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Abstract. The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive,
negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we give various
closed-form formulas for the maximal and minimal values for the rank and inertia of the Hermitian expression A + X,
where A is a given Hermitian matrix and X is a variable Hermitian matrix satisfying the range and rank restrictions
range(X) ⊆ range(B) and rank(X) 6 k. Some expressions of the Hermitian matrix X such that A + X attains the
extremal ranks and inertias are also presented.

Keywords: Hermitian matrix expression; perturbation; rank; inertia; maximization; minimization; Moore–Penrose
inverse; equality; inequality

AMS Classifications: 15A03; 15A09; 15A24; 15B57; 65K10; 65K15

1. Introduction

Consider a Hermitian matrix perturbation problem

A + X, (1.1)

where A is a given Hermitian matrix of order m, and X is a Hermitian perturbation matrix (also called a
Hermitian modification or update matrix). The perturbation matrix X is not totally free, but is often assumed
to take values from some matrix sets or satisfy some restriction on its range, rank, norm, definiteness, etc. In
this paper, we assume that the Hermitian perturbation matrix X in (1.1) satisfies the following range and rank
restrictions

range(X) ⊆ range(B) and rank(X) 6 k, (1.2)

or satisfies the following range, rank and definiteness restrictions

range(X) ⊆ range(B), rank(X) 6 k and ±X > 0, (1.3)

in which B is a given m × n matrix with rank(B) > k, and X > 0 means that X is nonnegative definite.
The range, rank and definiteness restrictions in (1.2) and (1.3) are often used for demonstrating algebraic
properties of the Hermitian perturbation matrix X. If k is fairly small in comparison with the order m or the
rank of B, (1.2) and (1.3) are often called low-rank perturbations (or modifications) to the matrix A; see, e.g.,
[1, 7, 8, 12, 23, 36].

Note that the set inclusion range(X) ⊆ range(B) for a Hermitian matrix X can be alternatively expressed as
X = BY B∗ for some Hermitian matrix Y , where B∗ denotes the conjugate transpose of B. Hence, the Hermitian
perturbation in (1.1) subject to (1.2) or (1.3) can equivalently be formulated as the following Hermitian matrix
expression

p(X) = A + BXB∗ subject to rank(X) 6 k, (1.4)

or

p(X) = A + BXB∗ subject to rank(X) 6 k and ±X > 0, (1.5)

where k 6 rank(B).
The rank and inertia of a Hermitian matrix are two basic concepts in matrix theory for describing the

dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix, which
are well understood and are easy to compute by the well-known elementary or congruent matrix operations.
These two quantities play an essential role in characterizing algebraic properties of Hermitian matrices. In
recent years, the present author showed many new formulas for ranks and inertias for Hermitian matrices
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and their operations, and presented various applications of these formulas in matrix theory and applications;
see [37, 38, 39, 40, 41]. Just like the problems of maximizing/minimizing determinants, traces and norms of
matrices, the problem of maximizing/minimizing the rank and inertia of a matrix expression could be regarded
as a special topic in mathematical optimization theory, although it was not classified clearly in the literature.

In this paper, we consider the problems of maximizing/minimizing the rank and inertia of (1.1) subject
to (1.2) and (1.3), respectively. The max-min optimization problems consist of determining the maximal and
minimal ranks and inertias of a matrix expression, and finding the variable matrices such that the matrix
expression attains the extremal ranks and inertias. In fact, maximizing/minimizing the rank/inertia of a matrix
expression has been a challenging task that arises in studying many optimization problems and their applications,
such as, machine learning, system and control theory, and discrete geometry. In particular, the problems on
maximizing/minimizing the inertia of a matrix with low rank Hermitian perturbations was considered in the
literature, see, e.g., [15, 18]. Just like the classic optimization problems on determinants, traces and norms
of matrices, the problem of maximizing/minimizing the rank/inertia of a matrix expression could be regarded
as a special topic in mathematical optimization theory, although it was not classified clearly in the literature.
Since the variable entries in a matrix expression are often taken as continuous variables from some constraint
sets, while the objective expressions—the rank and inertia of the matrix expression take values from a finite
set of nonnegative integers. Hence, maximizing/minimizing the rank/inertia of a matrix expression can be
regarded as a mixed continuous-discrete optimization problem. This kind of continuous-discrete optimization
problems cannot be solved by various optimization methods for continuous or discrete cases, and there is no
rigorous mathematical theory for studying a general rank/inertia optimization problem. In fact, optimization
and completion problems on rank/inertia of a general matrix expression were regarded as NP-hard except some
special cases that can be solved by pure algebraical methods; see, e.g., [13, 14, 19, 20, 17, 24, 28, 30, 33, 34].

Linear matrix expressions, and their special cases linear matrix equations, have been a class of fundamental
object of study in matrix theory and applications. The linear matrix expression A + BXB∗ is one of the basic
Hermitian matrix expressions that includes an arbitrary matrix. This matrix expression was considered by some
authors in matrix theory and applications. In an earlier book [35], A + BXB∗ was studied and the inequality
A+BXB∗ > 0 was solved by making use of the SVD and generalized inverses of matrices. In two recent papers
[37] and [41], certain expansion formulas for the rank/inertia of A−BXB∗ (see (2.36) and (2.37) below) were
established by making use of generalized inverses of matrices and some Algebraic operations of block matrices,
and a group of closed-form (symbolic) formulas for the extremal rank and inertia of A − BXB∗ with respect
to a variable Hermitian matrix X were derived. The closed-form formulas obtained enable us to derive some
valuable consequences on the nonsingularity and definiteness of the matrix expression A − BXB∗, least-rank
Hermitian solution of the matrix equation BXB∗ = A; as well as the existence of Hermitian solution of the
matrix equation BXB∗ = A. In addition, the closed-form formulas can be used to derive upper and lower
bounds for the ranks and inertias of more complicated Hermitian matrix expressions, as well as to solve some
rank/inertia completion problems of partial Hermitian matrices. As a continuation, we study in this paper the
problems of maximizing and minimizing the rank and inertia of A + BXB∗ in (1.4) and (1.5).

Throughout this paper, Cm×n and Cm
H stand for the sets of all m × n complex matrices and all m × m

complex Hermitian matrices, respectively; in particular, let

Cm
H,k = {X ∈ Cm

H | rank(X) 6 k 6 m }.

When k = m, Cm
H,k = Cm

H . If k = 1 or 2, then Cm
H,k denotes the collection of all Hermitian matrices with

rank less than 1 or 2. The symbols A∗, r(A) and R(A) and stand for the conjugate transpose, rank and range
(column space) of a matrix A ∈ Cm×n, respectively; Im denotes the identity matrix of order m; [A, B ] denotes
a row block matrix consisting of A and B. Two Hermitian matrices A and B of the same size are said to be
congruent if there is an invertible matrix S such that SAS∗ = B. We write A > 0 (or A > 0) if A is Hermitian
positive (or nonnegative) definite. Two Hermitian matrices A and B of the same size are said to satisfy the
inequality A > B (or A > B) in the Löwner partial ordering if A−B is positive (or nonnegative) definite. The
Moore–Penrose inverse of A ∈ Cm×n, denoted by A†, is defined to be the unique solution X of the four matrix
equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

Further, the symbols EA and FA stand for the two orthogonal projectors EA = Im−AA† and FA = In−A†A onto
the null spaces A∗ and A, respectively. A well-known property of the Moore–Penrose inverse is (A†)∗ = (A∗)†.
In addition, AA† = A†A if A = A∗. We shall repeatedly use them in the latter part of this paper. Results on
the Moore–Penrose inverse can be found, e.g., in [3, 4, 21].

When considering a Hermitian matrix, we are usually concerned with distributions of the eigenvalues of the
matrix, as well as its definiteness. Recall that the eigenvalues of a Hermitian matrix A ∈ Cm

H are all real, and
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the inertia of A is defined to be the triplet

In(A) = { i+(A), i−(A), i0(A) },

where i+(A), i−(A) and i0(A) are the numbers of the positive, negative and zero eigenvalues of A counted
with multiplicities, respectively. i+(A) and i−(A) are are called the positive and negative index of inertia,
respectively, and both of which are usually called the partial inertia (see, e.g., [2]). For a Hermitian matrix A,
we have r(A) = i+(A) + i−(A).

Note that the inertia of a Hermitian matrix describes the sign distribution of the real eigenvalues of the
matrix. Hence, it can be used to characterize definiteness of the matrix. The following results are obvious from
the definitions of the rank and inertia of a matrix.

Lemma 1.1. Let A ∈ Cm×m, B ∈ Cm×n, and C ∈ Cm
H . Then,

(a) A is nonsingular if and only if r(A) = m.

(b) B = 0 if and only if r(B) = 0.

(c) C > 0 (C < 0) if and only if i+(C) = m (i−(C) = m).
(d) C > 0 (C 6 0) if and only if i−(C) = 0 (i+(C) = 0).

Lemma 1.2. Let S be a set consisting of (square) matrices over Cm×n, and let H be a set consisting of Her-
mitian matrices over Cm

H . Then,

(a) S has a nonsingular matrix if and only if max
X∈S

r(X) = m.

(b) Any X ∈ S is nonsingular if and only if min
X∈S

r(X) = m.

(c) 0 ∈ S if and only if min
X∈S

r(X) = 0.

(d) S = {0} if and only if max
X∈S

r(X) = 0.

(e) H has a matrix X > 0 (X < 0) if and only if max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(f) Any X ∈ H satisfies X > 0 (X < 0) if and only if min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(g) H has a matrix X > 0 (X 6 0) if and only if min
X∈H

i−(X) = 0
(

min
X∈H

i+(X) = 0
)

.

(h) Any X ∈ H satisfies X > 0 (X 6 0) if and only if max
X∈H

i−(X) = 0
(

max
X∈H

i+(X) = 0
)

.

These two lemmas show that once certain formulas for the exact bounds of rank and partial inertia of
a Hermitian matrix are derived, we can use them to characterize equalities and inequalities for the Hermitian
matrix. This basic algebraic method, referred to as the matrix rank/inertia method, is available, as demonstrated
below, for studying various Hermitian matrix expressions that involve generalized inverses of matrices and
variable matrices. It has been realized that computing the rank/inertia of a matrix a hard problem in linear
algebra and no method is known to get the inertia of a matrix exactly in general; see, e.g., [19, 20]. However, it
is not hard to establish closed-form formulas for the extremal ranks/inertias of Hermitian matrices under some
simple cases; see the author’s recent paper [25, 26, 37, 38, 39, 41] and the results in Sections 2 and 3.

Some well-known equalities for ranks and partial inertias of matrices are given in the following lemmas.

Lemma 1.3 ([29]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k be given. Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.6)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC). (1.7)

Lemma 1.4. Let A ∈ Cm
H , B ∈ Cn

H, Q ∈ Cm×n, and assume that P ∈ Cm×m is nonsingular. Then

i±(PAP ∗) = i±(A), (1.8)

i±(λA) =
{

i±(A) if λ > 0
i∓(A) if λ < 0 . (1.9)

Eq. (1.8) is the well-known Sylvester’s law of inertia. Eq. (1.9) is obvious from the definition of inertia.
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Lemma 1.5. Let A ∈ Cm
H , B ∈ Cn

H, and P, Q ∈ Cm×n. Then,

i±(P ∗AP ) 6 i±(A). (1.10)

In particular,

(a) r(P ∗AP ) = r(A) if and only if i+(P ∗AP ) = i+(A) and i−(P ∗AP ) = i−(A).
(b) If P ∗AP = B and QBQ∗ = A, then i±(A) = i±(B) and r(A) = r(B).

The two inequalities in (1.10) were given in [31]. Lemma 1.5(a) and (b) were given in [37, Lemma 1.6].

Lemma 1.6. Let A, B ∈ Cm
H . Then

r( A + B ) 6 r(A) + r(B), (1.11)
i±( A + B ) 6 i±(A) + i±(B), (1.12)
r( A + B ) > r(A)− r(B), (1.13)

i±( A + B ) > i±(A)− i∓(B). (1.14)

In particular, if B > 0,

r( A + B ) > i+(A + B ) ≥ i+(A), (1.15)
r( A−B ) > i−( A−B ) ≥ i−(A). (1.16)

Eqs. (1.11) is a well-known rank inequality in elementary linear algebra. Eq. (1.12) was given in [15, 32].
Applying (1.9), (1.11) and (1.12) to A = (A+B )+ (−B) yields (1.13) and (1.14). Eqs. (1.15) and (1.16) follow
from (1.9) and (1.14). More inequalities for the inertias of sums of Hermitian matrices can be found in [11],
[37].

2. Extremal ranks and inertias of Hermitian expressions with rank restrictions

We first solve the rank and inertia optimization problem on (1.1) subject to r(X) 6 k.

Lemma 2.1. Let A ∈ Cm
H be given, X ∈ Cm

H,k a variable matrix. Then,

max
X∈Cm

H,k

r( A + X ) = min{m, r(A) + k }, (2.1)

min
X∈Cm

H,k

r( A + X ) = max { 0, r(A)− k} , (2.2)

max
X∈Cm

H,k

i+( A + X ) = min {m, i+(A) + k } , (2.3)

min
X∈Cm

H,k

i+( A + X ) = max { 0, i+(A)− k} , (2.4)

max
X∈Cm

H,k

i−( A + X ) = min {m, i−(A) + k} , (2.5)

min
X∈Cm

H,k

i−( A + X ) = max{ 0, i−(A)− k }. (2.6)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of certain
operations A and B under the Hermitian congruence. Further,

(a) For any integer t1 between the two quantities on the right-hand sides of (2.1) and (2.2), there exists an
X ∈ Cm×m

H with r(X) 6 k such that r( A + X ) = t1.

(b) For any integer t2 between the two quantities on the right-hand sides of (2.3) and (2.4), there exists an
X ∈ Cm×m

H with r(X) 6 k such that i+( A + X ) = t2.

(c) For any integer t3 between the two quantities on the right-hand sides of (2.5) and (2.6), there exists an
X ∈ Cm×m

H with r(X) 6 k such that i−( A + X ) = t3.

Proof Note that r( A + X ) 6 m always holds. Hence, it is easily derived from (1.9) and (1.12) that

r( A + X ) 6 min{m, r(A) + r(X) } 6 min{m, r(A) + k },
i+( A + X ) 6 min{m, i+(A) + i+(X) } 6 min {m, i+(A) + k } ,

i−( A + X ) 6 min{m, i−(A) + i+(X) } 6 min {m, i−(A) + k } .
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Hence, the right-hands of (2.1), (2.3) and (2.5) are upper bounds for the rank and partial inertia of A + X.
Note from (1.13)–(1.16) that

r( A + X ) = r[A− (−X) ] > max { 0, r(A)− r(−X)} > max { 0, r(A)− k} ,

i+( A + X ) = i+[A− (−X) ] > max { 0, i+(A)− i+(−X)} > max { 0, i+(A)− k} ,

i−( A + X ) = i−[A− (−X) ] > max { 0, i−(A)− i−(−X)} > max { 0, i−(A)− k} .

Hence, the right-hands of (2.2), (2.4) and (2.6) are lower bounds for the ranks and partial inertias of A + X.
We next show that there exist Xs such that the rank/inertia of A + X attain the upper/lower bounds on the
right-hands of (2.1)–(2.6), so that the upper/lower bounds are exactly the extremal rank and inertia of A + X.
Assume that the canonical form of the Hermitian A under the Hermitian congruence is

A = UDU∗, D = diag{ Ip, −Iq, 0 }, (2.7)

where p = i+(A), q = i−(A), and U ∈ Cm×m is a nonsingular matrix. Consequently,

A + X = UDU∗ + X = U
[
D + U−1X(U−1)∗

]
U∗. (2.8)

Applying (1.8) to (2.8) gives

r( A + X ) = r( D + Y ), i+( A + X ) = i+( D + Y ), i−( A + X ) = i−( D + Y ), (2.9)

where Y = U−1X(U−1)∗ ∈ Cm×m satisfying r(Y ) 6 k. Without loss of generality, we assume that Y is a real
diagonal matrix. Hence, the sum D + Y is a real diagonal matrix as well.

Set Y = diag{0, 2Ik}. Then, the first and second equalities in (2.9) become

r(A + X ) = r (D + diag{0, 2Ik}) = min{m, p + q + k } = min{m, r(A) + k }, (2.10)
i+( A + X ) = r (D + diag{0, 2Ik}) = min{m, p + k } = min{m, i+(A) + k }, (2.11)

establishing (2.1) and (2.3).
Set

Y =

 diag{−Ik, 0 } for k 6 p
diag{−Ip, Ik−p, 0 } for p < k 6 p + q
−D for k > p + q.

Then, the first equality in (2.9) becomes

r( A + X ) = r( D + Y ) =
{

p + q − k for k 6 p + q
0 for k > p + q

= max{ 0, p + q − k } = max{ 0, r(A)− k }, (2.12)

establishing (2.2). For any integer t1 between the two quantities on the right-hand sides of (2.10) and (2.12),
we can definitely choose the real diagonal matrix Y with r(Y ) 6 k such that the rank of the diagonal matrix
D + Y is r( D + Y ) = t1, as asserted in (a).

Set Y = diag{−Ik, 0 }. Then, the second equalities in (2.9) become

i+(A + X ) = i+( D + Y ) =
{

p− k for k 6 p
0 for k > p

= max{ 0, p− k } = min{ 0, i+(A)− k }, (2.13)

establishing (2.4). For any integer t2 between the two quantities on the right-hand sides of (2.11) and (2.13),
we can definitely choose the real diagonal matrix Y with r(Y ) 6 k such that i+( D + Y ) = t2, as asserted in
(b).

Set

Y =
{

diag{−2Ik, 0 } for k 6 p
diag{−2Ip, 0, Ik−p } for k > p.

Then, the third equality in (2.9) becomes

i−( A + X ) = i−( D + Y ) =
{

q + k for k 6 m− q
m for k > m− q

= max{m, q + k } = min{m, i−(A) + k }, (2.14)

establishing (2.5).
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Set Y = diag{ 0, Ik, 0 }. Then, the third equality in (2.9) becomes

i−( A + X ) = i−( D + Y ) =
{

q − k for k 6 q
0 for k > q

= max{ 0, q − k } = min{ 0, i−(A)− k }, (2.15)

establishing (2.6). For any integer t3 between the two quantities on the right-hand sides of (2.14) and (2.15),
we can definitely choose the real diagonal matrix Y with r(Y ) 6 k such that i+( D + Y ) = t3, as asserted in
(c). �

A useful consequence of Lemma 2.1 is given below, which will be used to derive the extremal ranks and
inertias of (1.4).

Corollary 2.2. Let A ∈ Cn
H and B ∈ Cn×m be given with R(A) ⊆ R(B), and let X ∈ Cm

H,k be a variable
matrix with k 6 r(B). Then,

max
X∈Cm

H,k

r(A + BXB∗ ) = min{ r(B), r(A) + k }, (2.16)

min
X∈Cm

H,k

r(A + BXB∗ ) = max { 0, r(A)− k} , (2.17)

max
X∈Cm

H,k

i+(A + BXB∗ ) = min { r(B), i+(A) + k } , (2.18)

min
X∈Cm

H,k

i+(A + BXB∗ ) = max { 0, i+(A)− k} , (2.19)

max
X∈Cm

H,k

i−(A + BXB∗ ) = min { r(B), i−(A) + k} , (2.20)

min
X∈Cm

H,k

i−(A + BXB∗ ) = max{ 0, i−(A)− k }. (2.21)

In particular, if k > r(B), then

max
X∈Cm

H,k

r( A + BXB∗ ) = r(B), (2.22)

min
X∈Cm

H,k

r( A + BXB∗ ) = 0, (2.23)

max
X∈Cm

H,k

i+( A + BXB∗ ) = r(B), (2.24)

min
X∈Cm

H,k

i+( A + BXB∗ ) = 0, (2.25)

max
X∈Cm

H,k

i−( A + BXB∗ ) = r(B), (2.26)

min
X∈Cm

H,k

i−( A + BXB∗ ) = 0. (2.27)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of certain
operations A and B under the Hermitian congruence. Further,

(a) For any integer t1 between the two quantities on the right-hand sides of (2.16) and (2.17), there exists an
X ∈ Cm

H,k such that r( A + BXB∗ ) = t1.

(b) For any integer t2 between the two quantities on the right-hand sides of (2.18) and (2.19), there exists an
X ∈ Cm

H,k such that i+( A + BXB∗ ) = t2.

(c) For any integer t3 between the two quantities on the right-hand sides of (2.20) and (2.21), there exists an
X ∈ Cm

H,k such that i−( A + BXB∗ ) = t3.

Proof Note that R(A) ⊆ R(B) is equivalent to A = BGB∗ for some matrix G ∈ Cm
H . Also, assume that the

rank decomposition of B is B = PQ, where P ∈ Cn×s, Q ∈ Cs×m and r(B) = r(P ) = r(Q) = s. Consequently,

A + BXB∗ = BGB∗ + BXB∗ = PQGQ∗P ∗ + PQXQ∗P ∗ = P ( QGQ∗ + Y )P ∗, (2.28)

where Y = QXQ∗ ∈ Cs
H,k with r(Y ) = r(QXQ∗) 6 k 6 s. Applying Lemma 1.5 to (2.28) gives

r( A + BXB∗ ) = r( QGQ∗ + Y ), i±( A + BXB∗ ) = i±( QGQ∗ + Y ). (2.29)
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In this case, applying Lemma 2.1 to the right-hand sides of the equalities in (2.29) gives

max
Y ∈Cs

H,k

r( QGQ∗ + Y ) = min{ s, r(QGQ∗) + k }, (2.30)

min
Y ∈Cs

H,k

r( QGQ∗ + Y ) = max { 0, r(QGQ∗)− k} , (2.31)

max
Y ∈Cs

H,k

i+( QGQ∗ + Y ) = min { s, i+(QGQ∗) + k } , (2.32)

min
Y ∈Cs

H,k

i+( QGQ∗ + Y ) = max { 0, i+(QGQ∗)− k} , (2.33)

max
Y ∈Cs

H,k

i−( QGQ∗ + Y ) = max { s, i−(QGQ∗) + k} , (2.34)

min
Y ∈Cs

H,k

i−( QGQ∗ + Y ) = max{ 0, i−(QGQ∗)− k }. (2.35)

Substituting s = r(B), r(QGQ∗) = r(A) and i±(QGQ∗) = i±(A) into (2.30)–(2.35) yields (2.16)–(2.21). Set
k = r(B) in (2.16)–(2.21) yields (2.22)–(2.27). Results (a)–(c) follow from (2.30)–(2.35) and Lemma 2.1(a)–(c).
�

The proof of Corollary 2.2 also gives the construction of the Hermitian matrices Xs that satisfy (2.16)–(2.21).
It was shown in [37, 41] that for any Hermitian matrix expression A + BXB∗, the following equalities hold

r(A + BXB∗ ) = 2r[A, B ]− r(M) + r[FS1( S∗M†S −X )FS1 ], (2.36)

i±(A + BXB∗ ) = r[A, B ]− i∓(M) + i∓[FS1(S∗M†S −X )FS1 ], (2.37)

where

M =
[

A B
B∗ 0

]
, S =

[
0
In

]
, S1 = S −MM†S, (2.38)

where the matrix expression FS1( S∗M†S − X )FS1 on the right-hand sides of (2.36) and (2.37) is Hermitian.
These expansion formulas for rank and inertia show that the extremal ranks and inertias of A + BXB∗ can be
determined through those of the Hermitian matrix expression FS1( S∗M†S − X )FS1 . Applying Corollary 2.2
to the right-hand sides of (2.36) and (2.37), we obtain the main result of this section.

Theorem 2.3. Let A ∈ Cm
H and B ∈ Cm×n be given, M be as given in (2.38), and let X ∈ Cn

H,k be a variable
matrix.

(a) If k 6 r(M)− r[A, B ], then,

max
X∈Cn

H,k

r( A + BXB∗ ) = min{ r[A, B ], r(A) + k }, (2.39)

min
X∈Cn

H,k

r( A + BXB∗ ) = max { 2r[A, B ]− r(M), r(A)− k} , (2.40)

max
X∈Cn

H,k

i+( A + BXB∗ ) = min { i+(M), i+(A) + k } , (2.41)

min
X∈Cn

H,k

i+( A + BXB∗ ) = max { r[A, B ]− i−(M), i+(A)− k} , (2.42)

max
X∈Cn

H,k

i−( A + BXB∗ ) = min { i−(M), i−(A) + k } , (2.43)

min
X∈Cn

H,k

i−( A + BXB∗ ) = max{ r[A, B ]− i+(M), i−(A)− k }. (2.44)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of of
certain operations A and B under the Hermitian congruence. Further,
(i) For any integer t1 between the two quantities on the right-hand sides of (2.39) and (2.40), there exists

an X ∈ Cn
H,k such that r(A + BXB∗ ) = t1.

(ii) For any integer t2 between the two quantities on the right-hand sides of (2.41) and (2.42), there exists
an X ∈ Cn

H,k such that i+( A + BXB∗ ) = t2.
(iii) For any integer t3 between the two quantities on the right-hand sides of (2.43) and (2.44), there exists

an X ∈ Cn
H,k such that i−( A + BXB∗ ) = t3.

In particular,
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(iv) There exists an X ∈ Cn
H,k such that A + BXB∗ is nonsingular if and only if r[A, B ] = m and

r(A) > m− k.

(v) There exists an X ∈ Cn
H,k such that A + BXB∗ = 0 if and only if r(A) 6 k and R(A) ⊆ R(B).

(vi) There exists an X ∈ Cn
H,k such that A + BXB∗ > 0 if and only if i+(M) > m and i+(A) > m− k.

(vii) There exists an X ∈ Cn
H,k such that A + BXB∗ > 0 if and only if i−(M) > r[A, B ] and i+(A) 6 k.

(viii) There exists an X ∈ Cn
H,k such that A + BXB∗ < 0 if and only if i−(M) > m and i−(A) > m− k.

(ix) There exists an X ∈ Cn
H,k such that A + BXB∗ 6 0 if and only if i+(M) > r[A, B ] and i−(A) 6 k.

(b) If k > r(M)− r[A, B ], then

max
X∈Cn

H,k

r( A + BXB∗ ) = r[A, B ], (2.45)

min
X∈Cn

H,k

r( A + BXB∗ ) = 2r[A, B ]− r(M), (2.46)

max
X∈Cn

H,k

i+( A + BXB∗ ) = i+(M), (2.47)

min
X∈Cn

H,k

i+( A + BXB∗ ) = r[A, B ]− i−(M), (2.48)

max
X∈Cn

H,k

i−( A + BXB∗ ) = i−(M), (2.49)

min
X∈Cn

H,k

i−( A + BXB∗ ) = r[A, B ]− i+(M). (2.50)

Proof Eqs. (2.36) and (2.37) imply that

max
X∈Cn

H,k

r( A + BXB∗ ) = 2r[A, B ]− r(M) + max
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ], (2.51)

min
X∈Cn

H,k

r( A + BXB∗ ) = 2r[A, B ]− r(M) + min
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ], (2.52)

max
X∈Cn

H,k

i±( A + BXB∗ ) = r[A, B ]− i∓(M) + max
X∈Cn

H,k

i∓[FS1( S∗M†S −X )FS1 ], (2.53)

min
X∈Cn

H,k

i±( A + BXB∗ ) = r[A, B ]− i∓(M) + min
X∈Cn

H,k

i∓[FS1(S∗M†S −X )FS1 ]. (2.54)

It follows from (1.6) and (1.7) that

r(FS1) = n− r(EMS) = n + r(M)− r[M, S ] = r(M)− r[A, B ]. (2.55)

Under k 6 r(FS1) = r(M)− r[A, B ], applying Corollary 2.2 to the right-hand sides of (2.51)–(2.54) yields the
following results

max
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = min{ r(FS1), r(FS1S
∗M†SFS1) + k }, (2.56)

min
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = max
{

0, r(FS1S
∗M†SFS1)− k

}
, (2.57)

max
X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = min
{

r(FS1), i−(FS1S
∗M†SFS1) + k

}
, (2.58)

min
X∈Cn

H,k

i−[FS1(S∗M†S −X )FS1 ] = max
{

0, i−(FS1S
∗M†SFS1)− k

}
, (2.59)

max
X∈Cn

H,k

i+[FS1(S∗M†S −X )FS1 ] = min
{

r(FS1), i+(FS1S
∗M†SFS1) + k

}
, (2.60)

min
X∈Cn

H,k

i+[FS1(S∗M†S −X )FS1 ] = max{ 0, i+(FS1S
∗M†SFS1)− k }. (2.61)

Setting X = 0 in (2.36) and (2.37) yields

r[FS1(S
∗M†S)FS1 ] = r(A)− 2r[A, B ] + r(M), (2.62)

i±[FS1(S
∗M†S)FS1 ] = i∓(A)− r[A, B ] + i±(M). (2.63)

Substituting (2.55)–(2.63) into (2.51)–(2.54) and simplifying yields (2.39)–(2.44). Results (i)–(iii) in (a) follow
from (2.56)–(2.61) and Lemma 2.1(a)–(c). Results (iv)–(ix) in (a) follow from (2.39)–(2.44) and Lemma 1.2.
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Under k > r(FS1) = r(M)− r[A, B ], applying (2.22)–(2.27) to the right-hand sides of (2.51)–(2.54) yields
the following results

max
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = r(FS1), min
X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = 0, (2.64)

max
X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = r(FS1), min
X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = 0, (2.65)

max
X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = r(FS1), min
X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = 0. (2.66)

Substituting (2.64)–(2.66) into (2.51)–(2.54) and simplifying, we obtain (2.45)–(2.50). �

Theorem 2.3 gives a group of explicit closed-form formulas for the extremal ranks and inertias of the Her-
mitian matrix expression in (1.4). As demonstrated in (i)–(vi) of Theorem 2.3(a), the closed-form formulas can
be used to derive some basic algebraic properties of the matrix expressions, such as, necessary and sufficient
conditions for A + BXB∗ to be nonsingular or definite, as well as necessary and sufficient conditions for the
matrix equation BXB∗ = −A to have positive (nonnegative definite) solutions.

For convenience, we call the matrix X ∈ Cn
H,k satisfying (2.40) the rank-constrained least-rank solution of the

matrix equation BXB∗ = −A; the matrix X ∈ Cn
H,k satisfying (2.42) the rank-constrained least-positive-inertia

solution of the matrix equation BXB∗ = −A; the matrix X ∈ Cn
H,k satisfying (2.44) the rank-constrained

least-negative-inertia solution of the matrix equation BXB∗ = −A. These solutions are not necessarily unique.
Therefore, it would be of interest to further choose such solution X with minimal norm.

From Theorem 2.3, we obtain the following results on the extremal ranks and inertias of (1.1) subject to
(1.2).

Theorem 2.4. Let A ∈ Cm×m
H and B ∈ Cm×n be given, and let M be as given in (2.38). Also, denote

S = {X ∈ Cn
H,k | R(X) ⊆ R(B) and k 6 r(B)}. (2.67)

Then,

max
X∈S

r(A + X ) = min{ r[A, B ], r(A) + k }, (2.68)

min
X∈S

r(A + X ) = max { 2r[A, B ]− r(M), r(A)− k} , (2.69)

max
X∈S

i+( A + X ) = min { i+(M), i+(A) + k } , (2.70)

min
X∈S

i+( A + X ) = max { r[A, B ]− i−(M), i+(A)− k} , (2.71)

max
X∈S

i−( A + X ) = min { i−(M), i−(A) + k } , (2.72)

min
X∈S

i−( A + X ) = max{ r[A, B ]− i+(M), i−(A)− k }. (2.73)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of certain
operations A and B under the Hermitian congruence. Further,

(i) For any integer t1 between the two quantities on the right-hand sides of (2.68) and (2.69), there exists an
X ∈ Cm

H,k such that r( A + X ) = t1.

(ii) For any integer t2 between the two quantities on the right-hand sides of (2.70) and (2.71), there exists an
X ∈ Cm

H,k such that i+(A + X ) = t2.

(iii) For any integer t3 between the two quantities on the right-hand sides of (2.72) and (2.73), there exists an
X ∈ Cm

H,k such that i−( A + X ) = t3.

Theorem 2.5. Let A ∈ Cm×m
H and B ∈ Cm×n be given, and let M and S be as given in (2.38) and (2.67).

Then,

max { 2r[A, B ]− r(M)− r(A), −k} 6 r( A + X )− r(A) 6 min{ r[A, B ]− r(A), k }, (2.74)
max { r[A, B ]− i−(M)− i+(A), −k} 6 i+( A + X )− i+(A) 6 min { i+(M)− i+(A), k } , (2.75)
max{ r[A, B ]− i+(M)− i−(A), −k } 6 i−( A + X )− i−(A) 6 min { i−(M)− i−(A), k } (2.76)

hold for any X ∈ S. In particular, the equalities in (2.74)–(2.76) hold for some X ∈ S.
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3. Extremal ranks and inertias of Hermitian expressions with rank and definiteness restrictions

As a special case of (1.3), we first solve rank and inertia optimization problems on A±X subject to r(X) 6 k
and X > 0.

Lemma 3.1. Let A ∈ Cm
H be given, and let X ∈ Cm

H,k be a variable matrix. Then,

max
06X∈Cm

H,k

r( A + X ) = min{m, r(A) + k }, (3.1)

min
06X∈Cm

H,k

r( A + X ) = max { i+(A), r(A)− k} , (3.2)

max
06X∈Cm

H,k

i+( A + X ) = min {m, i+(A) + k } , (3.3)

min
06X∈Cm

H,k

i+( A + X ) = i+(A), (3.4)

max
06X∈Cm

H,k

i−( A + X ) = i−(A), (3.5)

min
06X∈Cm

H,k

i−( A + X ) = max{ 0, i−(A)− k }, (3.6)

and

max
06X∈Cm

H,k

r(A−X ) = min{m, r(A) + k }, (3.7)

min
06X∈Cm

H,k

r(A−X ) = max { i−(A), r(A)− k} , (3.8)

max
06X∈Cm

H,k

i+(A−X ) = i+(A), (3.9)

min
06X∈Cm

H,k

i+(A−X ) = max{ 0, i+(A)− k }, (3.10)

max
06X∈Cm

H,k

i−(A−X ) = min {m, i−(A) + k } , (3.11)

min
06X∈Cm

H,k

i−(A−X ) = i−(A). (3.12)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of A under
the Hermitian congruence. Further,

(a) For any integer t1 between the two quantities on the right-hand sides of (3.1) and (3.2), there exists a
0 6 X ∈ Cm

H,k such that r( A + X ) = t1.
(b) For any integer t2 between the two quantities on the right-hand sides of (3.3) and (3.4), there exists a

0 6 X ∈ Cm
H,k such that i+( A + X ) = t2.

(c) For any integer t3 between the two quantities on the right-hand sides of (3.5) and (3.6), there exists a
0 6 X ∈ Cm

H,k such that i−(A + X ) = t3.
(d) For any integer t4 between the two quantities on the right-hand sides of (3.7) and (3.8), there exists a

0 6 X ∈ Cm
H,k such that r( A + X ) = t4.

(e) For any integer t5 between the two quantities on the right-hand sides of (3.9) and (3.10), there exists a
0 6 X ∈ Cm

H,k such that i+( A + X ) = t5.
(f) For any integer t6 between the two quantities on the right-hand sides of (3.11) and (3.12), there exists an

0 6 X ∈ Cm
H,k such that i−(A + X ) = t6.

Proof Note that for any 0 6 X ∈ Cm
H,k,

r( A±X ) 6 m, r(±X) 6 k, i+(X) = r(X), i−(X) = 0, i+(−X) = 0, i−(−X) = r(X) (3.13)

always hold. Hence, it is easily derived from (1.11) and (1.12) that for any 0 6 X ∈ Cm
H,k,

r( A + X ) 6 min{m, r(A) + r(X) } 6 min{m, r(A) + k },
i+( A + X ) 6 min{m, i+(A) + i+(X) } 6 min {m, i+(A) + k } ,

i−( A + X ) 6 i−(A) + i−(X) = i−(A),
r( A−X ) 6 min{m, r(A) + r(−X) } 6 min{m, r(A) + k },

i+( A−X ) 6 i+(A) + i+(−X) = i+(A),
i−( A−X ) 6 min {m, i−(A) + i−(−X) } 6 min {m, i−(A) + k } .
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Hence, the right-hand sides of (3.1), (3.3), (3.5), (3.7), (3.9) and (3.11) are upper bounds for the ranks and
partial inertias of the matrix expressions on the left-hand sides. Note from (1.13)–(1.16) and (3.13) that

r(A + X ) > max { i+(A), r(A)− r(X)} > max { r(A)− k, i+(A)} ,

i+(A + X ) > i+(A),
i−(A + X ) > max{ 0, i−(A)− i−(−X) } > max{ 0, i−(A)− k },
r(A−X ) > max { r(A)− r(X), i−(A)} > max{ i−(A), r(A)− k },

i+(A−X ) > max{ 0, i+(A)− i+(X) } > max{ 0, i+(A)− k },
i−(A−X ) > i−(A).

Hence, the right-hand sides of (3.2), (3.4), (3.6), (3.8), (3.10) and (3.12) are lower bounds for the ranks and
partial inertias of the matrix expressions on the left-hand sides. We next show that there exist Xs such that the
ranks and partial inertias of the corresponding matrix expressions A ± X attain the upper and lower bounds
on the right-hand sides of (3.1)–(3.12), so that the upper and lower bounds are exactly the extremal ranks and
inertias of A±X.

Assume that the canonical form of the Hermitian A under the Hermitian congruence is

A = UDU∗, D = diag{ Ip, −Iq, 0 }, (3.14)

where p = i+(A), q = i−(A), and U ∈ Cm×m is a nonsingular matrix. Consequently, for any 0 6 X ∈ Cm
H,k

A±X = UDU∗ ±X = U
[
D ± U−1X(U−1)∗

]
U∗, (3.15)

where 0 6 Y = U−1X(U−1)∗ ∈ Cm
H,k. Without loss of generality, we assume that Y is a real diagonal matrix.

Hence, the sum D + Y is a real diagonal matrix as well. Applying (1.8) to (3.15) gives

r( A + X ) = r(D + Y ), r( A−X ) = r(D − Y ), (3.16)
i+( A + X ) = i+( D + Y ), i−(A + X ) = i−(D + Y ), (3.17)
i+( A−X ) = i+( D − Y ), i−(A−X ) = i−(D − Y ). (3.18)

Set Y = diag{ 0, 2Ik }. Then, Y > 0, and the first equalities in (3.16) and (3.17) become

r( A + X ) = r(D + diag{ 0, 2Ik }) = min{m, p + q + k } = min{m, r(A) + k }, (3.19)
i+( A + X ) = i+(D + diag{ 0, 2Ik }) = min{m, p + k } = min{m, i+(A) + k }, (3.20)

establishing (3.1) and (3.3).
Set

Y =
{

diag{ 0, Iq, 0 } for k > q
diag{ 0, Ik, 0 } for k < q.

Then, Y > 0, and the first equality in (3.16) and the second equality in (3.17) become

r(A + X ) = r( D + Y ) =
{

p for k > q
p + q − k for k < q

= max{ p, p + q − k }

= max{ i+(A), r(A)− k }, (3.21)

i−( A + X ) = i−( D + Y ) =
{

0 for k > q
q − k for k < q

= max{ 0, q − k }

= max{ 0, i−(A)− k }, (3.22)

establishing (3.2) and (3.6).
Set Y = 0 in (3.17) yields (3.4) and (3.5).
Set Y = diag{ 0, 2Ik }. Then, Y > 0 and the second equality in (3.16) becomes

r( A−X ) = r (D − diag{ 0, 2Ik }) = min{m, p + q + k } = min{m, r(A) + k },

establishing (3.7).
Set

Y =
{

diag{ Ip, 0 } for k > p
diag{ Ik, 0 } for k < p.

11



Then, Y > 0, and the second equality in (3.16) and the first equality in (3.18) become

r( A−X ) = r(D − Y ) =
{

q for k > p
q + p− k for k < p

= max{ q, p + q − k }

= max{ i−(A), r(A)− k }, (3.23)

i+( A−X ) = r( D − Y ) =
{

0 for p 6 k
p− k for p > k

= max{ 0, p− k }

= min{ 0, i+(A)− k }, (3.24)

establishing (3.8) and (3.10).
Set

Y =
{

diag{ 2Ip, 0, Ik−p } for k > p
diag{ 2Ik, 0, Ip−k } for k < p.

Then, Y > 0, and the second equality in (3.18) becomes

i−(A−X ) = i−(D − Y ) =
{

m for k > p
q + k for k < p

= min{m, q + k } = min{m, i−(A) + k }, (3.25)

establishing (3.11). Set Y = 0 in (3.18) yields (3.9) and (3.12). Results (a)–(g) follow from the similar arguments
for establishing Lemma 2.1(a)–(c). �

A few special cased of Lemma 3.1 are worth mentioning. For instance, setting k = 1 in Lemma 3.1 yields
the following consequence.

Corollary 3.2. Let A ∈ Cm
H be given, and α ∈ Cm×1 be a variable vector. Then,

max
α∈Cm×1

r( A + αα∗ ) = min{m, r(A) + 1 }, (3.26)

min
α∈Cm×1

r(A + αα∗ ) = max { r(A)− 1, i+(A)} , (3.27)

max
α∈Cm×1

i+(A + αα∗ ) = min {m, i+(A) + 1 } , (3.28)

min
α∈Cm×1

i+(A + αα∗ ) = i+(A), (3.29)

max
α∈Cm×1

i−(A + αα∗ ) = i−(A), (3.30)

min
α∈Cm×1

i−(A + αα∗ ) = max{ 0, i−(A)− 1 }, (3.31)

and

max
α∈Cm×1

r( A− αα∗ ) = min{m, r(A) + 1 }, (3.32)

min
α∈Cm×1

r( A− αα∗ ) = max { i−(A), r(A)− 1} , (3.33)

max
α∈Cm×1

i+( A− αα∗ ) = i+(A), (3.34)

min
α∈Cm×1

i+( A− αα∗ ) = max{ 0, i+(A)− 1 }, (3.35)

max
α∈Cm×1

i−( A− αα∗ ) = min {m, i−(A) + 1 } , (3.36)

min
α∈Cm×1

i−( A− αα∗ ) = i−(A). (3.37)

Some previous work on the inertia of A + αα∗ can be found in [15]. Another useful consequence of Lemma
3.1 is given below, which will be used to derive the extremal ranks and inertias of Hermitian expressions in
(1.5).

Corollary 3.3. Let A ∈ Cn
H, and B ∈ Cn×m be given given with R(A) ⊆ R(B), and let X ∈ Cm

H,k be a variable

12



matrix and k 6 r(B). Then,

max
06X∈Cm

H,k

r( A + BXB∗ ) = min{ r(B), r(A) + k }, (3.38)

min
06X∈Cm

H,k

r( A + BXB∗ ) = max { i+(A), r(A)− k } , (3.39)

max
06X∈Cm

H,k

i+( A + BXB∗ ) = min { r(B), i+(A) + k } , (3.40)

min
06X∈Cm

H,k

i+( A + BXB∗ ) = i+(A), (3.41)

max
06X∈Cm

H,k

i−( A + BXB∗ ) = i−(A), (3.42)

min
06X∈Cm

H,k

i−( A + BXB∗ ) = max{ 0, i−(A)− k }, (3.43)

and

max
06X∈Cm

H,k

r( A−BXB∗ ) = min{ r(B), r(A) + k }, (3.44)

min
06X∈Cm

H,k

r( A−BXB∗ ) = max { i−(A), r(A)− k} , (3.45)

max
06X∈Cm

H,k

i+( A−BXB∗ ) = i+(A), (3.46)

min
06X∈Cm

H,k

i+( A−BXB∗ ) = max{ 0, i+(A)− k }, (3.47)

max
06X∈Cm

H,k

i−( A−BXB∗ ) = min { r(B), i−(A) + k } , (3.48)

min
06X∈Cm

H,k

i−( A−BXB∗ ) = i−(A). (3.49)

If k > r(B), then,

max
06X∈Cm

H,k

r( A + BXB∗ ) = r(B), (3.50)

min
06X∈Cm

H,k

r( A + BXB∗ ) = i+(A), (3.51)

max
06X∈Cm

H,k

i+( A + BXB∗ ) = r(B), (3.52)

min
06X∈Cm

H,k

i+( A + BXB∗ ) = i+(A), (3.53)

max
06X∈Cm

H,k

i−( A + BXB∗ ) = i−(A), (3.54)

min
06X∈Cm

H,k

i−( A + BXB∗ ) = 0, (3.55)

and

max
06X∈Cm

H,k

r( A−BXB∗ ) = r(B), (3.56)

min
06X∈Cm

H,k

r( A−BXB∗ ) = i−(A), (3.57)

max
06X∈Cm

H,k

i+( A−BXB∗ ) = i+(A), (3.58)

min
06X∈Cm

H,k

i+( A−BXB∗ ) = 0, (3.59)

max
06X∈Cm

H,k

i−( A−BXB∗ ) = r(B), (3.60)

min
06X∈Cm

H,k

i−( A−BXB∗ ) = i−(A). (3.61)

Proof Note that R(A) ⊆ R(B) is equivalent to A = BGB∗ for some matrix G ∈ Cm
H . Also, assume that the

rank decomposition of B is B = PQ, where P ∈ Cn×s, Q ∈ Cs×m and r(B) = r(P ) = r(Q) = s. Consequently,
for any 0 6 X ∈ Cm

H,k and r(X) 6 s,

A±BXB∗ = BGB∗ ±BXB∗ = PQGQ∗P ∗ ± PQXQ∗P ∗ = P ( QGQ∗ ± Y )P ∗, (3.62)
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where the matrix Y = QXQ∗ > 0 and r(Y ) = r(QXQ∗) 6 k 6 s. Applying Lemma 1.5 to (3.62) gives

r( A±BXB∗ ) = r(QGQ∗ ± Y ), (3.63)
i±( A + BXB∗ ) = i±(QGQ∗ + Y ), (3.64)
i±( A−BXB∗ ) = i±(QGQ∗ − Y ). (3.65)

In this case, applying Lemma 3.1 to the right-hand sides of (3.63)–(3.65) gives

max
06Y ∈Cm

H,k

r( G + Y ) = min{ s, r(G) + k }, (3.66)

min
06Y ∈Cm

H,k

r( G + Y ) = max { i+(G), r(G)− k } , (3.67)

max
06Y ∈Cm

H,k

i+( G + Y ) = min { s, i+(G) + k } , (3.68)

min
06Y ∈Cm

H,k

i+( G + Y ) = i+(G), (3.69)

max
06Y ∈Cm

H,k

i−( G + Y ) = i−(G), (3.70)

min
06Y ∈Cm

H,k

i−( G + Y ) = max{ 0, i−(G)− k }, (3.71)

and

max
06Y ∈Cm

H,k

r( G− Y ) = min{ s, r(G) + k }, (3.72)

min
06Y ∈Cm

H,k

r( G− Y ) = max { i−(G), r(G)− k} , (3.73)

max
06Y ∈Cm

H,k

i+( G− Y ) = i+(G), (3.74)

min
06Y ∈Cm

H,k

i+( G− Y ) = max{ 0, i+(G)− k }, (3.75)

max
06Y ∈Cm

H,k

i−( G− Y ) = min { s, i−(G) + k } , (3.76)

min
06Y ∈Cm

H,k

i−( G− Y ) = i−(G). (3.77)

Substituting s = r(B), r(G) = r(A) and i±(G) = i±(A) into (3.66)–(3.77) yields (3.38)–(3.49). When k > r(B),
(3.38)–(3.49) reduce to (3.50)–(3.61). �

The proof of Corollary 3.3 also gives the construction of the Hermitian matrices Xs that satisfy (3.38)–(3.61).
Applying Corollary 3.3 to the right-hand sides of (2.36) and (2.37), we obtain the main result of this section.

Theorem 3.4. Let A ∈ Cm
H and B ∈ Cm×n be given, M be as given in (2.38), and let X ∈ Cn

H,k be a variable
matrix.

(a) If k 6 r(M)− r[A, B ], then

max
06X∈Cn

H,k

r( A + BXB∗ ) = min{ r[A, B ], r(A) + k }, (3.78)

min
06X∈Cn

H,k

r( A + BXB∗ ) = max { i+(A) + r[A, B ]− i+(M), r(A)− k} , (3.79)

max
06X∈Cn

H,k

i+( A + BXB∗ ) = min { i+(M), i+(A) + k } , (3.80)

min
06X∈Cn

H,k

( A + BXB∗ ) = i+(A), (3.81)

max
06X∈Cn

H,k

i−( A + BXB∗ ) = i−(A), (3.82)

min
06X∈Cn

H,k

i−( A + BXB∗ ) = max{ r[A, B ]− i+(M), i−(A)− k }, (3.83)
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and

max
06X∈Cn

H,k

r( A−BXB∗ ) = min{ r[A, B ], r(A) + k }, (3.84)

min
06X∈Cn

H,k

r( A−BXB∗ ) = max { i−(A) + r[A, B ]− i−(M), r(A)− k} , (3.85)

max
06X∈Cn

H,k

i+( A−BXB∗ ) = i+(A), (3.86)

min
06X∈Cn

H,k

i+( A−BXB∗ ) = max{ r[A, B ]− i−(M), i+(A)− k }, (3.87)

max
06X∈Cn

H,k

i−( A−BXB∗ ) = min { i−(M), i−(A) + k } , (3.88)

min
06X∈Cn

H,k

i−( A−BXB∗ ) = i−(A). (3.89)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of certain
operations A and B under the Hermitian congruence. Further,
(i) For any integer t1 between the two quantities on the right-hand sides of (3.78) and (3.79), there exists

a 0 6 X ∈ Cn
H,k such that r( A + X ) = t1.

(ii) For any integer t2 between the two quantities on the right-hand sides of (3.80) and (3.81), there exists
a 0 6 X ∈ Cn

H,k such that i+( A + X ) = t2.
(iii) For any integer t3 between the two quantities on the right-hand sides of (3.82) and (3.83), there exists

a 0 6 X ∈ Cn
H,k such that i−(A + X ) = t3.

(iv) For any integer t4 between the two quantities on the right-hand sides of (3.84) and (3.85), there exists
a 0 6 X ∈ Cn

H,k such that r( A + X ) = t4.
(vi) For any integer t5 between the two quantities on the right-hand sides of (3.86) and (3.87), there exists

a 0 6 X ∈ Cn
H,k such that i+( A + X ) = t5.

(vi) For any integer t6 between the two quantities on the right-hand sides of (3.88) and (3.89), there exists
a 0 6 X ∈ Cn

H,k such that i−(A + X ) = t6.

In particular,
(vii) There exists a 0 6 X ∈ Cn

H,k such that A + BXB∗ is nonsingular if and only if r[A, B ] = m and
r(A) > m− k.

(viii) A + BXB∗ is nonsingular for any 0 6 X ∈ Cn
H,k if and only if r(A) = m and BA−1B∗ > 0.

(ix) There exists a 0 6 X ∈ Cn
H,k such that A + BXB∗ = 0 if and only if r(A) 6 k, A 6 0 and

R(A) ⊆ R(B).
(x) A + BXB∗ = 0 for any 0 6 X ∈ Cn

H,k if and only if A = 0 and B = 0.
(xi) There exists a 0 6 X ∈ Cn

H,k such that A+BXB∗ > 0 if and only if i+(M) > m and i+(A) > m−k.
(xii) A + BXB∗ > 0 for any 0 6 X ∈ Cn

H,k if and only if A > 0.
(xiii) There exists a 0 6 X ∈ Cn

H,k such that A+BXB∗ > 0 if and only if i−(A) 6 k and i+(M) > r[A, B ].
(xiv) A + BXB∗ > 0 for any 0 6 X ∈ Cn

H,k if and only if A > 0.
(xv) There exists a 0 6 X ∈ Cn

H,k such that A + BXB∗ < 0 if and only if A < 0.
(xvi) A + BXB∗ < 0 for any 0 6 X ∈ Cn

H,k if and only if A < 0 and B = 0.
(xvii) There exists an 0 6 X ∈ Cn

H,k such that A + BXB∗ 6 0 if and only if A 6 0.
(xviii) A + BXB∗ 6 0 for any 0 6 X ∈ Cn

H,k if and only if A 6 0 and B = 0.
(xix) There exists a 0 6 X ∈ Cn

H,k such that A − BXB∗ is nonsingular if and only if r[A, B ] = m and
r(A) > m− k.

(xx) A − BXB∗ is nonsingular for any 0 6 X ∈ Cn
H,k if and only if if and only if r(A) = m and

BA−1B∗ 6 0.
(xxi) There exists a 0 6 X ∈ Cn

H,k such that BXB∗ = A if and only if r(A) 6 k, A > 0 and R(A) ⊆ R(B).
(xxii) BXB∗ = A for any X0 6 X ∈ Cn

H,k if and only if A = 0 and B = 0.
(xxiii) There exists a 0 6 X ∈ Cn

H,k such that A−BXB∗ > 0 if and only if A > 0.
(xxiv) A−BXB∗ > 0 for any 0 6 X ∈ Cn

H,k if and only if A > 0 and B = 0.
(xxv) There exists an X with 0 6 X ∈ Cn

H,k such that A−BXB∗ > 0 if and only if A > 0.
(xxvi) A−BXB∗ > 0 for any 0 6 X ∈ Cn

H,k if and only if A > 0 and B = 0.
(xxvii) There exists an X with 0 6 X ∈ Cn

H,k such that A − BXB∗ < 0 if and only if i−(M) > m and
i−(A) > m− k.

(xxviii) A−BXB∗ < 0 for any 0 6 X ∈ Cn
H,k if and only if A < 0.

(xxix) There exists a 0 6 X ∈ Cn
H,k such that A−BXB∗ 6 0 if and only if i+(A) 6 k and i−(M) > r[A, B ].

(xxx) A−BXB∗ 6 0 for any 0 6 X ∈ Cn
H,k if and only if (A) 6 0.
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(b) If k > r(M)− r[A, B ], then

max
06X∈Cn

H,k

r(A + BXB∗ ) = r[A, B ], (3.90)

min
06X∈Cn

H,k

r(A + BXB∗ ) = i+(A) + r[A, B ]− i+(M), (3.91)

max
06X∈Cn

H,k

i+( A + BXB∗ ) = i+(M), (3.92)

min
06X∈Cn

H,k

i+( A + BXB∗ ) = i+(A), (3.93)

max
06X∈Cn

H,k

i−( A + BXB∗ ) = i−(A), (3.94)

min
06X∈Cn

H,k

i−( A + BXB∗ ) = r[A, B ]− i+(M), (3.95)

and

max
06X∈Cn

H,k

r(A−BXB∗ ) = r[A, B ], (3.96)

min
06X∈Cn

H,k

r(A−BXB∗ ) = i−(A) + r[A, B ]− i−(M), (3.97)

max
06X∈Cn

H,k

i+( A−BXB∗ ) = i+(A), (3.98)

min
06X∈Cn

H,k

i+( A−BXB∗ ) = r[A, B ]− i−(M), (3.99)

max
06X∈Cn

H,k

i−( A−BXB∗ ) = i−(M), (3.100)

min
06X∈Cn

H,k

i−( A−BXB∗ ) = i−(A). (3.101)

Proof It follows from (2.36) and (2.37) imply that

max
06X∈Cn

H,k

r( A±BXB∗ ) = 2r[A, B ]− r(M) + max
06X∈Cn

H,k

r[FS1( S∗M†S ∓X )FS1 ], (3.102)

min
06X∈Cn

H,k

r( A±BXB∗ ) = 2r[A, B ]− r(M) + min
06X∈Cn

H,k

r[FS1( S∗M†S ∓X )FS1 ], (3.103)

max
06X∈Cn

H,k

i±( A + BXB∗ ) = r[A, B ]− i∓(M) + max
06X∈Cn

H,k

i∓[FS1(S∗M†S −X )FS1 ], (3.104)

min
06X∈Cn

H,k

i±( A + BXB∗ ) = r[A, B ]− i∓(M) + min
06X∈Cn

H,k

i∓[FS1(S∗M†S −X )FS1 ], (3.105)

max
06X∈Cn

H,k

i±( A−BXB∗ ) = r[A, B ]− i∓(M) + max
06X∈Cn

H,k

i∓[FS1(S∗M†S + X )FS1 ], (3.106)

min
06X∈Cn

H,k

i±( A−BXB∗ ) = r[A, B ]− i∓(M) + min
06X∈Cn

H,k

i∓[FS1(S∗M†S + X )FS1 ]. (3.107)
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If k 6 r(FS1) = r(M)− r[A, B ], then applying Corollary 3.3 to the right-hand sides of the right-hand sides of
(3.102)–(3.107) yields

max
06X∈Cn

H,k

r[FS1(S∗M†S −X )FS1 ] = min{ r(FS1), r(FS1S
∗M†SFS1) + k }, (3.108)

min
06X∈Cn

H,k

r[FS1(S∗M†S −X )FS1 ] = max
{

i−(FS1S
∗M†SFS1), r(FS1S

∗M†SFS1)− k
}

, (3.109)

max
06X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = min
{

r(FS1), i−(FS1S
∗M†SFS1) + k

}
, (3.110)

min
06X∈Cn

H,k

i−[FS1(S∗M†S −X )FS1 ] = i−(FS1S
∗M†SFS1), (3.111)

max
06X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = i+(FS1S
∗M†SFS1), (3.112)

min
06X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = max{ 0, i+(FS1S
∗M†SFS1)− k }, (3.113)

max
06X∈Cn

H,k

r[FS1( S∗M†S + X )FS1 ] = min{ r(FS1), r(FS1S
∗M†SFS1) + k }, (3.114)

min
06X∈Cn

H,k

r[FS1( S∗M†S + X )FS1 ] = max
{

i+(FS1S
∗M†SFS1), r(FS1S

∗M†SFS1)− k
}

, (3.115)

max
06X∈Cn

H,k

i−[FS1( S∗M†S + X )FS1 ] = i−(FS1S
∗M†SFS1), (3.116)

min
06X∈Cn

H,k

i−[FS1( S∗M†S + X )FS1 ] = max{ 0, i−(FS1S
∗M†SFS1)− k }, (3.117)

max
06X∈Cn

H,k

i+[FS1( S∗M†S + X )FS1 ] = min
{

r(FS1), i+(FS1S
∗M†SFS1) + k

}
, (3.118)

min
06X∈Cn

H,k

i+[FS1( S∗M†S + X )FS1 ] = i+(FS1S
∗M†SFS1). (3.119)

Substituting (3.108)–(3.119) into (3.102)–(3.107) and simplifying, we obtain (3.78)–(3.89). Results (a)–(x)
follow from (3.78)–(3.89) and Lemma 1.2.

If k > r(FS1) = r(M) − r[A, B ], then applying Corollary 3.3 to the right-hand sides of (3.102)–(3.107)
yields

max
06X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = r(FS1), (3.120)

min
06X∈Cn

H,k

r[FS1( S∗M†S −X )FS1 ] = i−(FS1S
∗M†SFS1), (3.121)

max
06X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = r(FS1), (3.122)

min
06X∈Cn

H,k

i−[FS1( S∗M†S −X )FS1 ] = i−(FS1S
∗M†SFS1), (3.123)

max
06X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = i+(FS1S
∗M†SFS1), (3.124)

min
06X∈Cn

H,k

i+[FS1( S∗M†S −X )FS1 ] = 0, (3.125)

max
06X∈Cn

H,k

r[FS1( S∗M†S + X )FS1 ] = r(FS1), (3.126)

min
06X∈Cn

H,k

r[FS1( S∗M†S + X )FS1 ] = i+(FS1S
∗M†SFS1), (3.127)

max
06X∈Cn

H,k

i−[FS1( S∗M†S + X )FS1 ] = i−(FS1S
∗M†SFS1), (3.128)

min
06X∈Cn

H,k

i−[FS1( S∗M†S + X )FS1 ] = i−(FS1S
∗M†SFS1), (3.129)

max
06X∈Cn

H,k

i+[FS1( S∗M†S + X )FS1 ] = min
{

r(FS1), i+(FS1S
∗M†SFS1) + k

}
, (3.130)

min
06X∈Cn

H,k

i+[FS1( S∗M†S + X )FS1 ] = i+(FS1S
∗M†SFS1). (3.131)

Substituting (3.120)–(3.131) into (3.102)–(3.107) and simplifying , we obtain (3.90)–(3.101). Results (i)–(vi) in
(a) follow from the similar arguments for establishing Lemma 2.1(a)–(c). �
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From Theorem 3.4, we obtain the following results on the extremal ranks and inertias of (1.1) subject to
(1.3).

Theorem 3.5. Let A ∈ Cm
H and B ∈ Cm×n be given, and let M be as given in (2.38). Also, denote

S = {X ∈ Cm
H,k | R(X) ⊆ R(B) and X > 0}. (3.132)

(a) If k 6 r(M)− r[A, B ], then

max
X∈S

r(A + X ) = min{ r[A, B ], r(A) + k }, (3.133)

min
X∈S

r(A + X ) = max { i+(A) + r[A, B ]− i+(M), r(A)− k} , (3.134)

max
X∈S

i+(A + X ) = min { i+(M), i+(A) + k } , (3.135)

min
X∈S

i+(A + X ) = i+(A), (3.136)

max
X∈S

i−(A + X ) = i−(A), (3.137)

min
X∈S

i−(A + X ) = max{ r[A, B ]− i+(M), i−(A)− k }, (3.138)

and

max
X∈S

r( A−X ) = min{ r[A, B ], r(A) + k }, (3.139)

min
X∈S

r( A−X ) = max { i−(A) + r[A, B ]− i−(M), r(A)− k } , (3.140)

max
X∈S

i+( A−X ) = i+(A), (3.141)

min
X∈S

i+( A−X ) = max{ r[A, B ]− i−(M), i+(A)− k }, (3.142)

max
X∈S

i−( A−X ) = min { i−(M), i−(A) + k } , (3.143)

min
X∈S

i−( A−X ) = i−(A). (3.144)

The Hermitian matrices Xs satisfying these equalities can be formulated from the canonical form of certain
operations A and B under the Hermitian congruence.

(b) If r(M)− r[A, B ] < k 6 r(B), then

max
X∈S

r( A + X ) = r[A, B ], (3.145)

min
X∈S

r( A + X ) = i+(A) + r[A, B ]− i+(M), (3.146)

max
X∈S

i+( A + X ) = i+(M), (3.147)

min
X∈S

i+( A + X ) = i+(A), (3.148)

max
X∈S

i−( A + X ) = i−(A), (3.149)

min
X∈S

i−( A + X ) = r[A, B ]− i+(M), (3.150)

and

max
X∈S

r( A−X ) = r[A, B ], (3.151)

min
X∈S

r( A−X ) = i−(A) + r[A, B ]− i−(M), (3.152)

max
X∈S

i+( A−X ) = i+(A), (3.153)

min
X∈S

i+( A−X ) = r[A, B ]− i−(M), (3.154)

max
X∈S

i−( A−X ) = i−(M), (3.155)

min
X∈S

i−( A−X ) = i−(A). (3.156)
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Theorem 3.6. Let A ∈ Cm×m
H and B ∈ Cm×n be given, and let M and S be as given in (2.38) and (3.132).

Then, for any X ∈ S, the following rank and inertia inequalities hold

max { r[A, B ]− i+(M)− i−(A), −k} 6 r( A + X )− r(A) 6 min{ r[A, B ]− r(A), k }, (3.157)
0 6 i+( A + X )− i+(A) 6 min { i+(M)− i+(A), k } , (3.158)

max { r[A, B ]− i+(M)− i−(A), −k } 6 i−( A + X )− i−(A) 6 0, (3.159)
max { r[A, B ]− i−(M)− i+(A), −k} 6 r( A−X )− r(A) 6 min{ r[A, B ]− r(A), k }, (3.160)
max { r[A, B ]− i−(M)− i+(A), −k } 6 i+( A−X )− i+(A) 6 0, (3.161)

0 6 i−( A−X )− i−(A) 6 min { i−(M)− i−(A), k } . (3.162)

4. Concluding remarks

The results obtained in the previous sections can be used to solve rank and inertia optimization problems
on some partially specified Hermitian matrices. For instance,

M(X) =
[

A B
B∗ X

]
,

where A ∈ Cm
H and B ∈ Cm×n are given, and X ∈ Cn

H is a variable matrix satisfying some range, rank and
definiteness restrictions, as given in (1.2) and (1.3). Note that the M(X) can be rewritten as

M(X) =
[

A B
B∗ 0

]
+

[
0
In

]
X[ 0, In ],

which can be regarded as a special case of the matrix expression in (1.4). Hence, applying the results in the
previous sections to the partial block matrix M(X) may yield a group of consequences on the maximal/minimal
values of the rank/inertia of M(X). Inverse and definiteness completion problems on the partial block matrix
M(X) can also be solved. Some previous and recent work on rank/inertia completions of partially specified
Hermitian matrices can be found, e.g., in [5, 6, 9, 10, 39].

Note that any matrix A can be decomposed as

A = ( A−X ) + X, (4.1)

where X is any matrix. If both A and X are Hermitian and

r(A) = r( A−X ) + r(X), i±(A) = i±( A−X ) + i±(X), (4.2)

then both A−X and X are said to satisfy the rank/inertia additivity conditions, or equivalently, both A and
X are often said in the literature to satisfy the rank/inertia subtractivity conditions. In the investigation of
Hermitian matrix perturbations, the perturbation matrix X is naturally assumed to satisfy the restrictions in
(4.2). In such a case, it would be of interest to consider the problems of maximizing and minimizing the rank
and inertia of

A−X subject to r(A−X ) = r(A)− r(X), R(X) ⊆ R(B) and r(X) 6 k, (4.3)

or

A−X subject to r(A−X ) = r(A)− r(X), R(X) ⊆ R(B), r(X) 6 k and X > 0 (X 6 0). (4.4)

A more challenging task is to solve the problems of maximizing and minimizing the rank and inertia of

A + BXB∗ subject to r(X) = k. (4.5)

In this case, the ranks and inertias of BXB∗ and A + BXB∗ may vary with respect to the choice of X.
Since many basic or classic problems in matrix theory, like solvability of matrix equations and matrix

inequalities, can be converted to some max-min optimization problems on ranks and inertias of matrices. So
that these problems can be approached through the matrix rank/inertia methods. It has been realized that
the matrix/rank methods can serve as effective tools to deal with matrices and their operations. The new
techniques for solving max-min optimization problems on rank/inertia of matrices enable us to develop new
extensions of classic theory on matrix equations and matrix inequalities, which allowed us to analyze algebraic
properties of a wide variety of Hermitian matrix expression that could not be handled before. We expect that
more optimization problems on maximizing/minimizing ranks/inertias of matrix expressions can be proposed
reasonably and solved analytically, while the matrix rank/inertia methods will play more important roles in
matrix theory and applications.
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