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Abstract

The bundle-level method and their certain variants are known to exhibit an optimal rate
of convergence, i.e., O(1/

√
t), and also excellent practical performance for solving general non-

smooth convex programming (CP) problems. However, this rate of convergence is significantly
worse than the optimal one for solving smooth CP problems, i.e., O(1/t2). In this paper, we
present new bundle-type methods which possess the optimal rate of convergence for solving, not
only non-smooth, but also smooth CP problems. Interestingly, these optimal rates of convergence
can be obtained without even knowing whether a CP problem is smooth or not. Moreover, given
that the problem is smooth, the developed methods do not require any smoothness information,
such as, the size of the Lipschitz constant. To the best of our knowledge, this is the first time
that uniformly optimal algorithms of this type have been presented in the literature.
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1 Introduction

Consider the basic convex programming (CP) problem of

f∗ := min
x∈X

f(x), (1)

where X is a convex compact set and f : X → < is a closed convex function such that

|f(x)− f(y)| ≤ M‖x− y‖, ∀x, y ∈ X. (2)

Moreover, f(·) is represented by a first-order oracle which, upon requests, returns f(x) and f ′(x) ∈
∂f(x), where ∂f(x) denotes the subdifferential of f(·) at x ∈ X. Different optimization techniques,
including subgradient descent, mirror descent and bundle-type methods, have been developed for
solving these general non-smooth CP problems [26, 4, 28]. In particular, the subgradient descent
method [24] exhibits an O(1/

√
t) rate of convergence, which is optimal if n is sufficiently large, i.e.,
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n ≥ O(t), where t denotes the number of calls to the oracle. Moreover, some bundle-type algorithms,
such as, the bundle-level method and some of its variants [19, 4, 3], also exhibit O(1/

√
t) rate of

convergence. While the subgradient descent method is known for their slow convergence in practice,
the bundle-level method and their certain variants often converge linearly, with an experimental rate
given by O(exp(−t/n)), for solving many non-smooth CP problems in practice [19, 4, 23, 17].

One can improve the theoretical rate of convergence for solving (1), only by considering more
specialized classes of CP problems. In particular, for minimizing smooth CP problems satisfying

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,∀x, y ∈ X,

Nesterov in a seminal work [25] presented an algorithm with the rate of convergence bounded by
O(1/t2). By the complexity theory for convex optimization [24], Nesterov’s method is optimal for
smooth convex optimization when n ≥ O(t). Some variants of this method were further studied in
[26], [1], [27], [16] and [30]. The basic idea of these methods is to construct and then to minimize a
series of quadratic approximations of f(·) whose Hessians are given by the identity. By far, Nesterov’s
method and its variants are the only known optimal algorithms for smooth convex optimization.
Recently, certain generalized versions of Nesterov’s method [15, 7] were shown to be optimal for
solving smooth, nonsmooth and stochastic CP problems, provided that some global information
about f(·), such as L and M, is given explicitly as the input of these algorithms. Note, however,
that by definition, these constants describe the problem in a global scope and thus possibly in a very
conservative way. For example, a general non-smooth function may turn out to be smooth locally or
even, in the extreme case, along the whole trajectory of the algorithm. Moreover, these constants are
sometimes difficult to compute and one often has to resort to some of their conservative estimates,
which may slow down the algorithms dramatically.

Our work is motivated by the following three closely related questions: i) in view of good per-
formance of the aforementioned bundle-type methods for non-smooth CP, should we use them for
solving smooth CP problems as well? ii) could we achieve the optimal rate of convergence for solving
smooth CP problems by using bundle-type methods? iii) given that first-order information of f
is obtained via an oracle, should the optimization algorithms really need to know any smoothness
information, such as, whether a problem is smooth, or the size of the Lipschitz constants L andM?

Towards answering these questions, we study a class of CP problems of the form (1), where f(·)
satisfies

f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L

2
‖y − x‖2 +M‖y − x‖, ∀x, y ∈ X, (3)

for some L,M ≥ 0 and f ′(x) ∈ ∂f(x). Clearly, this class of problems covers non-smooth (with
L = 0 and M = 2M), smooth (with L > 0 and M = 0), and composite (with L > 0 and M > 0)
CP problems [15]. Our major contribution consists of the following aspects. Firstly, we present a
new bundle-type algorithm, namely: the accelerated bundle-level (ABL) method, and show that it
is optimal for solving both non-smooth and smooth CP problems. Hence, we substantially improve
the rate of convergence of bundle-type methods, when applied for solving smooth CP problems, from
O(1/

√
t) to O(1/t2). Observe that this algorithm is different from Nesterov’s methods since it works

with a series of non-smooth approximations to the objective function f(·). Moreover, we show that
the ABL method is uniformly optimal for minimizing smooth and non-smooth CP problems, in the
sense that it does not require any smoothness information, such as whether a problem is smooth, or
the size of the Lipschitz constants. To the best of our knowledge, this is the first time that uniformly
optimal algorithms of this type have been proposed in the literature.
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Secondly, one apparent problem for the ABL method is that, as the algorithm proceeds, its
subproblems become more difficult to solve. As a result, each step of the ABL method becomes
computationally more and more expensive. To remedy this issue, we present another uniformly
optimal method for solving smooth and non-smooth CP problems, namely: the accelerated prox-
level (APL) method, and demonstrate that one can actually take full control of its iteration costs.
Moreover, the non-Euclidean prox-functions can be employed in the APL method in order to make use
of the geometry of the feasible set X to obtain (nearly) dimension-independent rate of convergence.
We also show that the APL method can be easily extended for solving strongly convex problems,
sometimes with little modifications. Finally, our preliminary numerical experiments indicate that
the APL method can significantly outperform the existing optimal methods for solving smooth CP
problems, especially when the Lipschitz constant L is big and/or the desired accuracy is high.

The paper is organized as follows. In Section 2, we give a brief review of a few bundle-type
methods, including the bundle-level method. We present the ABL method and the APL method,
respectively, in Sections 3 and 4, and show that they are uniformly optimal for solving smooth
and non-smooth CP problems. We then investigate in Section 5 how to extend the APL method
for solving strongly convex CP problems. In Section 6, we present some numerical results for our
methods. Section 7 is devoted to proving the main results of this paper. Finally, some concluding
remarks are made in Section 8.

2 Review of bundle-level methods

In this section, we provide a review of bundle-level methods. As discussed in Section 1, these methods
were designed for solving general nonsmooth CP problems of the form (1), where f(·) satisfies (3)
with L = 0 and M > 0. Note that our review is by no means exhaustive due to a large body of
literature existing in this area.

Given a sequence of search points x1, x2, . . . , xt ∈ X, an important construct, namely, the cutting
plane model, of the objective function of problem (1) is given by

mt(x) := max {h(xi, x) : 1 ≤ i ≤ t} , (4)

where
h(z, x) := f(z) + 〈f ′(z), x− z〉. (5)

We call each h(xi, x), i ≥ 1, a component of the cutting plane model mt(x).
In the classic cutting plane method [6, 10], one updates the search points by

xt+1 ∈ Argminx∈Xmt(x).

This scheme converges slowly, both theoretically and practically [24]. Some significant progresses
[11, 12, 18, 21] were made under the name of bundle methods. In these methods, a prox-term is
introduced into the objective function of the above subproblem and hence the search points are
updated by

xt+1 ∈ Argminx∈X

{
mt(x) +

ρt
2
‖x− x+t ‖2

}
,

where the current prox-center x+t is a certain point from {x1, . . . , xt} and ρt is the current penalty.
Moreover, the prox-center for the next iterate, i.e., x+t+1, will be set to xt+1 if f(xt+1) is sufficiently
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smaller than f(xt). Otherwise, x+t+1 will be the same as x+t . The penalty ρt reduces the influence of
the model mt’s inaccuracy and hence the instability of the algorithm. Note, however, that the deter-
mination of the penalty ρt usually requires certain on line adjustments or line-search. In the closely
related trust-region technique [28, 20], the prox-term is put into the constraints of the subproblem
instead of its objective function and the search points are then updated according to

xt+1 ∈ Argminx∈X
{
mt(x) : ‖x− x+t ‖2 ≤ Rt

}
.

However, this approach also encounters similar difficulties for determining the size of Rt.
In a seminal work [19], Lemaréchal, Nemirovskii and Nesterov introduced the idea of incorporating

level sets into bundle-type methods. The basic version of their bundle-level method is described as
follows:

• let f t be the best objective value found so far and compute a lower bound on f∗ by

ft = min
x∈X

mt(x); (6)

• set lt = λf t + (1− λ)ft for some λ ∈ (0, 1);

• update the search point xt by

xt+1 ∈ Argminx∈X
{
‖x− xt‖2 : mt(x) ≤ lt

}
. (7)

It is shown in [19] that the above scheme can find an ε-solution of (1), i.e., a point x̄ ∈ X s.t.
f(x̄)− f∗ ≤ ε in at most

O(1)C(λ)
M2D2

X

ε2
, (8)

steps, where C(λ) is a constant depending on λ and

DX := max
x,y∈X

‖x− y‖. (9)

Moreover, it turns out that the level sets give a stable description about the objective function
f(·) and, as a consequence, very good practical performance [19, 4, 17] has been observed for the
bundle-level method.

In the bundle-level method described above, the number of components appearing the cutting
plane model mt(x) increases linearly with t. Hence, subproblems (6) and (7) become more and more
difficult to solve as the algorithm proceeds. To address this issue, Kiwiel [13] presented novel rules
of updating the prox-center, the bundle and the level, so as to eliminate the requirement of using
full memory in mt(x). Similar ideas were used by Ben-tal and Nemirovski [4, 3] in their Truncated
Proximal Bundle-level method and Non-Euclidean Restricted Memory Level Method (NERML).
They show that the rates of convergence of these restricted memory versions of bundle-level method
are still in the same order of magnitude as the one stated in (8).
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3 The accelerated bundle-level method

In this section, we present a substantially enhanced version of the bundle-level method, namely: the
accelerated bundle-level (ABL) method. We demonstrate that the ABL method can achieve the
optimal rate of convergence for solving not only nonsmooth, but also smooth CP problems without
requiring any smoothness information.

We first state a simple but crucial result which motivates the development of the ABL method.
Note that this result originates from Lemma 5 of [15], in the context of studying a generalized version
of Nesterov’s method.

Lemma 1 Let (x, y, z) ∈ X × X × X be given. Suppose that, for some α ∈ [0, 1], the triple
(x+, y+, z+) satisfies the following condition:

z+ = (1− α)y + αx, (10)

h(z+, x+) ≤ l, (11)

y+ = αx+ + (1− α)y, (12)

where h(·, ·) is defined in (5). Then,

f(y+) ≤ (1− α)f(y) + α l +
Lα2

2
‖x+ − x‖2 +Mα‖x+ − x‖. (13)

Proof. It can be easily seen from (10) and (12) that y+−z+ = α(x+−x). Using this observation,
(3), (5), (10), (11) and the convexity of f , we have

f(y+) ≤ h(z+, y+) +
L

2
‖y+ − z+‖2 +M‖y+ − z+‖

= (1− α)h(z+, y) + αh(z+, x+) +
L

2
‖y+ − z+‖2 +M‖y+ − z+‖

= (1− α)h(z+, y) + αh(z+, x+) +
Lα2

2
‖x+ − x‖2 +Mα‖x+ − x‖

≤ (1− α)f(y) + αh(z+, x+) +
Lα2

2
‖x+ − x‖2 +Mα‖x+ − x‖

≤ (1− α)f(y) + αl +
Lα2

2
‖x+ − x‖2 +Mα‖x+ − x‖.

Observe that in Lemma 1, the function h(z+, ·) and the scaler l in (11), respectively, can be
viewed as a simple linear model function and a level. Clearly, h(z+, ·) can be replaced by a more
complicated cutting plane model in the form of (4) as long as it contains h(z+, ·) as a component. In
view of Lemma 1, if α ∈ (0, 1], the level l and the distance ‖x+−x‖ can be properly controlled, then
the function value f(y+) will be sufficiently decreased from f(y). Since one would like to control
the distance ‖x+ − x‖ when searching for a new point x+, the point x can be viewed as the current
prox-center (c.f. (7)).

These observations motivate us to modify the bundle-level method as follows. Firstly, we will
define three different (but related) search sequences, with one to build the cutting plane model for
obtaining the lower bounds on f∗, one to act as the prox-centers and one to compute the best
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objective values, i.e., the upper bounds on f∗. Secondly, to control the “closeness” of the prox-
centers, we will group the steps of the algorithm into subsequent segments, so that the prox-centers
in each segment will be “close” enough to each other (c.f. Lemma 7). Note that the latter idea has
been used in the analysis of the bundle-level method, but not in the algorithm itself [19, 4].

More specifically, each step t, t = 0, 1, . . ., of segment s, s = 1, 2, . . ., of the ABL method updates
three intertwined search points, namely, xls,t, xs,t and xus,t, which, respectively, denote the search
point to compute a lower bound of f∗, the prox-center and an upper bound of f∗. Given an initial
point p0 ∈ X, we start the algorithm by setting xl1,0 = p0 and computing a lower bound by

lb1,0 = min
x∈X

h(xl1,0, x), (14)

where h(·, ·) is defined in (5). Moreover, we choose an arbitrary optimal solution of (14) as xu1,0 and

set 1

ub1,0 = f(xu1,0), (15)

∆1,0 = ub1,0 − lb1,0. (16)

Observe that by (3), (5), (14), (15) and (16), we have

∆1,0 = f(xu1,0)−
[
f(xl1,0) + 〈f ′(xl1,0), xu1,0 − xl1,0〉

]
≤ L

2
‖xu1,0 − xl1,0‖2 +M‖xu1,0 − xl1,0‖ ≤

LD2
X

2
+MDX , (17)

where DX is defined in (9). Finally, let x1,0 ∈ X be arbitrarily chosen, say, x1,0 = p0.
At step t, t = 1, 2, . . ., of segment s, s = 1, 2, . . ., we already have the triple (xls,t−1, xs,t−1, x

u
s,t−1)

and the bounds (lbs,t−1,ubs,t−1) in our disposal. We first determine if a new segment starts. In
particular, if the gap between ubs,t−1 and lbs,t−1 has been sufficiently decreased, i.e.,

∆s,t−1 := ubs,t−1 − lbs,t−1 < λ∆s,0, (18)

then we set

(xls+1,0, xs+1,0, x
u
s+1,0) = (xls,t−1, xs,t−1, x

u
s,t−1), (19)

lbs+1,0 = lbs,t−1 (20)

ubs+1,0 = ubs,t−1 (21)

∆s+1,0 = ∆s,t−1 (22)

Ts = t− 1, (23)

and pass to segment s + 1, where Ts is used to count the number of steps performed in segment s.
Otherwise, if condition (18) is not satisfied, we update (xls,t−1, xs,t−1, x

u
s,t−1) into (xls,t, xs,t, x

u
s,t) by

going through the following procedure.

1Essentially, the point xu1,0 ∈ X can be arbitrarily chosen, since the initial gap ∆1,0 only logarithmically affects the
rate of convergence of the ABL method, see Theorem 3.
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• Set xls,t = (1 − αt)x
u
s,t−1 + αt xs,t−1 for certain given stepsize αt ∈ (0, 1], compute f(xls,t),

f ′(xls,t) and build the model

ms,t(x) := max
{
h(xli,j , x) : j = 0, 1 . . . , Ti − 1,∀ i = 1, . . . , s− 1; j = 0, 1, . . . , t for i = s

}
,

(24)
where h(·, ·) is defined in (5). Note that the model ms,t(x) is defined as as the maximum of all
the linear approximations to the function f(·) at the points xli,j that have been generated so
far. We then update the lower bound lbs,t by

lbs,t = min
x∈X

ms,t(x). (25)

• Compute the level ls,t = λ lbs,t + (1− λ) ubs,t−1 for some λ ∈ (0, 1) and set

xs,t = argminx
{
‖x− xs,t−1‖2 : x ∈ X,ms,t(x) ≤ ls,t

}
. (26)

• Choose xus,t ∈ X such that

f(xus,t) ≤ min
{

ubs,t−1, f(αtxt + (1− αt)xut−1)
}
. (27)

In particular, denoting x̃us,t ≡ αtxs,t + (1− αt)xus,t−1, we can set xus,t = x̃us,t if f(x̃us,t) ≤ ubs,t−1.
Otherwise, we set xus,t = xus,t−1.

• Update the upper bound ubs,t of f∗ by

ubs,t = f(xus,t) (28)

and set ∆s,t := ubs,t − lbs,t.

Now let us summarize the accelerated bundle-level method as follows.

The Accelerated Bundle-Level (ABL) method:

Input: ε > 0, λ ∈ (0, 1), p0 ∈ X and αt ∈ (0, 1], t = 1, 2, . . ..

Initialization:
Set xl1,0 = p0, compute f(xl1,0), f

′(xl1,0) and lb1,0 := minx∈X f(xl1,0) + 〈f ′(xl1,0), x− xl1,0〉.
Let xu1,0 ∈ Argminx∈Xf(xl1,0) + 〈f ′(xl1,0), x− xl1,0〉 and ub0 = f(xu1,0).
Let x1,0 ∈ X be arbitrarily chosen, say x1,0 = p0. Also let ∆1,0 = ub1,0 − lb1,0.

For s = 1, 2, . . .

For t = 1, 2, . . .

If ∆s,t−1 ≤ ε, Terminate the algorithm.

Else if ∆s,t−1 < λ∆s,0,

Set (xls+1,0, xs+1,0, x
u
s+1,0) = (xls,t−1, xs,t−1, x

u
s,t−1).

Set lbs+1,0 = lbs,t−1, ubs+1,0 = ubs,t−1 and ∆s+1,0 = ∆s,t−1.

Set Ts = t− 1 and pass to segment s+ 1.
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End if

Set xls,t = (1− αt)xus,t−1 + αt xs,t−1.

Compute f(xls,t), f
′(xls,t) ∈ ∂f(xls,t) and lbs,t = min

x∈X
ms,t(x).

Compute the level ls,t = λ lbs,t + (1− λ) ubs,t−1 and set
xs,t = arg min

x∈X

{
‖x− xs,t−1‖2 : ms,t(x) ≤ ls,t

}
.

Choose xus,t ∈ X such that f(xus,t) ≤ min
{

ubs,t−1, f(αt xt + (1− αt)xut−1)
}

.

Set ubs,t = f(xus,t) and ∆s,t = ubs,t − lbs,t.

End for

End for

Observe that by (21), (27) and (28), we have

ub1,0 ≥ ub1,1 ≥ . . . ≥ ub1,T1−1 ≥ ub2,0 ≥ ub2,1 ≥ . . . ≥ ub2,T2−1 ≥ . . . ≥ f∗. (29)

Moreover, by (5), (24) and the convexity of f , we obtain, ∀x ∈ X,

m1,0(x) ≤ m1,1(x) ≤ . . . ≤ m1,T1−1(x) ≤ m2,0(x) ≤ m2,1(x) ≤ . . . ≤ m2,T2−1(x) ≤ . . . ≤ f(x), (30)

which, in view of (25), then implies that

lb1,0 ≤ lb1,1 ≤ . . . ≤ lb1,T1−1 ≤ lb2,0 ≤ lb2,1 ≤ . . . ≤ lb2,T2−1 ≤ . . . ≤ f∗. (31)

Combining (29) and (31), we have

∆1,0 ≥ ∆1,1 ≥ . . . ≥ ∆1,T1−1 ≥ ∆2,0 ≥ ∆2,1 ≥ . . . ≥ ∆2,T2−1 ≥ . . . ≥ 0. (32)

Note however that relation (32) does not necessarily imply that the sequence {∆s,t} converges to
zero. To guarantee the convergence of the above scheme of the ABL method, we need to appropriately
specify the stepsizes αt, t ≥ 1. More specifically, denoting

Γt :=

{
1 t = 1
(1− λαt)Γt−1 t ≥ 2

, (33)

and assuming that the stepsizes αt ∈ (0, 1], t ≥ 1, are chosen such that

α2
t

Γt
≤ C1, Γt ≤

C2

t2
and Γt

[
t∑

τ=1

(
ατ
Γτ

)2
] 1

2

≤ C3√
t
, ∀ t ≥ 1 (34)

for some C1, C2, C3 ∈ <++, we will show in Theorem 3 that the ABL method can actually achieve
the optimal rate of convergence for solving (1). The following result, whose proof can be found in
Section 7.4, states two different ways of choosing the stepsizes αt, t ≥ 1, so that condition (34) holds.
It is worth noting that none of these stepsize policies require the knowledge of L, M or DX .
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Lemma 2 a) if 0 < λ ≤ 1
2 and αt, t ≥ 1, are given by

αt =
2

λ(t+ 3)
, (35)

then we have αt ∈ (0, 1] for any t ≥ 1. Moreover, condition (34) is satisfied with

C1 =
2

3λ2
, C2 = 6 and C3 =

1

3
√

3λ
; (36)

b) if αt, t ≥ 1, are recursively defined by

α1 = Γ1 = 1, Γt = α2
t = (1− λαt)Γt−1, ∀ t ≥ 2, (37)

then we have αt ∈ (0, 1) for any t ≥ 1. Moreover, condition (34) is satisfied with

C1 =
4

λ2
, C2 = 1 and C3 =

4√
3λ
. (38)

We are now ready to describe the main convergence properties of the above ABL method.

Theorem 3 Suppose that the stepsizes αt ∈ (0, 1], t = 1, 2, . . ., are chosen such that condition (34)
holds. Then, the total number of steps performed by the ABL method before termination does not
exceed N (ε) + S(ε), where

N (ε) :=
1

1− λ
1
2

(
3C1C2LD

2
X

2λ ε

) 1
2

+
1

1− λ2

(
3C3MDX

λ ε

)2

, (39)

S(ε) :=

[
1 +

(
3C2

λ

) 1
2

] ⌈
log 1

λ

(
LD2

X

2ε
+
MDX

ε

)⌉
, (40)

DX is defined in (9), L and M are given by (3).

We now add a few remarks about Theorem 3. First, suppose that the ABL method terminates
at step t of segment s for some t ≥ 1 and s ≥ 1. Then by (28), (18) and (31), we have

f(xus,t−1)− f∗ ≤ ubs,t−1 − lbs,t−1 ≤ ∆s,t−1 ≤ ε,

which implies that xus,t−1 is an ε-solution of (1). Second, it can be easily seen that S(ε) = O(N(ε)).
By setting M = 0 (resp. L = 0) in (39), we obtain the optimal iteration-complexity bound for
smooth (resp. non-smooth) convex optimization. Hence, the ABL method achieves uniformly the
optimal rate of convergence for solving smooth, non-smooth and composite CP problems (see [15]
for a discussion about the lower bounds on the rate of convergence for solving these classes of CP
problems). Third, the total number of steps stated in Theorem 3 is estimated for solving composite
CP problems with L > 0 and M > 0. It should be noted that, without modifying the algorithm, we
can slightly improve the iteration-complexity bound by a constant factor if either M or L is set to 0.
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4 The accelerated prox-level method

Observe that one problem for the ABL method is that, as the algorithm proceeds, its subproblems,
namely (25) and (26), become more and more difficult to solve. In this section, we present a variant
of the ABL method, namely, the accelerated prox-level (APL) method, which has the following
two desirable properties: i) the computational complexity of its subproblems does not increase as
the algorithm proceeds; ii) the non-Euclidean prox-functions can be employed to make use of the
geometry of the feasible set X. Note that similar mechanisms have been developed for the bundle-
type algorithms for non-smooth convex minimization. In particular, our algorithm can be viewed
as an “accelerated” version of the Non-Euclidean Restricted Memory Level (NERML) method by
Ben-Tal and Nemirovski [4, 3].

The steps of the APL method are divided into subsequent phases, corresponding to segments in
the ABL method. Phase s, s = 1, 2, . . ., is associated with a prox-center cs and a level l̃s such that

• the values of f(cs) and f ′(cs) are known when phase s starts;

• l̃s = λl̃bs+(1−λ)ũbs, where ũbs and l̃bs, respectively, are the smallest objective value and the
largest lower bound on f∗ found when phase s starts, and λ is a parameter of the algorithm.

Note that the prox-center c1 of the very first phase can be chosen arbitrarily.
Let ω : X → < be a given differentiable and strongly convex function with modulus σ (e.g.,

ω(x) = ‖x‖2/2). We define the prox-function at phase s of the APL method as

ωs(x) ≡ ω(x)− [ω(cs) +∇ω(cs)
T (x− cs)]. (41)

The prox-function ωs(·, ·) is also called Bregman’s distance, which was initially studied by Bregman
[5] and later by many others (see [1, 2, 14, 29, 23] and references therein). Observe that ωs(x) is also
differentiable and strongly convex with modulus σ, i.e.,

ωs(y) ≥ ωs(x) + 〈∇ωs(x), y − x〉+
σ

2
‖y − x‖2. (42)

Moreover, we have ∇ωs(cs) = 0 and hence that cs = arg minx∈X ωs(x). More discussions on the
determination of prox-functions for different feasible sets can be found, for example, in [4, 3, 23, 17].

We start the whole process by computing a valid lower bound on f∗. More specifically, given an
initial point p0 ∈ X, we set

l̃b1 = min
x∈X

{
f(p0) + 〈f ′(p0), x− p0〉

}
. (43)

Moreover, let p̃0 be an optimal solution of (43), we compute an upper bound on f∗ by setting 2

ũb1 = f(p̃0). (44)

Let us denote ∆̃s := ũbs − l̃bs and

D2
ω,X := max

x,y∈X
{ω(y)− ω(x)− 〈∇ω(x), y − x〉} . (45)

2Essentially, the upper bound ũb1 can be the function value of an arbitrary feasible point in X, since the initial gap
ũb1 − l̃b1 only logarithmically affects the rate of convergence of the APL method, see Theorem 5.
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Then, similar to (17), we have

∆̃1 = f(p̃0)−
[
f(p0) + 〈f ′(p0), p̃0 − p0〉

]
≤ L

2
‖p̃0 − p0‖2 +M‖p̃0 − p0‖

≤
LD2

ω,X

σ
+

√
2

σ
MDω,X , (46)

where the last inequality follows from (45) and the strong-convexity of ω.
Similarly to the ABL method, each step t, t = 0, 1, . . ., of phase s, s = 1, 2, . . ., updates three

intertwined search points, namely, (xls,t, xs,t, x
u
s,t). When generating (xls,t, xs,t, x

u
s,t), we have already

in our disposal the search points (xls,t−1, xs,t−1, x
u
s,t−1), a valid lower bound lbs,t−1 on f∗, and a

convex compact set Xs,t−1 in X, referred to as the localizer, such that

Ls :=
{
x ∈ X : f(x) ≤ l̃s

}
⊆ Xs,t−1. (47)

In the beginning of phase s, we set xs,0 = cs and lbs,0 = l̃bs. Xs,0 can be chosen as any set
satisfying (47), say, X. It is worth noting that other choices of Xs,0 might be computationally more
advantageous (see Section 6). Note also that the points xus,0 ∈ X can be chosen arbitrarily, say cs.

To update (xls,t−1, xs,t−1, x
u
s,t−1, Xs,t−1) into (xls,t, xs,t, x

u
s,t, Xs,t), the APL method first updates

the lower bound on f∗ by the following two steps:

1) Set xls,t = (1− αt)xus,t−1 + αtxs,t−1 for certain given stepsize αt ∈ (0, 1];

2) Solve the auxiliary problem
h∗ := min

x∈Xs,t−1

h(xls,t, x), (48)

where h(·, ·) is defined in (5). Observe that the quantity

l̂b := min{h∗, l̃s} (49)

is a lower bound on f∗. Indeed, by (47), we have f(x) > l̃s for any x ∈ X\Xs,t−1. Moreover,
by (5), (48) and the convexity of f , we have

h∗ ≤ h(xls,t, x) ≤ f(x), ∀x ∈ Xs,t−1.

Hence, l̂b := min{h∗, l̃s} underestimates f(x) everywhere on X. Clearly, the quantity

lbs,t := max{lbs,t−1, l̂b} (50)

is also a lower bound on f∗.

Depending on the value of lbs,t computed by (50), we consider the following two cases.

Case I: Significant progress on the lower bound. If

lbs,t ≥ l̃s − θ(l̃s − l̃bs), (51)

where θ ∈ (0, 1) is a parameter of the APL method, we terminate phase s, set

l̃bs+1 = lbs,t, ũbs+1 = min

{
ũbs, min

0≤τ≤t−1
f(xus,τ )

}
and pass to phase s + 1. The prox-center cs+1 ∈ X can be chosen arbitrarily, for example,
cs+1 = xus,t−1;
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Case II: No significant progress on the lower bound, i.e., condition (51) is not satisfied. We
first compute

xs,t ≡ argminx

{
ωs(x) : x ∈ Xs,t−1, h(xlt, x) ≤ l̃s

}
. (52)

Note that problem (52) must be feasible. Otherwise, the quantity h∗ computed in (48) would
be +∞ and hence we should have lbs,t = l̂b = l̃s. Therefore, Case I, rather than Case II, would
have occurred since condition (51) was satisfied. After computing xs,t, we choose xus,t ∈ X such
that

f(xus,t) ≤ f(αtxs,t + (1− αt)xus,t−1). (53)

The simplest option is to set xus,t = αtxs,t + (1 − αt)xus,t−1. Then, we check if the progress on
the the objective value is significant. More specifically, we consider two subcases.

Case II.a): Significant progress on upper bound. If

f(xus,t)− l̃s ≤ θ(ũbs − l̃s), (54)

we terminate phase s, set

l̃bs+1 = lbs,t, ũbs+1 = min

{
ũbs, min

0≤τ≤t
f(xus,τ )

}
and pass to phase s+ 1.

Case II.b): No significant progress on upper bound. If condition (54) does not hold, we
continue phase s and update the localizer Xs,t as an arbitrary convex compact set such that
Xs,t ⊆ Xs,t ⊆ Xs,t, where

Xs,t ≡
{
x ∈ Xs,t−1 : h(xls,t, x) ≤ l̃s

}
and Xs,t ≡ {x ∈ X : 〈∇ωs(xs,t), x− xs,t〉 ≥ 0} . (55)

Note that in Case II.b), problem (48) is feasible and hence that the set Xs,t is nonempty.
Moreover, by the optimality condition of (52), we have 〈∇ωs(xs,t), x−xs,t〉 ≥ 0 for any x ∈ Xs,t,

which then implies that Xs,t ⊆ Xs,t. Finally, let Ls be defined in (47) and suppose that

Ls ⊆ Xs,t−1. Then, by (55) and the fact that h(xls,t, x) ≤ f(x) for any x ∈ X, we have
Ls ⊆ Xs,t ⊆ Xs,t. Hence, by induction, condition (47) will be guaranteed given that Ls ⊆ Xs,0.

Therefore, we can always choose any Xs,t satisfying Xs,t ⊆ Xs,t ⊆ Xs,t (the simplest way is

to set Xs,t = Xs,t or Xt = Xs,t). Note that, while the number of constraints defining Xs,t

increases with t, the set Xs,t has only one more constraint than X. By choosing Xs,t in between
these two extremes, we can control the number of constraints for subproblems (48) and (52).

We now summarize the APL method as follows.

The Accelerated Prox-Level (APL) Algorithm:

Input: ε > 0, λ ∈ (0, 1), θ ∈ (0, 1), αt ∈ (0, 1] for any t ≥ 1, initial point p0 ∈ X.

Initialization:
Compute f(p0), f

′(p0) ∈ ∂f(p0), p̃0 ∈ Argminx∈Xf(p0) + 〈f ′(p0), x− p0〉.
Set l̃b1 = f(p0) + 〈f ′(p0), p̃0 − p0〉 and ũb1 = f(p̃0).
Choose the initial prox-center c1 ∈ X arbitrarily, e.g., p̃0.
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For s = 1, 2, . . . (start phase s),

If ũbs − l̃bs ≤ ε, terminate the algorithm.

Set l̃s = λ l̃bs + (1− λ) ũbs.

Set xs,0 = xus,0 = cs, lbs,0 = l̃bs, choose Xs,0 s.t. (47) holds.

For t = 1, 2, . . . (start step t of phase s),

Set xls,t = (1− αt)xus,t−1 + αtxs,t−1.

Compute f(xls,t), f
′(xls,t) ∈ ∂f(xls,t), and h∗ = minx∈Xs,t−1 h(xls,t, x).

Set lbs,t = max
{

lbs,t−1,min(l̃s, h
∗)
}

.

If lbs,t ≥ l̃s − θ(l̃s − l̃bs),

Set l̃bs+1 = lbs,t, ũbs+1 = min
{

ũbs,min0≤τ≤t−1 f(xuτ )
}

,

choose cs+1 ∈ X and pass to phase s+ 1.

Else

Compute xs,t = argminx

{
ωs(x) : x ∈ Xs,t−1, h(xls,t, x) ≤ l̃s

}
.

Find xus,t ∈ X such that f(xus,t) ≤ f(αtxs,t + (1− αt)xus,t−1).
If f(xus,t)− l̃s ≤ θ(ũbs − l̃s),

Set l̃bs+1 = lbs,t, ũbs+1 = min
{

ũbs,min0≤τ≤t f(xus,τ )
}

,

Choose cs+1 ∈ X and pass to phase s+ 1,

Else

Choose Xs,t s.t. Xs,t ⊆ Xs,t ⊆ Xs,t and pass to step t+ 1 of phase s.

End if

End if

End for (finish step t of phase s)

End for (finish phase s)

Similarly to the ABL method, we still need to properly specify the stepsizes {αt}t≥1 in order to
guarantee the optimal convergence of the above APL method. More specifically, denoting

Γ̃t :=

{
1, t = 1

Γ̃t−1(1− αt), t ≥ 2
, (56)

we assume that the stepsize αt ∈ (0, 1], t ≥ 1, are chosen such that

α1 = 1,
α2
t

Γ̃t
≤ C̃1, Γ̃t ≤

C̃2

t2
and Γ̃t

[
t∑

τ=1

(
ατ

Γ̃τ

)2
] 1

2

≤ C̃3√
t
, ∀ t ≥ 1, (57)

for some C̃1, C̃2, C̃3 ∈ <++. The following lemma, whose proof can be found in Section 7.4, states
two different ways to specify the stepsizes αt, t ≥ 1. It is worth noting that none of these stepsize
policies require the knowledge of L, M or Dω,X .
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Lemma 4 a) if αt, t ≥ 1, are set to

αt =
2

t+ 1
, (58)

then condition (57) holds with C̃1 = 2, C̃2 = 2 and C̃3 = 2/
√

3;

b) if αt, t ≥ 1, are computed recursively by

α1 = Γ̃1 = 1, α2
t = (1− αt)Γ̃t−1 = Γ̃t, ∀ t ≥ 2, (59)

then we have αt ∈ (0, 1] for any t ≥ 2. Moreover, condition (57) is satisfied with C̃1 = 1,
C̃2 = 4 and C̃3 = 4/

√
3.

We are now ready to describe the main convergence properties of the above APL method.

Theorem 5 Suppose that αt ∈ (0, 1], t = 1, 2, . . ., in the APL method are chosen such that condition
(57) holds. Also denote

q ≡ q(θ, λ) := 1− (1− θ) min{λ, 1− λ}. (60)

Then, the total number of steps performed by the APL method before termination does not exceed
Ñ (ε) + S̃(ε), where

Ñ (ε) =
1

1−√q

(
2C̃1C̃2LD2

ω,X

σθλ ε

) 1
2

+
1

1− q2

(
2
√

2C̃3MDω,X√
σθλ ε

)2

, (61)

S̃(ε) := 1 + max

{
0, log

(
LD2

ω,X

σε
+

√
2

σ

MDω,X
ε

)}
. (62)

and Dω,X is defined in (45).

Similar to the remarks made after Theorem 3, we can easily see from Theorem 5 that the APL
method is also uniformly optimal for minimizing smooth, nonsmooth and composite CP problems.
Moreover, the iteration-complexity bound in Theorem 5 can be slightly improved by assuming either
M or L is set to 0 in (3).

5 The APL method for minimizing strongly convex problems

In this section, we still consider (1), but now the objective function f is strongly convex, i.e., for
some µ > 0:

f(y)− f(x)− 〈f ′(x), y − x〉 ≥ µ

2
‖y − x‖2, ∀x, y ∈ X. (63)

Our goal in this section is to show that the APL method in section 4, after certain modifications,
can also achieve the optimal rate of convergence for minimizing strongly convex problems.

Throughout this section, we assume that the prox-function ωs(x) (c.f. (41)) at stage s, s ≥ 1,
of the APL method is growing quadratically, i.e., there exists a constant Q such that ωs(x) ≤
Q‖x − cs‖2/2 for any x ∈ X. The smallest constant Q satisfying the previous relation is called the
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quadratic growth constant. Without loss of generality, we assume that Q = 1 for the prox-function
ωs(x) if it grows quadratically, i.e.,

ωs(x) ≤ 1

2
‖x− cs‖2, ∀x ∈ X. (64)

Indeed, if Q 6= 1, we can multiply the corresponding distance generating function ω by 1/Q and
the resulting prox-function will satisfy (64). More discussions on the quadratically growing prox-
functions can be found, for example, in [9] and [7].

The following result states certain conditions under which the APL method is optimal for mini-
mizing strongly convex functions.

Theorem 6 Suppose that conditions (63) and (64) hold. If the prox-center cs and the localizer Xs,t

of the APL method are chosen such that either one of the following two conditions holds:

i) f(cs) = ubs,∀s ≥ 1 and x∗ ∈ Xs,t, ∀s ≥ 1, t ≥ 1, (65)

ii) Xs,t ⊆ Xs,t ⊆ Xs,t ∩

{
x ∈ X : ‖x− cs‖2 ≤

2∆̃s

µ

}
, ∀s ≥ 1, t ≥ 1, (66)

where ∆̃s = ũbs − l̃bs, Xs,t and Xs,t are defined in (55), then the total number of steps performed
by the APL method applied to (1) can be bounded by

S̃(ε)

1 +

√
2C̃1C̃2L

σθλµ

+
8C̃2

3M
2

(1− q)σθ2λ2µε
, (67)

where S̃(ε) is given by (62).

We now add a few remarks on the results obtained in Theorem 6. First, it can be easily seen
from (62) and (67) that, if f is a smooth convex function, i.e., M = 0, then the total number of steps
performed by the APL method is bounded by

O(1)

√
L

µ

[
1 + max

(
0, log

LD2
ω,X

σε

)]
.

Moreover, the total number of steps can be bounded by O(1)M2/(µε) if f is a non-smooth convex
function, i.e., L = 0. Therefore, Theorem 6 establishes the optimal rate of convergence for solving
either smooth or non-smooth strongly convex problems.

Second, to ensure the first relation in condition (65), we should choose the prox-center cs as the
best solution found so far when phase s starts. However, the second relation in (65) can be satisfied
only under certain specific assumptions, for example, when the optimal value of (1) is known and
the initial lower bound lb1 is set to f(x∗). In this case, we have l̃s ≥ f(x∗) and hence

h(xls,t, x
∗) ≤ f(x∗) ≤ l̃s, ∀ t = 1, 2, . . . ,

which implies that x∗ ∈ Xs,t ∈ Xs,t. It is worth noting that, under the aforementioned circumstances,
we do not need to modify the definition of Xs,t.
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Third, while condition (65) can only be guaranteed in some special cases, we can always ensure
condition (66) by incorporating an additional constraint, namely, ‖x − cs‖2 ≤ 2∆̃2

s/µ, into the
definition of Xs,t. The basic idea is to shrink the feasible set whenever a new phase starts. Similar
techniques have been used for solving strongly convex problems (c.f. [7]). Note however that,
incorporating one more constraint will slightly increase the difficulty for solving subproblems (48)
and (52). It should also be noted that, if condition (66) holds, assumption (64) on the quadratic
growing prox-function can be relaxed, by properly modifying the definition of ω(·) (c.f. [9]).

6 Implementation issues and numerical results

Our objective in this section is to discuss a few implementation issues and present the results of our
preliminary numerical experiments.

We start by detailing a few implementation issues for the bundle-type methods presented in
Section 3 and 4.

• Solve the ABL subproblems (25) and (26). If the set X is simple, one can use the interior
point methods (IPM) to solve subproblems (25) and (26). Moreover, from our numerical
experiments, choosing only n most recently generated components in ms,t(x) will not slow
down the convergence of the ABL method.

• Define the APL subproblems (48) and (52). In our implementation, we set

Xs,t = {x ∈ X : 〈∇ωs(xt), x− xs,t〉 ≥ 0}
⋂
Ms,t, t ≥ 0,

where Ms,t denotes the polyhedron defined by the intersection of B half spaces of the form{
x : h(xli,j , x) ≤ l̃s

}
which have been generated most recently and B is set to 10 in our exper-

iments.

• Solve the APL subproblems (48) and (52). These problems can be solved, for example, by
using interior point methods. Notice that the Lagrangian duals of these subproblems only have
a very small number of variables and the first-order information of these Lagrangian duals
can be easily computed if X is simple enough. We can then solve the Lagrangian duals of
these subproblems by any efficient algorithms for lower-dimensional CP, such as the Ellipsoid
algorithm (see [3] for similar strategies used in the NERML algorithm). It can also be easily
verified that the Lagrangian duals of (48) and (52) are, respectively, non-smooth and smooth
CP problems. In our implementation, the truncated ABL method (with at most n most recently
generated components in ms,t(x)) is used to solve the Lagrangian duals of these subproblems.

• Determine other parameters. We set λ = 1/2 and use the stepsizes in (35) (for its simplicity)
in our implementation of the ABL method. Also we set λ = 1/2, θ = 1/2, and use the stepsizes
in (58) in our implementation of the APL method.

The main objective of our numerical experiments is to investigate the performance of APL method
for solving smooth CP problems. For this purpose, we consider the quadratic programming (QP)
problem of

min
‖x‖≤1

‖Ax− b‖2, (68)
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where A ∈ <m×n and b ∈ <m. We compare the following four algorithms: i) the APL method with
subproblems solved by Mosek [22], an efficient software package implementing the IPMs for linear and
second-order cone programming; ii) the APL method with subproblems solved by the ABL method;
iii) NERML [4] with subproblem solved by Mosek; iv) Nesterov’s optimal method [27]. For the
bundle-type methods (APL and NERML), we also compare their performance when different initial
lower bounds, i.e., −∞ or 0, are provided. All of these algorithms were implemented in MATLAB2007
under Windows Vista and the experiments were conducted in an INTEL 2.53 GHz labtop. It is
worth noting that, while many algorithms, including some specialized algorithms (c.f. [8]), have
been developed for solving (68), Nesterov’s method and their variants are the only previously known
optimal algorithms for solving (68). In this paper, we are not intending to conduct an exhaustive
comparison on all different algorithms developed for solving (1), although it might be of great interest
from the computational point of view.

Our first experiment is conducted for some worst-case QP instances provided by A. Nemirovski,
which were constructed to demonstrate the worst-case convergence behavior of first-order algorithms
for (68). The Lipschitz constants for these instances are relatively small (≈ 1.0). From our experi-
ments, both the APL method and Nesterov’s method exhibit similar sublinear convergence for solving
these instances, see Table 6 for the number of steps performed the APL method (with subproblems
solved by Mosek) for achieving a specified accuracy, i.e., the difference between the objective value
and the optimal value. Hence, the APL method is not more advantageous over Nesterov’s method
for solving these worst-case instances.

Table 1: Number of steps performed by the APL method for bad instances
Bdata 1 Bdata 2 Bdata 3 Bdata 4

Acc. 1036× 1036 2062× 2062 2062× 2062 2062× 4124

1.0e− 4 32 30 30 30
1.0e− 5 126 113 118 114
1.0e− 6 392 406 402 368
1.0e− 7 980 1, 178 1, 224 1, 114

In our second experiment, we assume that A and b of (68) are generated randomly, so that the
optimal value of (68) is given by 0. The Lipschitz constants of these instances are much bigger (of
order 106) and the initial errors (starting with x = 0) are of order 104 (see the description of instances
LS1, LS2, LS3 in Table 6). The number of steps, CPU Time (in seconds) and actual accuracy were
reported in columns 3 − 5 and columns 6 − 8 of Table 6, respectively, for target accuracy 1.0e − 5
and 1.0e− 7. The following observations can be made from these results. Firstly, the APL methods
can significantly outperform Nesterov’s method in terms of both the number of iterations and the
computational time for solving these randomly generated instances. It is worth noting that the fact
that all the algorithms were implemented in MATLAB seems to be in favor of Nesterov’s algorithm,
since the major cost of this method is the matrix-vector multiplication. We believe that the APL
method can be made much faster with an implementation in C. Secondly, the supply of a good initial
lower bound help the convergence of the APL and NERML algorithms, especially for the latter one.
In particular, if the initial bound is set to −∞, the NERML algorithm converges very slowly after
500 iterations and it cannot achieve accuracy smaller than 1.0e− 5 for solving these QP instances.
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Table 2: Tests for randomly generated instances

LS1: n = 4000, m = 2000, L = 2.00e6 and err0 = 3.85e4

Alg. LB Iter. Time Acc. Iter. Time Acc.

APL 0 70 59.85 8.76e− 6 95 81.66 8.24e− 8
(Mosek) −∞ 190 154.20 6.21e− 6 373 317.53 8.30e− 8

APL 0 69 54.76 9.08e− 6 156 122.59 9.09e− 8
(ABL) −∞ 175 185.35 2.27e− 6 309 270.97 7.45e− 8

NERML 0 142 125.13 7.94e− 6 176 155.09 9.95e− 8
(Mosek) −∞ 500 419.30 1.14e− 4 - - -

NEST - 9, 000 432.21 9.79e− 6 30, 400 1, 467.15 1.00e− 7

LS2: n = 6000, m = 3000, L = 4.50e6 and err0 = 3.85e4

Alg. LB Iter. Time Acc. Iter. Time Acc.

APL 0 67 116.12 8.31e− 6 92 159.45 8.22e− 8
(Mosek) −∞ 227 385.45 3.64e− 6 399 677.50 9.63e− 8

APL 0 91 84.19 9.80e− 6 225 208.16 9.28e− 8
(ABL) −∞ 217 190.23 6.21e− 6 384 336.54 2.00e− 8

NERML 0 132 221.32 9.40e− 6 167 279.77 8.84e− 8
(Mosek) −∞ 500 835.86 3.02e− 4 - - -

NEST - 12, 700 1, 304.81 9.79e− 6 41, 551 4, 269.03 1.00e− 7

LS3: n = 8000, m = 4000, L = 8.0e6 and err0 = 3.2e6

Alg. LB Iter. Time Acc. Iter. Time Acc.

APL 0 66 191.41 9.91e− 6 90 261.02 8.59e− 8
(Mosek) −∞ 218 631.14 8.45e− 6 384 1, 111.71 8.10e− 8

APL 0 70 132.90 9.44e− 6 152 288.57 9.23e− 8
(ABL) −∞ 217 446.69 5.40e− 6 360 741.05 6.46e− 8

NERML 0 134 395.50 8.74e− 6 168 495.85 9.26e− 8
(Mosek) −∞ 500 1, 403.62 1.39e− 4 - - -

NEST - 16, 200 2, 825.51 9.80e− 6 53, 746 9, 374.02 1.00e− 7

7 Convergence analysis

In this section, we provide the proofs of our main results presented in Sections 3, 4 and 5.

7.1 Convergence analysis for the ABL method

The goal of this subsection is to prove Theorem 3, which describes the main convergence properties
of the ABL method. Before proving this result, we first need to show a few technical results.

The following lemma shows that the subproblems (26) in each segment of the ABL method have
at least one common feasible point and hence that the prox-centers in each segment will be “close”
enough to each other. This result resembles the corresponding one of the bundle-level method (see,
for example, [4]).
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Lemma 7 For each segment s, s ≥ 1, of the ABL method, the level sets given by

Ls,t := {x ∈ X : ms,t(x) ≤ ls,t} , t = 1, . . . , Ts − 1 (69)

have a point in common, where ms,t(·) is defined in (25) and ls,t := λ lbs,t + (1 − λ)ubs,t−1. As a
consequence, we have

t∑
τ=1

‖xs,τ − xs,τ−1‖2 ≤ D2
X , t = 1, . . . , Ts − 1, (70)

where Ts denotes the number of steps in segment s and DX is defined in (9).

Proof. Denote r = Ts− 1 and let u ∈ Argminx∈Xms,r(x). Note that by (18) and the definition of
Ts, we have, for any t = 1, . . . , r, ∆s,t = ubs,t − lbs,t ≥ λ∆s,0. Using this observation, (30) and (25),
we conclude that, for any t = 1, . . . , r,

ms,t(u) ≤ ms,r(u) = lbs,r = ubs,r −∆s,r ≤ ubs,r − λ∆s,0 ≤ ubs,t−1 − λ∆s,0,

which, in view of the facts that ∆s,0 ≥ ∆s,t−1 and that lbs,t−1 ≤ lbs,t for any t = 1, 2, . . . , r, then
implies that

ms,t(u) ≤ ubs,t−1 − λ∆s,t−1 = (1− λ) ubs,t−1 + λ lbs,t−1 ≤ (1− λ) ubs,t−1 + λ lbs,t = ls,t.

We have thus shown that u ∈ Ls,t for any t = 1, . . . , r. Now observe that by (26), we have

‖xs,τ − u‖2 + ‖xs,τ−1 − xs,τ‖2 ≤ ‖xs,τ−1 − u‖2, τ = 1, . . . , t,

for any t = 1, . . . , r. Summing up the above inequalities and using (9), we obtain

‖xs,t − u‖2 +
t∑

τ=1

‖xs,τ−1 − xs,τ‖2 ≤ ‖xs,0 − u‖2 ≤ D2
X ,

which clearly implies (70).

The following result establishes an important recursion of the ABL method.

Lemma 8 Let (xls,t, xs,t, x
u
s,t), s = 1, 2, . . .; t = 0, 1, . . . , Ts − 1, be the search points computed by the

ABL method at step t of segment s. Let Γt be defined in (33) and suppose that the stepsizes αt ∈ (0, 1],
t ≥ 1, are chosen such that the first relation of (34) holds. Then, for any t = 1, . . . , Ts − 1,

∆s,t

Γt
≤ (1− α1λ)∆s,0 +

C1LD
2
X

2
+MDX

[
t∑

τ=1

(
ατ
Γτ

)2
] 1

2

. (71)

Proof. First observe that conditions (10), (11) and (12) hold with (x, y, z) = (xs,t−1, x
u
s,t−1, x

l
s,t−1),

(x+, y+, z+) = (xs,t, x
u
s,t, x

l
s,t), l = ls,t and α = αt. Hence, by Lemma 1, we have

f(xus,t) ≤ (1− αt)f(xus,t−1) + αtls,t +
Lα2

t

2
‖xs,t − xs,t−1‖2 +Mαt‖xs,t − xs,t−1‖.
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By subtracting lbs,t from both sides of the above inequality, and observing that in the ABL method,
f(xus,t)− lbs,t = ubs,t − lbs,t = ∆s,t and that

(1− αt)f(xus,t−1)− lbs,t + αtls,t = (1− αt)ubs,t−1 − lbs,t + αt [λ lbs,t + (1− λ) ubs,t−1]

= (1− αt)ubs,t−1 + αt(1− λ) ubs,t−1 − (1− αtλ)lbs,t

≤ (1− αt)ubs,t−1 + αt(1− λ) ubs,t−1 − (1− αtλ)lbs,t−1

= (1− αtλ)∆s,t−1,

where the inequality follows from the fact lbs,t ≥ lbs,t−1, we then have, for any t ≥ 1,

∆s,t ≤ (1− αtλ)∆s,t−1 +
Lα2

t

2
‖xs,t − xs,t−1‖2 +Mαt‖xs,t − xs,t−1‖. (72)

Now, letting t = 1 and dividing both sides of the above inequality by Γt, we have

∆s,1

Γ1
≤ 1− α1λ

Γ1
∆s,0 +

Lα2
1

2Γ1
‖xs,1 − xs,0‖2 +

Mα1

Γ1
‖xs,1 − xs,0‖

= (1− α1λ)∆s,0 +
Lα2

1

2Γ1
‖xs,1 − xs,0‖2 +

Mα1

Γ1
‖xs,1 − xs,0‖, (73)

where the last inequality follows from the fact that Γ1 = 1. Similarly, we have

∆s,t

Γt
≤ 1− αtλ

γt
∆s,t−1 +

Lα2
t

2Γt
‖xs,t − xs,t−1‖2 +

Mαt
Γt
‖xs,t − xs,t−1‖

=
∆s,t−1
Γt−1

+
Lα2

t

2Γt
‖xs,t − xs,t−1‖2 +

Mαt
Γt
‖xs,t − xs,t−1‖, ∀ t ≥ 2, (74)

where the last identity follows from the definition of Γt in (33). Now summing up the concluding
inequalities in (73) and (74), we obtain

∆s,t

Γt
≤ (1− α1λ)∆s,0 +

L

2

t∑
τ=1

α2
τ

Γt
‖xs,τ − xs,τ−1‖2 +M

t∑
τ=1

ατ
Γτ
‖xs,τ − xs,τ−1‖

≤ (1− α1λ)∆s,0 +
L

2

t∑
τ=1

α2
τ

Γt
‖xs,τ − xs,τ−1‖2 +M

[
t∑

τ=1

(
ατ
Γτ

)2 t∑
τ=1

‖xs,τ − xs,τ−1‖2
] 1

2

,

where the last inequality follows from the Cauchy-Schwartz inequality. The previous inequality,
together with (70) and the first relation in (34), then imply that

∆s,t

Γt
≤ (1− α1λ)∆s,0 +

C1L

2

t∑
τ=1

‖xs,τ − xs,τ−1‖2 +M

[
t∑

τ=1

(
ατ
Γτ

)2 t∑
τ=1

‖xs,τ − xs,τ−1‖2
] 1

2

≤ (1− α1λ)∆s,0 +
C1LD

2
X

2
+MDX

[
t∑

τ=1

(
ατ
Γτ

)2
] 1

2

.

The following lemma bounds the number of steps in each segment of the ABL method.
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Lemma 9 Suppose that the stepsizes αt, t = 1, 2, . . ., of the ABL method are chosen such that
condition (34) hold. Then, the number of steps in segment s is bounded by Ns, where

Ns := 1 +

(
3C2

λ

) 1
2

+

(
3C1C2LD

2
X

2λ∆s,0

) 1
2

+

(
3C3MDX

λ∆s,0

)2

. (75)

Proof. Let Ts denote the total number of steps performed in segment s by the ABL method.
Assume for contradiction Ts > Ns. Clearly, we have ∆s,Ts−1 ≥ λ∆s,0 since (18) does not hold. By
the second two relations of (34) and (71), we obtain

∆s,Ts−1 ≤ ΓTs−1(1− α1λ)∆s,0 +
C1ΓTs−1LD

2
X

2
+MDXΓTs−1

[
Ts−1∑
τ=1

(
ατ
Γτ

)2
] 1

2

.

≤ C2(1− α1λ)∆s,0

(Ts − 1)2
+
C1C2LD2

X

2(Ts − 1)2
+
C3MDX√
Ts − 1

<
C2∆s,0

(Ns − 1)2
+
C1C2LD2

X

2(Ns − 1)2
+
C3MDX√
Ns − 1

,

where the last inequality follows from the facts that Ts > Ns, α1 ≥ 0 and λ ∈ (0, 1). Using the above
inequality and (75), we have ∆s,Ts−1 < λ∆s,0, which contradicts with ∆s,Ts−1 ≥ λ∆s,0.

We also need the following simple technical result.

Lemma 10 Let the constants r ∈ (0, 1) and v > 0 be given. Then,

S∑
s=1

γv(S−s) ≤ 1

1− rv
, ∀S ≥ 1. (76)

Proof. Clearly, we have
S∑
s=1

γv(S−s) =

S−1∑
t=0

γvt ≤ 1

1− rv
.

We now provide the proof of Theorem 3.

Proof of Theorem 3: Obviously, the ABL method will terminate in one step if ∆1,0 ≤ ε. Without
loss of generality, let us assume that ∆1,0 > ε. Observe that by (18) and (22), we have

∆s+1,0 < λ∆s,0, ∀ s ≥ 1. (77)

Letting S be the total number of segments performed by the ABL method, we can easily see from
the above relation and (17) that

S ≤
⌈

log 1
λ

∆1,0

ε

⌉
≤
⌈

log 1
λ

(
LD2

X

2ε
+
MDX

ε

)⌉
. (78)
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It also follows from (77) that ∆s,0 > ελs−S , s = 1, . . . , S, since ∆S,0 > ε due to the origin of S. Using
this observation and (76), we obtain

S∑
s=1

∆
− 1

2
s,0 <

S∑
s=1

λ
1
2
(S−s)

ε
1
2

≤ 1

ε
1
2 (1− λ

1
2 )

and

S∑
s=1

∆−2s,0 <

S∑
s=1

λ2(S−s)

ε2
≤ 1

ε2(1− λ2)
.

Now by Lemma 9 and the above two inequalities, the total number of steps performed by the ABL
method can be bounded by

S∑
s=1

Ns = S

[
1 +

(
3C2

λ

) 1
2

]
+

(
3C1C2LD

2
X

2λ

) 1
2

S∑
s=1

∆
− 1

2
s,0 +

(
3C3MDX

λ

)2 S∑
s=1

∆−2s,0

≤ S

[
1 +

(
3C2

λ

) 1
2

]
+

1

1− λ
1
2

(
3C1C2LD

2
X

2λε

) 1
2

+
1

1− λ2

(
3C3MDX

λε

)2

.

Combining (78) and the previous conclusion, we conclude that the total number of steps performed
by the ABL method is bounded by N (ε) + S(ε), where N (ε) and S(ε) are defined in (39) and (40),
respectively.

7.2 Convergence analysis for the APL method

The goal of this subsection is to prove Theorem 5, which describes the main convergence properties
of the APL method. Our first lemma below states a result in place of Lemma 7 for the ABL method.

Lemma 11 Let xs,t and Xs,t ⊆ X, respectively, denote the search point and the localizer computed
at step t of phase s of the APL method. Then,

a) xs,t = argminx {ωs(x) : x ∈ Xs,t} for any t ≥ 1;

b) σ
2 ‖xs,t+1 − xs,t‖2 ≤ ωs(xs,t+1)− ωs(xs,t) for any t ≥ 0;

c) σ
2

∑t
τ=1 ‖xs,τ − xs,τ−1‖2 ≤ ωs(xs,t)− ωs(xs,0) for any t ≥ 1.

Proof. We first show part a). By the second identity of (55), we have 〈∇ωs(xs,t), x − xs,t〉 ≥ 0
for any x ∈ Xs,t, which implies that xs,t = argminx∈Xs,t

ωs(x). Moreover, noting that by (52)

and the first identity of (55), we have xs,t ∈ Xs,t. Using these two observations and the fact that

Xs,t ⊆ Xs,t ⊆ Xs,t, we have xs,t = argminx∈Xs,tωs(x) for any t ≥ 1.
We now show part b). We first claim that 〈∇ωs(xs,t), xs,t+1−xs,t〉 ≥ 0 for any t ≥ 0. This claim is

obviously true when t = 0 due to the facts that xs,0 = cs and ∇ωs(cs) = 0. Now suppose that t ≥ 1.
By (52), we have xs,t+1 ∈ Xs,t, which, in view of part a), then implies that 〈∇ωs(xs,t), xs,t+1−xs,t〉 ≥
0. Part b) now follows directly from our previous claim and the strong convexity of ωs(x) (c.f. (42)).
Moreover, part c) can be easily obtained by summing up the inequalities in part b).

We now establish an important recursion of the APL method.
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Lemma 12 Let (xs,t, x
u
s,t) ∈ X ×X be the search points computed at step t of phase s by the APL

method. Let Γ̃t be defined in (56) and suppose that the stepsizes αt, t = 1, 2, . . ., are chosen such
that the first two relations of (57) hold. Then, for any t ≥ 1 and s ≥ 1,

1

Γ̃t

[
f(xus,t)− l̃s

]
≤ C̃1L

σ
[ωs(xs,t)− ωs(xs,0)] +M

[
2[ωs(xs,t)− ωs(xs,0)]

σ

t∑
τ=1

(
ατ

Γ̃τ

)2
] 1

2

. (79)

Proof. First observe that conditions (10), (11) and (12) hold with (x, y, z) = (xs,t−1, x
u
s,t−1, x

l
s,t−1),

(x+, y+, z+) = (xs,t, x
u
s,t, x

l
s,t), l = l̃s and α = αt. Hence, by Lemma 1, we have

f(xus,t) ≤ (1− αt)f(xus,t−1) + αt l̃s +
Lα2

t

2
‖xs,t − xs,t−1‖2 +Mαt‖xs,t − xs,t−1‖.

By subtracting l̃s from both sides of (13), we have, for any t ≥ 1,

f(xus,t)− l̃s ≤ (1− αt)
[
f(xus,t−1)− l̃s

]
+
Lα2

t

2
‖xs,t − xs,t−1‖2 +Mαt‖xs,t − xs,t−1‖

≤ (1− αt)
[
f(xus,t−1)− l̃s

]
+
C̃1LΓ̃t

2
‖xs,t − xs,t−1‖2 +Mαt‖xs,t − xs,t−1‖,

where the last inequality follows from the second relation in (57). Dividing both sides of the above
inequality by Γ̃t, and using (56) and the first relation in (57), we obtain that

1

Γ̃1

[
f(xus,1)− l̃s

]
≤ 1− α1

Γ̃1

[
f(xus,0)− l̃s

]
+
C̃1L

2
‖xs,1 − xs,0‖2 +M

α1

Γ1
‖xs,1 − xs,0‖

=
C̃1L

2
‖xs,1 − xs,0‖2 +M

α1

Γ1
‖xs,1 − xs,0‖

and that, for any τ = 2, 3, . . . , t,

1

Γ̃τ

[
f(xus,τ )− l̃s

]
≤ 1− ατ

Γ̃τ

[
f(xus,τ−1)− l̃s

]
+
C̃1L

2
‖xs,τ − xs,τ−1‖2 +M

ατ

Γ̃τ
‖xs,τ − xs,τ−1‖

=
1

Γ̃τ−1

[
f(xus,τ−1)− l̃s

]
+
C̃1L

2
‖xs,τ − xs,τ−1‖2 +M

ατ

Γ̃τ
‖xs,τ − xs,τ−1‖.

Adding up the above inequalities, we have, for any t ≥ 1,

1

Γ̃t

[
f(xus,t)− l̃s

]
≤ C̃1L

2

t∑
τ=1

‖xs,τ − xs,τ−1‖2 +M
t∑

τ=1

ατ

Γ̃τ
‖xs,τ − xs,τ−1‖

≤ C̃1L

2

t∑
τ=1

‖xs,τ − xs,τ−1‖2 +M

[
t∑

τ=1

(
ατ

Γ̃τ

)2
] 1

2
[

t∑
τ=1

‖xs,τ − xs,τ−1‖2
] 1

2

,(80)

where the last inequality follows from the Cauchy-Schwartz inequality. The result now immediately
follows by combining (80) and Lemma 11.c).

Our next result bounds the total number of steps performed in phase s, s ≥ 1, of the APL
method.
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Lemma 13 Suppose that the stepsize αt, t = 1, 2, . . ., are chosen such that (57) holds. Then the
number of steps performed in phase s, s = 1, 2, . . ., of the APL method is bounded by dÑse, where

Ñs :=

(
2C̃1C̃2LD2

ω,X

σθλ∆̃s

) 1
2

+
8C̃2

3M
2D2

ω,X

σθ2λ2∆̃2
s

, (81)

∆̃s := ũbs − l̃bs and Dω,X is defined in (45).

Proof. Let (xs,t, x
u
s,t) ∈ X ×X be the search points computed at step t of phase s by the APL

method. Observe that by (41), we have ωs(xs,0) ≥ 0 and hence that ωs(xs,t) − ωs(xs,0) ≤ ωs(xs,t).
This observation, together with Lemma 12 and the last two relations in (57), then imply that

f(xus,t)− l̃s ≤
C̃1LΓ̃t
σ

ωs(xs,t) +M Γ̃t

[
2ωs(xs,t)

σ

t∑
τ=1

(
ατ

Γ̃τ

)2
] 1

2

≤ C̃1C̃2Lωs(xs,t)

σt2
+
C̃3M

√
2ωs(xs,t)√
σt

.

(82)
By the above inequality, (81), the relation ωs(xs,t) ≤ D2

ω,X due to (45), and the fact that dÑse ≥ Ñs,
we have

f(xu
s,dÑse

)− l̃s ≤
C̃1C̃2LD2

ω,X

σÑ2
s

+

√
2C̃3MDω,X√

σÑs

≤ θλ∆̃s = θλ(ũbs − l̃bs) = θ(ũbs − l̃s),

where the last equality follows from the fact that l̃s = λ l̃bs + (1− λ) ũbs. The previous conclusion,
in view of (54), then clearly implies that the number of steps in phase s can be bounded by dÑse.

We are now ready to prove Theorem 5.
Proof of Theorem 5: Obviously, if ∆̃1 ≤ ε, the APL method will terminate in one step. Without
loss of generality, let us assume that ∆̃1 > ε. First, observe that

∆̃s+1 ≤ q ∆̃s, ∀ s ≥ 1, (83)

where q ≡ q(θ, λ) is defined in (60). Indeed, if phase s is terminated according to (51), then

∆̃s+1 = ũbs+1 − l̃bs+1 ≤ ũbs − [l̃s − θ(l̃s − l̃bs)] = [1− (1− θ)(1− λ)]∆̃s. (84)

Otherwise, phase s must terminate when (54) holds. In this case, we have

∆̃s+1 = ũbs+1 − l̃bs+1 ≤ ũbs+1 − l̃bs ≤ l̃s + θ(ũbs − l̃s)− l̃bs

= θλ∆̃s + (1− λ)∆̃s = [1− (1− θ)λ]∆̃s. (85)

Combining (84) and (85), we obtain (83). Letting S̃ be the total number of phases performed by the
APL method, we can easily see from (46), (62) and (83) that

S̃ ≤

⌈
log 1

γ

∆̃1

ε

⌉
≤ 1 + log 1

γ

∆̃1

ε
≤ S̃(ε). (86)
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It also follows from (83) that ∆̃s > εqs−S̃ , s = 1, . . . , S̃, since ∆̃S̃ > ε due to the origin of S̃. Using
this observation and (76), we obtain

S̃∑
s=1

∆̃
− 1

2
s <

S̃∑
s=1

q
1
2
(S̃−s)

ε
1
2

≤ 1

ε
1
2 (1− q

1
2 )

and
S̃∑
s=1

∆̃−2s <
S̃∑
s=1

q2(S̃−s)

ε2
≤ 1

ε2(1− q2)
. (87)

Now, by Lemma 9, (86) and the above two inequalities, the total number of steps performed by the
APL method can be bounded by

S̃∑
s=1

⌈
Ñs

⌉
≤ S̃ +

S̃∑
s=1

Ñs ≤ S̃(ε) +
S̃∑
s=1

Ñs

≤ S̃(ε) +

(
2C̃1C̃2LD2

ω,X

σθλ

) 1
2 S̃∑
s=1

∆̃
− 1

2
s +

8C̃2
3M

2D2
ω,X

σθ2λ2

S̃∑
s=1

∆̃−2s

≤ S̃(ε) +
1

1−√q

(
2C̃1C̃2LD2

ω,X

σθλ ε

) 1
2

+
1

1− q2

(
2
√

2C̃3MDω,X√
σθλ ε

)2

= S̃(ε) + Ñ (ε),

where the last identity follows from the definition of Ñ (ε) in (61).

7.3 Minimizing strongly convex functions

Our goal in this subsection is to provide the proof of Theorem 6.

Proof of Theorem 6: Obviously, the APL method will terminate in one step if ∆̃1 ≤ ε. Without
loss of generality, we assume that ∆̃1 > ε. We first claim that, under assumption (65) or (66),

ωs(xs,t) ≤
∆̃s

µ
, ∀ s ≥ 1, t ≥ 1. (88)

Indeed, by (52) and (65), we have ωs(xs,t) ≤ ωs(x
∗), which together with (63), (64) and (65), then

imply that

ωs(xs,t) ≤
1

2
‖cs − x∗‖2 ≤

1

µ
[f(cs)− f∗] =

1

µ
(ubs − f∗) ≤

∆̃s

µ
.

Moreover, if condition (66) (rather than (65)) holds, then by (64), (66) and the fact that xs,t ∈ Xs,t,
we also have

ωs(xs,t) ≤
‖xs,t − cs‖2

2
≤ ∆̃s

µ
.

We now show that the number of steps performed at phase s of the APL method is bounded by dN̂se
with

N̂s :=

√
2C̃1C̃2L

σθλµ
+

8C̃2
3M

2

σθ2λ2µ∆̃s

. (89)
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Indeed, by (82), (88), (89) and the fact that dN̂se ≥ N̂s, we have

f(xu
s,dN̂se

)− l̃s ≤
C̃1C̃2L∆̃s

σµN̂2
s

+
C̃3M

√
2∆̃s√

σN̂s

≤ θλ∆̃s = θλ(ũbs − l̃bs) = θ(ũbs − l̃s),

where the last equality follows from the fact that l̃s = l̃bs + (1 − λ)(ũbs − l̃bs). Using the previous
conclusion and (54), we can easily see that the number of steps in phase s can be bounded by dN̂se.
Let S̃ be the number of phases performed by the APL method. By (86), we have S̃ ≤ S̃(ε), where
S̃(ε) is defined in (62). Moreover, using an argument similar to the one given in the proof of (87),
we can show that

S̃∑
s=1

∆̃−1s ≤
1

ε(1− q)
.

Using these observations, we conclude that the total number of steps performed by the APL method
is bounded by

S̃∑
s=1

⌈
N̂s

⌉
≤ S̃

1 +

√
2C̃1C̃2L

σθλµ

+
8C̃2

3M
2

σθ2λ2µ

S̃∑
s=1

∆̃−1s

≤ S̃(ε)

1 +

√
2C̃1C̃2L

σθλµ

+
1

1− q
8C̃2

3M
2

σθ2λ2µε
. (90)

7.4 Determining the stepsizes

The goal of this subsection is to prove Lemmas 2 and 4.
The following technical result will be used in the proof of part b) of both Lemma 2 and Lemma 4.

Lemma 14 Let α1 = γ1 = 1. Also suppose that αt, γt, t ≥ 2, are computed recursively by

γt = α2
t = (1− βαt)γt−1 (91)

for some β ∈ (0, 1], then we have, for any t ≥ 1,

αt ∈ (0, 1], γt ≤
4

β2t2
and γt

[
t∑

τ=1

(
ατ
γt

)2
] 1

2

≤ 4√
3βt

.

Proof. Note that by (91), we have

αt =
1

2

[
−βγt−1 +

√
β2γ2t−1 + 4γt−1

]
, t ≥ 2, (92)

which clearly implies that αt > 0, t ≥ 2. We now show that αt ≤ 1 and γt ≤ 1 by induction. Indeed,
by the inductive hypothesis and the fact β ∈ (0, 1], we have (1− β) γt−1 ≤ 1, which in view of (92),
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then implies that

αt ≤
1

2

[
−βγt−1 +

√
β2γ2t−1 + 4γt−1 + 4[1− (1− β)γt−1]

]
=

1

2

[
−βγt−1 +

√
β2γ2t−1 + 4βγt−1 + 4

]
= 1. (93)

The previous conclusion, together with the fact that α2
t = γt due to (91), then also imply that γt ≤ 1.

Now let us bound 1/
√
γt for any t ≥ 2. First observe that, by (91), we have, for any t ≥ 2,

1
√
γt
− 1
√
γt−1

=

√
γt−1 −

√
γt√

γt−1γt
=

γt−1 − γt√
γt−1γt

(√
γt−1 +

√
γt
) =

βαtγt−1
γt−1
√
γt + γt

√
γt−1

. (94)

Using the above identity, (91) and the fact that γt ≤ γt−1 due to (91), we conclude that

1
√
γt
− 1
√
γt−1

≥ βαt
2
√
γt

=
β

2
,

which, in view of the fact that γ1 = 1, then implies that 1/
√
γt ≥ 1 + (t− 1)β/2 = [2 + β(t− 1)]/2.

By the previous inequality and the fact that β ∈ (0, 1], we have

γt ≤
4

[2 + β(t− 1)]2
≤ 4

β2t2
, ∀ t ≥ 1. (95)

Moreover, it also follows from (94) that 1√
γt
− 1√

γt−1
≤ βαt√

γt
= β, which, in view of the fact γ1 = 1

and (91), then implies that αt
γt

= 1√
γt
≤ 1 + β(t− 1). By using the previous conclusion and (95), we

have

γt

[
t∑

τ=1

(
ατ
γt

)2
] 1

2

≤ 4

[2 + β(t− 1)]2

[
t∑

τ=1

(1 + β(τ − 1))2
] 1

2

≤ 4

[2 + β(t− 1)]2

(∫ 2+β(t−1)

0
u2du

) 1
2

=
4

√
3[2 + β(t− 1)]

1
2

≤ 4√
3βt

.

We are now ready to show Lemmas 2 and 4. Note that we need the following simple inequality
inside these proofs.

t∑
τ=1

τ2 =
t(t+ 1)(2t+ 1)

6
≤ t(t+ 1)2

3
. (96)

Proof of Lemma 2: Part b) of the result follows directly from Lemma 14 with β = λ and γt = Γt.
We only need to show part a). Clearly, by (35) and the facts that λ ∈ (0, 1/2] and t ≥ 1, we have
αt ∈ (0, 1] for any t ≥ 1. It can also be easily seen from (33) and (35) that

Γt =
6

(t+ 2)(t+ 3)
≤ 6

t2
, t ≥ 1.
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Using the above relation, (35) and (96), we have

Γt

[
t∑

τ=1

(
ατ
Γt

)2
] 1

2

= Γt

[
t∑

τ=1

(
t+ 2

3λ

)2
] 1

2

≤ Γt
3λ

(
t+2∑
τ=1

τ2

) 1
2

≤ Γt
3λ

(
(t+ 2)(t+ 3)2

3

) 1
2

=
1

3λ
√

3(t+ 2)
≤ 1

3λ
√

3t
.

These observations together with (35) then imply that (34) holds with C1, C2 and C3 given by (36).

Proof of Lemma 4: Part b) of the result follows directly from Lemma 14 with β = 1 and γt = Γ̃t.
We only need to show part a). Using (56) and (58), we have α1 = 1 and

Γ̃t =
2

t(t+ 1)
≤ 2

t2
, t ≥ 1. (97)

Clearly, we have α2
t ≤ 2Γ̃t. Moreover, by (97), (58) and (96), we have

Γ̃t

[
t∑

τ=1

(
ατ

Γ̃t

)2
] 1

2

= Γ̃t

(
t∑

τ=1

τ2

) 1
2

≤ Γ̃t

(
t(t+ 1)2

3

) 1
2

=
2√
3t
.

8 Concluding remarks

In this paper, we present two new bundle-type methods for convex programming. Our major theo-
retical contributions consist of the following aspects: i) substantially improve the rate of convergence
of bundle-type methods, when applied to smooth CP problems, from O(1/

√
t) to O(1/t2); ii) present

a class of uniformly optimal algorithms for solving smooth and non-smooth CP problems. In other
words, given that the CP problem is represented by a first-order oracle, these algorithms do not
require any global smoothness information to achieve the optimal rates of convergence. From the
practical point of view, our contribution is to introduce certain promising alternative algorithms to
Nesterov’s methods (or its variants), which are the only previously known optimal algorithms for
smooth convex optimization. In the future, we will investigate the optimization techniques presented
in this paper for solving more structured non-smooth CP and variational inequality problems.
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