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We consider in this paper quadratic programming problems with cardinality and minimum

threshold constraints which arise naturally in various real-world applications such as port-

folio selection and subset selection in regression. This class of problems can be formulated

as mixed-integer 0-1 quadratic programs. We propose a new semidefinite program (SDP)

approach for computing the “best” diagonal decomposition that gives the tightest continu-

ous relaxation of the perspective reformulation of the problem. We also give an alternative

way of deriving the perspective reformulation by applying a special Lagrangian decomposi-

tion scheme to the diagonal decomposition of the problem. This derivation can be viewed

as a “dual” method to the convexification method employing the perspective function on

semi-continuous variables. Computational results show that the proposed SDP approach

can be advantageous for improving the performance of MIQP solvers when applied to the

perspective reformulations of the problem.
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1. Introduction

1.1. Problem and background

We consider in this paper the following cardinality constrained quadratic programs:

(P) min q(x) := xT Qx + cT x

s.t. Ax ≤ b, (1)

|supp(x)| ≤ K, (2)

xi ≥ αi, ∀i ∈ supp(x), (3)

0 ≤ xi ≤ ui, i = 1, . . . , n, (4)

where Q is an n×n positive semidefinite matrix, c ∈ <n, A ∈ <m×n, b ∈ <m, K is an integer

satisfying 1 ≤ K ≤ n, 0 < αi < ui, and supp(x) = {i ∈ {1, . . . , n} | xi 6= 0}. Constraint

(2), referred to as the cardinality constraint, limits the number of nonzero variables in the

feasible solution, and constraint (3), referred to as the minimum threshold constraint, sets

lower bounds for nonzero variables. Note that (3) and (4) can be expressed together as

xi ∈ {0} ∪ [αi, ui], i = 1, . . . , n,

which are also called semi-continuous variables. Problem (P) is, in general, NP-hard as

testing the feasibility of (P) is already NP-complete when A has three rows (see Bienstock

(1996)).

Cardinality constraint is often encountered in optimization models when the decision

vector is required to be sparse. An important application of problem formulation (P) is port-

folio selection in financial optimization. Consider a market consisting of n risky assets with

random return vector R = (R1, . . . , Rn)T . Suppose that the expected return vector and the

covariance matrix of R are known as µ and Q, respectively. Then, according to Markowitz’s

doctrine, a mean-variance optimizer should solve the following quadratic problem:

min xT Qx

s.t. µT x ≥ ρ,
n∑

i=1

xi = 1,

where xi represents the proportion of the total capital invested in the ith asset and ρ is

a prescribed return level set by the investor. In real-world, however, almost no investor
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faithfully follows the classical mean-variance model due to market frictions, such as man-

agement and transaction fees. What most investors actually do is to confine themselves in

choosing a small number of stocks to invest. In other words, most investors would favor

an investment decision derived from a cardinality constrained problem formulation such as

problem (P). In (P), constraints (1) and (4) represent the budget constraints, restriction on

short selling, sector constraints and the maximum position the investor can hold for each

asset. The cardinality constraint (2) in (P) limits the total number of different assets in the

optimal portfolio. The constraint (3) in (P), often referred to as buy-in threshold constraint

or minimum transaction level constraint, prevents the investors from holding some assets

with very small amount.

Another application of (P) is the subset selection problem in multivariate linear regres-

sion. For given m observed data points (ai, bi) with ai ∈ <n and bi ∈ <, while one always

wants to minimize the least square measure of
∑m

i=1(a
T
i x−bi)

2, he/she often wants to achieve

the goal with only a subset of the prediction variables in x (see Arthanari and Dodge (1993);

Bertsimas and Shioda (2009); Miller (2002)). This subset selection problem can be formu-

lated as follows:

min ‖Ax− b‖2

s.t. |supp(x)| ≤ K,

where AT = (a1, . . . , am), b = (b1, . . . , bm)T and K is a positive integer satisfying 1 ≤ K < n.

The subset selection problem is a special case of (P) where the constraints of semi-continuous

variables (3) and (4) are absent. In practice, we can always impose lower bound and upper

bound on x, i.e., −li ≤ xi ≤ ui, i = 1, . . . , n, for some sufficiently large positive numbers li

and ui.

Portfolio optimization problems with cardinality and minimum threshold constraints have

been investigated in the literature by many researchers. Bonami and Lejeune (2009) pro-

posed an exact solution for the mean-variance portfolio selection model under stochastic and

integer constraints including cardinality and minimum threshold constraints. The solution

method in Bonami and Lejeune (2009) is a branch-and-bound method based on continuous

relaxation and special branching rules. Bertsimas and Shioda (2009) presented a specialized

branch-and-bound method for (P) where a convex quadratic programming relaxation at each

node is solved via Lemke’s method. Bienstock (1996) developed a branch-and-cut method
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for solving cardinality constrained quadratic programming problems using a surrogate con-

straint approach. Li et al. (2006) proposed an exact solution method for cardinality con-

strained mean-variance models under round lot constraints and concave transaction costs,

using some geometric methods and Lagrangian relaxation scheme in a branch-and-bound

framework. Xie et al. (2008) proposed a randomized approach to find a good approximated

solution to the mean-variance portfolio selection model with cardinality constraint and other

side constraints. Shaw et al. (2008) presented a branch-and-bound method for cardinality

constrained mean-variance portfolio problems, where the asset returns are driven by a factor

model. Unlike other existing branch-and-bound methods in the literature where standard

quadratic programming relaxation is adopted as the bounding technique, Shaw et al. (2008)

used Lagrangian relaxation with cost splitting to generate a lower bound at each node of

the binary search tree and employed subgradient method to compute the Lagrangian bound.

Cui et al. (2013) investigated a class of cardinality constrained portfolio selection problems

with different risk measures and tracking error control. Utilizing the natural decomposition

of factor models, a second-order cone program relaxation and an MIQCQP reformulation

were derived in Cui et al. (2013) for this class of problems. Recently, a novel geometric

approach is proposed in Gao and Li (2013) for minimizing a quadratic function subject to

a cardinality constraint. Based on this geometric approach, a branch-and-bound method is

then developed in Gao and Li (2013) for solving cardinality-constrained portfolio selection

problems.

Heuristic and local search methods for portfolio selection models with cardinality con-

straints and minimum threshold have been also studied by many other authors in the context

of limited-diversification, small portfolios and empirical study for comparing different port-

folio selection models with real features (see, e.g., Chang et al. (2000); Blog et al. (1983);

Jacob (1974); Jobst et al. (2001); Maringer and Kellerer (2003); Mitra et al. (2007)).

1.2. Research motivation and main contributions

In this paper, we focus on the mixed-integer quadratic program (MIQP) reformulations of

problem (P). By introducing a 0-1 variable yi to enforce xi = 0 or xi 6= 0 in (P), problem

(P) can be reformulated as the following standard mixed-integer 0-1 quadratic program:

(MIQP0) min xT Qx + cT x

s.t. Ax ≤ b, (5)
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eT y ≤ K, (6)

αiyi ≤ xi ≤ uiyi, i = 1, . . . , n, (7)

y ∈ {0, 1}n, (8)

where e is the all one column vector. Standard MIQP solvers, which are based on a branch-

and-bound framework, can be then applied to (MIQP0) to find a global solution or a sub-

optimal solution of (P). It is well known that the efficiency of branch-and-bound methods

largely depends on the tightness of the lower bounds generated by the continuous relaxation.

Numerical test, however, suggests that the continuous relaxation of (MIQP0) often provides

poor lower bounds of (MIQP0) and the continuous relaxation based branch-and-bound meth-

ods thus cannot solve the problem even with small to medium size (e.g., n = 100) within

reasonable computation time.

Frangioni and Gentile (2006, 2007) proposed a novel perspective reformulation for quadratic

programs with semi-continuous variables (see also Günlük and Linderoth (2010)). Let d ∈ <n
+

be such that d ≥ 0 and Q−D º 0, where D = diag(d) denotes the diagonal matrix with d

being the diagonal vector. The quadratic objective function of (P) can be then decomposed

as

q(x) = xT (Q−D)x + cT x + xT Dx. (9)

Recall that the perspective function of a univariate function f(p) is tf(p/t) for t ≥ 0, where

it is assumed that 0/0 = 0 (see Hiriart-Urruty and Lemaréchal (1993)). Replacing the

separable term xT Dx with its convex envelope over the semi-continuous variables, which is

the sum of the perspective functions of dix
2
i over xi ∈ {0} ∪ [αi, ui] for i = 1, . . . , n, the

perspective reformulation of (P) then has the following form:

(PR(d)) min xT (Q− diag(d))x + cT x +
n∑

i=1

di(x
2
i /yi)

s.t. (5), (6), (7), (8).

However, the fractional terms in the objective function of (PR(d)) prevent a direct appli-

cation of efficient solution methods to (PR(d)). To overcome this difficulty, two tractable

reformulations of (PR(d)) were proposed in the literature. The first one is the second-order

cone programming (SOCP) reformulation (see Aktürk et al. (2009); Günlük and Linderoth

(2010); Tawarmalani and Sahinidis (2001)), where an additional variable φi = x2
i /yi is first
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introduced for each i and the constraint φi ≥ x2
i /yi is then rewritten as an SOCP constraint.

The resulting SOCP reformulation of (PR(d)) has the following form:

(SOCP(d)) min xT (Q− diag(d))x + cT x + φT d

s.t.

∥∥∥∥
xi

φi−yi

2

∥∥∥∥ ≤
φi + yi

2
, i = 1, . . . , n, (10)

(5), (6), (7), (8).

The second reformulation technique is the perspective cut (P/C) reformulation proposed by

Frangioni and Gentile (2006, 2007), where the epigraph of x2
i /yi on conv({0} ∪ [αi, ui]) is

represented by infinite many perspective cut inequalities. The resulting P/C reformulation

of (PR(d)) takes the following form:

(PC(d)) min xT (Q− diag(d))x + cT x + dT v

s.t. vi ≥ 2x̄ixi − x̄2
i yi, ∀x̄i ∈ [αi, ui], i = 1, . . . , n,

(5), (6), (7), (8).

Although problem (PC(d)) cannot be solved directly, “localized” subproblems of (PC(d))

with a small finite subset of perspective cuts can be embedded in a branch-and-cut frame-

work, where the violated perspective cuts with x̄i = x∗i /y
∗
i are added at each node when the

optimal solution of the continuous subproblem is (x∗, y∗, v∗). This solution scheme can be

either implemented by tailor-made branch-and-cut method (see Frangioni and Gentile (2006,

2007)) or by means of cutcallback procedures in CPLEX (see Frangioni and Gentile (2009)).

Computational results in Frangioni and Gentile (2009) show that, if properly implemented,

the P/C reformulation can be much more efficient than the SOCP reformulation.

A key issue in implementing the perspective reformulation (PR(d)), or its two tractable

reformulations (SOCP(d)) and (PC(d)), is how to choose the parameter vector d. A natural

choice is d = (λmin − ε)e when Q is positive definite, where λmin is the minimum eigenvalue

of Q and ε > 0 is a sufficiently small scalar. Frangioni and Gentile (2007) suggested to use

a heuristic method to find a diagonal matrix D = diag(d) by solving a simple semidefinite

program (SDP):

(SDPs) max{eT d | Q− diag(d) º 0, d ≥ 0}, (11)

which we will call the “small” SDP problem. Numerical results in Frangioni and Gentile

(2007) show that this approach compares favorably with the minimum eigenvalue method.

A further question arises: How to find a “better” d in the perspective reformulation?

6



To answer the above question, we present in this paper a new approach to compute

the parameter vector d in the perspective reformulation. Our approach is based on finding

a vector d = dl in (PR(d)) such that the continuous relaxation of (PR(d)) is the tightest

among all admissible d. We show that the problem of finding such a dl can be reduced

to an SDP problem with size larger than that of the “small” SDP problem (SDPs). This

“large” SDP problem can still be solved efficiently by interior-point based methods due to its

simple structure. Numerical results suggest that using the parameter vector dl computed by

the “large” SDP formulation can considerably improve the performance of the perspective

reformulations, largely due to the improvement of the continuous bounds.

Stimulated by the new SDP problem formulation, we also propose a new way of deriving

the perspective reformulation of problem (P) via a special Lagrangian decomposition scheme

of (P). Our derivation reveals that the continuous bound of the perspective reformulation

is the same as the dual bound of (P) via the Lagrangian decomposition scheme. In some

sense, our SDP approach is “dual” to the method in Frangioni and Gentile (2006) where the

perspective function is used to construct the convex envelope of the objective function on

the semi-continuous variables.

1.3. Outline of the paper

The rest of the paper is organized as follows. In Section 2, we show how to reduce the

problem of finding the tightest continuous relaxation of (PR(d)) into an SDP problem.

We devote Section 3 to a new derivation of the perspective reformulation by applying a

special Lagrangian decomposition scheme to (P). In Section 4, we conduct computational

experiments comparing the performance of perspective reformulations using different choices

of d for test problems arising from portfolio selection and subset selection. Finally, we

conclude the paper in Section 5 with some concluding remarks.

Notation: Throughout the paper, we denote by v(·) the optimal value of problem (·), <n
+

the nonnegative orthant of <n. For any a ∈ <n, we denote by diag(a) = diag(a1, . . . , an) the

diagonal matrix with ai being the ith diagonal element.
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2. A New SDP Approach for Computing Diagonal De-

composition in Perspective Reformulation

In this section, we discuss how to select the parameter vector d in the perspective reformu-

lation (PR(d)) such that the continuous relaxation of (PR(d)) is the tightest.

Let (PR(d)) denote the continuous relaxation of (PR(d)). The tightest continuous relax-

ation of (PR(d)) can be found by solving the following problem:

max{v(PR(d)) | d ≥ 0, Q− diag(d) º 0}. (12)

Introducing φi = x2
i /yi in the objective function of (PR(d)) and relaxing it to φi ≥ x2

i /yi,

we can reformulate (PR(d)) as an SOCP problem:

(SOCP(d)) min xT (Q− diag(d))x + cT x + φT d

s.t. 0 ≤ yi ≤ 1, i = 1, . . . , n,

(5), (6), (7), (10).

Problem (12) is then equivalent to the following problem:

max{v(SOCP(d)) | d ≥ 0, Q− diag(d) º 0}. (13)

In the sequel, we always assume the following constraint qualification for (SOCP(d)).

Assumption 1 The feasible set of (SOCP(d)) has a (relative) interior point.

A necessary and sufficient condition for ensuring Assumption 1 is that the continuous relax-

ation of (MIQP0), the standard mixed-integer quadratic program reformulation of (P), has

a (relative) interior point.

In the following, we show that problem (13) can be reduced to an SDP problem. We first

observe that the constraint (7) in (SOCP(d)) can be replaced by

φi − (αi + ui)xi + αiuiyi ≤ 0, i = 1, . . . , n, (14)

since x2
i = φi always holds at the optimal solution of (SOCP(d)). Indeed, if yi = 0, then

(10) implies xi = 0; otherwise if yi = 1, then constraint (14) and x2
i = φi imply αi ≤ xi ≤ ui.

Also, the second-order cone constraint in (10) can be rewritten as

(
φi xi

xi yi

)
º 0, i = 1, . . . , n. (15)
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Therefore, (SOCP(d)) can be written as:

(SOCP1(d)) min xT (Q− diag(d))x + cT x + φT d

s.t. yi − 1 ≤ 0, i = 1, . . . , n,

(5), (6), (14), (15),

where the nonnegative constraints of yi ≥ 0 (i = 1, . . . , n) have been implied by (15).

Theorem 1 Problem (13) is equivalent to the following SDP problem:

(SDPl) max −Ks− eT π − τ

s.t.

(
di + µi

1
2
(ci − λi − βiµi)

1
2
(ci − λi − βiµi) πi + s + αiuiµi

)
º 0, i = 1, . . . , n, (16)

(
Q− diag(d) 1

2
(λ + AT η)

1
2
(λ + AT η)T −ηT b + τ

)
º 0, (17)

(s, η, µ, π, d) ∈ <+ ×<m
+ ×<n

+ ×<n
+ ×<n

+, (τ, λ) ∈ < × <n,

where βi := αi + ui for i = 1, . . . , n.

Proof. Let d ∈ <n
+ satisfy Q − diag(d) º 0. We first express (SOCP1(d)) by its dual form.

Associate the following multipliers to the constraints in (SOCP1(d)):

• η ∈ <m
+ for (5): Ax ≤ b and s ∈ <+ for (6): eT y ≤ K;

• µi ∈ <+ for (14): φi − (αi + ui)xi + αiuiyi ≤ 0, i = 1, . . . , n;

•
(

ρi γi

γi ξi

)
º 0 for (15):

(
φi xi

xi yi

)
º 0, i = 1, . . . , n;

• πi ∈ <+ for yi − 1 ≤ 0, i = 1, . . . , n.

Let µ, ρ, γ, ξ, π denote the column vectors formed by µi, ρi, γi, ξi, πi (i = 1, . . . , n), respec-

tively. Let d(ω) denote the Lagrangian dual function of (SOCP1(d)), where ω denote the

dual variables introduced above. Then, the Lagrangian dual of (SOCP1(d)) is

max{d(ω) |
(

ρi γi

γi ξi

)
º 0, i = 1, . . . , n, (s, η, µ, π) ∈ <+ ×<m

+ ×<n
+ ×<n

+}. (18)

We can calculate that

d(ω) = min
x,y,φ

{xT (Q− diag(d))x + cT x + φT d + ηT (Ax− b) + s(eT y −K)
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+
n∑

i=1

µi[φi − (αi + ui)xi + αiuiyi]−
n∑

i=1

(φiρi + 2xiγi + yiξi) + yT π − eT π}

= min
x,y,φ

{[c + AT η − diag(µ)(α + u)− 2γ]T x + xT (Q− diag(d))x

+
n∑

i=1

(πi + s + µiαiui − ξi)yi + (d + µ− ρ)T φ + (−ηT b−Ks− eT π)}

=

{
−Ks− eT π + min

x
q̃(x), if ρ = d + µ and ξi = πi + s + µiαiui,

−∞, otherwise,

where q̃(x) = xT (Q−diag(d))x+(AT η +λ)T x− ηT b and λ = c−diag(µ)(α+u)− 2γ. Thus,

the dual problem (18) can be written as

max−Ks− eT π − τ

s.t.

(
di + µi γi

γi πi + s + αiuiµi

)
º 0, i = 1, . . . , n, (19)

xT (Q− diag(d))x + (AT η + λ)T x− ηT b ≥ −τ, ∀x ∈ <n, (20)

λ = c− diag(µ)(α + u)− 2γ, (21)

(s, η, µ, π) ∈ <+ ×<m
+ ×<n

+ ×<n
+, (τ, λ) ∈ < × <n.

Note that (21) implies that γi = 1
2
(ci−λi−βiµi), where βi := αi+ui. Thus, (19) is equivalent

to (16). Also, (20) is equivalent to the SDP constraint in (17). Therefore, the dual problem

(18) can be reduced to the SDP problem:

(Ds(d)) max −Ks− eT π − τ (22)

s.t. (16), (17),

(s, η, µ, π) ∈ <+ ×<m
+ ×<n

+ ×<n
+, (τ, λ) ∈ < × <n.

By Assumption 1 and the conic duality theorem (see, e.g., Vandenberghe and Boyd (1996)),

the strong duality between (SOCP1(d)) and its dual holds. Therefore, problem (13) is

equivalent to

max{v(Ds(d)) | d ≥ 0, Q− diag(d) º 0}.

which is (SDPl) by (22) and noting that Q− diag(d) º 0 is implied by constraint (17). ¤

From the above derivation, we can explain the “large” SDP formulation (SDPl) as the

SDP representation of the problem of finding the parameter d that gives the tightest con-

tinuous bound of the perspective reformulation (PR(d)) or its two tractable reformulations
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(SOCP(d)) and (PC(d)). Compared with the “small” SDP formulation (SDPs) proposed

by Frangioni and Gentile (2007), the formulation (SDPl) has a drawback of having a larger

dimension: There are 4n+m+2 variables in (SDPl) compared to only n variables in (SDPs).

Also, (SDPl) has n additional 2×2 linear matrix inequalities. In spite of its larger size, (SDPl)

can still be computed efficiently by the interior-point based solvers such as SeDuMi due to its

simple structure. The longer time spent on solving the “large” SDP problem (SDPl) could

be well compensated by the savings in the computation time of branch-and-cut method for

the perspective reformulations, as witnessed in our computational experiments.

3. Derivation of Perspective Reformulation via Lag-

rangian Decomposition

In this section, we present a new approach to derive the SOCP reformulation (SOCP(d)).

Since the three reformulations (PR(d)), (SOCP(d)) and (PC(d)) are equivalent to each other

in terms of the optimal solutions and the continuous bounds, the derivation in this section

can be viewed as an alternative way of constructing perspective reformulation for (P).

The approach of our derivation is motivated by the construction of a tight SDP relaxation

of problem (P) via a special Lagrangian decomposition scheme. It turns out that the conic

dual of this SDP relaxation is exactly the continuous relaxation of (SOCP(d)). This reveals

that the continuous bound of (SOCP(d)) is nothing but the Lagrangian bound of (P). As

a result, we obtain a new derivation of (SOCP(d)) via Lagrangian decomposition of the

original problem (P).

The construction of the SDP relaxation consists of the following three steps:

• Decomposing Q as Q = (Q− diag(d)) + diag(d), where d ∈ <n
+ and Q− diag(d) º 0;

• Constructing a convex relaxation of (P) by a special Lagrangian decomposition scheme

via copying constraints;

• Reducing the Lagrangian dual to an SDP formulation.

Using the technique of copying variables (see Guignard and Kim (1987); Michelon and

Maculan (1991); Shaw et al. (2008)), problem (P) can be reformulated as

min xT diag(d)x + cT x + zT (Q− diag(d))z (23)

s.t. Az ≤ b,
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x = z,

|supp(x)| ≤ K,

xi ∈ {0} ∪ [αi, ui], i = 1, . . . , n.

Dualizing the constraint x = z with multiplier vector λ ∈ <n yields the following Lagrangian

relaxation:

d(λ) = d1(λ) + d2(λ),

where

d1(λ) = min xT diag(d)x + (c− λ)T x (24)

s.t. |supp(x)| ≤ K, xi ∈ {0} ∪ [αi, ui], i = 1, . . . , n,

d2(λ) = min zT (Q− diag(d))z + λT z, (25)

s.t. Az ≤ b.

Thus, the Lagrangian dual of (P) is

(D(d)) max{d1(λ) + d2(λ) | λ ∈ <n}. (26)

By weak duality, v(D(d)) ≤ v(P) for d ∈ <n
+ satisfying Q − diag(d) º 0, and the tightest

dual bound can be found via solving the following problem:

(D) max{v(D(d)) | d ∈ <n
+, Q− diag(d) º 0}. (27)

Proposition 1 Let (QP) denote the continuous relaxation of (MIQP0). Then, for any fixed

d ∈ <n
+ satisfying Q− diag(d) º 0, it holds

v(D) ≥ v(D(d)) ≥ v(QP). (28)

Proof. The first inequality is obvious. Let d ∈ <n
+ satisfy Q − diag(d) º 0. (QP) can be

reformulated as

min xT diag(d)x + cT x + zT (Q− diag(d))z

s.t. Az ≤ b,

x = z,

eT y ≤ K, y ∈ [0, 1]n,

αiyi ≤ xi ≤ uiyi, i = 1, . . . , n.
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Applying the Lagrangian decomposition scheme to the above problem in a similar way as we

did for problem (23) and using the strong duality of convex quadratic program, we obtain

v(QP) = max{d̂1(λ) + d2(λ) | λ ∈ <n},

where d2(λ) is defined in (25) and

d̂1(λ) = min xT diag(d)x + (c− λ)T x

s.t. eT y ≤ K, y ∈ [0, 1]n,

αiyi ≤ xi ≤ uiyi, i = 1, . . . , n.

Note that the above problem is a continuous relaxation of the subproblem in (24). Thus,

d̂1(λ) ≤ d1(λ). Consequently,

v(QP) = max{d̂1(λ) + d2(λ) | λ ∈ <n} ≤ max{d1(λ) + d2(λ) | λ ∈ <n} = v(D(d)),

which is the second inequality of (28). ¤

Remark 1 In Shaw et al. (2008), a Lagrangian decomposition scheme similar to (24) and

(25) is applied to a cardinality constrained portfolio selection problem with objective function

xT Qx+cTx, where Q = HT H+diag(d), and without the minimum threshold constraints. The

dual problem in Shaw et al. (2008) is solved by subgradient method to obtain a lower bound

for fixed H and d. The dual problem (D) can be viewed as a generalized and strengthened

version of the Lagrangian dual in Shaw et al. (2008).

In the following, we show that problem (D(d)) and thus (D) can be reduced to an SDP

problem. Let

qi = min
xi∈{0}∪[αi,ui]

{dix
2
i + (ci − λi)xi}, i = 1, . . . , n. (29)

Let q = (q1, . . . , qn)T . We see that d1(λ) defined in (24) is equal to the sum of the K smallest

elements of q. Denote by SK(x) the sum of the K largest elements of x ∈ <n. Since qi ≤ 0

(i = 1, . . . , n), we have

d1(λ) = max{−t | −SK(−q) ≥ −t} = max{−t | SK(−q) ≤ t}. (30)

The following lemma is a special case of the linear matrix inequality representation of

the sum of K largest eigenvalues of a symmetric matrix (see, e.g., Page 147, Ben-Tal and

Nemirovski (2001)). For the sake of self-containedness, we give here a simple proof of the

lemma.
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Lemma 1 For any vector p ∈ <n
+, the following two sets, Γ1 and Γ2, are identical:

Γ1 = {(p, t) | SK(p) ≤ t},
Γ2 = {(p, t) | ∃ (π, s) ∈ <n ×< satisfying (a), (b) and (c)},

where

(a) t−Ks− eT π ≥ 0;

(b) π ≥ 0, s ≥ 0;

(c) π − p + se ≥ 0.

Proof. For any (p, t) ∈ Γ2, there exists (π, s) ∈ <n × < satisfying (a), (b) and (c). By (c),

we have SK(p) ≤ SK(π + se) = SK(π) + sK. Together with (b), we get SK(p) ≤ eT π + sK,

and then by (a), we have SK(p) ≤ t. Therefore, (p, t) ∈ Γ1, i.e., Γ2 ⊆ Γ1.

Conversely, for any (p, t) ∈ Γ1, we rank pi (i = 1, . . . , n) in a descending order: pi1 ≥
pi2 ≥ · · · ≥ pin ≥ 0. Let s = piK . For j = 1, . . . , n, let

hij =

{
pij − piK , if j ≤ K,
0, otherwise.

It is easy to verify that (p, t, π, s) satisfies (b) and (c). Notice that

Ks + eT π = KpiK +
K∑

j=1

(pij − piK ) =
K∑

j=1

pij = SK(p).

Thus, t − Ks − eT π = t − Sk(p) ≥ 0, i.e., (a) holds, thus yielding (p, t) ∈ Γ2. Therefore,

Γ1 ⊆ Γ2. ¤

Lemma 2 The value of d1(λ) in (30) is equal to the optimal value of the following SDP

problem:

(D1) max −Ks− eT π

s.t.

(
di + µi

1
2
(ci − λi − βiµi)

1
2
(ci − λi − βiµi) πi + s + αiuiµi

)
º 0, i = 1, . . . , n,

(s, µ, π) ∈ <+ ×<n
+ ×<n

+,

where βi := αi + ui for i = 1, . . . , n.
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Proof. By (30) and Lemma 1, d1(λ) is equal to the optimal value of the following SDP

problem:

(D̃1) max −Ks− eT π

s.t. π ≥ 0, s ≥ 0

π + q + se ≥ 0,

where q = (q1, . . . , qn)T with qi being defined in (29). Also, we can rewrite qi as

qi = min{dix
2
i + (ci − λi)xi | xi ∈ {0} ∪ [αi, ui]}

= min{0, min
xi∈[αi,ui]

dix
2
i + (ci − λi)xi}

= max − wi

s.t. − wi ≤ 0,

− wi ≤ min{dix
2
i + (ci − λi)xi | x2

i − (αi + ui)xi + αiui ≤ 0}
= max − wi

s.t. wi ≥ 0, µi ≥ 0,(
di + µi

1
2
(ci − λi − µi(αi + ui))

1
2
(ci − λi − µi(αi + ui)) wi + αiuiµi

)
º 0,

where µi ≥ 0 is the multiplier for the constraint: x2
i − (αi + ui)xi + αiui ≤ 0 and the last

equality holds due to S-Lemma (see, e.g., Pólik and Terlaky (2007)). Thus, the constraint

π + q + se ≥ 0 can be rewritten as

−πi − s ≤ −wi,

wi ≥ 0, µi ≥ 0,(
di + µi

1
2
(ci − λi − µi(αi + ui))

1
2
(ci − λi − µi(αi + ui)) wi + αiuiµi

)
º 0,

for i = 1, . . . , n. Since s ≥ 0 and πi ≥ 0 (i = 1, . . . , n), it must hold −wi = −πi − s at the

optimal solution of (D̃1). Therefore, (D̃1) is equivalent to (D1) and hence d1(λ) is equal to

the optimal value of (D1). ¤

Theorem 2 For any fixed d ∈ <n
+ satisfying Q − diag(d) º 0, the dual problem (D(d)) in

(26) is equivalent to the SDP problem (Ds(d)) in (22) with

v(D(d)) = v(Ds(d)) = v(SOCP(d)). (31)
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Proof. Since Q − diag(d) º 0, the subproblem in (25) is a convex quadratic program and

hence the strong duality holds. Thus, we can express d2(λ) as the optimal value of the dual

problem of (25) which has the following SDP representation:

(D2) d2(λ) = max − τ

s.t.

(
Q− diag(d) 1

2
(λ + AT η)

1
2
(λ + AT η)T −ηT b + τ

)
º 0,

η ≥ 0,

where η ∈ <m
+ is the multiplier for the constraints Ax ≤ b in (25). It then follows from Lemma

2 that the dual problem (D(d)) in (26) is equivalent to problem (Ds(d)) with v(D(d)) =

v(Ds(d)). The second equality in (31) follows from the strong duality between (Ds(d)) and

(SOCP1(d)), which is equivalent to (SOCP(d)) (see the proof of Theorem 1). ¤

Theorem 2 and its proof suggest a new way of deriving the SOCP reformulation (SOCP(d)).

We first construct the SDP relaxation (D(d)) of (MIQP0) by the Lagrangian decomposition

scheme (24)-(25) and then write the conic dual of (D(d)), which is exactly (SOCP(d)).

Changing y ∈ [0, 1]n in (SOCP(d)) to y ∈ {0, 1}n, we obtain (SOCP(d)). Theorem 2 also

reveals that the continuous bound of (SOCP(d)) is nothing but the dual bound of (P) via

the Lagrangian decomposition scheme (24)-(25). In some sense, this SDP approach for de-

riving the SOCP reformation (SOCP(d)) is “dual” to the perspective reformulation method

in Frangioni and Gentile (2006, 2007) where the perspective function is used to construct

the convex envelope of the objective function on the primal (semi-continuous) variables.

4. Computational Results

In this section, we conduct computational experiments to demonstrate the effectiveness of the

new SDP approach for computing the diagonal decomposition in perspective formulations.

We will consider in our computational experiments test problems arising from portfolio

selection and subset selection.

Recall that the perspective reformulation (PR(d)) has two tractable reformulations: the

SOCP reformulation (SOCP(d)) and the perspective cut reformulation (PC(d)). Although

these two reformulations are equivalent to each other in terms of the optimal solutions

and the continuous bounds, they may have quite different computational performance when

implemented and solved by branch-and-cut methods. Extensive computational results in
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Frangioni and Gentile (2009) suggest that if properly implemented, the perspective cut

reformulation (PC(d)) is much more efficient than the SOCP reformulation (SOCP(d)). We

shall therefore focus in this section on the implementation of perspective cut reformulations

using different choices of d.

4.1. Implementation issues

We consider the comparison of the perspective cut (P/C) reformulations (PC(d)) using the

following three choices of d:

• (PCs): the reformulation (PC(d)) with d = ds, where ds is computed by (SDPs);

• (PCl): the reformulation (PC(d)) with d = dl, where dl is computed by (SDPl);

• (PCc): the reformulation (PC(d)) with d being a convex combination: d = 1
2
(ds + dl).

As suggested in Frangioni and Gentile (2009), we implemented a branch-and-cut method

for the three P/C reformulations using CPLEX 12.4 through C, where the dynamic generation

of the perspective cuts was implemented by means of cutcallback procedures. We use

CPLEX default settings for the branch-and-cut method, which leads to using dual simplex

QP optimizer for solving the continuous relaxation subproblem at each node of the branch-

and-cut tree.

The C programs were developed and compiled using Microsoft Visual Studio 2008. The

SDP problems (SDPs) and (SDPl) were modeled by CVX 1.2 (Grant and Boyd (2009)),

a Matlab-based modeling system for convex optimization, and solved by SeDuMi 1.2 within

CVX. The Matlab version for running CVX is 7.12.0 (R2011a, 64-bit). The numerical tests have

been performed on a personal computer equipped with Intel Pentium G630 CPU (2.70 GHz)

and 8 GB of RAM, running Windows 7 (64-bit). All the data files of the test problems,

the CVX Matlab codes and the C program codes in our numerical tests are available at

http://my.gl.fudan.edu.cn/teacherhome/xlsun/ccqp/.

4.2. Portfolio selection problems

Let µ and Q be the mean and covariance matrix of n risky assets, respectively. The mean-

variance portfolio selection problem with cardinality and minimum threshold constraints can
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be formulated as

(MV) min xT Qx

s.t. eT x = 1, µT x ≥ ρ,

|supp(x)| ≤ K,

xi ≥ αi, ∀i ∈ supp(x),

0 ≤ xi ≤ ui, i = 1, . . . , n.

To build the test problems of (MV), we use the 90 instances of mean-variance portfolio

selection problem with semi-continuous variables created by Frangioni and Gentile (2007),

30 instances each for n = 200, 300 and 400. The 30 instances for each n are divided into

three subsets denoted by n+, n0 and n−, 10 instances in each subset, with different diagonal

dominance in matrix Q. The parameters ρ, αi and ui are uniformly drawn at random

from intervals [0.002, 0.01], [0.075, 0.125] and [0.375, 0.425], respectively. The data files of

these instances are available at http://www.di.unipi.it/optimize/Data/MV.html. Since

αi ≥ 0.075, the maximum number of nonzero variables in a feasible solution to (MV) is at

most 13. Adding a cardinality constraint with K = 6, 8, 10, 12, respectively, to each of the

90 instances and considering the 90 instances without cardinality constraint, we then have

450 instances of (MV).

We first compare the continuous bounds of (PC(d)) with d = ds and d = dl for the

450 instances of (MV). Since the continuous relaxations of (PC(d)) and (SOCP(d)) are

equivalent, the continuous bound of (PC(d)) can be computed by solving the SOCP problem

(SOCP(d)). The comparison results are reported in Table 1, where bs denotes the average

continuous bound of (PC(d)) with d = ds for the 10 instances, bl is the average continuous

bound of (PC(d)) with d = dl for the 10 instances, and “imp.ratio” denotes the average

(relative) improvement ratio of bl over bs defined by imp.ratio=(bl− bs)/bs (%). We see from

Table 1 that the improvement ratios vary from 0.10% to 5.11% for different types of instances

and different K. Among the three types of instances with different diagonal dominance of

Q, the instances of n+ type have the smallest improvement of continuous bounds while the

instances of n− type have the largest improvement. We also observe that the improvement

ratio of bl over bs tends to decrease as the cardinality K increases. Since only a finite number

of perspective cuts in (PC(d)) are used in the subproblems of the branch-and-cut method for

solving (PC(d)), the continuous bounds at the root node and subnodes of the branch-and-

cut method are usually weaker than those of (PC(d)). Nevertheless, the improvement of the
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Table 1: Comparison of continuous bounds for (MV)
Problem K bs bl imp.ratio Problem K bs bl imp.ratio Problem K bs bl imp.ratio

200+

6 344.08 346.17 0.61

2000

6 117.32 121.54 3.60

200−

6 84.20 88.49 5.11
8 261.59 262.70 0.42 8 90.29 92.95 2.95 8 65.45 68.21 4.24
10 214.58 215.48 0.42 10 74.62 76.44 2.44 10 54.50 56.42 3.56
12 192.71 193.18 0.24 12 67.40 68.40 1.48 12 49.41 50.59 2.42
nc 191.88 192.29 0.21 nc 67.33 68.23 1.34 nc 49.30 50.36 2.17

300+

6 505.57 509.12 0.70

3000

6 176.11 181.98 3.35

300−

6 135.16 140.80 4.24
8 382.39 384.47 0.54 8 134.68 138.47 2.83 8 104.24 107.91 3.60
10 310.57 312.00 0.46 10 110.70 113.14 2.22 10 86.54 89.12 3.06
12 269.24 269.93 0.26 12 98.27 99.50 1.25 12 79.57 80.99 1.83
nc 267.07 267.44 0.14 nc 97.97 99.10 1.16 nc 79.43 80.72 1.65

400+

6 680.15 684.94 0.71

4000

6 233.33 240.29 2.99

400−

6 164.17 171.64 4.57
8 514.68 517.26 0.51 8 177.83 182.30 2.52 8 125.70 130.67 3.97
10 419.00 420.43 0.35 10 145.43 148.52 2.13 10 103.35 106.91 3.46
12 367.30 367.95 0.18 12 128.37 130.03 1.30 12 91.37 93.35 2.18
nc 364.50 364.88 0.10 nc 127.55 128.83 1.01 nc 90.88 92.40 1.68

“nc” denotes the instances without cardinality constraint

continuous bounds of (PC(d)) by using d = dl does have an impact on the performance of

the branch-and-cut method for (PC(d)), as will be seen below.

Table 2 summarizes the numerical results of the three P/C reformulations for the 450

instances of (MV), where the time limit of CPLEX is set as 10000 seconds. The results in Table

2 are average for the 10 instances in each subset of the 450 instances. The notations in Table

2 are explained as follows. The columns “times” and “timel” are the computation time (in

seconds) for finding parameter vector d via solving SDP problems (SDPs) and (SDPl) using

CVX, respectively. The column “gap” is an output parameter of CPLEX 12.4 which measures

the relative gap (in percentage) of the incumbent solution when CPLEX 12.4 is terminated.

The number in parenthesis next to the gap is the number of unsolved instances within 10000

seconds. Note that the default tolerance of relative gap in CPLEX 12.4 is 0.01%. Finally, the

columns “time” and “nodes” are the computing time (in seconds) and the number of nodes

explored by CPLEX 12.4, respectively.

From Table 2, we can see that the average computation time and the number of nodes

of reformulation (PCl) are significantly less than those of (PCs) for all instances of types n0

and n−, while (PCs) performs slightly better than (PCl) for instances of type n+. Moreover,

(PCl) appears to be particularly advantageous over (PCs) for instances of types n0 and n−

with small cardinality (K = 6, 8, 10); indeed, (PCl) is at least one order faster than (PCs) for

these instances. This is consistent with the trends of improvement ratios of the continuous

bounds of (PCl) over those of (PCs) (see Table 1). It can be also noticed from Table 2 that

the average computation time of the “large” SDP problem (SDPl) is larger than that of the

“small” SDP problem (SDPs). Nevertheless, the computation time of (SDPl) is no more than
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Table 2: Comparison results of P/C reformulations for (MV)

Problem K times timel

(PCs) (PCl) (PCc)

gap time nodes gap time nodes gap time nodes

200+

6 2.88 8.55 0.00 3.49 34 0.00 3.41 27 0.00 2.37 18
8 2.54 8.76 0.00 2.71 23 0.00 3.16 24 0.00 2.15 12
10 2.57 8.49 0.00 2.66 33 0.01 2.62 40 0.00 1.97 24
12 2.52 8.62 0.00 4.00 247 0.01 3.83 192 0.00 2.88 136
nc 2.68 7.80 0.01 38.21 5199 0.01 14.09 1264 0.01 60.57 7286

2000

6 2.62 8.16 0.00 43.19 1278 0.00 5.72 86 0.00 13.72 351
8 2.57 8.00 0.00 73.80 2706 0.00 5.63 77 0.00 17.71 525
10 2.55 7.74 0.00 66.59 2922 0.00 4.38 100 0.00 13.86 550
12 2.58 7.92 0.00 30.88 2560 0.00 16.31 1329 0.01 24.28 1783
nc 2.66 7.59 0.01 44.93 3913 0.01 25.26 1983 0.01 29.33 2318

200−

6 2.52 7.99 0.00 153.15 3936 0.00 16.15 308 0.00 58.02 1425
8 2.45 7.94 0.01 286.64 8119 0.00 15.56 286 0.00 72.43 1941
10 2.52 8.15 0.01 315.68 10870 0.00 9.74 260 0.00 52.64 1915
12 2.46 7.80 0.01 182.20 17084 0.00 86.12 10545 0.00 142.59 11989
nc 2.52 7.65 0.01 452.40 49213 0.01 136.47 19029 0.01 477.37 45470

300+

6 7.57 20.82 0.00 8.24 62 0.00 8.70 41 0.00 5.30 22
8 7.53 21.09 0.00 6.68 67 0.00 7.31 32 0.00 4.79 23
10 7.54 20.86 0.00 7.57 95 0.01 5.23 27 0.00 4.77 35
12 7.53 22.22 0.00 5.80 64 0.00 7.29 105 0.00 4.69 50
nc 7.54 18.73 0.01 101.04 6202 0.01 160.85 7762 0.00 69.20 3411

3000

6 7.63 21.05 0.00 151.36 2611 0.00 16.68 143 0.00 45.55 669
8 7.90 20.00 0.01 321.13 6738 0.00 18.12 152 0.00 76.65 1239
10 7.77 20.18 0.00 226.42 4906 0.00 9.30 97 0.00 35.30 721
12 7.61 20.82 0.00 44.17 1566 0.00 22.25 622 0.00 48.56 1442
nc 7.63 19.23 0.01 289.32 12310 0.01 118.34 5627 0.01 258.30 9386

300−

6 7.48 22.20 0.00 609.64 9233 0.00 32.67 322 0.01 202.38 2807
8 7.79 22.24 0.01 1549.83 26204 0.00 31.38 327 0.01 324.25 4825
10 7.70 20.83 0.01 972.67 20578 0.00 24.43 391 0.01 170.06 3353
12 7.49 21.88 0.01 47.09 1458 0.00 13.12 420 0.00 20.66 650
nc 7.47 20.79 0.01 323.40 12473 0.01 125.27 6381 0.01 360.12 13360

400+

6 18.60 47.87 0.00 20.44 147 0.00 20.42 63 0.00 10.54 48
8 18.13 48.08 0.00 16.74 157 0.00 17.43 68 0.00 10.51 58
10 18.09 45.42 0.00 10.44 49 0.01 11.25 48 0.00 6.36 20
12 19.88 52.63 0.00 8.88 78 0.00 11.34 127 0.00 6.89 63
nc 17.94 38.60 0.01 795.78 27427 0.01 1060.14 28868 0.01 579.53 16495

4000

6 17.87 44.07 0.01 355.55 3901 0.00 42.59 246 0.00 127.33 1128
8 18.18 44.19 0.01 570.61 7860 0.00 34.64 188 0.00 150.44 1423
10 18.12 43.61 0.01 996.21 12005 0.00 26.67 216 0.01 122.02 1442
12 18.41 45.75 0.00 67.06 1088 0.00 40.35 635 0.00 52.67 790
nc 17.65 49.76 0.03(1) 1750.72 41886 0.01 781.63 23308 0.06(1) 2017.53 38985

400−

6 18.42 44.47 0.01 2258.11 21906 0.00 95.40 652 0.01 656.19 5793
8 18.06 42.69 0.22(2) 3487.72 39109 0.01 81.72 547 0.01 1367.03 12509
10 17.94 40.88 0.17(2) 4292.37 46773 0.00 44.12 377 0.01 632.66 7397
12 18.11 44.26 0.01 248.93 4102 0.00 30.17 416 0.00 46.22 724
nc 17.73 44.20 0.02(1) 4623.92 104261 0.06(1) 1887.66 60738 0.12(2) 4564.43 88673

60 seconds even for the large-size instances with n = 400, which is often neglectable when

compared with the computing time of the branch-and-cut method. Figure 1 further displays

the trends of total computing time and the number of nodes of the three reformulations for

(MV), where the total computing time is the sum of the average time for solving the SDP

problem and the average time for solving the corresponding P/C reformulation. As expected,

the performance of (PCc) falls in between (PCs) and (PCl) for most instances in terms of

the computation time and the number of nodes used. Interestingly, we observe that (PCc)

performs better than both (PCs) and (PCl) for instances of type 300+ and 400+ when there
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Figure 1: Total computing time and number of nodes for (MV)

is no cardinality constraint. For instances of n+ type with cardinality constraint, (PCl) does

not have advantage over (PCs) in terms of the total computing time.

Next, we consider 5 instances of (MV) from OR-Library, where the mean vector µ and the

covariance matrix Q were estimated using real data from DAX 100 (Germany), FTSE 100

(UK), S&P 100 (USA), Nikkei 225 (Japan) and S&P 500 (USA). The data files of µ and Q are

available at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html. In our test, we set

αi = 0.075 and ui = 0.4 for each i. As in Cesarone et al. (2009), the parameter ρ is set in the

following manner: Let ρmin = µT x∗ with x∗ being the optimal solution to the minimum-risk

problem: min{xT Qx | eT x = 1, 0 ≤ x ≤ u}. Let ρmax = max{µT x | eT x = 1, 0 ≤ x ≤ u}.
Set ρ = ρmin + 0.3(ρmax − ρmin).

Numerical results of the three P/C reformulations for the 5 instances with different
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Table 3: Numerical results of P/C reformulations for (MV) with real data

Problem n K times timel

(PCs) (PCl) (PCc)

gap time nodes gap time nodes gap time nodes

DAX 100 85

5 0.62 1.67 0.00 48.19 2533 0.01 56.05 4556 0.00 54.51 3057
7 0.46 1.82 0.00 28.39 1394 0.00 22.56 1524 0.00 26.52 1235
9 0.42 1.76 0.00 7.74 458 0.00 4.77 355 0.00 6.68 384
nc 0.51 1.58 0.00 0.55 126 0.00 0.55 152 0.00 0.62 139

FTSE 100 89

7 0.46 1.80 0.01 28.33 1191 0.01 42.53 2554 0.00 27.33 1160
9 0.56 1.87 0.00 10.22 548 0.00 7.30 508 0.00 9.95 534
11 0.50 1.75 0.00 0.90 87 0.00 0.34 25 0.00 0.50 36
nc 0.48 1.69 0.00 0.64 94 0.00 0.34 61 0.00 0.50 75

S&P 100 98

8 0.51 2.16 0.01 457.47 14249 0.01 449.75 17776 0.01 415.60 12919
10 0.54 2.29 0.01 301.16 10918 0.01 201.29 10212 0.01 264.77 9743
12 0.58 2.33 0.00 45.44 3677 0.00 19.42 1722 0.00 31.54 2341
nc 0.53 2.03 0.01 20.90 3456 0.01 9.91 2342 0.01 13.59 2409

Nikkei 225 225

6 3.86 9.71 0.00 206.83 13760 0.01 202.11 16731 0.01 323.86 20888
8 3.91 10.15 0.01 72.99 4397 0.01 47.41 3437 0.01 52.04 3290
10 3.98 10.34 0.00 5.84 372 0.00 3.60 229 0.00 4.73 265
nc 3.91 10.36 0.00 0.98 108 0.00 1.06 133 0.00 0.86 116

S&P 500 458

7 25.01 56.50 0.01 2407.66 38950 0.01 2235.88 61697 0.01 1454.79 27136
9 25.02 60.21 0.01 513.04 8586 0.01 414.25 12448 0.01 445.35 7968
11 25.01 63.75 0.01 125.85 2687 0.00 92.96 2655 0.01 84.21 1792
nc 25.04 57.37 0.00 25.65 1203 0.00 29.05 1731 0.00 24.18 1242

cardinality K and the case without cardinality constraint are summarized in Table 3. We

see from Table 3 that the reformulation (PCl) slightly outperforms (PCs) and (PCc) for most

of the instances, while (PCs) and (PCc) can be also solved faster than (PCl) by CPLEX for

some instances.

4.3. Subset selection problems

In this subsection, we compare the performance of P/C reformulations for subset selection

problems in multivariate regression (see Arthanari and Dodge (1993); Miller (2002)). As dis-

cussed in Section 1, for given m data points (ai, bi) with ai ∈ <n and bi ∈ <, the optimization

model for the subset selection problem has the following form:

(SSP) min{‖Ax− b‖2 | |supp(x)| ≤ K},

where AT = (a1, . . . , am) and b ∈ <m. We also consider a useful variant of (SSP) where x is

required to be nonnegative (see Breiman (1995) and Yuan and Lin (2007)), i.e.,

(SSP+) min{‖Ax− b‖2 | |supp(x)| ≤ K, x ≥ 0}.

In our test, the data in (SSP) and (SSP+) are randomly generated in the following fashion.

For a fixed n, we generate m = 2n data points (ai, bi), i = 1, . . . , m. The elements of ai are

generated from the normal distribution N(0, 1) and b = Ax̄ + ε, where ε = (ε1, . . . , εm)T and
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Table 4: Comparison of continuous bounds for (SSP) and (SSP+)
(SSP) (SSP+)

n K bs bl imp.ratio n K bs bl imp.ratio

50 5 8.23 9.61 18.15 50 5 12.55 13.29 6.32
50 10 7.43 8.62 17.17 50 10 19.98 20.55 2.83
50 15 6.64 7.48 12.73 50 15 23.26 23.53 1.01
50 20 5.79 6.62 16.11 50 20 33.33 33.48 0.42
100 5 15.14 17.54 15.96 100 5 27.28 29.21 7.32
100 10 15.66 18.08 15.63 100 10 49.09 51.09 4.25
100 15 15.78 17.59 11.28 100 15 62.06 64.19 3.46
100 20 13.09 15.11 15.69 100 20 68.33 70.17 2.76

εi is taken from the normal distribution N(0, 1), i = 1, . . . , m. The elements of the vector

x̄ are from the uniform distribution in [−1, 1]. In order to apply the P/C reformulations to

the above two models, we need to set some sufficiently large bounds for xi. In our test, we

set −100 ≤ xi ≤ 100 (i = 1, . . . , n) in (SSP) and 0 ≤ xi ≤ 100 (i = 1, . . . , n) in (SSP+).

Similar parameters settings were used in Bertsimas and Shioda (2009). Using the above data

generation method, we build 80 instances of (SSP) and (SSP+), 5 instances for each n and

K with n = 50, 100 and K = 5, 10, 15, 20, respectively.

We first report in Table 4 the comparison results of the continuous bounds of (PC(d))

with d = ds and d = dl for the 80 instances of (SSP) and (SSP+), where the results are

the average of the 5 instances for each n and K. We observe from Table 4 that the average

improvement ratio of bl over bs ranges between 10% and 20% for instances of (SSP) but is

less than 8% for all instances of (SSP+). From Table 4, we also see that there is a tendency

for the improvement ratio to decrease as the cardinality K increases, which is particularly

notable for instances of (SSP+). Table 5 summarizes the numerical results of the P/C

reformulations for the 80 instances of (SSP) and (SSP+), where the time limit of CPLEX is

set as 10000 seconds. The results in Table 5 are average of the 5 instances for each n and K

and the notations are the same as those in Table 2. We see from Table 5 that (PCl) clearly

outperforms (PCs) in terms of the CPU time and the number of nodes for all instances of

(SSP) and (SSP+). The superior performance of (PCl) over (PCs) becomes more notable

for the hard instances of (SSP) and (SSP+) with n = 100 and K = 15, 20. Interestingly, we

observe from Table 5 that (PCc) can be solved faster than both (PCs) and (PCl) on average

for all the instances of (SSP). Figure 2 further illustrates the total computing time and the

number of nodes of the three P/C reformulations for instances of (SSP) and (SSP+) with

n = 100.
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Table 5: Numerical results of P/C reformulations for (SSP) and (SSP+)

Problem n K times timel

(PCs) (PCl) (PCc)

gap time nodes gap time nodes gap time nodes

(SSP)

50 5 0.24 1.45 0.00 1.75 97 0.00 2.50 96 0.00 1.59 78
50 10 0.22 1.45 0.00 8.23 201 0.00 6.37 139 0.00 3.96 119
50 15 0.20 1.32 0.00 7.68 180 0.00 7.90 153 0.00 5.33 135
50 20 0.21 1.33 0.00 37.36 386 0.00 22.25 288 0.00 17.12 243
100 5 0.59 5.15 0.00 28.34 463 0.00 15.66 200 0.00 10.38 168
100 10 0.63 4.90 0.00 12.07 204 0.00 11.29 147 0.00 5.91 106
100 15 0.66 4.84 0.01 3897.18 7963 0.00 1022.45 2119 0.00 748.02 2130
100 20 0.59 4.67 0.29(3) 6208.10 9075 0.33(2) 4192.52 3334 0.10(1) 2763.31 3871

(SSP+)

50 5 0.25 1.10 0.00 0.39 53 0.00 0.36 46 0.00 0.23 40
50 10 0.22 1.04 0.00 1.03 79 0.00 0.49 42 0.00 0.54 48
50 15 0.21 1.02 0.00 0.25 28 0.00 0.22 25 0.00 0.20 24
50 20 0.23 1.08 0.00 0.23 25 0.00 0.23 22 0.00 0.21 20
100 5 0.74 3.62 0.00 14.77 415 0.00 9.06 232 0.00 7.89 232
100 10 0.54 2.67 0.01 191.85 2149 0.00 35.18 577 0.00 62.23 808
100 15 0.56 2.78 0.07(1) 2150.20 5750 0.01 195.89 1338 0.01 322.43 1863
100 20 0.58 2.79 0.19(1) 3365.37 9169 0.12(1) 2308.19 4315 0.09(1) 2299.63 6018
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Figure 2: Total computing time and number of nodes for (SSP) and (SSP+) with n = 100

5. Concluding Remarks

We have presented in this paper a semidefinite program approach to improve the perfor-

mance of MIQP solvers for quadratic programs with cardinality and minimum threshold

constraints. This SDP approach is based on computing the diagonal decomposition that

generates the tightest continuous relaxation in the perspective reformulation of the prob-

lem. The algorithmic implication of this SDP approach is that continuous-relaxation based

branch-and-cut methods could be more efficient when applied to the perspective reformula-

tions using the parameter vector d found by the new SDP formulation. Although the size of

the new SDP problem is larger than that of the “small” SDP problem proposed in Frangioni

and Gentile (2007), it can be efficiently computed via SDP solvers based on interior-point

methods due to the simple structure of the problem. Stimulated by the new SDP problem, we

have also proposed an alternative way of constructing the perspective reformulation, which
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can be viewed as a “dual” method to the method of convex envelope using the perspective

function on semi-continuous variables. Our preliminary comparison results indicate that the

proposed SDP formulation can help improve the performance of the MIQP solvers for the

perspective cut reformulation of the problem.
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