the number of function evaluations required by
solver s to solve problem p. If the solver fails to solve the problem then tp,s is set to infinity.
From the values tp,s we generate the performance ratio value

rp,s =
tp,s

mins{tp,s}

for each solver and each problem. Performance profiles now graphs for each solver the function
ρs(τ) defined by

ρs(τ) =
1
P

∣∣{p : rp,s ≤ τ}
∣∣,

where P is the number of test problem and |{·}| is the number of elements in the set {·}. Thus
ρs(τ) “is the probability for solver s that a performance ratio rp,s is within a factor τ ∈ IR of
the best possible ratio” [DM02].

At the far left of the graphs (τ = 1) each solver begins at the value equal to the portion
of test problems that it solved with the least number of function evaluations. At the far right
(τ → ∞) each solver converges to the portion of test problems that it successfully solved. In
general solver s1 is performing better than s2 if its graph is higher (i.e. ρs1(τ) > ρs2(τ) for most
τ).

4 Optimal parameters selections

The purpose of this paper is to demonstrate that benchmarking optimization algorithms using
arbitrary parameter selections can create inconsistent results, and to suggest a simple solution

1Some erratums to the [MGH81] problem list can be found at [KK97]. We implement these as appropriate.

6

to this problem. To demonstrate the flaw with arbitrary parameter selections, we compare
CNM to the two variant describe in Subsections 2.2 and 2.3 using several different selections
for the parameters α, γ, β, and δ. Stopping criteria, discussed in Subsection 2.1, are consistent
across algorithms, and tuned to stop when the algorithm believes it has correctly determined
the solution to 6 digits of accuracy. A problem is considered solved if the relative error, defined
by

RE :=
|fmin − f∗|
|f∗|+ 1

, (1)

where fmin is the found minimum and f∗ is the true global minimum, is less than 10−6.

4.1 Comparisons Across Arbitrary Parameter Selections

In the next three examples we show that CNM can perform worse than, similar to, or better
than DENM, simply by considering different parameter selections.

Example 4.1 (CNM is worse than DENM (α = 1, γ = 1.9, β = 0.6, and δ = 0.6))
We benchmark CNM and DENM using the parameter selection α = 1, γ = 1.9, β = 0.6, and

δ = 0.6 (for both algorithms). Complete test results can be found in Table 2, Appendix A. In
Figure 1 we provide the performance profile for this test.

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DENM

CNM
DENM

Figure 1: Performance profile of Classic Nelder-Mead versus Double Expansion Nelder-Mead using
α = 1, γ = 1.9, β = 0.6, and δ = 0.6.

Examining Figure 1 we see that the graph of CNM is never above the graph of DENM, so
overall the performance profile suggests that CNM is worse than DENM.

Example 4.2 (CNM and DENM are similar (α = 1, γ = 1.9, β = 0.5, and δ = 0.6))
We benchmark CNM and DENM using the parameter selection α = 1, γ = 1.9, β = 0.5, and

δ = 0.6. Complete test results can be found in Table 3, Appendix A. In Figure 2 we provide the
performance profile for this test.

Examining Figure 2 we see that CNM begins above DENM, but ends below. The two graphs
cross at about τ = 1.4. The performance profile suggests that DENM is slightly more robust
than CNM, but slightly worse in speed. Overall the two algorithms are quite comparable.

Example 4.3 (CNM is better than DENM (α = 1, γ = 2, β = 0.5, and δ = 0.5))
We benchmark CNM and DENM using the parameter selection α = 1, γ = 2, β = 0.5, and

δ = 0.5. Complete test results can be found in Table 4, Appendix A. In Figure 3 we provide the
performance profile for this test.

Since the graph of CNM is above the graph of DENM at all times, the performance profile
suggests that CNM is better than DENM.

7

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DENM

CNM
DENM

Figure 2: Performance profile of Classic Nelder-Mead versus Double Expansion Nelder-Mead using
α = 1, γ = 1.9, β = 0.5, and δ = 0.6.

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DENM

CNM
DENM

Figure 3: Performance profile of Classic Nelder-Mead versus Double Expansion Nelder-Mead using
α = 1, γ = 2, β = 0.5, and δ = 0.5.

Our next example quickly shows that the same inconsistency of results can be achieved for
DEDCNM.

Example 4.4 (comparing CNM and DEDCNM) We benchmark CNM and DEDCNM us-
ing three parameter selections:

i) α = 1.1, γ = 2, β = 0.8, and δ = 0.5,

i) α = 1, γ = 2, β = 0.7, and δ = 0.5, and

i) α = 1, γ = 2, β = 0.5, and δ = 0.5.

Complete test results can be found in Tables 5, 6, and 7 respectively. In Figure 4 we provide the
three performance profiles resulting from these parameter selections.

Examining the performance profiles we see that DEDCNM can appear better than, similar
to, or worse than CNM depending on the parameter selection chosen.

4.2 Comparisons Across Optimal Parameter Selections

The examples above demonstrate that comparing two codes using arbitrary parameter selections
can easily lead to inconsistent conclusions. In particular, such an approach results in bench-
marking not just the algorithms, but also the authors’ ability to provide good parameters. (The
examples above can be made to be even more pronounced by using difference parameter selec-
tions for each algorithm.) To avoid this problem we propose seeking out the optimal parameter

8

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DEDCNM

CNM
DEDCNM

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DEDCNM

CNM
DEDCNM

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

 τ
p,

s /
 m

in
 {

 t p,
s: 1

≤
s≤

 n
s}

)
≤

τ
)

CNM versus DEDCNM

CNM
DEDCNM

Figure 4: Performance profile of Classic Nelder-Mead versus Double Expansion Double Contraction
Nelder-Mead using: α = 1.1, γ = 2, β = 0.8, and δ = 0.5 (left); α = 1, γ = 2, β = 0.7, and δ = 0.5
(middle); and α = 1, γ = 2, β = 0.5, and δ = 0.5 (right).

selection for each of the algorithms and then re-benchmark using this selection. We do this
using techniques from [AO06].

In our case, we generate an objective function whose input is the four parameters used in
each algorithm and whose output is the total number of function evaluations required with a
penalty for each unsolved test problem. The penalty is applied by resetting the number of
function evaluations to 7500 for any test problem that is unsolved. (Recall that algorithms were
terminated after 6000 function evaluates were detected.) A problem is considered solved if the
relative error is less than 10−6. A second penalty function is employed to enforce parameters
to stay within the bounds laid out in Algorithm 2.1, Step 0, Initialization. Thus we have the
following function,

F : IR4 → IR

: (α, β, γ, δ) →


function evaluations used to if 0 < α, 0 < β < 1,

solve all problems, plus penalty 1 < γ, 0 < δ < 1
for unsolved problems

108 otherwise

Note that the objective function F is based on finding parameters that provide a globally good
solution rate and time. In particular, we do not seek to find optimal parameters for each
algorithm-problem pair. If we took that approach, then we would very likely find different
parameters for each pairing, and solve many problems in a highly unrealistic manner.

We employed the CNM algorithm to minimize F over all valid parameter selections. This
process was repeated for each of the algorithms.
The resulting parameters for the Classic Nelder-Mead algorithm are

Reflection : α = 0.987481
Expansion : γ = 2.115042
Contraction : β = 0.519800

Shrink : δ = 0.465897.

The resulting parameters for Double Expansion Nelder-Mead are

Reflection : α = 1.009165
Expansion : γ = 1.941588
Contraction : β = 0.508081

Shrink : δ = 0.489064.

9

The resulting parameters for Double Expansion Double Contraction Nelder-Mead are

Reflection : α = 1.129736
Expansion : γ = 2.790789
Contraction : β = 0.782744

Shrink : δ = 0.201809.

After determining the optimal parameters for each variant of the Nelder-Mead algorithm,
we test each algorithm against the 35 test problems listed in Table 1. As before, a problem is
considered solved if the relative error is less than 10−6. In order to demonstrate the power of
optimal parameter selections (over default parameter selections) we also benchmark all variants
using the parameter selection α = 1, γ = 2, β = 0.5, and δ = 0.5.

Detailed results can be found in Tables 8 and 9 in Appendix A. In Figure 5 we present the
performance profiles for CNM and the two variants of Nelder-Mead tested using default and
optimal parameter selections.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

P
((

τ p,
s/m

in
 {

 t p,
s :

1
≤

s
≤

n s})
≤τ

)

CNM versus DENM

CNM − default
DENM − default
CNM − optimal
DENM − optimal

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CNM versus DEDCNM

τ

P
((

τ p,
s/m

in
 {

 t p,
s :

1
≤

s
≤

n s})
≤τ

)

CNM − default
DENM − default
CNM − optimal
DENM − optimal

Figure 5: Performance profiles using default and optimal parameter selections.
Left: Classic Nelder-Mead versus Double Expansion Nelder-Mead.
Right: Classic Nelder-Mead versus Double Expansion Double Contraction Nelder-Mead.

In all algorithms the optimal parameter selection shows improvement over the default selec-
tion. This reinforces the point that good parameter selection can change the apparent quality
of an algorithm. In both profiles we see that CNM using optimal parameter selection is a clear
winner over all other algorithms.

In the left profile, we see that DENM using the optimal parameter selection is fairly com-
parable to CNM using the default parameter selection. This again shows the importance of
comparing algorithms using optimal parameter selections. In particular, since DENM is a new
algorithm, the authors could have tweaked its parameters while keeping CNM at default pa-
rameters and then suggested the two algorithms were comparable. This selective tweaking
may even seem reasonable, as often perviously designed algorithms are not programmed by the
benchmarkers, so tweaking their parameters can be an onerous task.

Examining the right profiles, it is clear that DEDCNM is notably worse than CNM. In
particular, DEDCNM has lower profiles using optimal parameter selections than CNM using
default parameters.

(On a side note, the performance profiles in Figure 5 clearly show that Nelder-Mead algorithm
does not benefit from either of the line search additions tested in this research.)

10

5 Concluding remark

The method presented in this paper provides a novel technique for generating fairer bench-
marking of optimization algorithms. However, it should be noted that the optimal parameter
selection methods for benchmarking algorithms described in this paper will only give optimal
parameter selections for the particular test set used in parameter generation. As such, the
optimal parameters should not necessarily be used to solve any optimization problem. Meth-
ods for determining optimal parameter selections for hard problems, by use of simple surrogate
problems, is discussed in [AO06].

Before closing, we should note that there is no reason to expect the optimal parameter
selection problem to be convex. Therefore it is likely that the initial point for your parameter
selection problem will impact the resulting “optimal parameter selection”. Future research
should examine this issue, try to determine when the optimal parameter selection problem is
convex, and research methods of working with a nonconvex optimal parameter selection problem.

Finally, we remark that in building our optimal parameter objective function, we placed a
heavy penalty on unsolved problems. This naturally results in seeking parameters that favour
robustness over speed. Changing this is simple, and should be done with care. The important
part being simply to ensure each algorithm’s optimal parameters are computed using the same
optimal parameter objective function.

Acknowledgements

The authors would like to thank the IRMACS Centre at Simon Fraser University for providing
technical infrastructure and support for this research. The authors would like to thank Dr. M.
Macklem for useful feedback during the final stages of this research. Hare research supported in
part by NSERC DG, and the MoCSSy CTEF SFU. Wang research supported in part by NSERC
DG.

References

[AO06] C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free
optimization. SIAM J. Optim., 17(3):642–664 (electronic), 2006.

[CSV09] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Opti-
mization, volume 8 of MPS/SIAM Book Series on Optimization. SIAM, 2009.

[DM02] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2, Ser. A):201–213, 2002.

[KK97] A. Kuntsevich and F. Kappel. Moré set of test functions. http://www.uni-graz.
at/imawww/kuntsevich/solvopt/results/moreset.html, 1997.

[McK99] K. I. M. McKinnon. Convergence of the Nelder-Mead simplex method to a nonsta-
tionary point. SIAM J. Optim., 9(1):148–158 (electronic), 1999.

[MGH81] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. ACM Trans. Math. Software, 7(1):17–41, 1981.

[NM65] J. A. Nelder and R. Mead. A simplex method for function minimization. The Comp.
J., 7(4):308–313, 1965.

[Tor97] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim.,
7(1):1–25, 1997.

11

A Tables

Problem Name Dimension Sub-functions min ≈
(1) Rosenbrock function 2 2 0
(2) Freudenstein and Roth function 2 2 0
(3) Powell badly scaled function 2 2 0
(4) Brown badly scaled function 2 3 0
(5) Beale function 2 3 0
(6) Jennrich and Sampson function 2 2 1.24363E+02
(7) Helical valley function 3 3 0
(8) Bard function 3 15 8.21488E-03
(9) Gaussian function 3 15 1.12794E-08
(10) Meyer function 3 16 8.79459E+01
(11) Gulf research and development 3 3 0
(12) Box three-dimensional function 3 4 0
(13) Powell singular function 4 4 0
(14) Wood function 4 6 0
(15) Kowalik and Osborne function 4 11 3.07506E-04
(16) Brown and Dennis function 4 20 8.58223E+04
(17) Osborne 1 function 5 33 5.46490E-05
(18) Biggs EXP6 function 6 13 0
(19) Osborne 2 function 11 65 4.01378E-02
(20) Watson function 6 31 2.28768E-03
(21) Extended Rosenbrock function 6 6 0
(22) Extended Powell singular function 12 12 0
(23) Penalty function I 4 5 2.24998E-05
(24) Penalty function II 4 8 9.37630E-06
(25) Variably dimensioned function 7 9 0
(26) Trigonometrix function 6 6 0
(27) Brown almost-linear function 4 4 0
(28) Discrete boundary value function 7 7 0
(29) Discrete integral equation function 7 7 0
(30) Broyden tridiagonal function 7 7 0
(31) Broyden banded function 5 5 0
(32) Linear function - full rank 4 8 4
(33) Linear - rank 1 4 8 1.64706E+00
(34) Linear - rank 1 with 0 columns & rows 4 8 3.15385E+00
(35) Chebyquad function 2 2 0

Table 1: Test problems.

12

Classic NM Classic NM DENM DENM
fevals min fevals min

1 426 9.98402E-31 394 1.97215E-31
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 973 0 943 0
4 562 6.41934E-21 549 7.45796E-22
5 317 4.93038E-32 317 4.93038E-32
6 6000 1.24362E+02 386 1.24362E+02
7 507 1.53917E-31 507 1.53917E-31
8 528 8.21488E-03 552 8.21488E-03
9 6003 1.12793E-08 6003 1.12793E-08
10 3336 8.79459E+01 3637 8.79459E+01
11 873 3.44571E-07 831 3.44571E-07
12 804 1.23260E-32 647 5.42743E-37
13 713 1.52652E-24 744 3.69336E-25
14 1243 4.50390E-30 858 5.30016E-30
15 741 3.07506E-04 775 3.07506E-04
16 681 8.58222E+04 6004 8.58222E+04
17 1921 5.46489E-05 1974 5.46489E-05
18 2606 2.74301E-31 2451 8.40187E-32
19 4206 4.01377E-02 6000 4.01377E-02
20 1389 2.28767E-03 1635 2.28767E-03
21 6003 4.14152E-30 3674 1.72563E-30
22 5579 1.73539E-20 5657 5.34018E-20
23 6005 2.24998E-05 2098 2.24998E-05
24 4867 9.37629E-06 2477 9.37629E-06
25 6007 5.30016E-31 1499 1.23260E-31
26 N.A. 2.74129E-04 N.A. 2.74129E-04
27 794 0 794 0
28 1432 2.72339E-33 1433 2.72339E-33
29 1342 1.97408E-33 1342 1.97408E-33
30 1285 1.13399E-30 1286 1.13399E-30
31 909 3.73630E-31 910 3.73630E-31
32 614 4.00000E+00 6002 4.00000E+00
33 6001 1.64706E+00 583 1.64706E+00
34 592 3.15385E+00 593 3.15385E+00
35 6001 0 6001 0

Table 2: Results using CNM and DENM using α = 1, γ = 1.9, β = 0.6, and δ = 0.6. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

13

Classic NM Classic NM DENM DENM
fevals min fevals min

1 323 7.88861E-31 311 0
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 854 0 781 0
4 352 2.32008E-22 345 3.59387E-22
5 237 0 237 0
6 310 1.24362E+02 331 1.24362E+02
7 384 2.03786E-32 386 3.36183E-32
8 447 8.21488E-03 431 8.21488E-03
9 400 1.12793E-08 400 1.12793E-08
10 3175 8.79459E+01 3357 8.79459E+01
11 757 3.44571E-07 658 3.44571E-07
12 725 0 477 7.87379E-35
13 670 6.71089E-24 645 2.42195E-24
14 1048 2.76718E-30 702 0
15 696 3.07506E-04 767 3.07506E-04
16 652 8.58222E+04 698 8.58222E+04
17 1636 5.46489E-05 2194 5.46489E-05
18 2362 3.26334E-30 3459 2.36552E-31
19 3982 4.01377E-02 5535 4.01377E-02
20 1275 2.28767E-03 1315 2.28767E-03
21 6006 5.26220E-28 2587 2.91385E-29
22 5440 1.03232E-13 5755 4.06871E-10
23 1412 2.24998E-05 6000 2.24998E-05
24 4318 9.37629E-06 5915 9.37629E-06
25 1442 1.12166E-30 1717 3.56220E-30
26 1032 1.40015E-31 1143 2.90238E-31
27 590 0 590 0
28 1314 1.91780E-32 1323 1.91780E-32
29 1155 4.42964E-33 1158 4.42964E-33
30 1208 2.50587E-29 1213 2.50587E-29
31 6004 7.39557E-31 810 2.01537E-29
32 529 4.00000E+00 562 4.00000E+00
33 488 1.64706E+00 506 1.64706E+00
34 517 3.15385E+00 518 3.15385E+00
35 245 0 245 0

Table 3: Results using CNM and DENM using α = 1, γ = 1.9, β = 0.5, and δ = 0.6. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

14

Classic NM Classic NM DENM DENM
fevals min fevals min

1 333 0 311 1.97215E-31
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 828 0 792 0
4 369 8.78073E-22 364 8.94573E-24
5 243 0 243 0
6 298 1.24362E+02 322 1.24362E+02
7 382 6.27580E-32 383 6.27580E-32
8 398 8.21488E-03 407 8.21488E-03
9 378 1.12793E-08 378 1.12793E-08
10 2985 8.79459E+01 3130 8.79459E+01
11 624 3.44571E-07 623 3.44571E-07
12 449 2.14104E-38 441 7.10712E-36
13 597 1.00450E-23 646 4.11967E-25
14 1225 3.80995E-30 1364 1.39776E-30
15 639 3.07506E-04 653 3.07506E-04
16 518 8.58222E+04 665 8.58222E+04
17 1696 5.46489E-05 2205 5.46489E-05
18 2715 1.41797E-31 3303 6.01372E-32
19 3853 4.01377E-02 5666 4.01377E-02
20 1174 2.28767E-03 1226 2.28767E-03
21 2209 4.14152E-30 4204 3.51290E-30
22 5455 8.54983E-10 N.A. 2.32264E-03
23 1711 2.24998E-05 3401 2.24998E-05
24 3850 9.37629E-06 5472 9.37629E-06
25 1560 3.93198E-30 1550 4.63456E-30
26 1208 8.01187E-32 1163 8.43557E-32
27 583 0 583 0
28 1399 1.10278E-31 1562 3.02160E-32
29 1387 4.62705E-32 1402 4.62705E-32
30 1342 2.85962E-30 1347 2.85962E-30
31 771 1.44214E-30 776 1.44214E-30
32 487 4.00000E+00 476 4.00000E+00
33 440 1.64706E+00 439 1.64706E+00
34 430 3.15385E+00 431 3.15385E+00
35 238 3.08149E-33 238 3.08149E-33

Table 4: Results using CNM and DENM using α = 1, γ = 2, β = 0.5, and δ = 0.5. Number of
function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

15

Classic NM Classic NM DEDCNM DEDCNM
fevals min fevals min

1 738 4.93038E-32 628 4.93038E-32
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 1454 0 1270 0
4 951 9.03167E-27 762 2.40286E-22
5 673 0 527 4.93038E-32
6 547 1.24362E+02 473 1.24362E+02
7 1232 6.68312E-33 904 7.60884E-31
8 886 8.21488E-03 693 8.21488E-03
9 858 1.12793E-08 694 1.12793E-08
10 4172 8.79459E+01 4197 8.79459E+01
11 N.A. 1.40000E-03 N.A. 1.40000E-03
12 1227 1.09039E-30 966 1.65170E-35
13 1356 8.32547E-24 1124 8.75408E-25
14 1529 1.77494E-31 1622 1.77494E-31
15 1224 3.07506E-04 1020 3.07506E-04
16 1020 8.58222E+04 949 8.58222E+04
17 4132 5.46489E-05 2619 5.46489E-05
18 N.A. 5.65565E-03 5803 1.34093E-31
19 4839 4.01377E-02 5751 4.01377E-02
20 1987 2.28767E-03 1870 2.28767E-03
21 3885 7.44487E-30 5779 5.05364E-31
22 6001 1.70055E-16 6000 1.08989E-15
23 2764 2.24998E-05 2869 2.24998E-05
24 N.A. 9.42020E-06 N.A. 9.45158E-06
25 2783 8.62817E-31 2306 2.85962E-30
26 2403 4.99779E-31 2382 1.26919E-31
27 1404 0 1090 0
28 2719 9.99377E-33 2202 1.75530E-32
29 2772 4.33334E-34 2140 2.93704E-33
30 2623 2.36658E-30 2127 2.85962E-30
31 1872 1.08468E-30 1449 2.98904E-31
32 939 4.00000E+00 800 4.00000E+00
33 955 1.64706E+00 744 1.64706E+00
34 864 3.15385E+00 747 3.15385E+00
35 673 0 528 0

Table 5: Results using CNM and DEDCNM using α = 1.1, γ = 2, β = 0.8, and δ = 0.5. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

16

Classic NM Classic NM DEDCNM DEDCNM
fevals min fevals min

1 504 0 458 0
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 1113 0 1068 0
4 652 1.31897E-23 474 2.54013E-23
5 445 0 325 0
6 367 1.24362E+02 367 1.24362E+02
7 737 2.36036E-31 534 2.16804E-31
8 608 8.21488E-03 510 8.21488E-03
9 594 1.12793E-08 509 1.12793E-08
10 6002 8.79459E+01 3538 8.79459E+01
11 1041 3.44571E-07 N.A. 8.43383E-04
12 774 1.15789E-35 612 4.45413E-36
13 865 1.88957E-23 929 1.02610E-24
14 1374 5.72417E-30 1701 7.76535E-31
15 829 3.07506E-04 747 3.07506E-04
16 779 8.58222E+04 731 8.58222E+04
17 1865 5.46489E-05 2260 5.46489E-05
18 4733 1.61056E-31 6001 2.58867E-26
19 3918 4.01377E-02 N.A. 4.63546E-02
20 1323 2.28767E-03 1507 2.28767E-03
21 2304 7.54348E-30 N.A. 3.69759E+00
22 5534 7.61374E-17 N.A. 2.90655E-06
23 4156 2.24998E-05 2190 2.24998E-05
24 3578 9.37629E-06 N.A. 9.57015E-06
25 1899 2.46519E-32 2031 3.18010E-30
26 1505 2.37515E-31 1702 5.96056E-30
27 1150 0 781 0
28 1877 3.01227E-33 1902 5.14283E-33
29 1809 3.27408E-33 1694 1.78149E-33
30 1730 1.08468E-30 1687 6.31089E-30
31 1251 5.42342E-31 1100 4.00593E-30
32 665 4.00000E+00 610 4.00000E+00
33 673 1.64706E+00 537 1.64706E+00
34 650 3.15385E+00 559 3.15385E+00
35 455 0 337 7.70372E-34

Table 6: Results using Classic NM and DEDCNM using α = 1, γ = 2, β = 0.7, and δ = 0.5. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

17

Classic NM Classic NM DEDCNM DEDCNM
fevals min fevals min

1 333 0 364 1.97215E-31
2 N.A. 4.89843E+01 N.A. 4.89843E+01
3 828 0 973 0
4 369 8.78073E-22 367 2.55023E-24
5 243 0 198 0
6 298 1.24362E+02 6001 1.24362E+02
7 382 6.27580E-32 944 5.69854E-31
8 398 8.21488E-03 695 8.21488E-03
9 378 1.12793E-08 563 1.12793E-08
10 2985 8.79459E+01 N.A. 2.45515E+02
11 624 3.44571E-07 684 3.44571E-07
12 449 2.14104E-38 383 1.55712E-35
13 597 1.00450E-23 N.A. 9.17965E-02
14 1225 3.80995E-30 N.A. 5.46428E+00
15 639 3.07506E-04 N.A. 3.09442E-04
16 518 8.58222E+04 N.A. 1.43333E+06
17 1696 5.46489E-05 N.A. 3.74676E-03
18 2715 1.41797E-31 N.A. 6.02672E-03
19 3853 4.01377E-02 N.A. 1.61310E-01
20 1174 2.28767E-03 N.A. 6.82074E-03
21 2209 4.14152E-30 N.A. 2.61018E+00
22 5455 8.54983E-10 N.A. 5.93507E+00
23 1711 2.24998E-05 N.A. 3.11092E-05
24 3850 9.37629E-06 N.A. 9.81221E-06
25 1560 3.93198E-30 N.A. 1.00263E-03
26 1208 8.01187E-32 N.A. 1.03420E-03
27 583 0 410 0
28 1399 1.10278E-31 N.A. 1.90491E-06
29 1387 4.62705E-32 N.A. 1.34520E-05
30 1342 2.85962E-30 N.A. 3.41845E-01
31 771 1.44214E-30 N.A. 2.79549E-05
32 487 4.00000E+00 N.A. 4.00009E+00
33 440 1.64706E+00 368 1.64706E+00
34 430 3.15385E+00 408 3.15385E+00
35 238 3.08149E-33 225 3.08149E-32

Table 7: Results using Classic NM and DEDCNM using α = 1, γ = 2, β = 0.5, and δ = 0.5. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

18

Classic NM Classic NM DENM DENM DEDCNM DEDCNM
fevals min fevals min fevals min

1 333 0 311 0 364 0
2 N.A. 4.89843E+01 N.A. 4.89843E+01 N.A. 4.89843E+01
3 828 0 792 0 973 0
4 369 0 364 0 367 0
5 243 0 243 0 198 0
6 298 1.24362E+02 322 1.24362E+02 6001 1.24362E+02
7 382 0 383 0 944 0
8 398 8.21488E-03 407 8.21488E-03 695 8.21488E-03
9 378 1.12793E-08 378 1.12793E-08 563 1.12793E-08
10 2985 8.79459E+01 3130 8.79459E+01 N.A. 2.45515E+02
11 624 3.44571E-07 623 3.44571E-07 684 3.44571E-07
12 449 0 441 0 383 0
13 597 0 646 0 N.A. 9.17965E-02
14 1225 0 1364 0 N.A. 5.46428E+00
15 639 3.07506E-04 653 3.07506E-04 N.A. 3.09442E-04
16 518 8.58222E+04 665 8.58222E+04 N.A. 1.43333E+06
17 1696 5.46489E-05 2205 5.46489E-05 N.A. 3.74676E-03
18 2715 0 3303 0 N.A. 6.02672E-03
19 3853 4.01377E-02 5666 4.01377E-02 N.A. 1.61310E-01
20 1174 2.28767E-03 1226 2.28767E-03 N.A. 6.82074E-03
21 2209 0 4204 0 N.A. 2.61018E+00
22 5455 0 N.A. 2.32264E-03 N.A. 5.93507E+00
23 1711 2.24998E-05 3401 2.24998E-05 N.A. 3.11092E-05
24 3850 9.37629E-06 5472 9.37629E-06 N.A. 9.81221E-06
25 1560 0 1550 0 N.A. 1.00263E-03
26 1208 0 1163 0 N.A. 1.03420E-03
27 583 0 583 0 410 0
28 1399 0 1562 0 N.A. 1.90491E-06
29 1387 0 1402 0 N.A. 1.34520E-05
30 1342 0 1347 0 N.A. 3.41845E-01
31 771 0 776 0 N.A. 2.79549E-05
32 487 4 476 4 N.A. 4
33 440 1.64706E+00 439 1.64706E+00 368 1.64706E+00
34 430 3.15385E+00 431 3.15385E+00 408 3.15385E+00
35 238 0 238 0 225 0

Table 8: Test results using Classic NM, DENM, and DEDCNM - using default parameters. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

19

Classic NM Classic NM DENM DENM DEDCNM DEDCNM
fevals min fevals min fevals min

1 330 0 345 0 582 0
2 N.A. 4.89843E+01 N.A. 4.89843E+01 N.A. 4.89843E+01
3 884 0 857 0 1249 0
4 425 0 409 0 686 0
5 240 0 244 0 472 0
6 321 1.24362E+02 285 1.24362E+02 353 1.24362E+02
7 417 0 438 0 841 0
8 370 8.21488E-03 400 8.21488E-03 570 8.21488E-03
9 368 1.12793E-08 396 1.12793E-08 551 1.12793E-08
10 2880 8.79459E+01 3153 8.79459E+01 4073 8.79459E+01
11 599 3.44571E-07 633 3.44571E-07 N.A. 1.40000E-03
12 499 0 459 0 837 0
13 551 0 648 0 1092 0
14 657 0 843 0 1958 0
15 619 3.07506E-04 753 3.07506E-04 805 3.07506E-04
16 552 8.58222E+04 587 8.58222E+04 818 8.58222E+04
17 1773 5.46489E-05 2233 5.46489E-05 2633 5.46489E-05
18 2025 0 3335 0 5504 0
19 4326 4.01377E-02 3554 4.01377E-02 6005 4.01377E-02
20 996 2.28767E-03 1287 2.28767E-03 1573 2.28767E-03
21 2297 0 2305 0 6001 0
22 5407 1.45842E-08 5729 0 6001 0
23 1037 2.24998E-05 2442 2.24998E-05 1406 2.24998E-05
24 3608 9.37629E-06 4350 9.37629E-06 4091 9.37629E-06
25 1372 0 1430 0 2239 0
26 971 0 610 0 1698 0
27 562 0 564 0 1021 0
28 1228 0 1304 0 2072 0
29 1373 0 1285 0 2118 0
30 1149 0 1224 0 1926 0
31 716 0 806 0 1344 0
32 473 4 468 4 643 4
33 430 1.64706E+00 432 1.64706E+00 593 1.64706E+00
34 416 3.15385E+00 401 3.15385E+00 559 3.15385E+00
35 258 0 244 0 456 0

Table 9: Test results using Classic NM, DENM, and DEDCNM - using optimal parameters. Number
of function evaluations used (fevals) and minimum objective function value obtained (fmin). N.A.
represents that the function was not solved to a relative error less than 10−6.

20

