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Abstract

In this paper we consider the problem of computing the value and
a supporting hyperplane of the convex envelope for quadratic and
polynomial functions over polytopes with known vertex set. We show
that for general quadratic functions the computation can be carried
on through a copositive problem, but in some cases (including all the
two-dimensional ones) we can solve a semidefinite problem. The result
is also extended to two-dimensional polynomial functions satisfying
certain conditions.
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1 Introduction

The convex envelope of a nonconvex function f over some region X is the
best (largest) possible convex underestimator of f over X i.e.,

convy x(x) = sup{c(x) : ¢(x') < f(x') VX' € X, cis convex}
An equivalent definition is
convg x(x) =sup{c(x) : ¢(x') < f(x) VX € X, cisaffine} (1)

where the requirement ”c is convex” is substituted by the milder one "¢ is
affine”. Finding the convex envelope for a general function f and region
X is at least as difficult as minimizing f over X. It may be a hard task
even for simple functions and/or regions. E.g., in [4] it has been proved that
finding the convex envelope of a multilinear function over the unit hypercube
is N'P-hard.

For some functions the convex envelope is a polyhedral one, i.e., it is the
maximum of a finite number of affine underestimators. Results about poly-
hedral convex envelopes are available, e.g., in [10, 11, 16]. For non polyhedral
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convex envelopes some results are available in [6, 13] when the region is a
box.

Different results have been proved for some specific functions and regions.
Relevant examples are the fractional function y/x over rectangles (see [14,
17]), and the bilinear function zy. For the latter different results are available
over different regions:

e rectangles: this is the well known result by McCormick [9];

e D-polytopes : these are polytopes whose edges all lie along lines with
nonpositive slope, for which it can be proved that the convex envelope
of the bilinear function is polyhedral (see [12]);

e triangles with a single edge lying along a line with positive slope: this
result has been derived in [7] and employed within a branch-and-bound
scheme to define a new branching technique based on a subdivision into
rectangles and/or triangles;

e triangles: in [1] a representation of the convex envelope over general
triangles through doubly nonnegative matrices (i.e., matrices which are
both semidefinite and nonnegative) is given.

In this paper we present some results for the computation of the value and
of a supporting hyperplane of the convex envelope for some quadratic and
polynomial functions f over polytopes P with known vertex set. In partic-
ular, these functions include the bilinear one zy (in fact, they include all
two-dimensional quadratic functions). In that case we will show that the
computation can be carried on, in a time polynomial with respect to the
number of vertices of the polytope, through a semidefinite problem. We
immediately remark that, with respect to the previously mentioned results
about the bilinear term, here we are not claiming that we are able to return
the analytic form of the convex envelope. We can only return the value of
the convex envelope at some points of the polytope, together with a sup-
porting hyperplane at the same points. However, knowledge of supporting
hyperplanes is quite relevant for the definition of a polyhedral convex under-
estimator of the convex envelope (maximum of the supporting hyperplanes
at a finite set of points in P). As remarked in [15] (see also a comment in [7]),
the use of polyhedral underestimators of the convex envelope rather than the
convex envelope itself is advisable in view of the higher speed and stability
of linear programming solvers with respect to nonlinear ones.

The structure of the paper is the following. In Section 2 we recall a re-
sult proved in [8] for some bivariate functions over general two-dimensional



polytopes. In Section 3 we prove some results about the convex envelope of
quadratic functions over polytopes, including one about bivariate quadratic
functions which shows that the value of their convex envelope at some point
of a polytope is returned by the solution of a semidefinite problem. Finally, in
Section 4 we prove the same result for two-dimensional polynomial functions
satisfying some conditions.

2 Convex envelopes of bivariate functions over
polytopes

In [8] a technique has been proposed to compute the value and a supporting

hyperplane for the convex envelope of a bivariate function f over a polytope

P. We briefly recall it here. Function f was required to satisfy the following
conditions.

Condition 1 the Hessian of f has always at least one negative eigenvalue
in the interior of P;

Condition 2 the restriction of f along each edge of P is either concave or
strictly convex;

Condition 3 f € C?, i.e., f is twice-continuously differentiable.

It view of the definition (1) of the convex envelope, given some point (g, yo) €
P, the value of the convex envelope of f over P is given by the solution of
the following optimization problem in the three variables a,b and ¢ with an
infinite number of linear constraints

Convy p(zg,y0) = max c

flz,y) —lalz —20) +b(y —yo) +¢] >0 V (z,y) € P.

The optimal solution (a*, b*, ¢*) of this problem defines the value of the convex
envelope (i.e., ¢*) and a supporting hyperplane at point (zo,yo) (i-e., a*(z —
xo) + b*(y — yo) + ¢*). The infinite number of constraints can be substituted
by a single one involving, however, a further optimization problem

Convy p(zo,Yy0) = max c
ming ep f(z,y) — [a(x — x0) + b(y — yo) +¢] > 0.

Condition 1 guarantees that, for each possible choice of a, b, ¢, the minimum
of f(z,y) — [a(x — x¢) + by — yo) + ¢| can not be attained in the interior of



P, and is always attained at a vertex of P or along an edge of P such that
the restriction of f along the edge is a strictly convex function. Therefore,
in [8] it is observed that, under Conditions 1-3, we also have

Convy p(xo,y0) = max c
f(zi,yi) — la(zi — 20) +0(yi —yo) +¢] >0 V (zi,yi) € VI(P)

ming e, f(,y) — [a(z —20) +b(y —yo) +¢] >0 Ve; € E'(P)
(2)

where:

e F'(P) denotes the set of edges of P along which f is strictly convex;

e VV/(P) denotes the set of vertices of P which do not belong to edges in
E'(P).

The constraints related to the vertices in V'(P) are simple linear ones with
respect to the unknowns a, b and c¢. For what concerns the constraints related
to the edges in E'(P), it is shown that each of them can be split into three
set of constraints: two sets made up by two linear constraints, and a third
set made up by two linear constraints and a convex one. Therefore, if we
denote by s the cardinality of E'(P), it turns out that the computation of
the value and of a supporting hyperplane at some point of a polytope P for a
bivariate function satisfying Conditions 1-3, requires the solution of (at most)
3° three-dimensional convex optimization problems. In the next section we
would like to show that, for more specific functions, we are able to derive
the value and a supporting hyperplane of the convex envelope over polytopes
through the solution of some different problem.

3 Convex envelopes of quadratic forms over
polytopes

Let us consider a quadratic form f(x) = x? Ax and a polytope P. Similarly
to what we have seen in Section 2, given a point x, € P, the value of
the convex envelope of f over P at xg is given by the optimal value of the
following optimization problem with an infinite number of linear constraints
convenvy p(Xp) = max 7y @)

3

xTAx —alf(x—x%x¢)—7>0 VxeP

The optimal solution (a*,~*) also allows to define a supporting hyperplane
of the convex envelope at xq. Now, let

V(P)={vi : i=1,...t},
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denote the vertex set of P and let ¢ be its cardinality. Then, we can represent
P as follows
P={VX : Xe A},

where V is the matrix whose columns are the vertices of P, while

t
Ar={X: > N=1 XN>0i=1,.t},

i=1

is the t-dimensional unit simplex. Next, let us the introduce copositive cone
of order t:
Ct:{QGStZXTQXEO \V/XEO},

(S; denotes the set of symmetric matrices of order ¢). Then, the following
theorem shows that the value of the convex envelope of a quadratic function
over a polytope can be computed by solving a copositive problem.

Theorem 3.1 It holds that
convenvy p(Xg) = max vy
VTAV — 1 [aVe! + eVTa’| — (v — a’x)E € (;
(4)

Proof. Problem (3) can be rewritten as

convenvy p(Xg) = max vy

AT{VTAV — 1 [aVel + eVTal] — (v —aPx)E} A >0 VA€ A,
(5)
where e is the vector whose components are all equal to ones and E the
matrix whose entries are all equal to ones. Here we exploit the fact that any
affine function a” X 4 ay over the unit simplex can be represented with the

quadratic form
AT [1/2(ea” + ae”) + aoE] A.

But
AT {VTAV — I [aVe” + eVTal] — (y —alx)E} A >0 VA€ A,
i}
VTAV — % [aVeT + eVTaT} — (v — aTx0)E € ¢

from which the result of the theorem follows. O



The copositive problem (4) is in general difficult to solve because of the
copositivity condition, unless ¢ (which, we recall, is the cardinality of the
vertex set of P) is not larger than 4 (which holds, e.g., for triangles and
quadrilaterals in R? or simplices in R?). Indeed, in these cases the copositive
cone C; can be replaced by cone P, + N, i.e., the cone obtained as the sum
of the cone of semidefinite matrices

P,={QecS : x'Qx>0 VxeRY,
and the cone of nonnegative matrices
Ne={QeS : Q>0}.

The equality C; = P, + N, does not hold for ¢ larger than 4 (see, e.g., [5]).
While problems over the copositive cone C; are not solvable in polynomial
time, those over the cone P, + N, can be solved in polynomial time.

What we will prove now is that we are able to end up with a problem solvable
in polynomial time under conditions more general than |V (P)| < 4. Let us
denote by F the set of maximal faces of P over which f is strictly convex.
For F' € F| let

[F:{’L DV € V(F)}
be the index set of the vertices in V' (F'). Given a matrix Q and an index set

I, we denote by {Q}; the restriction of Q to the rows and columns in the
index set I. Then, we can prove the following theorem.

Theorem 3.2
convenvy p(Xg) = max 7y
{VTAV — ; [aVe" +eVTa’] — (v —a'x)E}, €Cy, VFeF.
(6)
Proof. We can rewrite (3) as follows
convenvy p(Xg) = max vy
xTAx —al(x—x¢)—v>0 VxeF,VFeF ")
Indeed, for each fixed (e, ), the minimum value of
xTAx — ol (x — x¢) — 7
can never be attained only in the interior of a face where f is not strictly
convex. From (7) and recalling the proof of Theorem 3.1, we end up with
problem (6). O

A corollary, whose proof is immediate, is the following
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Corollary 3.1 Let us assume that
V()| <4, VFeF, (8)
i.e., each convex face ' has at most four vertices. Then,

convenvy,p(Xg) = max 7y

{VTAV — % [aVeT + eVTaT} — (v - aTXO)E}IF € Pyl +M1F| VFEFeF
(9)

The above corollary always applies to any nonconvex two-dimensional quadratic
form (thus including also the bilinear term) over a generic two-dimensional
polytope. Indeed, in this case, unless f is already a convex function (in which
case it coincides with its convex envelope), the maximal faces in F' are either
vertices or edges of P. In both cases the cardinality of I is not larger than
2, so that (9) applies and the value of the convex envelope can be computed
in a time polynomial with respect to the number of vertices in P.

4 Convex envelopes for two-dimensional poly-
nomial functions

In this section we consider the case where f is a two-dimensional polynomial
function of some degree d satisfying Conditions 1-3 (actually, Condition 3 is
always satisfied). As an instance, one might consider the function x?y? over
the unit square [0, 1]%. For some interval [a, b] we will denote by Qy([a, b]) the
set of all one-dimensional polynomials of degree not larger than k, which are
nonnegative over [a,b]. We will also denote by ¥ the set of Sum-Of-Square
(SOS) one-dimensional polynomials of degree at most k, i.e., polynomials f of
degree not larger than & for which there exists a finite number of polynomials
h;, 1 =1,...,r such that

i=1

The following theorem proves that the value of the convex envelope at some
point of a polytope is returned by the solution of a semidefinite problem.

Theorem 4.1 Let P C R? be a polytope and f a two-dimensional polyno-
mial function of degree d satisfying Conditions 1-3. Then, the value and a
supporting hyperplane for the convexr envelope of f over P is returned by the
solution of a semidefinite problem.



Proof. As shown in Section 2, the value and a supporting hyperplane for
the convex envelope of f over P is returned by the solution of problem (2).

Now, for a given edge e; € E'(P), let v/, w’ be the two vertices of edge e;.
Then,

g (Na,bc) =
= f(wl 4+ (1 = Nwl, M) + (1 = X) w))—
—[a(Avd + (1 = Nwl — ) + b(Av) 4 (1 = X) w) — yo) + ]

is the one-dimensional polynomial function, of degree not larger than d, cor-
responding to the restriction of

fla,y) = [a(z — 20) + b(y — yo) + ]
along the edge e;. Then,

min f(z,y)—[a(z—20)+b(y—yo)+c] >0 < ¢’ (N\a,b,c) >0 VAe€0,1]

(z,y)€e;

or, equivalently

min f(z,y) —[a(z —20) +b(y —y0) +¢] 20 = ¢’ (1a,b,c) € Qu([0,1]).

(z,y)€e;
It is well known (see, e.g., [2]) that, if d is even, then
g(5a,b,0) € Qu([0,1]) & g(Na,b.c)=p (A) +¢ (M) (L= M)A
for pP € ¥4, ¢ € X4_, while if d is odd, then
g'(abc) € Qu([0,1]) & g (Nabe) =1 (N) + X (A\) + (1= g’ (V),

for 77, p’, ¢’ € ¥4_1. Therefore, problem (2) can be rewritten as

Convy p(zo,Y0) = max c
f(@i, vi) — [a(zi — 20) + b(yi —yo) +¢] >0 V (25,4:) € V'(P)
9 (5 a,b,¢) € Qq([0,1]) Ve; € E'(P)

and since each SOS condition can be rewritten as a semidefinite one (see,
e.g., [3]) we end up with a semidefinite problem. 0



5 Conclusions and future research

In this paper we have presented some techniques for computing the value and
a supporting hyperplane for the convex envelope of quadratic and polynomial
functions over polytopes whose vertex set is known. For quadratic functions
we have proved that the computation can be carried on through the solution
of a copositive problem. It has also been shown that in some cases it is
possible to solve a semidefinite problem. Such cases always include two-
dimensional quadratic functions. The results have then been extended also
to two-dimensional polynomial functions satisfying certain conditions. The
theory of nonnegative polynomials shows that also in this case we end up with
the solution of a semidefinite problem. A possible subject for future research
is that of identifying more general conditions under which the computation
of the value for the convex envelope can be done through the solution of a
semidefinite problem.
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