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Abstract

Constraint-reduction schemes have been proposed for the solution by means of
interior-point methods of linear programs with many more inequality constraints than
variables in standard dual form. Such schemes have been shown to be provably con-
vergent and highly efficient in practice. A critical requirement of these schemes is the
availability of an initial dual-feasible point.

In this paper, building on a general framework (which encompasses several pre-
viously proposed approaches) for dual-feasible constraint-reduced interior-point opti-
mization, for which we prove convergence to a single point of the sequence of dual
iterates, we propose a framework for “infeasible” constraint-reduced interior-point op-
timization. Central to this framework is an exact (`1 or `∞) penalty function scheme
endowed with a mechanism for iterative adjustment of the penalty parameter, which
aims at yielding, after a finite number of iterations, a value that guarantees feasibility
(for the original problem) of the minimizers. Finiteness of the sequence of penalty pa-
rameter adjustments is proved under mild assumptions for all algorithms that fit within
the framework, including “infeasible” extensions of a “dual” algorithm proposed in the
early 1990s (Dantzig-Ye 1991) and of two recently proposed “primal-dual” algorithms
(Tits et al. 2006 and Winternitz et al. 2011). The last one, a constraint-reduced vari-
ant of Mehrotra’s Predictor-Corrector algorithm, is then more specifically considered:
further convergence results are proved, and numerical results are reported that demon-
strate that the approach is of practical interest.
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1 Introduction

Consider a linear program (LP) in standard primal form,

min cT x s.t. Ax = b, x ≥ 0 (P)

and its associated standard dual problem

max bT y s.t. AT y ≤ c (D)

where matrix A ∈ Rm×n has full row rank. When n À m, i.e., (D) involves many more
constraints than variables, most constraints are inactive at the solution, and hence have no
bearing on the solution. Such situations are detrimental to classical interior-point methods
(IPMs), whose computational cost per iteration is typically proportional to n. Starting in
the early 1990s, this has prompted a number of researchers to propose, analyze, and test
constraint-reduced versions of these methods. (See, e.g., [DY91, dHRT92, Ton93, TAW06,
WNTO11]. The term “constraint-reduced” was coined in [TAW06].)

To the best of our knowledge, all existing constraint-reduced IPMs that are supported by
analysis were obtained by grafting a constraint-reduction scheme onto a dual-feasible method.
Accordingly, they all require a dual-feasible initial point. This is an important limitation
because such point is often unavailable in practice, or may be available but poorly centered,
resulting in slow progress of the algorithm. Attempts at combining constraint-reduction
schemes with infeasible IPMs were made in [TAW06] and [Nic09] with Mehrotra’s Predictor-
Corrector (MPC) method [Meh92], and in [Nic09] with an algorithm from [Pot96], with some
numerical success; but no supporting analysis was provided, and indeed, it appears unlikely
that these methods do enjoy guaranteed global convergence. In the present paper, we show
how the need to allow for infeasible initial points can be addressed by making use of an
`1 or `∞ exact penalty function, with automatic adjustment of the penalty parameter. In
related work on constraint-reduced IPMs for quadratic programming, the algorithm proposed
in [JOT10] does allow for initial infeasible points, handling them by means of an `1 exact
penalty function; a convergence analysis is provided, but it assumes the a priori knowledge
of an appropriate penalty parameter value; it does not include a scheme for determining such
value.

Exact `1/`∞ penalty functions have been used in connection with IPMs in nonlinear pro-
gramming [Arm03, TWB+03, BSS09], in particular on problems with complementarity con-
straints [BSSV06, LCN06, SS06], and in at least one instance in linear programming [BS07].
The dearth of instances of use of penalty functions in linear programming is probably due to
the availability of powerful algorithms, both of the simplex variety and of the interior-point
variety, that accommodate infeasible initial points in a natural fashion, even guarantee-
ing polynomial complexity in the case of interior point, e.g., [Pot94, Pot96]. Combining
such (possibly polynomially convergent) infeasible interior-point methods with constraint-
reduction schemes has so far proved elusive though, and the use of exact penalty functions
is a natural avenue to consider.

In the present paper, as a first step, we consider a general framework (rIPM) for a class
of dual-feasible constraint-reduced IPMs: those for which the dual objective monotonically
increases. This framework encompasses, in particular, the algorithms proposed in [DY91],
[TAW06] and [WNTO11]. We prove convergence to a single point of the sequence of dual
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iterates for all methods that fit within the framework. Second, as the main contribution
of the paper, we expand this framework to allow for dual-infeasible initial points in the
case of primal-dual interior-point methods (PDIPs); we dub the resulting framework Ir-
PDIP. The expansion features an exact (`1 or `∞) penalty function and includes an iterative
penalty adjustment scheme. The scheme is taken from [TWB+03], adapted to the linear-
programming context, and augmented so as to enforce boundedness of the optimization
iterates; in [TWB+03] (where no assumption of linearity or even convexity is made), such
boundedness was merely assumed. The scheme used in [BS07] may be an alternative possi-
bility, though we could not ascertain that boundedness of the sequence of penalty parameters
would then be guaranteed. Under minimal assumptions (strict primal-dual feasibility), it is
proved that the penalty parameter value is increased at most finitely many times, thus guar-
anteeing that the sequence of such values remains bounded. The proof departs significantly
from that in [TWB+03], where strong non-degeneracy assumptions are invoked. Finally, we
propose iteration IrMPC (i

¯
nfeasible, constraint-r

¯
educed, M

¯
ehrotra P

¯
redictor-C

¯
orrector), ob-

tained by fitting into IrPDIP the dual-feasible constraint-reduced variant rMPC? proposed
and analyzed in [WNTO11]. We prove convergence to an optimal solution, starting from an
arbitrary, possibly infeasible, initial point, and report promising numerical results.

The remainder of the paper is organized as follows. In section 2, rIPM is laid out
and analyzed. In section 3, rIPM is extended, by incorporating an exact penalty function,
to allow for infeasible initial points in the case of constraint-reduced primal-dual interior
point, producing IrPDIP, which is then analyzed. In section 4, IrPDIP is specialized to
the case of algorithm rMPC? of [WNTO11] (a constraint-reduced variant of Mehrotra’s
Predictor-Corrector algorithm); the resulting algorithm is then analyzed. Numerical results
are reported in section 5 and conclusions are given in section 6.

The notation used in the paper is mostly standard. Absolute value, comparison and
“max” are meant componentwise. By e we denote the vector of all ones with size by context.
We adopt the Matlab-inspired notation [v1; v2; · · · ; vp] to denote a (vertical) concatenation
of vectors (or matrices) vi, 1 ≤ i ≤ p. We denote a certain subset of n := {1, 2, · · · , n}
by Q and its complement by Q := n\Q. Given an n-vector x, xi is its i-th element, and
xQ is a subvector of x with only those elements of x that are indexed in set Q. We denote
by AQ a submatrix of A with only those columns of A that are indexed in set Q. Given a
diagonal matrix X := diag(x), we let XQ := diag(xQ). Except when specified, the norm ‖ · ‖
is arbitrary. The feasible set of the dual (D) is denoted by F , i.e.,

F := {y ∈ Rm : AT y ≤ c}.

The active set for (D) at point y (with y not necessarily in F) is denoted by I(y), i.e.,

I(y) := {i : (ai)T y = ci}.

2 A framework for dual-feasible constraint-reduced IPMs

Many interior-point methods for the solution of (P)–(D), including the current “champion”,
Mehrotra’s Predictor Corrector [Meh92], make use of an affine scaling direction ∆ya, solution
of

ADAT ∆ya = b (1)
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for some diagonal positive-definite matrix D, usually updated from iteration to iteration.
For such methods, when n À m, the main computational cost at each iteration resides in
forming the matrix

ADAT =
n∑

i=1

diai(ai)T (2)

where di is the ith diagonal entry of D and ai the ith column of A. Forming ADAT takes up
roughly nm2 multiplications and as many additions. If the sum in the right-hand side of (2) is
reduced by dropping all terms except those associated with a certain small working index set
Q, the cost of forming it reduces from nm2 to roughly |Q|m2. Conceivably, the cardinality |Q|
of Q could be as small as m in nondegenerate situations, leading to a potential computational
speedup factor of n/m. Ideas along these lines are explored in [DY91, dHRT92, Ton93,
TAW06, WNTO11] where schemes are proposed that enjoy strong theoretical properties
and work well in practice. (Interestingly, in many cases, it has been observed that using
an astutely selected small working set does not significantly increase the total number of
iterations required to solve the problem, and sometimes even reduces it.) Several of these
methods [DY91, TAW06, WNTO11] fit within the following general iteration framework.

Iteration rIPM (constraint-r
¯
educed i

¯
nterior-p

¯
oint m

¯
ethod)

Parameters: θ ∈ (0, 1) and τ > 0.
Data: y ∈ Rm such that s := c−AT y > 0; Q ⊆ n such that AQ is full row rank; D ∈ R|Q|×|Q|,
diagonal and positive definite.
Step 1 : Computation of the dual search direction.
(i) Let ∆ya solve

AQD(AQ)T ∆ya = b. (3)

(ii) Select ∆y to satisfy

bT ∆y ≥ θbT ∆ya, ‖∆y‖ ≤ τ‖∆ya‖. (4)

Step 2 : Updates
(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c− AT y+ > 0

where
y+ := y + t∆y. (5)

(ii) Pick Q+⊆ n such that AQ+ has full row rank.

(iii) Select D+ ∈ R|Q+|×|Q+|, diagonal and positive definite.

Since AQ has full row rank, the linear system (3) has a unique solution. Hence Iteration
rIPM is well defined and, since s+ > 0, it can be repeated indefinitely to generate infinite
sequences. We attach subscript k to denote the kth iterate. Since sk > 0 for all k, it also
follows from (3) that

bT ∆ya,k > 0, (6)

and further from (4) and (5) that the sequence {bT yk} is increasing.
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An important property of Iteration rIPM, established in Proposition 1 below, is that if the
dual-feasible sequence {yk} remains bounded, then it must converge, and if it is unbounded,
then bT yk → +∞. The proof makes use of the following lemma, a direct consequence of
results in [Sai96] (see also [Sai94]).

Lemma 1. Let G be a full row rank matrix and b be in the range of G. Then, (i) there exists
φ > 0 (depending only on G and b) such that, given any positive-definite diagonal matrix D,
the solution ∆y to

GDGT ∆y = b,

satisfies
‖∆y‖ ≤ φbT ∆y;

and (ii) if a sequence {yk} is such that {bT yk} is bounded and, for some ω > 0, satisfies

‖yk+1 − yk‖ ≤ ωbT (yk+1 − yk) ∀k, (7)

then {yk} converges.

Proof. The first claim immediately follows from Theorem 5 in [Sai96], noting (as in [Sai94],
section 4) that, for some ζ > 0, ζ∆y solves

max{ bT u | uT GDGT u ≤ 1}.

(See also Theorem 7 in [Sai94].) The second claim is proved using the central argument of
the proof of Theorem 9 in [Sai96]:

N−1∑

k=0

‖yk+1 − yk‖ ≤ ω
N−1∑

k=0

bT (yk+1 − yk) = ωbT (yN − y0) ≤ 2ωv ∀N > 0,

where v is a bound on {|bT yk|}, implying that {yk} is Cauchy, and thus converges. (See also
Theorem 9 in [Sai94].)

Proposition 1. Suppose (D) is strictly feasible. Then, if {yk} generated by Iteration rIPM
is bounded, then yk → y∗ for some y∗ ∈ F , and if it is not, then bT yk →∞.

Proof. We first show that {yk} satisfies (7) for some ω > 0. In view of (5), it suffices to
show that, for some ω > 0,1

‖∆yk‖ ≤ ωbT ∆yk ∀k. (8)

Now, since ∆ya,k solves (3) and since AQk has full row rank, and Qk ⊆ n, a finite set, it
follows from Lemma 1 (i) that, for some φ > 0,

‖∆ya,k‖ ≤ φbT ∆ya,k ∀k.

With this in hand, we obtain, using (4),

‖∆yk‖ ≤ τ‖∆ya,k‖ ≤ τφbT ∆ya,k ≤ τ
φ

θ
bT ∆yk ∀k,

1Inequality (8) is an angle condition: existence of ω > 0 means that the angle between b and ∆y is
bounded away from 90 ◦. This condition, which is weaker than (4), is sufficient for Proposition 1 to hold.
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so (8) holds with ω := τ φ
θ
. Hence (7) holds (with the same ω).

To complete the proof, first suppose that {yk} is bounded. Then so is {bT yk} and, in
view of Lemma 1 (ii) and of the fact that {yk} is feasible, we have yk → y∗, for some y∗ ∈ F .
On the other hand, if {yk} is unbounded, then {bT yk} is also unbounded (since, in view
of Lemma 1 (ii), having {bT yk} bounded together with (7) would lead to the contradiction
that the unbounded sequence {yk} converges). Since {bT yk} is nondecreasing, the claim
follows.

The “build-up” algorithm in [DY91], and algorithms rPDAS in [TAW06] and rMPC? in
[WNTO11], all fit within the rIPM framework. In [DY91], D is diag(sQ)−2, and in rPDAS
and rMPC?, D is diag ((xi/si)i∈Q). In [DY91] and rPDAS, ∆y is ∆ya, and in rMPC?, ∆y
satisfies (4) with τ = 1 + ψ, where ψ > 0 is a parameter of rMPC?. Hence, Proposition 1
provides a simpler proof for the convergence of dual sequence {yk} of [DY91] than that used in
proving Theorem 3 of that paper; it strengthens the convergence result for rPDAS (Theorem
12 in [TAW06]) by establishing convergence of the dual sequence to a single optimal point;
and it is used in [WNTO11]. Proposition 1 is also used in the next section, in the analysis
of the expanded framework IrPDIP (see Proposition 2).

3 A framework for infeasible constraint-reduced PDIPs

3.1 Basic ideas and algorithm statement

The primal-dual affine-scaling direction for dual-feasible constraint-reduced problem

max bT y s.t. (AQ)T y ≤ cQ

is the solution (∆xQ, ∆ya, ∆sQ) (when it exists) to the linear system




0 (AQ)T I
AQ 0 0
SQ 0 XQ







∆xQ

∆ya

∆sQ


 =




0
b− AQxQ

−XQsQ


 (9)

where S := diag(s) and X := diag(x). Gaussian elimination of ∆xQ and ∆sQ yields (1) with
D := (SQ)−1XQ.

Previously proposed constraint-reduced interior-point methods ([DY91], [Ye90], [dHRT92],
[Ton93], [TAW06] and [WNTO11]) require a strictly dual-feasible initial point. In this sec-
tion, we show how this limitation can be circumvented with the help of an `1 or `∞ exact
penalty function. Specifically, in the `1 case, we consider relaxing (D) with

max
y,z

bT y − ρeT z

s.t. AT y − z ≤ c, z ≥ 0,

}
(Dρ)

where ρ > 0 is a scalar penalty parameter, with associated “primal”

min
x,u

cT x

s.t. Ax = b, x + u = ρe,
x ≥ 0, u ≥ 0.





(Pρ)
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Strictly feasible initial points for (Dρ) are trivially available, and any of the algorithms just
mentioned can be used to solve this primal-dual pair. It is well known (e.g. Theorem 40
in [FM90]) that there exists a threshold value ρ∗ such that for any ρ > ρ∗, if (yρ

∗ , z
ρ
∗) solves

(Dρ), then yρ
∗ solves (D) and zρ

∗ = 0. But such ρ∗ is not known a priori.
We propose a scheme inspired from that used in [TWB+03] (in a nonlinear optimization

context) for iteratively identifying an appropriate value for ρ. While, in contrast with the
present situation, [TWB+03] uses the penalty scheme to eliminate equality constraints, the
corresponding transformation does encompass the transformation of (D) into (Dρ): simply
consider the intermediate problem

max
y,z

bT y s.t. AT y − z ≤ c, z = 0.

A key difference between [TWB+03] and the present context however is that, unlike that
of [TWB+03] (see Lemma 4.1 and Proposition 4.2 in that paper), our scheme requires no
a priori assumption on the boundedness of the sequences of iterates (yk in our case, xk in
[TWB+03]). As seen from the toy example

max y s.t. y ≤ 0, 2y ≤ 2, (10)

when too small a value of ρ is used, such boundedness is not guaranteed. Indeed, the
penalized problem associated to (10) is

max
y,z

y − ρz1 − ρz2 s.t. y − z1 ≤ 0, 2y − z2 ≤ 2, z1 ≥ 0, z2 ≥ 0,

or equivalently,
min {−y + ρ max{0, y}+ 2ρ max{0, y − 1}} , (11)

and as seen from Figure 1, when ρ < 1
3
, problem (11) is unbounded, even though problem

(10) is bounded.
In the `1 version of our proposed scheme, the penalty parameter ρ is increased if either

‖z+‖ ≥ γ1
‖z0‖
ρ0

ρ (12)

or

(i) ‖[∆ya; ∆za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũQ 6≥ γ4e (13)

is satisfied, where γi > 0, i = 1, 2, 3, 4 are parameters, z+ is the just computed next value
of z, x̃Q and ũQ (defined in (18) and (19) below) are the most recently computed Karush-
Kuhn-Tucker (KKT) multipliers for constraints (AQ)T y − zQ ≤ cQ and zQ ≥ 0 respectively,
and where the factor ‖z0‖/ρ0 has been introduced for scaling purposes. Note that these
conditions involve both the dual and primal sets of variables. As we will see though, the
resulting algorithm framework IrPDIP is proved to be behave adequately under rather mild
restrictions on how primal variables are updated.

Condition (12) is new. It ensures boundedness of {zk} (which is necessary in order for {yk}
to be bounded) whenever {ρk} is bounded; with such condition, the situation just described
where {zk} is unbounded due to {ρk} being too small cannot occur. Condition (13) is adapted
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1

3
(unbounded)

1

3
≤ ρ < 1 (infeasible)

ρ > 1 (exact)

y

−y + ρ max{0, y} + 2ρ max{0, y − 1} with different values of ρ

Figure 1: The objective function of problem (11) is displayed with different penalty parameter
values. When ρ < 1

3
, problem (11) is unbounded. When ρ ∈ [1

3
, 1), it is bounded but the

minimizer yρ
∗ = 1 is infeasible for (10). When ρ > ρ∗ = 1, yρ

∗ = 0 solves (10) as desired.

from [TWB+03] (see Step 1 (ii) in Algorithm A of [TWB+03], as well as the discussion
preceding the algorithm statement). Translated to the present context, the intuition is that
ρ should be increased if a stationary point2 for (Dρ) is approached (‖[∆ya; ∆za]‖ small) at
which not all components of the constraints z ≥ 0 are binding (not all components of ũQ are
significantly positive), and no component of x̃Q or ũQ takes a large negative value, suggesting
that the stationary point may not be a dual maximizer. Two adaptations were in order:
First, closeness to a stationary point for (Dρ) is rather related to the size of ρ‖[∆ya; ∆za]‖;
in [TWB+03], this makes no difference because the sequence of multiplier estimates ((x, u) in
the present context) is bounded by construction, even when ρ grows without bound; second,
the lower bound on ũQ turns out not to be needed in the present context due to the special
structure of the z ≥ 0 constraints (compared to the general c(x) ≥ 0 in [TWB+03]).

Iteration IrPDIP, stated next, amounts to rIPM applied to (Dρ), rather than (D), with
ρ updated as just discussed (Step 2 (iv)), as well as a specific D matrix (primal-dual affine
scaling: Step 1 (i)) and rather general bounds on how the primal variables x and u should
be updated (Step 2 (ii)).

Iteration IrPDIP (i
¯
nfeasible r

¯
educed p

¯
rimal-d

¯
ual i

¯
nterior p

¯
oint)

Parameters: θ ∈ (0, 1), τ > 0, α > 0, χ > 0, σ > 1, γi > 0, for i = 1, 2, 3, 4.

2Following [WNTO11], we term “stationary point” for (Dρ) a point (y, z) that is feasible for (Dρ) and,
for some (x, u) such that Ax = b and x + u = ρe, satisfies xT (c − AT y + z) = 0 and uT z = 0. (If (y, z) is
stationary for (Dρ) and the associated (x, u) satisfied x ≥ 0 and u ≥ 0, (y, z) is optimal for (Dρ).)
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Data: y ∈ Rm and z ∈ Rn such that z > max{0, AT y− c}; s := c−AT y +z; x ∈ Rn, u ∈ Rn,
and ρ ∈ R such that x > 0, u > 0, and ρ > 0; Q ⊆ n such that AQ has full row rank.

Step 1 : Computation of the search direction.

(i) Let
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
be the primal-dual affine-scaling direction (see (9)) for

problem3

max
y,z

bT y − ρeT z

s.t. (AQ)T y − zQ ≤ cQ, z ≥ 0.

}
(DQ

ρ )

(ii) Select (∆y, ∆z) to satisfy

bT ∆y − ρeT ∆z ≥ θ(bT ∆ya − ρeT ∆za), ‖[∆y; ∆z]‖ ≤ τ‖[∆ya; ∆za]‖. (14)

Step 2. Updates.

(i) Update the dual variables by choosing a stepsize t ∈ (0, 1] such that

s+ := c− AT y+ + z+ > 0, z+ > 0 (15)

where
y+ := y + t∆y, z+ := z + t∆z. (16)

(ii) Select [x+; u+] > 0 to satisfy

‖[x+; u+]‖ ≤ max
{‖[x; u]‖, α‖[x̃Q; ũ]‖, χ}

(17)

where

x̃Q := xQ + ∆xQ, (18)

ũ := u + ∆u. (19)

(iii) Pick Q+ ⊆ n such that AQ+ has full row rank.

(iv) Check the two cases (12) and (13). If either case is satisfied, set

ρ+ := σρ;

otherwise set ρ+ := ρ.

Note that in order to guarantee that direction
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
(see (20) below) is

well defined, it is sufficient that AQ have full row rank (see Step 2 (iii) in Iteration IrPDIP).
Indeed, this makes [AQ 0;−EQ − I] full row rank, so that the solution (∆ya, ∆za) to (21)
below is well defined.

3Constraints z ≥ 0 are not “constraint-reduced” in (DQ
ρ ). The reason is that they are known to be active

at the solution, and that furthermore their contribution to normal matrix (2) is computed at no cost.
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3.2 Computational issues

The main computation in Iteration IrPDIP is the calculation of the affine-scaling direction
in Step 1 (i). The primal-dual affine-scaling direction

(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
for (DQ

ρ ) is
obtained by solving system (derived from (9))




0 0 0 (AQ)T −I 0 I
AQ 0 0 0 0 0 0
I I 0 0 0 0 0
0 0 I 0 0 0 0

SQ 0 0 0 0 0 XQ

0 ZQ 0 0 UQ 0 0

0 0 ZQ 0 0 UQ 0







∆xQ

∆uQ

∆uQ

∆ya

∆zQ
a

∆zQ
a

∆sQ




=




0
b− AQxQ

ρe− xQ − uQ

ρe− uQ

−XQsQ

−ZQuQ

−ZQuQ




(20)

where Z := diag(z) and U := diag(u). Eliminating (∆xQ, ∆u) and ∆sQ in system (20), we
obtain the reduced normal system

[
AQ 0
−EQ −I

] [
XQ 0
0 U

] [
SQ 0
0 Z

]−1 [
AQ 0
−EQ −I

]T [
∆ya

∆za

]
=

[
b
−ρe

]
, (21)

∆sQ = −(AQ)T ∆ya + ∆zQ
a , (22)[

∆xQ

∆u

]
= −

[
xQ

u

]
−

[
XQ 0
0 U

] [
SQ 0
0 Z

]−1 [
∆sQ

∆za

]
(23)

where EQ is a submatrix of the n× n identity matrix consisting of only those columns that
are indexed in set Q. Further eliminating ∆za, we can reduce (21) to

AQD(Q)(AQ)T ∆ya = b− AQXQ(SQ)−1(EQ)T (D
(Q)
2 )−1ρe, (24)

D
(Q)
2 ∆za = −ρe + EQXQ(SQ)−1(AQ)T ∆ya

where diagonal positive definite matrices D(Q) and D
(Q)
2 are given as

D(Q) := XQ(SQ)−1 −XQ(SQ)−1(EQ)T (D
(Q)
2 )−1EQXQ(SQ)−1, (25)

D
(Q)
2 := UZ−1 + EQXQ(SQ)−1(EQ)T .

(Since Q is selected in such a way that AQ is full row rank, (24) yields a unique ∆ya.) By
using the Sherman-Morrison-Woodbury matrix identity, (25) can be simplified to

D(Q) =
(
SQ(XQ)−1 + (EQ)T U−1ZEQ

)−1
=

(
SQ(XQ)−1 + ZQ(UQ)−1

)−1
.

The dominant cost in computing
(
∆xQ, ∆u, ∆ya, ∆za, ∆sQ

)
is to solve (21), with cost dom-

inated by forming the coefficient matrix AQD(Q)(AQ)T of (24). When A is dense, this
operation takes |Q|m2 multiplications. In the case of n À m, this can be much less than
nm2. Indeed, the same speedup factor can be obtained as in the case of the dual-feasible
rIPM.

10



3.3 Convergence Analysis

Iteration IrPDIP can be repeated indefinitely, generating an infinite sequence of iterates with
the dual sequence {(yk, zk, sk)} feasible for problem (Dρ). In section 2, the sole assumption
on (P)–(D) was that A has full row rank. Below, we further selectively assume (strict)
feasibility of (P)–(D).

In this section, we show that under mild assumptions the penalty parameter ρ in Iteration
IrPDIP will be increased no more than a finite number of times. First, as a direct application
of (6) transposed to problem (Dρ), and of (14), (∆y, ∆z) is an ascent direction for (Dρ). We
state this as a lemma.

Lemma 2. Step 1(i) of IrPDIP is well defined and bT ∆y − ρeT ∆z > 0.

In view of (12), a necessary condition for {ρk} to remain bounded is that {zk} be bounded.
The latter does hold, as we show next. A direct consequence is boundedness from above of
{bT yk}.
Lemma 3. If (P) is feasible, then {zk} is bounded, and {bT yk} is bounded from above.

Proof. We first show that {zk} is bounded. If ρk is increased finitely many times to a finite

value, say ρ∗, then condition (12) must fail for k large enough, i.e., ‖zk‖ ≤ γ1
‖z0‖
ρ0

ρ∗ for k large

enough, proving the claim. It remains to prove that {zk} is bounded when ρk is increased
infinitely many times, i.e., when ρk →∞ as k →∞.

By assumption, (P) has a feasible point, say x0, i.e.,

Ax0 = b, x0 ≥ 0. (26)

Since ρk →∞ as k →∞, there exists k0 such that

ρk > ‖x0‖∞ ∀k ≥ k0. (27)

Since (yk, zk) is feasible for (Dρ) for all k, we have

AT yk ≤ zk + c ∀k, (28)

zk ≥ 0 ∀k. (29)

Left-multiplying both sides of (28) by (x0)T ≥ 0 and using (26) yields

bT yk ≤ (x0)T zk + cT x0 ∀k. (30)

Adding ρke
T zk to both sides of (30), we get

(ρke− x0)T zk ≤ πk + ρke
T zk ∀k, (31)

where we have defined
πk := cT x0 − bT yk. (32)

In view of (27) and (29), we conclude that zk satisfies

0 ≤ zi
k ≤

πk + ρke
T zk

ρk − (x0)i
≤ πk + ρke

T zk

ρk − ‖x0‖∞ =: νk ∀i, ∀k ≥ k0,

11



so that the just introduced sequence {νk} satisfies

‖zk‖∞ ≤ νk ∀k ≥ k0. (33)

Hence, in order to show that {zk} is bounded, it suffices to prove that {νk} is bounded. We
show that νk+1 ≤ νk, ∀k ≥ k0; since in view of (33), νk is nonnegative for all k, this will
prove boundness of {νk}. To this end, first note that for each k, Lemma 2 implies that

bT yk+1 − ρke
T zk+1 = bT yk − ρke

T zk + tk(b
T ∆yk − ρke

T ∆zk) ≥ bT yk − ρke
T zk,

where we have used (16). Together with (27), this implies that

νk =
πk + ρke

T zk

ρk − ‖x0‖∞ ≥ πk+1 + ρke
T zk+1

ρk − ‖x0‖∞ ∀k ≥ k0. (34)

Since ρk+1 ≥ ρk and since

νk+1 =
πk+1 + ρk+1e

T zk+1

ρk+1 − ‖x0‖∞ , (35)

in order to conclude that vk+1 ≤ vk for k ≥ k0, it is sufficient to verify that the function f
given by

f(ρ) :=
πk+1 + ρeT zk+1

ρ− ‖x0‖∞
has a nonpositive derivative f ′(ρ) for all ρ satisfying (27). Now,

πk+1 + ‖x0‖∞eT zk+1 = cT x0 − bT yk+1 + ‖x0‖∞eT zk+1

= (x0)T c− (x0)T AT yk+1 + ‖x0‖∞eT zk+1

≥ −(x0)T zk+1 + ‖x0‖∞eT zk+1

≥ 0,

where the first equality comes from (32), the second one from (26), the first inequality from
(28) and (26), and the second one from (29). In view of (27), it follows that

f ′(ρ) = −πk+1 + ‖x0‖∞eT zk+1

(ρ− ‖x0‖∞)2
≤ 0.

Hence {zk} is bounded, proving the first claim. It follows immediately from (30) that {bT yk}
is bounded above, proving the second claim.

With boundedness of {zk} in hand, possibility that {ρk} be unbounded will be ruled out
by a contradiction argument. But first, we prove that the primal variables are bounded by
a linear function of ρk.

Lemma 4. There exists a constant C > 0 such that
∥∥∥[x̃Qk

k ; ũk; xk; uk]
∥∥∥ ≤ Cρk. (36)

12



Proof. In view of the triangle inequality, it suffices to show that there exist C1 and C2 such
that

‖[x̃Qk

k ; ũk]‖ ≤ C1ρk, ‖[xk; uk]‖ ≤ C2ρk. (37)

Substituting (22) into (23), and using (18) and (19), we have

[
x̃Qk

k

ũk

]
=

[
XQk

k

(
SQk

k

)−1

0

0 Uk(Zk)
−1

] [
AQk 0
−EQk −I

]T [
∆ya,k

∆za,k

]
. (38)

Solving (21) for [∆ya,k; ∆za,k] and substituting it into (38) yields

[
x̃Qk

k

ũk

]
= Hk

[
b

−ρke

]
(39)

with

Hk :=

[
XQk

k

(
SQk

k

)−1

0
0 Uk(Zk)−1

] [
AQk 0
−EQk −I

]T
([

AQk 0
−EQk −I

][
XQk

k

(
SQk

k

)−1

0
0 Uk(Zk)−1

] [
AQk 0
−EQk −I

]T
)−1

.

Because diagonal matrices XQk

k , SQk

k , Uk and Zk are positive definite for all k, it follows from
Theorem 1 in [Ste89] that the sequence {Hk} is bounded. Therefore, (39) implies that there
exist C ′ > 0 and C1 > 0, both independent of k, such that

∥∥∥∥
[
x̃Qk

k

ũk

]∥∥∥∥ ≤ C ′
∥∥∥∥
[

b
−ρke

]∥∥∥∥ ≤ C1ρk ∀k, (40)

proving the first inequality in (37). Now, without loss of generality, suppose

C1 ≥ max{‖[x0; u0]‖, χ}
αρ0

,

where α is a parameter in Iteration IrPDIP, and let C2 ≥ αC1. That ‖[xk; uk]‖ ≤ C2ρk

follows by induction. Indeed, it clearly holds at k = 0, and if ‖[xk; uk]‖ ≤ C2ρk at some
iterate k, then since {ρk} is nondecreasing, it follows from (17) and (40) that

‖[xk+1; uk+1]‖ ≤ max{C2ρk, αC1ρk, χ} ≤ C2 max {ρk, ρ0} ≤ C2ρk+1. (41)

If (P) is feasible, then Lemma 3 rules out the possibility that condition (12) is satisfied on
an infinite sequence. Therefore, if, as we will assume by contradiction, ρk →∞ as k →∞,
conditions (13) must be satisfied on an infinite subsequence. The next lemma exploits this.
In that lemma and in Proposition 2 below, Kρ denotes the index sequence on which ρk is
updated, i.e.,

Kρ = {k : ρk+1 > ρk}.
Lemma 5. If ρk → ∞ as k → ∞ and (P) is feasible, then {Zkũk} and {SQk

k x̃Qk

k } are
bounded on Kρ. If in addition (D) is feasible, then zk → 0 as k → ∞, k ∈ Kρ, and if
furthermore (P) is strictly feasible, then {yk} is bounded on Kρ.
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Proof. Since ρk goes to infinity on Kρ and (P) is feasible, Lemma 3 implies that condition (12)
is eventually violated, so conditions (13) must be satisfied for k ∈ Kρ large enough. In
particular, there exists k0 such that for all k ≥ k0, k ∈ Kρ,

‖[∆ya,k; ∆za,k]‖ ≤ γ2

ρk

, (42)

and
x̃Qk

k ≥ −γ3e. (43)

Since (first block row of (20))

∆sQk

k = −(AQk)T ∆ya,k + ∆zQk

a,k ,

it follows from (42) that there exists δ > 0 such that

‖∆sQk

k ‖ ≤ δ

ρk

, k ≥ k0, k ∈ Kρ. (44)

Using Lemma 4, equations (42) and (44), and the last three block rows of (20), we get

‖Zkũk‖ = ‖Uk∆za,k‖ ≤ Cρk · γ2

ρk

= Cγ2, k ≥ k0, k ∈ Kρ, (45)

and ∥∥∥SQk

k x̃Qk

k

∥∥∥ =
∥∥∥XQk

k ∆sQk

k

∥∥∥ ≤ Cρk · δ

ρk

= Cδ, k ≥ k0, k ∈ Kρ, (46)

which proves the first claim. Now, without loss of generality, assume that ρk0 > ‖x0‖∞
with x0 a feasible point of (P), so that

u0
k := ρke− x0 > 0, ∀k ≥ k0. (47)

Then, by our assumption, in the second claim, that (P)–(D) is feasible, there exist y0 and
s0 ≥ 0 which, together with x0, satisfy

AQk(x0)Qk + AQk(x0)Qk = Ax0 = b,

x0 + u0
k = ρke,

AT y0 + s0 = c.

On the hand other, from the second, third and fourth block rows of (20), and definitions
(18), (19) and (15), we get

AQk x̃Qk

k = b,

(x̃k + ũk)
Qk = ρke, ũ

Qk
k = ρke,

AT yk + sk − zk = c. (48)

These two groups of equations yield




AQk AQk 0 0
I 0 I 0
0 I 0 I







(x̃k − x0)Qk

−(x0)Qk

(ũk − u0
k)

Qk

(ũk − u0
k)

Qk


 =




0
0
0



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and




AQk AQk 0 0
I 0 I 0
0 I 0 I




T 


y0 − yk

zQk

k

z
Qk
k


 =




(sk − s0)Qk

(sk − s0)Qk

zQk

k

z
Qk
k


 .

It follows that

[(x̃k − x0)Qk ;−(x0)Qk ; (ũk − u0
k)] ⊥ [(sk − s0)Qk ; (sk − s0)Qk ; zk],

i.e.,

(x̃Qk

k )T (sk − s0)Qk − (x0)T (sk − s0) + (ũk − u0
k)

T zk = 0. (49)

Hence, for C ′ large enough, we obtain

(u0
k)

T zk + (x0)T sk = (x0)T s0 + (x̃Qk

k )T sQk

k − (x̃Qk

k )T (s0)Qk + ũT
k zk

≤ (x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2 (50)

where the equality comes from the expansion of (49), and the inequality from (46), (43), and
(45). Since u0

k, zk, x0 and sk are nonnegative for k ≥ k0, we get

zi
k ≤

(x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2

(u0
k)

i
, ∀i, k ≥ k0, k ∈ Kρ.

Since (see (47)) (u0
k)

i →∞, i ∈ n as k →∞ on Kρ, this proves that

lim
k→∞,k∈Kρ

zk → 0,

proving the second claim. Finally, if in addition (P) is strictly feasible, we can select x0 > 0,
and (50) yields

si
k ≤

(x0)T s0 + C ′δ + γ3e
T s0 + C ′γ2

(x0)i
, ∀i, k ≥ k0, k ∈ Kρ,

proving that {sk} is bounded on Kρ. Boundednesses of {sk} and {zk}, together with equa-
tion (48) and the full-rank property of A, imply that {yk} is bounded on Kρ.

We are now ready to prove that ρk is increased at most finitely many times. The proof
uses the fact that if (D) has a strictly feasible point, then for all y ∈ F , {ai : i ∈ I(y)} must
be a positively linearly independent set of vectors.

Proposition 2. If (P)–(D) is strictly feasible, then ρk is increased at most finitely many
times, i.e., Kρ is finite. Furthermore, {yk} and {zk} converge to some y∗ and z∗.
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Proof. If the first claim holds, then after finitely many iterations, IrPDIP reduces to rIPM
applied to (Dρ), so the second claim follows by Proposition 1. It remains to prove the first
claim. Proceeding by contradiction, suppose Kρ is infinite. Then there exists an infinite index
set K ⊆ Kρ and some Q ⊆ n such that Qk = Q, for all k ∈ K. In view of Lemma 3, since
K ⊆ Kρ, there must exist k0 > 0 such that conditions (13) are satisfied for k ≥ k0, k ∈ K;
in particular,

x̃Q
k ≥ −γ3e, k ≥ k0, k ∈ K. (51)

ũQ
k 6≥ γ4e, k ≥ k0, k ∈ K, (52)

Since limk→∞ ρk = ∞, it follows from (18), (19), the third block row of (20), and (52) that

λk := ‖x̃Q
k ‖∞ = ‖ρke− ũQ

k ‖∞ →∞, as k →∞, k ∈ K. (53)

Hence
‖x̂Q

k ‖∞ = 1, k ≥ k0, k ∈ K (54)

where we have defined

x̂Q
k :=

x̃Q
k

λk

, k ≥ k0,∀k ∈ K. (55)

(Without loss of generality, we have assumed that λk 6= 0, ∀k ≥ k0, k ∈ K.) Now, in view of
Lemma 5, we have for certain constant C > 0 large enough,

‖SQ
k x̃Q

k ‖ ≤ C, ∀k ∈ K, (56)

‖yk‖ ≤ C, ∀k ∈ K, (57)

lim
k→∞

zk = 0, k ∈ K. (58)

Note that by (57) and (54), {yk} and {x̂Q
k } are bounded on K, so in view of (54) and (58),

there exists an infinite index set K ′ ⊆ K such that

x̂Q
k → x̂Q

∗ 6= 0, yk → y∗, zk → z∗ = 0, as k →∞, k ∈ K ′, (59)

for some x̂Q
∗ and some y∗ ∈ F (since z∗ = 0). Dividing by λk and taking the limit on both

sides of (56), we obtain
SQ

k x̂Q
k → 0, as k →∞, k ∈ K ′

which implies that
x̂i
∗ = 0, ∀i ∈ Q\I(y∗). (60)

On the other hand, the second block equation in (20) and equation (18) give

AQx̃Q
k = b ∀k.

Dividing by λk, taking the limit of both sides, and using (60), we obtain

∑

i∈I(y∗)∩Q

x̂i
∗a

i = 0. (61)
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Now note from (51), (55) and (53) that

x̂Q
∗ = lim

k→∞,k∈K′

x̃Q
k

λk

≥ lim
k→∞,k∈K′

−γ3e

λk

= 0. (62)

Since the strict feasibility of (D) implies positive linear independence of vectors {ai : i ∈
I(y∗) ∩Q, y∗ ∈ F}, it follows from (61) and (62) that

x̂i
∗ = 0, ∀i ∈ I(y∗) ∩Q.

Together with (60), this implies that
x̂Q
∗ = 0,

which is a contradiction to (59).

3.4 An `∞ version

Instead of the `1 exact penalty function used in (Pρ)–(Dρ), we can use an `∞ exact penalty
function and consider the problem

max bT y − ρz
s.t. AT y − ze ≤ c, z ≥ 0

}
(63)

with its associated primal

min cT x

s.t. Ax = b, eT x + u = ρ,

x ≥ 0, u ≥ 0

where z ∈ R and u ∈ R. Again, strictly feasible points for (63) are readily available.
Conditions akin to (12)–(13) can again be used to iteratively obtain an appropriate value of
ρ. Since both z and u are scalar variables, the scheme can be slightly simplified: Increase ρ
if either

z+ ≥ γ1
z0

ρ0

ρ,

or
(i) ‖[∆ya; ∆za]‖ ≤ γ2

ρ
, and (ii) x̃Q ≥ −γ3e, and (iii) ũ < γ4. (64)

An analysis very similar to that of section 3.3 shows that the resulting `∞ variant of IrPDIP
enjoys the same theoretical properties as the `1 version. Minor changes include substitution
of the `∞-dual norm ‖ · ‖1 for the `1-dual norm ‖ · ‖∞.

4 Infeasible constraint-reduced MPC: IrMPC

As an instance of IrPDIP, we apply rMPC? of [WNTO11] to (Pρ)–(Dρ), and we dub the
resulting full algorithm IrMPC. (Indeed the search direction in rMPC? satisfies condition (4)
of rIPM and condition (17) of IrPDIP.) In view of Proposition 2, subject to strict feasibility
of (P)–(D), after finitely many iterations, the `1 and `∞ versions of IrMPC reduce to rMPC?

applied to problem (Dρ) and (63), respectively, with ρ equal to a fixed value ρ̄. Thus, we
can invoke results from [WNTO11] under appropriate assumptions.
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Proposition 3. Suppose (P)-(D) is strictly feasible. Then {(yk, zk)} generated by the `1 or
`∞ version of IrMPC converges to a stationary point (y∗, z∗) of problem (Dρ) with ρ = ρ̄.

Proof. We prove the claim for the `1 version; the `∞ case follows similarly. It follows from
Theorem 3.8 in [WNTO11] that {(yk, zk)} converges to a stationary point of problem (Dρ) if
and only if the penalized dual objective function is bounded. To conclude the proof, we now
establish that {bT yk − ρke

T zk} is bounded indeed. Lemma 2 implies that {bT yk − ρke
T zk}

is increasing for k large enough that ρk = ρ̄, so it is sufficient to prove that {bT yk − ρke
T zk}

is bounded above. Since Lemma 3 implies that {bT yk} is bounded above, this claim follows
from boundedness of {zk} and {ρk} (from Lemma 3 and Proposition 2 respectively).

Under a non-degeneracy assumption,4 {zk} converges to zero, and thus {yk} converges to
an optimal solution of (D). The proof of the following lemma is routine and hence omitted.

Lemma 6. The gradients of active constraints of problem (Dρ) are linearly independent for
all (y, z) if and only if {ai : (ai)T y = ci} is a linearly independent set of vectors for all
y ∈ Rm.

Theorem 1. Suppose (P)-(D) is strictly feasible, and for all y ∈ Rm, {ai : (ai)T y = ci} is
a linearly independent set of vectors. Let {(yk, zk)} be generated by the `1 or `∞ version of
IrMPC. Then {(yk, zk)} converges to (y∗, 0), a solution of (Dρ̄), and y∗ solves (D). Further,
if the dual optimal set is a singleton {y∗}, then {(x̃k, ũk)} converges to the unique KKT
multiplier (x∗, ρ̄− x∗) associated with (y∗, 0) for (Dρ̄), and x∗ is the unique KKT multiplier
associated with y∗ for (D). Moreover, {(xk, uk), (yk, zk)} converges to {(x∗, ρ̄ − x∗), (y∗, 0)}
q-quadratically.

Proof. Lemma 6 implies that the gradients of active constraints of problem (Dρ) are linearly
independent for all feasible (y, z). Applying the latter portion of Theorem 3.8 in [WNTO11],
we conclude that (yk, zk) converges to a maximizer (y∗, z∗) of problem (Dρ̄). Next, Propo-
sition 3.9 of [WNTO11] implies that there exists an infinite index set K on which [x̃k; ũk]
converges to an optimal solution [x∗; u∗] of problem (Pρ̄) with u∗ = ρ̄− x∗ and on which

[∆ya,k; ∆za,k] → 0, as k →∞, k ∈ K.

Thus conditions (i) and (ii) of (13) or (64) are satisfied on K. On the other hand, since
ρk = ρ̄ for k ∈ K large enough, one condition in (13) or (64) must fail. In the `1 case,
where (13) applies, it follows that ũQk

k ≥ γ4e for k ∈ K large enough. Since it follows from

the fourth block row of (20) and definition (19) that ũ
Qk
k = ρke, we conclude that

ũk ≥ min(γ4, ρ̄)e, k ∈ K large enough.

It follows that
u∗ ≥ min(γ4, ρ̄)e.

4The question of whether Theorem 3.8 and Proposition 3.9 in [WNTO11] hold without assuming linear
independence of gradients of active constraints is open. If the answer is positive, then global convergence of
(yk, zk) as established in our Theorem 1 will hold under the sole assumption that (P)–(D) is strictly feasible
(and A is full row rank).
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In the `∞ case, where (64) applies, it similarly follows that u∗ ≥ γ4. Hence, in both cases,
complementary slackness implies that z∗ = 0, and as a consequence, y∗ is an optimal solution
of problem (D). Linear independence of {ai : (ai)T y = ci} implies uniqueness of the KKT
multiplier x∗, and the remaining claims are consequences of Theorem 4.1 in [WNTO11].

5 Numerical results

5.1 Implementation

IrMPC was implemented in MATLAB R2009a.5 All tests were run on a laptop machine
(Intel R / 1.83G Hz, 1GB of RAM, Windows XP professional 2002). To mitigate random
errors in measured CPU time, we report averages over 10 repeated runs.

The parameters for rMPC? (in Step 1 (ii) and Step 2 (i)-(iii) of IrMPC) were set to the
same values as in section 5 (“Numerical Experiments”) of [WNTO11]. As for the adaptive
scheme (12)–(13), parameters were set to σ := 10, γ1 := 10, γ2 := 1, γ3 := 100, γ4 := 100,
and the Euclidean norm was used in (12) and (13). We chose Q according to the most active
rule (Rule 2.1 in [WNTO11] with ε = ∞), which selects the constraints that have smallest
slacks s. Analogously to [WNTO11], we terminated when

max

{‖[b− Ax; ρe− x− u]‖
1 + ‖[x; u]‖ ,

cT x− bT y + ρeT z

1 + |bT y − ρeT z|
}

< tol

where we used tol = 10−8 and where, again, the Euclidean norm was used.
We applied algorithm IrMPC on two types of examples: randomly generated problems

and a problem in model predictive control.

5.2 Randomly generated problems

We generated standard-form linear programs of size m = 100 and n = 20000. Entries
of matrix A and vectors b were normally distributed according to N (0, 1). We set vector
c := AT y+s with a normally distributed vector y ∼ N (0, 1) and with a uniformly distributed
vector s ∼ U [0, 1], guaranteeing that the generated dual (D) is strictly feasible. We adopted
(typically infeasible for (D)) initial conditions (x0, y0, s0) from [Meh92] for (P)–(D). Namely,
we first computed

ỹ := (AAT )−1Ac, s̃ := c− AT ỹ, x̃ := AT (AAT )−1b,

δx := max{−1.5 min(x̃), 0}, δs := max{−1.5 min(s̃), 0},

δ̃x := δx + 0.5
(x̃ + δxe)

T (s̃ + δse)∑n
i=1(x̃

i + δx)
, δ̃s := δs + 0.5

(x̃ + δxe)
T (s̃ + δse)∑n

i=1(s̃
i + δs)

and selected (x0, y0, s0) to be

x0 := x̃ + δ̃xe, y0 := ỹ, s0 := s̃ + δ̃se. (65)

5The code is available from the authors.
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Hence s0 > c − AT y0. A strictly feasible initial point for the penalized problem (Dρ) was
then generated by setting z0 to

z0 := AT y0 − c + s0 > 0,

and to promote centrality, initial point u0 was computed as

ui
0 :=

µ0

zi
0

, i ∈ n

where µ0 := (x0)T s0

n
. The penalty parameter was initialized with ρ0 := ‖x0 + u0‖∞ for the

version with the `1 exact penalty function, and with ρ0 := eT x0 + u0 for the `∞ version.
We generated 10 different random problems. The average CPU time and iteration count

for solving those 10 problems for various values of |Q|/n (10 runs for each problem, hence
100 runs for each value of |Q|/n) are shown in Figures 2 and 3 for the `1 and `∞ versions,
respectively. Point y0 initialized as in (65) was infeasible for (D) for all generated problems.
The fraction |Q|/n of kept constraints is showed in the horizontal axis with a logarithmic
scale. The rightmost point, with |Q| = n, corresponds to no constraint reduction. As seen
from both Figures 2 and 3, the CPU time decreases as |Q|/n decreases, down to as little as
1% of the constraints. As was already observed in [TAW06] and [WNTO11], the number of
iterations remains approximately constant for a large range of fractions |Q|/n. Note that
with no, or moderate, constraint reduction, the `∞ version takes fewer iterations and less
time to solve the problems than the `1 version, but the respective performances are similar
with more aggressive constraint reduction. We have no explanation for this phenomenon.

Interestingly, even with no constraint reduction, the `∞ version of IrMPC performs bet-
ter than the original MPC in our experiments (we used the version from [Wri96] on these
problems): see dashed magenta lines on Figures 2 and 3.

5.3 Model-predictive control

Model-predictive control (RHC)6 is a paradiagram for controlling a physical dynamical sys-
tem, by which the state of the system is measured at every (discrete) time t and, during
time interval (t− 1, t), an optimization problem such as the following is solved:

min
w,θ

M−1∑

k=0

‖Rwk‖∞ +
N∑

k=1

‖Pθk‖∞ (66)

s.t.

θk+1 = Asθk + Bswk, for k = 0, · · · , N − 1 (67)

θ0 = θ(t− 1), (68)

θmin ≤ θk ≤ θmax, for k = 1, · · · , N (69)

wmin ≤ wk ≤ wmax, for k = 0, · · · ,M − 1 (70)

δwmin ≤ wk − wk−1 ≤ δwmax, for k = 0, · · · ,M − 1 (71)

wk = 0, for k = M, · · · , N − 1 (72)

6Model-predictive control (MPC) is also known as receding-horizon control (RHC). In this paper, we refer
to it by the acronym RHC, and reserve “MPC” for Mehrotra’s predictor-corrector optimization algorithm.
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Figure 2: CPU time and iterations in solving the randomly generated problem by IrMPC
with a varying fraction of kept constraints for the `1 exact penalty function; see (blue) circles
and (red) stars. The time and iteration count for the original MPC are indicated by the
dashed (magenta) lines.
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Figure 3: Same as Figure 2, but with the `∞ version of IrMPC.
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with R ∈ Rr×r, P ∈ Rp×p, As ∈ Rp×p and Bs ∈ Rp×r. Vectors θk ∈ Rp and wk ∈ Rr respec-
tively denote the estimated state and the control input k time steps ahead of the current
time, and positive integers M and N are the control and prediction horizons, respectively;
(67) is a model of the physical system being controlled; θ(t− 1) is state of the physical sys-
tem measured (sensed) at time t−1; parameters θmin, θmax, wmin, wmax, δwmin and δwmax are
prescribed bounds; and constraints (71) restrict the rate of change of w. The optimization
variables are the control sequence and state sequence, respectively denoted by

w = [w0; · · · ; wM−1] ∈ RMr, θ = [θ1; · · · ; θN ] ∈ RNp.

After problem (66)–(72) is solved, yielding the optimal control sequence [w∗
0; · · · ; w∗

M−1],
only the first step w∗

0 =: w(t− 1) of the sequence is applied as control input to the physical
system (at time t). The main computational task is to solve (66)–(72). (See, e.g., [GSD05]
for background on model-predictive control.)

Problem (66)–(72) can be converted to a standard-form dual linear program. First, intro-
duce additional nonnegative optimization variables [εw0 , · · · , εwM−1

, εθ1 , · · · , εθN
]T ∈ RM+N

required to satisfy

Rwk − εwk
e ≤ 0, −Rwk − εwk

e ≤ 0, k = 0, · · · ,M − 1, (73)

Pθk − εθk
e ≤ 0, −Pθk − εθk

e ≤ 0, k = 1, · · · , N. (74)

Minimizing the objective function of (66) is then equivalent to minimizing εw0 + · · ·+εwM−1
+

εθ1 + · · · + εθN
with additional constraints (73)–(74). Second, states θk can be expressed

explicitly in terms of wk by eliminating constraints (67)–(68),

θk = Ak
sθ0 +

k−1∑
i=0

Ai
sBswk−1−i, k = 1, · · · , N,

or equivalently in matrix form,
θ = Γw + Ωθ0, (75)

where

Γ :=




Bs 0 · · · 0 0
AsBs Bs · · · 0 0

...
...

. . .
...

...
AM−1

s Bs AM−2
s Bs · · · AsBs Bs

AM
s Bs AM−1

s Bs · · · A2
sBs AsBs

...
...

. . .
...

...
AN−1

s Bs AN−2
s Bs · · · · · · AN−M

s Bs




, Ω :=




As

A2
s

· · ·
AN

s


 .
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Hence, problem (66)-(72) can be rewritten into the standard-form dual linear program

min
w, εw, εθ

εw0 + · · ·+ εwM−1
+ εθ1 + · · ·+ εθN

(76)

s.t. wmine ≤ w ≤ wmaxe (77)

θmine− Ωθ0 ≤ Γw ≤ θmaxe− Ωθ0 (78)

δwmin ≤ wk − wk−1 ≤ δwmax for k = 0, · · · ,M − 1 (79)

Rw − εw ≤ 0, (80)

Rw + εw ≥ 0, (81)

PΓw − εθ ≤ −PΩθ0, (82)

PΓw + εθ ≥ −PΩθ0 (83)

where
εw := [εw0e; · · · ; εwM−1

e] ∈ RMr, εθ := [εθ1e; · · · ; εθN
e] ∈ RNp

and
R := diag{R,R, · · · , R} ∈ RMr×Mr, P := diag{P, P, · · · , P} ∈ RNp×Np.

When all states and control inputs are constrained by bounds, problem (76)–(83) has
Mr +M +N variables and 6Mr +4Np constraints. Because usually p > r and N > M , the
number of constraints is much larger than that of variables. Hence, constraint reduction is
likely to be beneficial.

For this class of problem, IrMPC has two advantages over dual-feasible constraint re-
duction. First, while warm starts are readily available from the solution of the problem at
the previous time step, they may be infeasible (due to the receding horizon as well as to
modeling errors and perturbations affecting the dynamical system). Second, even when the
warm start is strictly feasible, it is usually close to the boundary of the feasible set. In this
situation, feasible interior-point methods (e.g. [WNTO11]) need to take many small steps
to get away from that boundary, making it slow to converge. Problem (Dρ) allows initial
points to move outside the feasible set, avoiding both problems.

The warm starts were set as follows: Given a partitioned vector v = [v1; · · · ; vn], define
v̄ := [v2; · · · ; vn; vn] where the first block-component has been clipped and the last one
repeated. Now, suppose for time interval (t− 1, t), the solution for problem (76)–(83) is

[w; εw; εθ] := [w0
∗; · · · ; wM−1

∗ ; εw0∗ ; · · · ; εwM−1∗ ; εθ1∗ ; · · · ; εθN∗ ];

then the initial point we used for the problem (76)–(83) solved during interval (t, t + 1) is

[w̄; ε̄w + 0.01; ε̄w + 0.01]

with initial penalty parameter ρ equal to 2‖xt
∗‖∞, where xt

∗ is the solution for the dual of
problem (76)–(83) for interval (t− 1, t). As for the next state θ(t), we generated it using the
dynamics

θ(t) = Asθ(t− 1) + Bsw(t− 1),

i.e., we assumed for simplicity that the model used in the optimization is exact, and there
are no perturbations.

23



The data we tested is from a rotorcraft hover control problem. We ran the controlled
system starting at t = 1 (t−1 = 0) with θ(0) = [0; 0; 0; 0; 0; 0; 0;−40 ft] (40 feet initial down-
ward deviation from desired attitude), and with the model (i.e., As and Bs) and parameters
(such as matrices R and P , integers M and N , and constraint bounds) as in [HKT+10],
where quadratic programming-based RHC is considered instead. (This model is originally
from [Fle95].) The LP to be solved during each time interval has 160 variables and 1180
inequality constraints. We used the `1 version of IrMPC. Results with the `∞ version were
similar and hence are not reported.

Figure 4 shows the CPU times used by the optimization runs during each of the 1000
time intervals in a 10 sec (real-time) simulation with sample time Ts = 0.01 sec. (The first
interval starts at 0 sec (t − 1 = 0) and the last one at 9.99 sec (t − 1 = 999)). In order to
keep the figure readable, only every 10th time step is showed. Note that solving every LP
with constraint reduction ((red) circles) takes close to or less than half of the time it takes
without constraint reduction ((magenta) triangles). Because not all constraints of (77)–(83)
are dense, constraint reduction did not afford a full fourfold (1180

300
) speedup.
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Figure 4: CPU time in seconds by IrMPC to solve the 10 sec RHC process with |Q| ≈ 300
and |Q| = n = 1180 (corresponding to the case with unreduced constraints). For the former,
in 58 cases, |Q| was increased slightly above 300 due to AQ losing rank, as per Step 2 (iii) of
Iteration IrPDIP.

Figure 5 shows the effect of constraint reduction on the single LP at time 5.00 sec (t−1 =
499), which is a typical case. The CPU time needed to completely solve this problem
decreases as the number |Q| of constraints kept decreases, from 1180 constraints down to
as little as 200, i.e., down to approximately 17% of all constraints. For this LP, MPC takes
much more time and iterations than IrMPC.

Table 1 shows that 516 of the 1000 LPs begin with warm starts that are infeasible points
(NFIPs), the remaining 484 with strictly feasible initial points (FIPs). Because we used a
warm start for the initial penalty parameter, only 5 problems started with too small initial
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Figure 5: CPU time and iteration of solving the problem at 5 sec by IrMPC with varying
number |Q| of kept constraints; see (blue) circles and (red) stars. MPC takes much longer
to solve this problem; see the dashed (magenta) line.

penalty parameters (SIPPs), and we observed an increase of penalty parameter for those
5 problems only. For those 484 problems with strictly-feasible initial points, rMPC? in
[WNTO11] can be used instead of IrMPC, and we compared the respective times. For 95%
(461 out of 484) of the instances, IrMPC took less time than rMPC?, presumably due to the
better ability of IrMPC to handle initial points close to the constraint boundaries.

Table 1: Number of problems with certain properties

NFIPs FIPs SIPPs IrMPC < rMPC?

516 484 5 461 out of 484

6 Conclusions

We have outlined a general framework (rIPM) for a class of constraint-reduced, dual-feasible
interior-point methods that encompasses several previously proposed algorithms, and proved
that for all methods in that class, the dual sequence converges to a single point. In order
to accommodate important classes of problems for which an initial dual-feasible point is
not readily available, we then proposed an `1/`∞ penalty-based extension (IrPDIP) of this
framework for infeasible constraint-reduced primal-dual interior point. We showed that the
penalty adjustment scheme in IrPDIP has the property that, under the sole assumption that
the primal-dual pair is strictly feasible, the penalty parameter remains bounded.
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An infeasible constraint-reduced variant of Mehrotra’s Predictor Corrector (specifically,
an infeasible variant of rMPC? from [WNTO11]), dubbed IrMPC, was then considered, as
an instance of IrPDIP. IrMPC was analyzed, and tested on randomly generated problems
and on a sequence of problems arising in an instance of model-predictive control. The results
show promise for handling both infeasible initial points and nearly infeasible warm starts.
Indeed, on the model-predictive control problem, IrMPC performed significantly better than
(a version of) the original MPC, even when constraint reduction was turned off.

Acknowledgement: The authors wish to thank Professor Dianne O’Leary for her sug-
gestions and insight.
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