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Abstract

In this paper we present a quasi-Newton projection method for im-
age deblurring. The mathematical problem is a constrained minimization
problem, where the objective function is a regularization function and the
constraint is the positivity of the solution. The regularization function is
a sum of the Kullback-Leibler divergence, used to minimize the error in
the presence of Poisson noise, and of a Tikhonov term. The Hessian of
the regularization function is approximated in order to invert it using Fast
Fourier Transforms. The numerical experiments on some astronomical im-
ages blurred by simulated Point Spread Functions show that the method
gives very good results both in terms of relative error and computational
efficiency.

Keywords: Nonnegatively constrained minimization, regularization, image de-
blurring, projected-Newton method, Poisson noise.

1 Introduction

In astronomical applications, the image formation model is:

Af + b = E{z} (1)

where f ∈ Rn is the unknown image to be recovered, z ∈ Rn is the detected
image that is the realization of a random process with expected value E(z) and
b is the expected value (usually constant) of the background. The matrix A con-
tains the information on the Point Spread Function (PSF) determining the blur
on the recorded image. The model is the discretization of a first kind Fredholm
integral equation, whose kernel is the PSF. When the PSF is space invariant, as
is our case, A is a block Toeplitz matrix with Toeplitz blocks (BTTB) [5]. Since
A is usually ill-conditioned, the process for recovering the exact image f from
(1) needs regularization. Moreover, we suppose that the components of the true
solution f are known to be nonnegative, because they represent the intensities of
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the imaged object at the various pixels. Hence, the image reconstruction prob-
lem can be formulated as the nonnegatively constrained minimization problem:

min J (f) = J0(f) +
λ

2
∥f∥22

s.t. f ≥ 0,
(2)

where J0(f) is the Kullback-Leibler divergence representing consistency with
the data in the presence of Poisson noise:

J0(f) =
n∑

j=1

{
zj ln

zj
(Af)j + bj

+ (Af)j + bj − zj

}
.

The other term is the Tikhonov regularization term, that expresses prior knowl-
edge on the desired solution. The positive parameter λ is the regularization
parameter controlling the amount of regularization.

Problem (2) is a convex minimization problem since both the Kullback-
Leibler divergence and the Tikhonov function are convex. In [6] a projected
Newton-CG method has been presented for solving problem (2), using the Con-
jugate Gradient (CG) method for computing the search direction.

In this paper we present a quasi-Newton projection method where the search
direction is computed by approximating the Hessian of J with a matrix that is
easily invertible using Fast Fourier Transforms (FFTs) with low computational
complexity.

The algorithm is tested on astronomical deblurring imaging problems and
the results are compared with those obtained by two widely used algorithms:
the Gradient Projection algorithm [7, 9] and the Projected Newton method of
Bertsekas [3, 2, 9, 8].

The paper is organized as follows. In section 2 we present the proposed
method and we outline the algorithm, in section 3 we report the numerical
results obtained on some deblurring problems of astronomical images and finally
section 4 contains the conclusions.

2 The method

The method proposed in this paper, that we call Quasi-Newton Projection
(QNP) method, arises from the projected Newton-CG method presented in [6]
for the solution of the nonnegatively constrained problem (2). In that method,
the iteration has the general form of the projected Newton like methods pro-
posed by Bertsekas in [3, 2]:

fk+1 =
[
fk − αkpk

]+
where pk is the search direction, αk is the steplength and [·]+ denotes the pro-
jection on the positive orthant.
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For each iterate fk ≥ 0 we have defined the set of indices:

I(fk) = {i | 0 ≤ fk
i ≤ εk and

∂J (fk)

∂fi
> 0}

where
εk = min{ε, wk}, wk = |fk − [fk −∇J (fk)]+|

and ε is a small positive parameter. Throughout the paper, for notational
simplicity, the gradient and the Hessian of J at fk are denoted as gk ≡ ∇J (fk)
and Hk ≡ ∇2J (fk), respectively. Moreover, we denote Ik ≡ I(fk).

Given the set Ik, we define the associated reduced gradient gkI as{
gkI

}
i
=

{
gki , if i /∈ Ik;
0, otherwise.

(3)

At each iteration k, we consider the solution dk of the linear system

Hkdk = gkI , (4)

with
Hk = ATDkA+ λI, Dk = diag(gk./(Afk + b).̂2) (5)

where ./ and . ̂ are the component-wise division and squaring and diag(v)
indicates the diagonal matrix with diagonal vector v.

Then, the search direction pk is given by

pki =

{
dki , if i /∈ Ik;
gki , otherwise;

i = 1, . . . , n. (6)

The step length αk is computed with the variation of the Armijo rule discussed
in [2]. In particular, αk is the first number of the sequence {βm}m∈N, 0 < β < 1,
such that

J (fk)− J (fk(βm)) ≥ η

βm
∑
i/∈Ik

gki p
k
i +

∑
i∈Ik

gki

(
fk
i − fk

i (β
m)

) (7)

where fk(βm) = [fk − βmpk]+ and η ∈ (0, 1
2 ).

The solution of the linear system (4) is the most expensive computational
kernel. In [6] the system has been solved inexactly, by using the CG method.
In the QNP method presented here we solve the linear system (4) by inverting
an approximation of the exact hessian Hk.

In order to reduce the computational cost of the algorithm for the system
solution, we approximate the BTTB matrix A with a Block Circulant matrix
with Circulant Blocks (BCCB matrix) C. The BCCB matrices arise in spatially
invariant image deblurring when periodic boundary conditions are employed [5].
A BCCB matrix has some useful properties. It is normal, that is CTC = CCT ,
hence it has a unitary spectral decomposition:

C = F ∗SF
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where F is the two dimensional unitary Discrete Fourier Transform (DFT) ma-
trix and S is a diagonal matrix. For this reason, the matrix-vector product
involving C−1 can be performed without constructing C explicitly and using
FFTs. See [5, 10, 9] for more details.

The diagonal matrix Dk of (5) is approximated with a diagonal matrix D̃k

with all entries equal to the mean µk of the diagonal elements of Dk.
Finally the exact hessian Hk is substituted by:

H̃k = CT D̃kC + λI = µkC
TC + λI. (8)

If
S = FFT2(C)

(where FFT2 is the Fast Fourier Transform of a matrix), then the system:

Hkdk = gkI

is approximated by:
H̃kdk = gkI

which is solved in the Fourier space as:

dk = µkIFFT2

(
FFT2(gkI)./

(
S.̂2 + λ

µk

))
. (9)

The QNP algorithm is formally outlined as follows.

Algorithm 2.1 (Quasi-Newton Projection algorithm).

Choose f0 ≥ 0 and η ∈ (0, 1
2 ).

Evaluate I0, g0 and H0.
Set k = 0.
Repeat until convergence

2. Computation of the search direction pk

2.1 Compute the reduced gradient gkI by (3);
2.2 Compute dk by (9);
2.3 Compute pk by (6);

3. Computation of the steplength αk

Find the smallest number m ∈ N satisfying (7);
4. Updates

Set fk+1 = [fk − αkpk]+ and evaluate Ik+1, gk+1, Hk+1;
Set k = k + 1;

end

Finally, let gkP be the projected gradient of J at fk defined as

{gkP}i =

 gki , if fk
i > 0;

gki , if fk
i = 0 and gki < 0;

0, otherwise.
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The iterations of algorithm 2.1 are terminated according to the following
stopping criteria:

i) when the value ∥gkP∥2 is sufficiently close to zero; i.e. when:

∥gkP∥2 ≤ τ1∥g0P∥2 (10)

where τ1 is a given positive tolerance;

ii) when the relative distance between two successive iterates has become less
than a given positive tolerance τ2; i.e.

∥fk+1 − fk∥2
∥fk+1∥2

≤ τ2; (11)

iii) when a maximum number Kmax of iterations has been performed.

The convergence of algorithm 2.1 can be proved as follows.

Definition 2.1. An n × n matrix P is diagonal with respect to the subset of
indices L ⊂ {1, . . . , n} if

Pij = 0, ∀i ∈ L, j = 1, 2, . . . , N, i ̸= j.

Proposition 2.1. The search direction pk in (6) is obtained as:

pk = P kgk

where P k is diagonal with respect to Ik and is defined as:

P k
ij =

{
δij , if either i ∈ Ik or j ∈ Ik;

{(H̃k)−1}ij , otherwise;

where H̃k is the approximation (8) to the exact Hessian at iteration k.

Proof. For a vector v ∈ Rn and the corresponding set I(v), let reduce be the
operator such that

{reduce(v)}i =
{

vi, if i /∈ I(v);
0, otherwise;

i = 1, . . . , n.

Then, from (6) we have pki = gki for i ∈ Ik, while, for i /∈ Ik, we have

pki =

n∑
j=1

{(H̃k)−1}ij{reduce(gk)}j =
∑
j /∈Ik

{P k}ijgkj .

Hence, pk = P kgk.

We can now prove the following result concerning some properties of the
matrix P k necessary to show the convergence of the QPN method.
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Proposition 2.2. If Dk is uniformly bounded for all k, then the matrices H̃k

in (8) are positive definite and satisfy

c1∥y∥2 ≤ yT H̃ky ≤ c2∥y∥2, ∀y ∈ Rn, k = 0, 1, 2, . . .

for some positive scalars c1 and c2.

Proof. Let 0 < νn ≤ . . . ≤ ν1 be the eigenvalues of CTC. Then the eigenvalues
of H̃k are:

ξkj = µkνj + λ, j = 1, . . . n, ξkn ≤ . . . ≤ ξk1

.
Since Dk is uniformly bounded, there exists M > 0 such that 0 < µk ≤ M .

Hence:
λ ≤ ξkj ≤ Mν1 + λ, j = 1, . . . , n.

Then:
λ∥y∥22 ≤ ξkn∥y∥22 ≤ yT H̃ky ≤ ξk1∥y∥22 ≤ (Mν1 + λ)∥y∥22.

The thesis immediately follows by setting:

c1 = λ and c2 = Mν1 + λ

From the proposition 2.2 it follows that c̃1 and c̃2 exist such that:

c̃1∥y∥22 ≤ yTP ky ≤ c̃2∥y∥22, ∀y ∈ Rn, k = 0, 1, 2, . . . (12)

Since the matrices P k satisfy (12), then from the analysis in [1, Proposition 2,
Proposition 4] it follows that the QNP method is convergent.

3 Numerical results

In this section the results of some numerical experiments are presented. They
have been executed on a Pentium IV PC using Matlab 7.0 (Release 14).

The stopping criteria parameters of algorithm 2.1 have been fixed to the
following values:

i) Projected gradient tolerance: τ1 = 10−3;

ii) Successive iterates tolerance: τ2 = 10−2;

iii) Maximum number of iterations: Kmax = 30.

The initial iterate f0 has been chosen to be the constant image whose pixel
values f0

(i,j) are equal to

f0
(i,j) =

Nx∑
i=1

Ny∑
j=1

(zi,j − b)

NxNy
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where Nx×Ny is the image size.
The regularization parameter λ has been heuristically chosen and the pa-

rameter β of (7) has been fixed equal to 0.25 in all the experiments.
In all the numerical experiments, an original 256 × 256 image has been

convolved with an Adaptive Optic PSF (AOPSF) from the CAOS (Code for
Adaptive Optics System) package [4], then a constant sky background term has
been added and, finally, the resulting image has been corrupted with Poisson
noise with different Signal to Noise Ratio (SNR) values.

In this work, we illustrate the results obtained for three test problems, called
TP1, TP2 and TP3, respectively. The corresponding test images are the HST
image of the galaxy NGC 1288 (figure 1(a)), the VLT image of the Crab Nebula
(figure 2(a)) and a star cluster image (figure 3(a)). Some perturbed images are
shown in figures 1(b), 2(b) and 3(b), for different SNR values. (In particular,
SNR=38.20, SNR=44.23 and SNR=38.20, respectively).

Table 1 shows the results obtained with the previous images with varying
SNR values. The table reports the relative Root Mean Square Error (RMSE)
of the reconstructions defined as

relative RMSE =
∥fex − frec∥F

∥fex∥F
where fex is the exact image, frec is the reconstructed one and ∥ · ∥F is the
Frobenius norm of a matrix. Moreover, the table illustrates the total number of
FFTs (fourth column) and the number of performed iterations (last column).

The numerical results in the table show that the QNP method is effective
and efficient since it restores good quality images at a very low computational
cost. Some restored images are depicted in figures 1(c), 2(c) and 3(c).

For some test problems, figures 1(d), 2(d) and 3(d) show the behavior of the
relative reconstruction error as a function of the number of iterations; the circle
indicates the error in the stopping iteration. These figures illustrate that the
relative reconstruction error decreases very quickly during the first iterations
and then it becomes stable. This behavior of the relative reconstruction error
has been observed in all the performed experiments and indeed it represents an
attractive characteristic of the QNP method.

The performance of the QNP method has been compared with that of the
Gradient Projection (GP) method and the Projected Newton (PN) method.
This last method requires, at each iteration, the solution of a linear system in
order to compute the search direction. In our experiments, this linear system
has been solved with the CG method stopped with a relative precision of 0.1
and a maximum number of 20 iterations allowed.

Figure 4 illustrates the behavior of the relative reconstruction error (left
column) and the projected gradient norm (rigth column) as a function of the
number of performed FFTs for the QNP method (dashed line), the GP method
(solid line) and the PN method (dash-dotted line). From the graphs in the figure
it is evident that the QNP method has the best performance in terms of relative
reconstruction error reduction. On the other hand, all the methods have a slow
decreasing of the projected gradient norm. We can conclude that the stopping
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criteria ii), considering the relative distance between two successive iterates, is
the most efficient one, in this application, to obtain a good reconstruction.

4 Conclusions

In this work, a quasi-Newton projection method has been presented for the non-
negatively constrained restoration of images degraded by blur and Poisson noise.
In this method, determining the search direction only requires the computation
of a pair of two-dimensional FFTs. The results of several numerical experiments
show that the relative reconstruction error reaches the minimum value during
the first iterations. This minimum value is smaller than that obtained by both
the GP method and the PN method. Therefore, the QNP method appears to
be effective and efficient since it provides good quality restored images at a low
computational cost.
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Figure 1: TP1 test problem: the HST image of the galaxy NGC 1288.
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(a) Exact image. (b) Blurred and noisy image (SNR=44.23).

(c) Restored image.
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Figure 2: TP2 test problems: the VLT image of the Crab Nebula.
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(a) Exact image. (b) Blurred and noisy image (SNR=38.20).

(c) Restored image.
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Figure 3: TP3 test problem: a star cluster image.

11



0 100 200 300 400 500 600
0.2

0.4

0.6

0.8

1

1.2

(a) TP1 test problem (SNR=38.20).

0 200 400 600 800 1000 1200 1400
10

−6

10
−4

10
−2

10
0

10
2

(b) TP1 test problem (SNR=38.20).
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(c) TP2 test problems (SNR=44.23).
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(d) TP2 test problems (SNR=44.23).
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(e) TP3 test problem (SNR=38.20).
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(f) TP3 test problem (SNR=38.20).

Figure 4: Comparisons between the QNP method (dashed line), the GP method
(solid line) and the PN method (dashdotted line). The horizontal axis shows the
number of FFTs. The vertical axis shows the relative reconstruction error (left
column) and the projected gradient norm on a logarithmic scale (right column).

12



[9] C. R. Vogel. Computational Methods for Inverse Problems. SIAM, Philadel-
phia, PA, USA, 2002.

[10] C. R. Vogel and M. E. Oman. Fast, robust total variation–based recon-
struction of noisy, blurred images. IEEE Trans. on Image Proc., 7:813–824,
1998.

13


