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Abstract. In this paper, we study deterministic dynamic lot-sizing problems with service level constraints

on the total number of periods in which backorders can occur over the finite planning horizon. We give

a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the

structure of its solution. We show that an optimal solution to this problem can be found in O(n2κ) time,

where n is the planning horizon and κ = O(n) is the maximum number of periods in which demand

can be backordered. Using the proposed shortest path algorithms, we develop alternative tight extended

formulations for LS-SL-I and one of its relaxations, which we refer to as uncapacitated lot sizing with

setups for stocks and backlogs. We show that this relaxation also appears as a substructure in a lot-sizing

problem which limits the total amount of a period’s demand met from a later period, across all periods. We

report computational results that compare the natural and extended formulations on multi-item service-level

constrained instances.

Keywords: Fixed-charge networks, lot sizing, service levels, extended formulation, shortest paths

1. Introduction

Suppliers are often expected to sign service level contracts with their customers to limit orders that are

not shipped on time. Late shipments can be extremely disruptive to downstream businesses and frequent

stock-outs can result in significant loss of customer goodwill. Suppliers often find it difficult to estimate such

intangible components of their backorder costs. Thus, constraints such as the Type-I service level, which

limit the proportion of time demand is backlogged, are increasingly used in practice [10]. In this paper, we

study a deterministic uncapacitated lot-sizing problem with such a service level constraint, which we refer

to as lot sizing with Type-I service levels (LS-SL-I). The duration of the service contract (i.e., the planning

horizon) is n. The problem is to determine the lowest cost replenishment plan that meets the demand over

the horizon at a predetermined service level, τ , where τ is defined as the proportion of time the demand is met

over the horizon (ready rate). In other words, letting κ = b(1− τ)nc, the service level constraint stipulates

that backorders occur in no more than κ out of the n periods. In addition, we consider a commonly used

alternative service measure referred to as the Type-II service, which ensures that the percentage of demand

met on time (fill rate) is above a predetermined threshold, γ. In contrast to Type-I service, Type-II service

levels limit the quantity, not the frequency, of stock-outs.

In a dynamic environment, especially with seasonality and fluctuating energy prices, demands and pro-

duction costs are time-varying. In such environments, even if the dynamic demands and costs are known with

certainty, it might be economical to backorder part of the demand in periods when the costs are deemed

too high. Similarly, in multi-item capacitated problems, the demand of a less profitable item (or a lower

priority customer) may be backordered so that the demand of another item or customer is fulfilled on time.

Traditionally, in deterministic inventory management models, such situations are dealt exclusively by the
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introduction of shortage penalties [17, 18], which suffer from difficulties in their accurate estimation. While

service level constraints have been studied in stochastic inventory control theory (c.f. [10, 1]), most of these

models consider service levels within a replenishment cycle. In contrast, our models account for service levels

for entire planning horizon. To the best of our knowledge, there is no earlier work on incorporating service

level considerations to deterministic dynamic lot-sizing problems.

1.1. Related Literature. Wagner and Whitin [15], in their seminal paper, identify the structure of solutions

and propose a dynamic programming algorithm for the uncapacitated lot-sizing problem without backlogging

(ULS). Their work sparked interest in the study of a variety of lot-sizing problems. We refer the reader to

[12] for an overview of mixed-integer programming approaches to lot-sizing problems.

Zangwill [17, 18] provides algorithms for the uncapacitated lot-sizing problem with backlogging (ULSB).

In particular, [17] considers the case where the number of consecutive backlogs is limited. This problem can

be modeled and solved easily using the O(n2) dynamic program for ULSB. In contrast, in LS-SL-I, the total

number of backorders in the horizon (not necessarily consecutive) is limited. As a result, LS-SL-I ensures a

higher service level than the lot-sizing problem described in [17].

Eppen and Martin [4] derive strong extended formulations based on the shortest path formulation of

various lot-sizing problems. Krarup and Bilde [7] propose the so-called facility location reformulation for

ULS that solves the problem as a linear program. Pochet and Wolsey [11] propose linear programming

reformulations and strong valid inequalities for ULSB. However, these inequalities are insufficient to describe

the convex hull of solutions to the ULSB. More recently, Küçükyavuz and Pochet [8] propose a class of valid

inequalities that subsume the inequalities of [11] and give the convex hull of solutions to the ULSB. Finally,

van Vyve and Ortega [14] study an uncapacitated lot-sizing problem with no backlogs and fixed charges for

carrying stocks (ULSW). They propose alternative extended formulations and valid inequalities that give

the convex hull in the natural space. Traditionally, extended formulations have not been used directly in

the solution of mixed-integer programs due to their large size, however, Wolsey [16] and Miller and Wolsey

[9] make the case for using extended formulations directly in solving some classes of multi-item lot-sizing

problems.

1.2. Outline. First, we consider models for Type-I service in Section 2. In Section 2.1, we give a polynomial-

time algorithm for LS-SL-I, based on a shortest path representation of the problem, which yields a tight and

compact extended formulation for LS-SL-I. In Section 2.2, we develop alternative extended formulations for

a relaxation of LS-SL-I, which we refer to as uncapacitated lot sizing with stock and backorder fixed costs

(ULSBW). In Section 2.3 we present the results of our computational experiments on multi-item, capacitated,

Type-I service-level constrained instances that demonstrate the effectiveness of the proposed reformulation.

In Section 3 we consider formulations for lot sizing with Type-II constraints. Finally, in Section 4 we discuss

open problems and an application of this model in a stochastic demand setting.

2. Type-I Service Levels

Consider a multi-item lot-sizing problem with Type-I service level constraints (MI-LS-SL-I), where m

represents the number of items. Let dit ≥ 0 denote the known demand for item i = 1, . . . ,m in period

t = 1, . . . , n and dikt :=
∑t
j=k dij for k ≤ t (dikt = 0 otherwise). Let fit and ait denote the order and

stock fixed charge of item i in period t, respectively. Let cit and hit denote the unit cost of ordering and

holding item i in period t, respectively. Throughout the paper, we make the realistic assumption that all

costs are non-negative. Let xit, wit, uit be 1 if production, stock or backlog for item i takes place in period

t, respectively and 0 otherwise; and yit, sit, rit be the amount of item i produced, stocked and backlogged

in period t, respectively. Throughout, we let [k, j] denote the interval {k, k + 1, . . . , j} for k ≤ j ([k, j] = ∅
if k > j). Without loss of generality, we assume that the starting and ending stocks and backlogs are zero.
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Then MI-LS-SL-I is given by:

min

m∑
i=1

n∑
t=1

(fitxit + aitwit + cityit + hitsit) (1)

sit−1 + yit − ri,t−1 = dit + sit − rit, i ∈ [1,m], t ∈ [1, n] (2)

yit ≤ di1nxit, i ∈ [1,m], t ∈ [1, n] (3)

sit ≤ di(t+1)nwt, i ∈ [1,m], t ∈ [1, n] (4)

rit ≤ di1tut, i ∈ [1,m], t ∈ [1, n] (5)

n∑
t=1

uit ≤ κi i ∈ [1,m] (6)

si0 = ri0 = sin = rin = 0 i ∈ [1,m] (7)

xit, uit, wit ∈ {0, 1} , i ∈ [1,m], t ∈ [1, n] (8)

yit, sit, rit ≥ 0, i ∈ [1,m], t ∈ [1, n] (9)

(x, y, w, s, u, r) ∈ X , (10)

where X represents additional restrictions, such as capacity constraints, that capture the interaction between

the multiple items. The objective (1) is to minimize the total cost of production and stocks. Equations (2)

are flow balance constraints. Constraints (3)–(5) are setup constraints for production, stocks and backlogs,

respectively. Inequality (6) is the service level constraint for each item, which limits the number of stockouts

over the horizon. Note that if there exist measurable components for shortage fixed costs bt or unit backorder

costs gt, they can easily be incorporated into the objective. However, we ignore such costs in this paper.

Observe that without additional restrictions given by X , the problem decomposes into single item lot-

sizing problem with a service level constraint, denoted by LS-SL-I. In this paper, we propose alternative

formulations for the LS-SL-I substructure given by (2)–(9) for m = 1. Therefore, in the rest of the discussion,

we drop the item index i from all costs and variables. In Section 4 we also show that LS-SL-I has a natural

extension to a stochastic lot-sizing problem with Type-I service level constraint.

To motivate our model with service levels and compare it with a model that assumes shortage penalties,

we give a small single-item example.

Example 1. To keep the example simple, we let n = 5 and τ = 0.5 (i.e., κ = 2). An example with a more

realistic service level τ can be constructed for a higher value of n. The problem data is given in Table 1.

Include Table 1 about here

The company estimates their shortage costs as g = (15, 15, 15, 14, 18). Note that at each time period the

shortage cost is greater than the holding cost. Let the optimal solution of a model using the shortage

penalties instead of service levels be denoted by ULSB (uncapacitated lot sizing with backlogging). Also let

the optimal solution without the artificial shortage cost, but with service level constraints be denoted by

LS-SL-I. Then the optimal solutions are given in Table 2.

Include Table 2 about here

Note that with ULSB, there are more time periods with a stock-out. In fact, determining the right penalties

to achieve a service level, τ , is a difficult inverse mixed-integer program.

2.1. Solution Algorithm. Throughout, we let XF denote the set of solutions to a formulation F. For

example, XLS−SL−I denotes the set of solutions to the single-item problem defined by (2)–(9) for m = 1. Let

Q = clconv(XLS−SL−I), where clconv(X) denotes the closure of the convex hull of set X. Next we describe

the structure of the extreme point solutions of Q and show that they are a concatenation of regeneration

intervals (c.f. [18]) of the form {i, j, k} with i ≤ j ≤ k, where the incoming stock and outgoing backorder in

period i and the outgoing stock and incoming backorder in period k are zero. The production in period j
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satisfies its own demand and the demand backlogged in periods i through j − 1, and the demand in periods

j + 1 through k from stocks. Let N = [1, n].

Proposition 1. The extreme points of Q are of the following form: For

I = {1 =: i1, j1, k1, i2, j2, k2, . . . , il, jl, kl := n} ⊆ N
U = [i1, j1 − 1] ∪ [i2, j2 − 1] ∪ · · · ∪ [il, jl − 1]

W = [j1, k1 − 1] ∪ [j2, k2 − 1] ∪ · · · ∪ [jl, kl − 1]

where k0 := 0 < i1 ≤ j1 ≤ k1 < i2 ≤ j2 ≤ k2 < · · · < il ≤ jl ≤ kl and ip = kp−1+1, yjp = dipkp ,∀p = 1, . . . , l,

yj = 0,∀j ∈ N\ {j1, j2, . . . , jl}; xj = 1,∀j ∈ {j1, j2, . . . , jl} ∪ I1, where I1 ⊆ N\ {j1, j2, . . . , jl} and xj = 0

for all other j, sjrj = 0 for j ∈ N ; uj = 1,∀j ∈ U ∪ I2, where I2 ⊆ N\U and uj = 0 for all other j;

wj = 1,∀j ∈W ∪ I3, where I3 ⊆ N\W,wj = 0 for all other j; and |I2 ∪ U | ≤ κ.

Proof. Note that Proposition 1 is equivalent to stating that in an extreme point solution st−1yt = st−1rt =

strt = ytrt = 0 for all t ∈ [1, n]. The proof follows similarly to that of [18]. We will only show that ytrt = 0

for all t ∈ [1, n]. For contradiction, suppose that x = (x, y, w, s, u, r) is an extreme point of Q for which

ytrt > 0 for some t ∈ [1, n]. Let j > t be the first period after t with yj > 0 (j exists as rt > 0). Consider

the feasible solution x1 = (x, y1, w, s, u, r1) obtained by letting y1
t = yt + ε, y1

j = yj − ε and r1
i = ri − ε for

i ∈ [t, j − 1]; and x2 = (x, y2, w, s, u, r2) obtained by letting y2
t = yt − ε, y2

j = yj + ε and r2
i = ri + ε for

i ∈ [t, j−1], for an infinitesimally small ε > 0, where all other components of x1 and x2 are the same as those

of x. Note that x1 and x2 are both feasible, and x = 1
2x

1 + 1
2x

2, which contradicts the assumption that x is

an extreme point. The proof of the statement that in all extreme points of Q, we have st−1yt = st−1rt = 0

for all t ∈ [1, n] is similar. �

Using the structure of optimal solutions, we develop a polynomial-time algorithm to solve LS-SL-I. To

ease the exposition, we assume that dt > 0 for all t ∈ [1, n] throughout. Our results hold without this

assumption, with minor modifications.

Proposition 2. LS-SL-I can be solved in O(n2κ) time.

Proof. Note that, by assumption, gt = 0, ht ≥ 0 for all t ∈ [1, n]. Therefore, there exists a bounded optimal

solution. We give a shortest path formulation of the problem as depicted in Figure 1 for n = 3, κ = 2. Let

(α)+ := max{0, α}. In this shortest path network, there are three types of nodes for each time period i and

for each value of remaining backorders allowed j: (i, j); (i′, j); and (i′′, j), for i ∈ [1, n], j ∈ [(κ− i+ 1)+, κ].

The source node is (1, κ), representing that κ backorder periods are allowed starting from time period 1.

In addition, there is a dummy (sink) node n + 1, which is a conglomeration of nodes (n + 1, j) for all

j ∈ [0, κ]. There exists a backlogging arc from (i, j) to (k′, j − k + i) for all k ∈ [i, n], and i ∈ [1, n], j ∈
[max{k− i, (κ− i+ 1)+}, κ], which represents producing in period k to satisfy demands in periods [i, k− 1].

The cost on this arc is p(i, j, k′, j−k+i) = ckdi(k−1). There exists a production arc from (i′, j) to (i′′, j) for all

i ∈ [1, n], j ∈ [(κ− i+1)+, κ] with cost p(i′, j, i′′, j) = fi+cidi. A path visiting this arc represents production

in period i. Finally, there exists an inventory arc from (i′′, j) to (k, j) for i ∈ [1, n− 1], j ∈ [(κ− i+ 1)+, κ]

and k ∈ [i+ 1, n+ 1]. Such an arc represents producing in period i to satisfy demands in periods [i, k − 1].

The cost on this arc is p(i′′, j, k, j) = cid(i+1)(k−1) +
∑k−2
t=i at +

∑k−2
t=i htd(t+1)(k−1) for k > i + 1. Finally,

for i ∈ [1, n], j ∈ [(κ − i + 1)+, κ], the cost is p(i′′, j, i + 1, j) = 0. For example, in Figure 1, the path

(1, 2) → (2′, 1) → (2′′, 1) → (4, 1) =: 4 represents a regeneration interval {1, 2, 3}, where production occurs

in period 2 to satisfy demands in periods [1, 3].

Include Figure 1 about here

There are O(nκ) nodes in this network, where κ is O(n). There are O(n) outgoing arcs per node. As

the resulting shortest path network is a directed acyclic graph, an optimal solution can be found in O(n2κ)

time.
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Finally, note that with appropriate preprocessing, all arc costs can be calculated in O(n2κ) time in

total. In the preprocessing stage, with one forward pass, we calculate d1j , a1j , h1j for all j ∈ [1, n], where

αij :=
∑j
t=i αt for i ≤ j (αij = 0 if i > j). As a result, any αij = α1j − α1(i−1) can be retrieved in unit

time. Then, the terms h′(i, k) :=
∑k−1
t=i htd(t+1)k can be calculated for all k > i in O(n2) time. To see this,

note that for a given i, starting from k = i+ 1, we have h′(i, k) = hidk and h′(i, k + 1) = h′(i, k) + hikdk+1

for k > i+ 1. �

Note that the assumption that dt > 0 for all t ∈ [1, n] can be relaxed with appropriate modifications.

Suppose that there exists t∗ ∈ [i, k], where k ∈ [i, n], and i ∈ [1, n], such that dt = 0 for all t ∈ [i, t∗]. Then

the cost of the backlogging arc from (i, j) to (k′, j−k+ i), for j ∈ [max{k− i, (κ− i+ 1)+}, κ], is updated as

p(i, j, k′, j− k+ i) = ckdi(k−1) +
∑k−1
t=i (at)

−. A similar update should be made for the costs of the inventory

arcs if there exists zero demand in some periods. Next, we give an O(n2κ) extended formulation for the case

with positive demands.

Let ψijk = 1, for i ∈ [1, n], j ∈ [0, κ] and k ∈ [i, n] such that j − k + i ≥ 0, if the shortest path visits the

arc from (i, j) to (k′, j − k + i), and 0 otherwise. Let zij = 1 if the shortest path visits the arc from (i′, j)

to (i′′, j) for all i ∈ [1, n], j ∈ [0, κ], and 0 otherwise. Finally, let ρijk = 1 if the shortest path visits the arc

from (i′′, j) to (k, j) for i ∈ [1, n], j ∈ [0, κ], k ∈ [i + 1, n + 1]. Consider the feasible set, XSP−SL, given by

the following extended formulation (SP-SL):

min

n∑
t=1

(ftxt + atwt + ctyt + htst)

κ+1∑
j=1

ψ1κj = 1 (11)

i−1∑
k=1

ρkji −
min(j+i,n)∑

k=i

ψijk = 0, i ∈ [2, n], j ∈ [0, κ] (12)

−
∑

k∈[1,i]:j−k+i≤κ

ψk(j−k+i)i + zij = 0, i ∈ [1, n], j ∈ [0, κ] (13)

− zij +

n+1∑
k=i+1

ρijk = 0, i ∈ [1, n], j ∈ [0, κ] (14)

n∑
i=1

κ∑
j=0

ρij(n+1) = 1 (15)

yt =

κ∑
j=0

dtztj +

κ∑
j=0

n+1∑
k=t+2

dt+1,k−1ρtjk +

t−1∑
i=1

κ∑
j=t−i

di,t−1ψijt, t ∈ [1, n] (16)

st =

t∑
i=1

κ∑
j=0

n+1∑
k=t+2

dt+1,k−1ρijk, t ∈ [1, n− 1] (17)

rt =

n∑
k=t+1

t∑
i=1

κ∑
j=k−i

di,tψijk, t ∈ [1, n− 1] (18)

xt ≥
κ∑
j=0

ztj , t ∈ [1, n] (19)
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wt ≥
t∑
i=1

κ∑
j=0

n+1∑
k=t+2

ρijk, t ∈ [1, n− 1] (20)

ut ≥
t∑
i=1

n∑
k=t+1

κ∑
j=k−i

ψijk, t ∈ [1, n− 1] (21)

ρijk = 0, i ∈ [1, κ], j ∈ [0, κ− i], k ∈ [i+ 1, n+ 1] (22)

zij = 0, i ∈ [1, κ], j ∈ [0, κ− i] (23)

ψ1jk = 0, k ∈ [2, n], j ∈ [0, κ− 1] : k − j ≤ 1 (24)

sn = rn = 0

y, r, s ≥ 0,

0 ≤ x,w, u, ρ, ψ, z ≤ 1.

Theorem 3. The extended formulation SP-SL provides a solution to LS-SL-I, when dt > 0 for all t ∈ [1, n].

Proof. The proof follows from [4]. The extended formulation includes the flow balance equations (11)–(15)

for the shortest path problem in Proposition 2 for nodes (1, κ), (i, j), (i′, j), (i′′, j) and (n+1, j), respectively.

So they give integral (ψ, ρ, z). Constraints (16)–(21) define the relationship between the original variables

and the new variables. For ease of exposition, we introduce variables for some arcs that do not exist, and

set their values to zero in equations (22)–(24). The inventory setup variable wt, when zero, blocks any flow

on arcs corresponding to the variables ρijk, i ∈ [1, t], j ∈ [0, κ], k ∈ [t+ 2, n+ 1] and therefore for at > 0, (20)

holds at equality. In addition, because we assume that bt = 0, we may have ut = 1 even if the right-hand-side

of (21) is zero, but this does not affect the objective function. If this is the case, we postprocess the solution

of SP-SL and let such ut = 0, so that constraint (6) is not violated. As a result, (x, u, w) is also integral.

�

2.2. A Relaxation: Uncapacitated Lot Sizing with Setups for Stocks and Backorders. We now

study the problem obtained by relaxing the service level constraint (6), which we refer to as uncapacitated

lot sizing with setups for stocks and backorders (ULSBW). Although SP-SL is a tight formulation for LS-SL,

in our computational study (see Section 2.3), the SP-SL formulation turned out to be too large for some of

the larger capacitated multi-item instances that we generated. One of our motivations to study ULSBW is to

develop an extended formulation that has a smaller representation than SP-SL, and use this strong extended

formulation as a relaxation to solve difficult capacitated multi-item lot sizing problem with service levels.

ULSBW is an interesting problem in its own right, as it generalizes the uncapacitated lot sizing problem with

backlogging studied in [11] and the uncapacitated lot sizing problem with stock fixed costs studied in [14].

Moreover, ULSBW also appears as a substructure in the Type-II service level model discussed in Section 3.

Let XULSBW denote the set of solutions obtained by relaxing (6) from the constraints (2)–(9). Also

let S = clconv(XULSBW ). The extreme point structure of S is given in Proposition 1 with κ = n. We

observe that ULSBW has a familiar single source fixed charge network flow structure. Figure 2 illustrates

the network for a 5-period instance. In the figure, node 0 represents the source node and nodes 1 through

5 represent the demand nodes. There are three categories of arcs: production, stock and backlog, with the

corresponding variables for period 1 indicated in Figure 2.

Include Figure 2 about here

The shortest path network for ULSBW, depicted in Figure 3, is a simplification of the LS-SL-I shortest

path network (Figure 1) in which κ = n, so we do not keep track of the number of periods in which

backorders take place. In addition, this shortest path network is similar to that of [11] for the uncapacitated

lot sizing problem with backlogging (ULSB) without setups for stocks or backorders. However, the arc costs

are different due to presence of setups on stocks and backorders.
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We define the following variables for the shortest path formulation: ψtl is 1 if production in period t

satisfies demand up to period l, l ≤ t and zero otherwise. ρtl is 1 if production in period t satisfies demand

up to period l ≥ t and zero otherwise and ztt is 1 if production in period t satisfies demand in t and zero

otherwise.

The shortest path extended formulation (SP) for ULSBW can be written as follows:

n∑
l=1

ψl1 = 1 (25)

t−1∑
l=1

ρl,t−1 −
n∑
l=t

ψlt = 0, t ∈ [2, n] (26)

−
t∑
l=1

ψtl + ztt = 0, t ∈ [1, n] (27)

− ztt +

n∑
l=t

ρtl = 0, t ∈ [1, n] (28)

yt =

n∑
l=t+1

dt+1,lρtl +

t−1∑
l=1

dl,t−1ψtl + dtztt, t ∈ [1, n]

st =

t∑
j=1

n∑
l=t+1

dt+1,lρjl, t ∈ [1, n− 1]

rt =

n∑
j=t+1

t∑
l=1

dltψjl, t ∈ [1, n− 1]

xt ≥ ztt, t ∈ [1, n]

wt ≥
t∑

j=1

n∑
l=t+1

ρjl, t ∈ [1, n− 1] (29)

ut ≥
t∑

j=1

n∑
l=t+1

ψlj , t ∈ [1, n− 1] (30)

sn = rn = 0

y, r, s ≥ 0,

0 ≤ z, x, w, u, ρ, ψ ≤ 1,

Include Figure 3 about here

Note that this formulation follows from the shortest path formulation of ULSB [11] with the additional

inequalities (29)–(30). Also note that since we are interested in the feasible set XULSBW , we drop the

objective function from the formulations for ULSBW. Constraints (25)–(28) are flow balance equations for

the shortest path network for ULSBW. Let x = (x, y, w, s, u, r) and projv(Y ) denote the projection of the

set Y on to the space of the v-variables. Following similar arguments to Theorem 3, we have the following

result.

Proposition 4. projx(XSP ) = S.

Next, we let zkt =
∑n
l=t ρkl, k ≤ t and zkt =

∑t
l=1 ψkl, k ≥ t as in [11]. Note that this definition implies

that ρkt = zkt − zk,t+1 for k ≤ t and ψkt = zkt − zk,t−1 for k ≥ t. Substituting for ρkt and ψkt in equation
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(26) in SP, we obtain
n∑
k=1

(zkt − zk,t−1) = 0, t ∈ [2, n]. (31)

We also note that ψl1 = zl1, l ∈ [1, n] and equation (25) in SP can be written as

n∑
l=1

zl1 = 1 (32)

Combining equations (31) and (32) we can eliminate ψkt and ρkt from SP to obtain the following formulation,

which we denote by SPR:

n∑
k=1

zkj = 1, j ∈ [1, n] (33)

yi =

n∑
k=1

dkzik, i ∈ [1, n] (34)

st =

t∑
k=1

n∑
j=t+1

djzkj , t ∈ [1, n− 1] (35)

rt =

n∑
k=t+1

t∑
j=1

djzkj , t ∈ [1, n− 1] (36)

xt ≥ ztt, t ∈ [1, n] (37)

wt ≥
t∑

j=1

zj,t+1, t ∈ [1, n− 1] (38)

ut ≥
n∑

l=t+1

zlt, t ∈ [1, n− 1] (39)

zt1 ≤ zt2 ≤ · · · ≤ zt,t−1 ≤ ztt, t ∈ [1, n] (40)

ztt ≥ zt,t+1 ≥ · · · ≥ ztn, t ∈ [1, n] (41)

sn = rn = 0, (42)

0 ≤ z, x, w, u ≤ 1, (43)

y, r, s ≥ 0, (44)

Here, the variables zkt determine the fraction of demand in period t satisfied from period k. It immediately

follows that, SPR, obtained through a change of variables, is also a tight extended formulation for ULSBW.

Proposition 5. projx(XSPR) = S.

Now that we established that an optimal solution satisfies inequalities (40)–(41), the fact that SPR is a

tight extended formulation for ULSBW also follows from [2].

Consider the following constraints,

xi ≥ zij , i ∈ [1, n], j ∈ [1, n] (45)

wt ≥
t∑

k=1

zkj , j ∈ [1, n], t ∈ [1, j − 1] (46)

ut ≥
n∑

k=t+1

zkj j ∈ [1, n], t ∈ [j, n]. (47)
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It is easy to verify that if the constraints (37)–(41) are dropped from the SPR formulation and the constraints

(45)–(47) are introduced, we obtain a relaxation of SPR. We call this relaxation the facility location (FL)

formulation, because when w = 1 and u = 0, constraint (46) is redundant and backlogging does not

occur. Therefore, we obtain the facility location formulation of Krarup and Bilde [7] proposed for the basic

uncapacitated lot-sizing problem (ULS) without backlogging and without fixed charges on stocks. Krarup

and Bilde [7] give sufficient conditions for their facility location formulation to be tight for ULS, however,

their proof does not extend in the presence of (w, u) ∈ {0,1}2n and constraints (46)–(47).

Let XFL = {(x, z) : (33) − (36), (42) − (47)}. Also consider the relaxations XFL≤ = {(x, z) : (33)-

− (36), (40), (42) − (47)} and XFL≥ = {(x, z) : (33) − (36), (41) − (47)}. Clearly, XSPR ⊆ XFL≥ ⊆ XFL,

and XSPR ⊆ XFL≤ ⊆ XFL. Our next result establishes a relationship between the relaxations XFL, XFL≥

and XFL≤ .

Proposition 6. projx(XFL) = projx(XFL≥) = projx(XFL≤).

Proof. The proof is provided in Appendix A. �

With a change of variables, the FL formulation is equivalent to the so-called multi-commodity reformu-

lation. Whether the facility location formulation is tight for ULSBW is an open problem. If FL and thus

the corresponding multi-commodity formulations are tight for ULSBW, then from the result of Rardin and

Wolsey [13] it follows that multi-dicut inequalities obtained from the projection of the multi-commodity

formulation are enough to solve the problem as a linear program, when all costs are nonnegative.

We end this section by noting that adding the cardinality constraint (6) to SP or SPR may give fractional

optimal solutions.

2.3. Computations. In this section, we test the effectiveness of using the SPR extended formulation of

ULSBW in solving multi-item lot-sizing instances with service levels (MI-LS-SL-I) given by (2)–(10). In

particular, we let X be defined by the constraints
m∑
i=1

xit ≤ 1 t ∈ [1, n] (48)

where setup for only one item is allowed in a period.

In our experimental setup, we consider alternative time horizons n ∈ {60, 120} and number of items

m ∈ {3, 5}. The demands are generated from a discrete uniform distribution on the interval [10, 300]. We

consider three service level parameters, π ∈ {10, 25, 40} percent of the planning horizon, so π = (1− τ)100.

Recall that κ = b(1 − τ)nc. Unit inventory and production costs are generated using a discrete uniform

distribution on the intervals [1, 5] and [1, 10], respectively. We let β denote the ratio of fixed and variable

production costs and consider four different values, i.e., β ∈ {500, 1000, 2500, 5000} and ft = βct for t ∈ [1, n].

Also, we let at = 0 for t ∈ [1, n]. Note that in models with service level restrictions, backlogging costs are

often assumed to be immeasurable and are set to zero [10]. In contrast, backlogging models without service

levels assume gt > ht, so that gt is a “large enough” penalty including the intangible loss-of-goodwill cost to

ensure an acceptable level of service.

For each combination of n,m, β, π we generate five instances and report averages. The problem instances

are available at http://ise.osu.edu/ISEFaculty/kucukyavuz/data/dls-sl_instances.zip. One of our

instances, called lotsize, also appears in the challenge category of MIPLIB 2010 [6]. We conduct all the

experiments on a 2.66 GHz Intel Q9450 Core 2 Quad CPU with 4GB RAM. We use IBM ILOG CPLEX 12.2

as the MIP solver and impose a one hour time limit. We turn off CPLEX’s parallel mode and use a single

thread for the MIP solves. The remaining CPLEX parameters are set to their default values. We note that

the default MIP GAP tolerance used by CPLEX is 10−4, so the instances that reach an integral solution

with an end gap of 0.01% are considered optimal.

In Tables 3 and 4 (for n = 60 and 120, respectively), we compare the strength of the natural formulation

MI-LS-SL-I, and that of the SPR extended formulation for each item. In columns S Gap, we report the

http://ise.osu.edu/ISEFaculty/kucukyavuz/data/dls-sl_instances.zip
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average integrality gap, which is 100× (zub− zinit)/zub, where zinit is the objective value of the initial

LP relaxation and zub is the objective value of the best integer solution. In columns E Gap, we report the

end gap at termination, which is 100 × (zub − zbest)/zub, where zbest is the best lower bound available.

Columns T (sec) and Nodes compare the solution time (in seconds), and the average number of branch-

and-cut tree nodes explored, respectively.

Tables 3–4 clearly illustrate that the natural formulation of the test problems is very weak with over 70%

initial gap for most instances. As a result, a majority of the instances cannot be solved within an hour

and thousands of branch-and-cut nodes are explored. The end gaps at termination are quite high (1-18%).

In contrast, using the extended formulations for each item, the initial integrality gap is less than 1% for

all instances. As a result, all instances are solved to optimality within a few seconds and fewer than 250

branch-and-cut nodes. Comparing Tables 3 and 4 we observe that the extended formulation scales well when

the problem size is increased (both with respect to the planning horizon n and the number of items m). The

problem difficulty increases for the natural formulation with higher cost ratios, β, and higher service levels,

τ (lower π).

We also tested the SP and FL formulations on our test instances. In all instances tested, the initial LP

gaps were identical to those with the SPR formulation, and the solutions times and the branch-and-cut

nodes explored are comparable. Because SP and SPR are equivalent formulations their similar performance

is expected. That SPR and FL gave the same initial LP bounds provides empirical evidence to our conjecture

that their projections onto the original space of variables are equivalent. We also tested the larger dynamic

programming-based formulation (SP-SL) given in Section 2.1. This formulation gives tighter initial LP

bounds, however it takes significantly longer to solve the instances with n = 60. For instances with n = 120,

CPLEX encountered memory problems due to the size of the formulation. Therefore, we do not report our

tests with the SP, FL and SP-SL formulations.

Include Table 3 about here

Include Table 4 about here

3. Type-II Service Levels

Next, we consider an alternative service measure, Type-II service or fill rate, that ensures that the percent-

age of the demand quantity met on time is above a given threshold γ. Throughout this section, we present

the models for a single product. Let qt denote the amount of period t’s demand met from later periods. In

our setting, we model Type-II service as
∑n
t=1 qt ≤ (1−γ)d1n. (Note that the constraint

∑n
t=1 rt ≤ (1−γ)d1n

limiting the total backorder quantity is not correct, because a demand backlogged for more than one period

is multiply counted.) In order to correctly account for the portion of demand that is not met on time, we

use the variables zkt in the FL formulation in Section 2.2, which denote the fraction of demand in period t
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satisfied from period k. Then, the single-item lot sizing with Type-II service (LS-SL-II) model is

min

n∑
t=1

(ftxt + atwt + ctyt + htst)

n∑
k=1

zkj = 1, j ∈ [1, n] (49)

yi =

n∑
k=1

dkzik, i ∈ [1, n] (50)

st =

t∑
k=1

n∑
j=t+1

djzkj , t ∈ [1, n− 1] (51)

rt =

n∑
k=t+1

t∑
j=1

djzkj , t ∈ [1, n− 1] (52)

yt ≤ d1nxt, t ∈ [1, n] (53)

st ≤ dt+1,nwt t ∈ [1, n− 1] (54)

rt ≤ d1,tut, t ∈ [1, n− 1] (55)

sn = rn = 0, (56)

n∑
t=1

n∑
j=t+1

dtzjt ≤ (1− γ)d1n (57)

wt + ut ≤ 1 t ∈ [1, n− 1] (58)

0 ≤ z, x, w, u ≤ 1, (59)

y, r, s ≥ 0. (60)

The service constraint is given by (57). It might appear that the variables u and the constraints (55) and

(58) are not necessary in this formulation. We illustrate that both are necessary on Example 1.

Example 1 (cont). Rows in LS-SL-II-R in Table 5 gives the optimal solution (y, s, r) to LS-SL-II without

the constraints (55) and (58). In this solution, y2, s2, r2 > 0, which is not practically justifiable. Therefore,

constraints (55) and (58) are needed to ensure that both stock and backlog does not occur in a given time

period. The solution to LS-SL-II is also given in Table 5. From this solution, we observe that the extreme

point optimal solution does not satisfy the properties of the regeneration intervals in Proposition 1, because

s2r3 > 0.

Include Table 5 about here

Note that when constraints (57) and (58) are relaxed, we obtain the ULSBW model and thus the con-

straints (45)-(47) from the facility location formulation of ULSBW are valid for LS-SL-II. Furthermore, it is

easily seen that with (45)-(47) added, constraints (53)-(55) can be dropped from the LS-SL-II formulation.

We refer to the resulting formulation as FL-II. Table 6 summarizes the results of our computational exper-

iments with the comparison of LS-SL-II and FL-II on multi item instances drawn from instances generated

for MI-LS-I for n = 120. We report our results for one instance for each setting of β,m, γ. From these

results, we conclude that the instances of the natural formulation for Type-II service levels for multi-item

problems are relatively easier than the instances of natural formulation for Type-I service level for CPLEX.

We also observe that, similar to Type-I, the facility location formulation provides significantly tighter bounds

and faster solution times for Type-II problems. We note that the instance 120.2500.5.25 could not be solved

within an hour. For this instance, we indicate the end gap within the parenthesis next to the solution time.

Include Table 6 about here
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4. Conclusions

In this paper, we introduce service levels into classical deterministic dynamic lot-sizing problems. In

contrast to stochastic inventory theory, we consider a service level across the the planning or contract

horizon. We establish polynomial solvability of the Type-I model and develop a tight extended formulation

based on its shortest path representation. We study a related model, the uncapacitated lot-sizing problem

with setups for stocks and backorders (ULSBW), which is a relaxation of the Type-I service level model. We

develop alternate extended formulations for ULSBW and conclude from our computational study that these

formulations are highly effective in solving the multi-item lot-sizing problems with service levels. Moreover,

we show that the formulations for ULSBW are also useful for solving dynamic lot sizing problems with

Type-II service level constraints.

Our study has also revealed a few interesting open problems. The convex hull description of ULSBW and

LS-SL-I in the original space of variables is an open research question. The explicit description of inequalities

defined by the projection of our extended formulations is one way to address this question. A related problem

is the stochastic lot-sizing problem with service levels (SLS-SL-I), where demand is uncertain, and can be

represented by a finite number of scenarios ω ∈ Ω, with probabilities pω. We consider a type-1 service level

constraint in which the goal is to ensure that probability that the entire period demand is met from stock

is at least 1 − α, where α ∈ [0, 1]. In the deterministic equivalent of SLS-SL-I, we have the same set of

variables for each scenario. For example, uωt represents the binary setup variable for backlog in period t and

scenario ω ∈ Ω. Then in addition to the flow balance inequalities and the variable upper bound constraints,

the Type-I constraint is given by ∑
ω∈Ω pω

∑n
t=1 u

ω
t

n
≤ α.

Furthermore, the deterministic equivalent of SLS-LS contains the so-called non-anticipativity constraints [3].

Therefore, the stochastic lot-sizing problem contains the LS-SL-I substructure and the results presented in

this paper are potentially useful in the stochastic setting as well.
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Appendix A. Proof of Proposition 6

We show that the projection of a strengthened facility location reformulation, given by XFL≥ , onto the

natural space, x, is equivalent to that of the FL formulation. By a symmetric argument, we can also show

that the projection of a related FL formulation, given by XFL≤ , onto x is equivalent to that of the FL

formulation.

Proposition 6. projx(XFL) = projx(XFL≥).

Proof. Since XFL is a relaxation of XFL≥ we have projx(XFL≥) ⊆ projx(XFL). Let any x ∈ projx(XFL)

be given. Let z = {zij , i ∈ [1, n], j ∈ [1, n]}. We show that projx(XFL≥) ⊇ projx(XFL) by showing that

there exists a z such that (x, z) ∈ XFL and z satisfies (41).

Suppose that this claim is not true, i.e., suppose that for every (x, z) ∈ XFL, there exist l, k, l ≤ k such

that zlk < zl,k+1. Let lz, kz be the first index for which, zlzkz < zlz,kz+1. Also let vz be the minimum

v ∈ [lz, kz] that satisfies zlzv = zlz,v+1 = · · · = zlz,kz . Let γz = zlz,kz+1 − zlzkz > 0 and if vz > lz, then let

ξz = zlz,vz−1 − zlz,vz > 0. For every j ∈ [vz, kz], since
∑n
i=1 zij = 1 =

∑n
i=1 zi,kz+1, there exists τj such

that zτj ,j > zτj ,kz+1. Let τjz be the minimum τj that satisfies zτj ,j > zτj ,kz+1. We partition all z for which

(x, z) ∈ XFL according to the values (lz, kz) and order the partitions by increasing values of lz and kz in

that order of preference. Let ẑ = {ẑij , i ∈ [1, n], j ∈ [1, n]} be a member of the last partition in the order

such that zlk is the largest among all members in the last partition, (l, k). Note that ẑ is well-defined for a

given x ∈ projx(XFL) and partition (l, k), and can be found by the (bounded) linear program

max{zlk : (33)− (36), (42)− (47),

zij ≥ zi,j+1, for i < l and j ∈ [i, n− 1]; or i = l and j ∈ [l, k − 1]}.
Henceforth, we drop the subscripts on lẑ, kẑ, vẑ, τjẑ and the indices l, k, v, τj will refer to ẑ unless otherwise

stated. We observe that ẑ can fall under three cases. In each of the cases, we construct a feasible vector z̃

such that lz̃ ≥ lẑ, kz̃ ≥ lẑ and z̃lk > ẑlk which contradicts the assumption that ẑ falls in the last partition

or that it has the largest zlk value among all members in the last partition, (l, k). This proof technique is

similar to that of van Vyve and Ortega [14] and Gade and Küçükyavuz [5] for the uncapacitated lot-sizing

problem without backorders and with fixed costs on stocks. However, our construction of the feasible vector

z̃ is non-trivial and significantly different than the case without backorders.

Case 1. τk < l. Let δk = ẑτk,k − ẑτk,k+1 > 0 and consider the following vector z̃,

z̃ij =



ẑij , i 6= l, τk, or j /∈ [v, k + 1],

ẑij + ε
dvk

, i = l, j ∈ [v, k],

ẑij + ε
dk+1

, i = τk, j = k + 1,

ẑij − ε
dvk

, i = τk, j ∈ [v, k],

ẑij − ε
dk+1

, i = l, j = k + 1.
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The value of ε is chosen such that it is the largest number that satisfies (A.1)–(A.3):

γ ≥ ε

dvk
+

ε

dk+1
(A.1)

ξ ≥ ε

dvk
, if v > l (A.2)

δk ≥
ε

dvk
+

ε

dk+1
. (A.3)

This guarantees the following:

(1.a) z̃ij ≥ z̃i,j+1, i < l, j ∈ [i, n − 1]. The statement is trivially true for i 6= τk or for j /∈ [v, k] because

z̃ij = ẑij for such i, j and due to the choice of l. For i = τk, j ∈ [v, k − 1] we have z̃ij ≥ z̃i,j+1. For

i = τk, j = k, we have z̃ij = ẑij − ε
dvk

= ẑi,k+1 + δk − ε
dvk

= ẑi,k+1 + ε
dk+1

+ δk − ε
dvk
− ε

dk+1
≥ z̃i,k+1

using (A.3).

(1.b) z̃lj ≥ z̃l,j+1, l ≤ j ≤ v− 1, if v > l. This is true for j 6= v− 1 by the choice of l and v. For j = v− 1,

we have z̃l,v−1 = ẑl,v−1 = ẑlv + ξ = ẑlv + ε
dvk

+ ξ − ε
dvk
≥ z̃lv using (A.2).

(1.c) z̃lv = z̃l,v+1 = · · · = z̃lk. This holds since ẑlv = ẑl,v+1 = · · · = ẑlk and z̃lj = ẑlj + ε
dvk

, j ∈ [v, k].

(1.d) z̃lk ≤ z̃l,k+1. This is because z̃lk = ẑlk+ ε
dvk

= ẑl,k+1−γ+ ε
dvk

= ẑl,k+1− ε
dk+1
−γ+ ε

dvk
+ ε
dk+1

≤ z̃l,k+1,

from (A.1).

(1.e) Since γ, ξ, δk > 0, we have ε > 0 and so z̃lk > ẑlk.

From (1.a)–(1.c), we ensure that lz̃ ≥ lẑ and kz̃ ≥ kẑ. If (A.1) is satisfied at equality, then it follows

that z̃lk = z̃l,k+1, so either lz̃ = lẑ and kz̃ > kẑ, or lz̃ > lẑ, hence z̃ falls in a partition after that of ẑ, a

contradiction. If (A.1) is not satisfied at equality, then either (A.2) or (A.3) is satisfied at equality. As a

result, lz̃ = lẑ and kz̃ = kẑ, but z̃lk > ẑlk, from (1.e), contradicting the assumption that ẑ has the largest zlk
value among all members in the last partition, (l, k). Next, we show that z̃ is feasible in XFL.

Constraint (33) is trivially satisfied for j /∈ [v, k + 1] since z̃ij = ẑij . For j ∈ [v, k] we have,

n∑
i=1

z̃ij =
∑

i∈[1,n]\{l,τk}

z̃ij + z̃lj + z̃τk,j =
∑

i∈[1,n]\{l,τk}

ẑij + ẑlj +
ε

dvk
+ ẑτk,j −

ε

dvk
=

n∑
i=1

ẑij = 1.

For j = k + 1,
n∑
i=1

z̃ij =
∑

i∈[1,n]\{l,τk}

z̃ij + z̃lj + z̃τk,j =
∑

i∈[1,n]\{l,τk}

ẑij + ẑlj −
ε

dk+1
+ ẑτk,j +

ε

dk+1
=

n∑
i=1

ẑij = 1.

Constraint (34) is trivially satisfied for i 6= l, τk since z̃ij = ẑij . For i = l,

n∑
j=1

dj z̃ij =
∑

j∈[1,n]\[v,k+1]

dj z̃ij +

k∑
j=v

dj z̃ij + dk+1z̃i,k+1

=
∑

j∈[1,n]\[v,k+1]

dj ẑij +

k∑
j=v

dj

(
ẑij +

ε

dvk

)
+ dk+1

(
ẑi,k+1 −

ε

dk+1

)
=

n∑
j=1

dj ẑij = yi.

For i = τk,

n∑
j=1

dj z̃ij =
∑

j∈[1,n]\[v,k+1]

z̃ij +

k∑
j=v

dj z̃ij + dk+1z̃i,k+1

=
∑

j∈[1,n]\[v,k+1]

dj ẑij +

k∑
j=v

dj

(
ẑij −

ε

dvk

)
+ dk+1

(
ẑij +

ε

dk+1

)
=

n∑
j=1

dj ẑij = yi.

Constraint (45) is trivially satisfied for i 6= l, τk or j /∈ [v, k + 1]. For i = τk, j ∈ [v, k], z̃ij = ẑij − ε
dvk

<

ẑij ≤ xi. For i = τk, j = k + 1, z̃ij = ẑij + ε
dk+1

= ẑik − δk + ε
dk+1

≤ ẑik ≤ xi, from (A.3). For i = l, j ∈
[v, k], z̃ij = ẑij + ε

dvk
= ẑi,k+1 − γ + ε

dvk
≤ xi, from (A.1). For i = l, j = k + 1, z̃ij = ẑij − ε

dk+1
< ẑij ≤ xi.
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Constraint (46) is trivially satisfied for j /∈ [v, k + 1] since z̃ij = ẑij . Similarly, the constraint holds for

for j ∈ [v, k], t < τk. For j ∈ [v, k] and τk ≤ t < l,
∑t
i=1 z̃ij =

∑
i∈[1,t]\{τk} z̃ij + z̃τk,j =

∑
i∈[1,t]\{τk} ẑij +

ẑτk,j − ε
dvk

=
∑t
i=1 ẑij − ε

dvk
<
∑t
i=1 ẑij ≤ wt. For j ∈ [v, k] and l ≤ t ≤ j,

∑t
i=1 z̃ij =

∑
i∈[1,t]\{l,τk} z̃ij +

z̃τk,j + z̃lj =
∑
i∈[1,t]\{l,τk} ẑij + ẑτk,j − ε

dvk
+ ẑlj + ε

dvk
=
∑t
i=1 ẑij ≤ wt. For j = k+ 1, τk ≤ t < l,

∑t
i=1 z̃ij =∑

i∈[1,t]\{τk} ẑij+ẑτk,j+
ε
dvk

=
∑
i∈[1,t]\{τk} ẑij+ẑτk,k−δk+ ε

dk+1
<
∑
i∈[1,t]\{τk} ẑij+ẑτk,k ≤

∑
i∈[1,t]\{τk} ẑik+

ẑτk,k =
∑t
i=1 ẑik ≤ wt, from (A.3). For j = k + 1, l ≤ t ≤ j,

∑t
i=1 z̃ij =

∑
i∈[1,t]\{l,τk} z̃ij + z̃τk,j + z̃lj =∑

i∈[1,t]\{l,τk} ẑij + ẑτk,j + ε
dk+1

+ ẑlj − ε
dk+1

=
∑t
i=1 ẑij ≤ wt.

Constraint (47) is trivially satisfied since z̃ij = ẑij , i > j.

Case 2. τk > l and there exists j ∈ [v, k − 1] such that τj < l. We define p := max {j ∈ [v, k] : τj < l}.
Using the definition of p, we have

ẑτp,p+1 = · · · = ẑτp,k = ẑτp,k+1, (A.4)

since otherwise the definitions of τj , k and l will be violated. We define δj := ẑτj ,j − ẑτj ,k+1 > 0 for j ∈ [p, k].

Also, for i ∈ [l + 1, n] we let Ti = {j ∈ [p+ 1, k] : i = τj} and Di =
∑
j∈Ti

dj . Consider the following vector

z̃,

z̃ij =



ẑij + ε
dvk

, if i = l, j ∈ [v, k],

ẑij − ε
dk+1

, if i = l, j = k + 1,

ẑij − ε
dvk

, if i = τp, j ∈ [v, p],

ẑij +
εdvp

dp+1,kdvk
, if i = τp, j ∈ [p+ 1, k],

ẑij − ε
dvk
− εdvp

dp+1,kdvk
, if j ∈ [p+ 1, k], i = τj ,

ẑij + Di

dk+1

(
ε
dvk

+
εdvp

dp+1,kdvk

)
, if j = k + 1, i ∈ [l + 1, k] : Ti 6= ∅

ẑij , otherwise.

The value of ε is chosen such that it is the largest number that satisfies,

ξ ≥ ε

dvk
if v > l (A.5)

δp ≥
εdvp

dp+1,kdvk
+

ε

dvk
(A.6)

δj ≥
Dτj
dk+1

(
ε

dvk
+

εdvp
dp+1,kdvk

)
, j ∈ [p+ 1, k] (A.7)

γ ≥ ε

dvk
+

εdvp
dp+1,kdvk

(A.8)

γ ≥ ε

dvk
+

ε

dk+1
. (A.9)

This guarantees the following:

(2.a) z̃ij ≥ z̃i,j+1 for i < l, j ∈ [i, n − 1]. The result trivially holds for i 6= τp, j ∈ [i, n − 1]. The result

also holds for i = τp, j ∈ [v, p− 1] since z̃ij = ẑij − ε
dvk
≥ ẑi,j+1 − ε

dvk
= z̃i,j+1. Similarly, the result

holds for i = τp, j ∈ [p + 1, k − 1]. For i = τp, j = p we have z̃ij = ẑij − ε
dvk

= ẑi,j+1 + δp − ε
dvk

=

ẑi,j+1 +
εdvp

dp+1,kdvk
+ δp− ε

dvk
− εdvp

dp+1,kdvk
= z̃i,j+1 + δp− ε

dvk
− εdvp

dp+1,kdvk
≥ z̃i,j+1 using (A.4) and (A.6).

For i = τp, j = k, z̃ij = ẑij +
εdvp

dp+1,kdvk
= ẑi,j+1 +

εdvp

dp+1,kdvk
> ẑi,j+1 = z̃i,j+1.

(2.b) z̃lj ≥ z̃l,j+1, l ≤ j ≤ v − 1, if v > l. This is true for j 6= v − 1. For j = v − 1, we have

z̃l,v−1 = ẑl,v−1 = ẑlv + ξ = ẑlv + ε
dvk

+ ξ − ε
dvk
≥ z̃lv using (A.5).

(2.c) z̃lv = z̃l,v+1 = · · · = z̃lk. This holds since ẑlv = ẑl,v+1 = · · · = ẑlk and z̃lj = ẑlj + ε
dvk

, j ∈ [v, k].

(2.d) z̃lk ≤ z̃l,k+1. This is because z̃lk = ẑlk+ ε
dvk

= ẑl,k+1−γ+ ε
dvk

= ẑl,k+1− ε
dk+1
−γ+ ε

dvk
+ ε
dk+1

≤ z̃l,k+1,

from (A.9).

(2.e) Since γ, ξ, δj , j ∈ [v, k] > 0, we have ε > 0 and so z̃lk > ẑlk.
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From (2.a)–(2.c), we ensure that lz̃ ≥ lẑ and kz̃ ≥ kẑ. If (A.9) is satisfied at equality, then it follows

that z̃lk = z̃l,k+1, so either lz̃ = lẑ and kz̃ > kẑ, or lz̃ > lẑ, hence z̃ falls in a partition after that of ẑ, a

contradiction. If (A.9) is not satisfied at equality, then at least one of (A.5)–(A.8) is satisfied at equality. As

a result, lz̃ = lẑ and kz̃ = kẑ, but z̃lk > ẑlk, from (2.e), contradicting the assumption that ẑ has the largest

zlk value among all members in the last partition, (l, k). Next, we show that z̃ is feasible in XFL.

Constraint (33) is trivially satisfied for j /∈ [v, k+1]. For j ∈ [v, p] we have
∑n
i=1 z̃ij =

∑
i∈[1,n]\{l,τp} z̃ij +

z̃lj + z̃τp,j =
∑
i∈[1,n]\{l,τp} ẑij + ẑlj + ε

dvk
+ ẑτp,j − ε

dvk
=
∑n
i=1 ẑij = 1. For j ∈ [p+ 1, k],

n∑
i=1

z̃ij =
∑

i∈[1,n]\{l,τp,τj}

ẑij + ẑlj +
ε

dvk
+ ẑτp,j +

εdvp
dp+1,kdvk

+ ẑτj ,j −
ε

dvk
− εdvp
dp+1,kdvk

=

n∑
i=1

ẑij = 1.

For j = k + 1, we have
n∑
i=1

z̃ij =
∑

i∈[1,l−1] or i∈[l+1,n]:Ti=∅

ẑij + ẑlj −
ε

dk+1
+

∑
i∈[l+1,n]:Ti 6=∅

(
ẑij +

Di
dk+1

(
ε

dvk
+

εdvp
dp+1,kdvk

))

=

n∑
i=1

ẑij −
ε

dk+1
+
εdp+1,k

dk+1

(
1

dvk
+

dvp
dp+1,kdvk

)
= 1.

Constraint (34) is trivially satisfied for i < l and i 6= τp; or i ∈ [l + 1, n] : Ti = ∅. For i = l, we have∑n
j=1 dj z̃ij =

∑n
j=1 dj ẑij +

∑k
j=v dj

ε
dvk
− dk+1

ε
dk+1

=
∑n
j=1 dj ẑij = yi. For i = τp, we have

n∑
j=1

dj z̃ij =
∑

j∈[1,n]\[v,k]

dj ẑij +

k∑
j=v

dj ẑij −
p∑
j=v

dj
ε

dvk
+

k∑
j=p+1

dj
εdvp

dp+1,kdvk
=

n∑
j=1

dj ẑij = yi.

For i ∈ [l + 1, n] : Ti 6= ∅, we have

n∑
j=1

dj z̃ij =
∑

j∈[1,n]\(Ti∪{k+1})

dj ẑij +
∑
j∈Ti

dj ẑij −
∑
j∈Ti

dj

(
ε

dvk
+

εdvp
dp+1,kdvk

)
+ dk+1ẑi,k+1

+ dk+1
Di
dk+1

(
ε

dvk
+

εdvp
dp+1,kdvk

)
=

n∑
j=1

dj ẑij = yi.

Constraint (45) is trivially satisfied for i < l and i 6= τp; or i ∈ [l+1, n] : Ti 6= ∅ and j /∈ Ti∪{k+1}; or i ∈
[l+1, n] : Ti = ∅; or j /∈ [v, k+1]; or i = τp and j = k+1. For i = l, j = k+1, we have z̃ij = ẑij− ε

dvk
< ẑij ≤ xi.

For i = l, j ∈ [v, k], z̃ij = ẑij + ε
dvk

= ẑi,k+1−γ+ ε
dvk
≤ xi, from (A.9). For i = τp, j ∈ [v, p], z̃ij = ẑij − ε

dvk
<

ẑij ≤ xi. For i = τp, j ∈ [p + 1, k], z̃ij = ẑij +
εdvp

dp+1,kdvk
= ẑip − δp +

εdvp

dp+1,kdvk
≤ ẑip ≤ xi from (A.8). For

j ∈ [p + 1, k], i = τj , z̃ij = ẑij − ε
dvk
− εdvp

dp+1,kdvk
< ẑij ≤ xi. For i ∈ [l + 1, n] : Ti 6= ∅, j = k + 1, z̃ij =

ẑij + Di

dk+1

(
ε
dvk

+
εdvp

dp+1,kdvk

)
= ẑij′ − δj′ + Di

dk+1

(
ε
dvk

+
εdvp

dp+1,kdvk

)
≤ ẑij′ ≤ xi, where j′ ∈ Ti, from (A.7).

Constraint (46) is trivially satisfied for t < τp; or j /∈ [v, k + 1]; or j = k + 1 and t < l. For τp ≤
t < l, j ∈ [v, p] we have,

∑t
i=1 z̃ij =

∑
i∈[1,t]\{τp} ẑij + ẑτp,j − ε

dvk
<
∑t
i=1 ẑij ≤ wt. For l ≤ t, j ∈

[v, p],
∑t
i=1 z̃ij =

∑
i∈[1,t]\{τp,l} ẑij + ẑτp,j − ε

dvk
+ ẑlj + ε

dvk
=
∑t
i=1 ẑij ≤ wt. For τp ≤ t < l, j ∈ [p+ 1, k] we

have
∑t
i=1 z̃ij =

∑
i∈[1,t]\{τp} ẑij+ẑτpj+

εdvp

dp+1,kdvk
=
∑
i∈[1,t]\{τp} ẑij+ẑτp,p−δp+

εdvp

dp+1,kdvk
≤∑i∈[1,t]\{τp} ẑip+

ẑτp,p =
∑t
i=1 ẑip ≤ wt, from the definition of l and (A.6). For j ∈ [p + 1, k], l ≤ t < τj ,

∑t
i=1 z̃ij =∑

i∈[1,t]\{τp,l} ẑij + ẑτp,j +
εdvp

dp+1,kdvk
+ ẑlj + ε

dvk
≤∑i∈[1,t]\{τp,l} ẑi,k+1 + ẑτp,k+1 +

εdvp

dp+1,kdvk
+ ẑl,k+1−γ+ ε

dvk
=∑t

i=1 ẑi,k+1 − γ +
εdvp

dp+1,kdvk
+ ε

dvk
≤ ∑t

i=1 ẑi,k+1 ≤ wt, from the definition of τj , (A.4) and (A.8). For

j ∈ [p+ 1, k], τj ≤ t,
∑t
i=1 z̃ij =

∑
i∈[1,t]\{τp,l,τj} ẑij + ẑτp,j +

εdvp

dp+1,kdvk
+ ẑlj + ε

dvk
+ ẑτj ,j − εdvp

dp+1,kdvk
− ε

dvk
=
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i=1 ẑij ≤ wt. For j = k + 1, l ≤ t, we have

t∑
i=1

z̃ij =
∑

i∈[1,l−1] or i∈[l+1,t]:Ti=∅

ẑij + ẑl,j −
ε

dk+1
+

∑
i∈[l+1,t]:Ti 6=∅

ẑij

+
∑

i∈[l+1,t]:Ti 6=∅

Di
dk+1

(
ε

dvk
+

εdvp
dp+1,kdvk

)
.

Note that the last term in the expression above is no larger than ε
dk+1

and thus
∑t
i=1 z̃ij ≤ wj holds for this

case.

Constraint (47) is trivially satisfied for any j /∈ [v, k + 1]; and for t such that t ≥ τq for all q ∈ [v, k].

Similarly, it is also satisfied for j ∈ [v, p] by the choice of p; and if j ∈ [p + 1, k] : τj ≤ t. For j ∈
[p + 1, k] : τj > t we have

∑n
i=t+1 z̃ij =

∑
i∈[t+1,n]\{τj} ẑij + ẑτj ,j − ε

dvk
− εdvp

dp+1,kdvk
<
∑n
i=t+1 ẑij ≤ ut.

For j = k + 1 and t such that there exists q ∈ [p + 1, k] with τq > t, we have
∑n
i=t+1 z̃ij =

∑n
i=t+1 ẑij +∑

i∈[t+1,n]:Ti 6=∅
Di

dk+1

(
ε
dvk

+
εdvp

dp+1,kdvk

)
≤∑i∈[t+1,n] ẑiq − γ + ε

dk+1
≤∑i∈[t+1,n] ẑiq ≤ ut. The first inequality

follows because
∑t
i=1 ẑij ≥

∑t
i=1 ẑiq + γ and from equality (33), and the definitions of τq and γ.

Case 3. τj > l,∀j ∈ [v, k]. Recall that δj = ẑτj ,j − ẑτj ,k+1, j ∈ [v, k] > 0 and for i ∈ [l + 1, n], Ti =

{j ∈ [v, k] : i = τj} and Di =
∑
j∈Ti

dj . Consider the following vector z̃,

z̃ij =



ẑij , i 6= l, i ∈ [l + 1, n] : Ti = ∅ or j /∈ [v, k + 1]

ẑij + ε
dvk

, i = l, j ∈ [v, k]

ẑij − ε
dk+1

, i = l, j = k + 1

ẑij − ε
dvk

, j ∈ [v, k], i = τj

ẑij + εDi

dk+1dvk
, j = k + 1, i ∈ [l + 1, n] : Ti 6= ∅.

(A.10)

The value of ε is chosen such that it is the largest number that satisfies:

ξ ≥ ε

dvk
, if v > l (A.11)

γ ≥ ε

dvk
+

ε

dk+1
(A.12)

δj ≥
ε

dvk
+

εDτj
dvkdk+1

, j ∈ [v, k]. (A.13)

This guarantees the following:

(3.a) z̃ij ≥ z̃i,j+1 for i < l, j ∈ [i, n− 1] since z̃ij = ẑij .

(3.b) z̃lj ≥ z̃l,j+1, l ≤ j ≤ v − 1, if v > l. This is true for j 6= v − 1. For j = v − 1, we have

z̃l,v−1 = ẑl,v−1 = ẑlv + ξ = ẑlv + ε
dvk

+ ξ − ε
dvk
≥ z̃lv using (A.11).

(3.c) z̃lv = z̃l,v+1 = · · · = z̃lk. This holds since ẑlv = ẑl,v+1 = · · · = ẑlk and z̃lj = ẑlj + ε
dvk

, j ∈ [v, k].

(3.d) z̃lk ≤ z̃l,k+1. This is because z̃lk = ẑlk+ ε
dvk

= ẑl,k+1−γ+ ε
dvk

= ẑl,k+1− ε
dk+1
−γ+ ε

dvk
+ ε
dk+1

≤ z̃l,k+1,

from (A.12).

(3.e) Since γ, ξ, δj , j ∈ [v, k] > 0, we have ε > 0 and so z̃lk > ẑlk.

From (3.a)–(3.c), we ensure that lz̃ ≥ lẑ and kz̃ ≥ kẑ. If (A.12) is satisfied at equality, then from (3.d), it

follows that z̃lk = z̃l,k+1, so either lz̃ = lẑ and kz̃ > kẑ, or lz̃ > lẑ, hence z̃ falls in a partition after that of ẑ,

a contradiction. If (A.12) is not satisfied at equality, then either (A.11) or (A.13) is satisfied at equality. As

a result, lz̃ = lẑ and kz̃ = kẑ, but z̃lk > ẑlk, from (3.e), contradicting the assumption that ẑ has the largest

zlk value among all members in the last partition, (l, k). Next, we show that z̃ is feasible in XFL.
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Constraint (33) is trivially satisfied for j /∈ [v, k+1]. For j ∈ [v, k] we have
∑n
i=1 z̃ij =

∑
i∈[1,n]\{l,τj} ẑij +

ẑlj + ε
dvk

+ ẑτj ,j − ε
dvk

=
∑n
i=1 ẑij = 1. For j = k + 1, we have

n∑
i=1

z̃ij =
∑

i∈[1,l−1] or i∈[l+1,n]:Ti=∅

ẑij + ẑlj −
ε

dk+1
+

∑
i∈[l+1,n]:Ti 6=∅

(
ẑij +

εDi
dk+1dvk

)

=

n∑
i=1

ẑij −
ε

dk+1
+

∑
i∈[l+1,n]:Ti 6=∅

εDi
dk+1dvk

=

n∑
i=1

ẑij −
ε

dk+1
+

ε

dk+1
= 1.

Constraint (34) is trivially satisfied for i < l, and for i ∈ [l + 1, n] : Ti = ∅. For i = l,

n∑
j=1

dj z̃ij =
∑

j∈[1,n]\[v,k+1]

dj ẑij +

k∑
j=v

dj

(
ẑij +

ε

dvk

)
+ dk+1

(
ẑi,k+1 −

ε

dk+1

)
=

n∑
j=1

dj ẑij = yi.

For i ∈ [l + 1, n] : Ti 6= ∅, we have,

n∑
j=1

dj z̃ij =
∑

j∈[i,n]\Ti

dj ẑij +
∑
j∈Ti

dj

(
ẑij +

ε

dvk

)
+ dk+1

(
ẑi,k+1 −

εDi
dk+1dvk

)

=

n∑
j=1

dj ẑij +
εDi
dvk
− εDi
dvk

= yi.

Constraint (45) is trivially satisfied for i < l; or i ∈ [l + 1, n] : Ti = ∅; or j /∈ [v, k + 1]. For i = l, j =

k + 1, z̃ij = ẑij − ε
dk+1

< ẑij ≤ xi. For, i = l, j ∈ [v, k], z̃ij = ẑij + ε
dvk

= ẑl,k+1 − γ + ε
dvk

< ẑl,k+1 ≤ xi, from

(A.12). For j ∈ [v, k], i = τj , z̃ij = ẑij − ε
dvk

< ẑij ≤ xi. For i ∈ [l + 1, n] : Ti 6= ∅ and j = k + 1, we have,

z̃ij = ẑij + εDi

dk+1dvk
= ẑij′ − δj′ + εDi

dk+1dvk
≤ ẑij′ ≤ xi, for some j′ ∈ Ti, from (A.13).

Constraint (46) is trivially satisfied for t < l or j /∈ [v, k + 1]. For l ≤ t, j = k + 1, we have,
∑t
i=1 z̃ij =∑t

i=1 ẑij − ε
dk+1

+
∑
i∈[l+1,t]:Ti 6=∅

εDi

dvkdk+1
≤∑t

i=1 ẑij ≤ wt. For τj > t ≥ l, j ∈ [v, k], from the definition of τj

and l, z̃ij = ẑij = ẑi,k+1 for i < l and z̃ij ≤ z̃i,k+1 for i ∈ [l, t], hence,
∑t
i=1 z̃ij ≤

∑t
i=1 z̃i,k+1 ≤ wt. Finally,

for j ∈ [v, k], l < τj ≤ t, we have,
∑t
i=1 z̃ij =

∑
i∈[1,t]\{l,τj} ẑij + ẑτj ,j + ẑlj + ε

dvk
− ε

dvk
=
∑t
i=1 ẑij ≤ wt.

Constraint (47) is trivially satisfied for any j /∈ [v, k+ 1]; and for j ∈ [v, k] such that τj ≤ t. For j ∈ [v, k]

such that τj > t we have
∑n
i=t+1 z̃ij =

∑
i∈[t+1,n]\{τj} ẑij + ẑτj ,j − ε

dvk
<
∑n
i=t+1 ẑij ≤ ut. For j = k+ 1 and

t such that there exists q ∈ [v, k] with τq > t, we have
∑n
i=t+1 z̃ij =

∑n
i=t+1 ẑij +

∑
i∈[t+1,n]:Ti 6=∅

εDi

dk+1dvk
≤∑

i∈[t+1,n] ẑiq − γ+ ε
dk+1

≤∑i∈[t+1,n] ẑiq ≤ ut. The first inequality follows because
∑t
i=1 ẑij ≥

∑t
i=1 ẑiq + γ,

and from equality (33) and the definitions of τq and γ.

In all cases, we showed that ε > 0 exists, and that constraints (33)–(34) and (45)–(47) are satisfied by z̃.

Finally, we need to show that (35)–(36) are also satisfied for z̃ in all cases. First, note that for t ∈ [1, n− 1],

n∑
k=t+1

t∑
j=1

dj z̃kj ≤
n∑

k=t+1

t∑
j=1

dj ẑkj ≤ rt (A.14)
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in all cases. Thus, (36) is satisfied. For t ∈ [1, n− 1], inequality (35) can be rewritten as

st ≥
t∑

k=1

n∑
j=t+1

djzkj

=

t∑
k=1

(yk −
t∑

j=1

djzkj)

=

t∑
k=1

yk −
t∑

j=1

dj

t∑
k=1

zkj

=

t∑
k=1

yk −
t∑

j=1

dj(1−
n∑

k=t+1

zkj)

=

t∑
k=1

(yk − dk) +

n∑
k=t+1

t∑
j=1

djzkj .

Using (A.14), we have st ≥
∑t
k=1(yk−dk) +

∑n
k=t+1

∑t
j=1 dj ẑkj ≥

∑t
k=1(yk−dk) +

∑n
k=t+1

∑t
j=1 dj z̃kj .

In addition, in all cases z̃ falls into a partition in or after that of ẑ and z̃lk > ẑlk. Hence, the proof of the

proposition is complete.

�

The current update scheme cannot be used to prove the claim that projx(XSPR) = projx(XFL≤), which

if true proves the conjecture that projx(XSPR) = projx(XFL). The update scheme for this claim, if one

exists, appear to be significantly more complex.
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1, 2 1′, 2 1′′, 2 2, 2 2′, 2 2′′, 2 3, 2 3′, 2

2, 1 2′, 1 2′′, 1 3, 1 3′, 1

3, 0 3′, 0

4

Figure 1. Shortest Path Representation of LS-SL for n = 3, κ = 2.
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0

1 2 3 4 5

(x1, y1)

(w1, s1)

(u1, r1)

d1 d2 d3 d4 d5

d1n

Figure 2. Fixed Charge Network Flow Representation of ULSBW for n = 5.
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1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4

ψ11 z11 ψ33z22 ρ22ψ22 z33 ρ33

ρ13

ρ12 ρ23

ψ21 ψ32

ψ31

ρ11

Figure 3. Shortest Path Network for ULSBW
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Table 1. Problem data for Example 1

t 1 2 3 4 5
d 69 73 68 30 80
f 9000 4000 3000 2000 1000
c 100 78 85 63 95
h 10 8 10 4 8
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Table 2. Optimal solutions for Example 1

Model t 1 2 3 4 5
LS-SL y 0 142 0 178 0
ULSB y 0 0 0 320 0
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Table 3. Comparison of MI-LS-SL and SPR Formulations for n = 60

MI-LS-SL SPR
n.m.β.π S GAP E GAP T (sec) Nodes S GAP E GAP T (sec) Nodes

60.500.3.10 81.57% 3.11% 3600.0 1329242.6 0.21% 0.00% 0.6 17.6
60.500.3.25 76.02% 4.34% 3600.0 1818983.8 0.32% 0.00% 0.7 13.2
60.500.3.40 69.33% 1.98% 3123.5 1753791.2 0.20% 0.00% 0.7 12
60.500.5.10 83.47% 11.38% 3600.0 309144.8 0.31% 0.00% 1.6 14
60.500.5.25 79.02% 11.32% 3600.0 460147.4 0.35% 0.00% 2.6 50
60.500.5.40 70.35% 8.23% 3600.0 660910.6 0.46% 0.00% 3.5 72.2
60.1000.3.10 82.75% 4.47% 3600.0 1287002.4 0.17% 0.00% 0.5 7.6
60.1000.3.25 79.86% 5.19% 3600.0 1676558.8 0.53% 0.00% 0.8 16.8
60.1000.3.40 72.27% 2.93% 3157.3 1319453.0 0.31% 0.00% 0.7 12.6
60.1000.5.10 84.33% 10.74% 3600.0 402493.6 0.33% 0.00% 1.8 29.4
60.1000.5.25 81.29% 11.22% 3600.0 705396.2 0.32% 0.00% 1.9 37
60.1000.5.40 74.98% 10.06% 3600.0 682265.0 0.36% 0.00% 2.5 57.2
60.2500.3.10 86.07% 5.46% 3600.0 1033585.8 0.26% 0.00% 0.4 7.2
60.2500.3.25 83.77% 7.16% 3600.0 1313147.8 0.28% 0.00% 0.6 13.4
60.2500.3.40 78.14% 4.82% 3600.0 1575318.4 0.36% 0.00% 0.7 15.4
60.2500.5.10 86.88% 12.14% 3600.0 441599.4 0.52% 0.00% 2.0 56
60.2500.5.25 83.75% 12.34% 3600.0 566595.8 0.46% 0.00% 2.6 63.8
60.2500.5.40 77.59% 11.64% 3600.0 591281.8 0.32% 0.00% 2.2 50.4
60.5000.3.10 88.74% 6.01% 3600.0 875479.8 0.85% 0.00% 0.8 32.8
60.5000.3.25 83.61% 7.55% 3600.0 965516.2 0.47% 0.00% 0.7 18.6
60.5000.3.40 79.19% 5.53% 3600.0 1165189.4 0.41% 0.00% 0.7 22.8
60.5000.5.10 87.48% 11.05% 3600.0 450531.8 0.95% 0.00% 2.0 71.2
60.5000.5.25 84.71% 12.94% 3600.0 507513.2 0.72% 0.00% 2.8 117.2
60.5000.5.40 81.58% 13.22% 3600.0 546015.2 0.84% 0.00% 2.8 125.4
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Table 4. Comparison of MI-LS-SL and SPR Formulations for n = 120

MI-LS-SL SPR
n.m.β.π S GAP E GAP T (sec) Nodes S GAP E GAP T (sec) Nodes

120.500.3.10 84.90% 9.82% 3600.0 910724.0 0.07% 0.00% 2.2 5.8
120.500.3.25 78.65% 9.28% 3600.0 1196455.8 0.15% 0.00% 3.7 18
120.500.3.40 72.32% 7.46% 3600.0 1345806.6 0.12% 0.00% 3.0 21.6
120.500.5.10 85.57% 15.89% 3600.0 238873.2 0.08% 0.01% 8.2 22.4
120.500.5.25 81.75% 14.53% 3600.0 341460.0 0.17% 0.01% 16.2 104.2
120.500.5.40 73.62% 11.06% 3600.0 489091.8 0.09% 0.01% 12.6 58
120.1000.3.10 86.89% 12.30% 3600.0 984793.4 0.06% 0.00% 2.2 15.4
120.1000.3.25 83.06% 12.04% 3600.0 1249938.0 0.07% 0.00% 2.4 10.2
120.1000.3.40 77.60% 10.08% 3600.0 1124620.0 0.10% 0.00% 3.9 32.6
120.1000.5.10 87.68% 16.21% 3600.0 295196.2 0.12% 0.01% 8.3 30.6
120.1000.5.25 83.30% 15.35% 3600.0 408588.8 0.06% 0.00% 9.7 65.2
120.1000.5.40 77.17% 13.04% 3600.0 635322.4 0.16% 0.01% 16.1 206
120.2500.3.10 89.35% 13.79% 3600.0 769405.2 0.01% 0.00% 1.4 0.6
120.2500.3.25 85.63% 14.16% 3600.0 883662.2 0.13% 0.00% 3.3 34.8
120.2500.3.40 81.91% 11.77% 3600.0 1012314.2 0.14% 0.00% 3.3 27.2
120.2500.5.10 89.88% 17.77% 3600.0 324094.6 0.12% 0.00% 6.2 19.6
120.2500.5.25 87.29% 17.36% 3600.0 357905.0 0.13% 0.01% 12.0 95.2
120.2500.5.40 81.89% 14.68% 3600.0 482396.8 0.16% 0.01% 11.2 103.6
120.5000.3.10 90.75% 15.93% 3600.0 566162.6 0.09% 0.00% 2.2 4.4
120.5000.3.25 88.15% 16.71% 3600.0 548372.8 0.23% 0.00% 3.9 29.8
120.5000.3.40 83.67% 13.56% 3600.0 670782.0 0.26% 0.00% 4.5 54.8
120.5000.5.10 91.02% 18.34% 3600.0 326768.8 0.12% 0.00% 6.2 22.6
120.5000.5.25 88.02% 18.90% 3600.0 386560.4 0.14% 0.00% 10.4 127.8
120.5000.5.40 84.34% 16.96% 3600.0 416421.8 0.11% 0.01% 9.1 78.6
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Table 5. Optimal solutions for Example 1 with type-II constraint

Model t 1 2 3 4 5
y 0 114 0 206 0

LS-SL-II-R r 69 69 96 0 0
s 0 41 0 80 0
y 0 183 0 137 0

LS-SL-II r 69 0 27 0 0
s 0 41 0 80 0
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Table 6. Results for n = 120

MI-LS-SL-II FL-II
n.β.m.(1− γ) Time (s) Nodes SGAP Time (s) Nodes SGAP

120.500.3.10 117.9 272 54.59% 22.5 15 0.07%
120.500.3.25 114.4 156 56.98% 21.2 2 0.02%
120.500.3.40 89.4 141 55.87% 21.0 6 0.05%
120.500.5.10 761.3 533 58.92% 58.4 34 0.10%
120.500.5.25 1323.1 482 59.32% 59.2 12 0.02%
120.500.5.40 1202.7 899 58.04% 67.2 17 0.06%
120.1000.3.10 200.2 501 65.24% 29.1 6 0.02%
120.1000.3.25 175.4 378 64.99% 25.5 9 0.07%
120.1000.3.40 111.8 178 62.11% 27.4 12 0.17%
120.1000.5.10 1691.1 588 68.04% 49.4 15 0.05%
120.1000.5.25 940.9 709 66.94% 71.2 46 0.08%
120.1000.5.40 1223.2 513 66.34% 46.9 8 0.08%
120.2500.3.10 350.1 534 50.37% 32.0 12 0.05%
120.2500.3.25 382.7 609 47.59% 26.5 30 0.10%
120.2500.3.40 480.7 867 47.74% 23.7 17 0.14%
120.2500.5.10 1021.7 540 53.78% 63.6 9 0.05%
120.2500.5.25 3600.2(0.53%) 910 53.61% 67.0 25 0.07%
120.2500.5.40 1166.9 913 50.17% 69.1 32 0.17%
120.5000.3.10 124.0 234 70.83% 22.4 2 0.01%
120.5000.3.25 231.9 490 70.87% 18.8 0 0.01%
120.5000.3.40 263.8 751 69.20% 23.0 13 0.22%
120.5000.5.10 410.1 183 71.55% 50.6 15 0.06%
120.5000.5.25 669.9 613 70.48% 58.1 19 0.08%
120.5000.5.40 537.6 483 69.45% 53.0 13 0.08%
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