
Minimax and risk averse multistage stochastic

programming

Alexander Shapiro∗

School of Industrial & Systems Engineering,
Georgia Institute of Technology,

765 Ferst Drive, Atlanta, GA 30332.

Abstract. In this paper we study relations between the minimax, risk averse and nested formula-
tions of multistage stochastic programming problems. In particular, we discuss conditions for time
consistency of such formulations of stochastic problems. We also describe a connection between law
invariant coherent risk measures and the corresponding sets of probability measures in their dual
representation. Finally, we discuss a minimax approach with moment constraints to the classical
inventory model.

Key Words: stochastic programming, dynamic equations, robust optimization, coherent risk
measures, risk averse stochastic optimization, problem of moments, inventory model.

∗e-mail: ashapiro@isye.gatech.edu. This research was partly supported by the NSF award DMS-0914785 and ONR
award N000140811104.

1



1 Introduction

One of the criticisms of the stochastic programming approach to optimization under uncertainty is
that the assumption of knowing the probability distribution of the uncertain parameters could be
quite unrealistic. On the other hand, the worst case approach of robust optimization could be too
conservative (for a thorough discussion of robust optimization we refer to Ben-Tal, El Ghaoui and
Nemirovski [3]). A possible compromise between these two extremes could be a minimax approach
to stochastic programming where the worst case expected value optimization is performed with
respect to a specified family of probability distributions. This approach has a long history and was
already discussed in Žáčková [22] more than 40 years ago.

Another criticism of stochastic programming is that the optimization on average does not take
into account the involved risk of possible deviations from the expected value. A risk averse approach
to stochastic optimization was initiated by Markowitz [9] in the context of portfolio selection. These
two approaches - the minimax and risk averse - to stochastic optimization were separate entities
for a long time. In a pioneering paper by Artzner et al [1] an axiomatic approach to risk averse
optimization was suggested and among other things it was shown that the minimax and risk averse
approaches in a sense are dual to each other.

As of today the minimax and risk averse approaches to stochastic optimization are reasonably
well understood for static models. The situation is considerably more delicate in dynamic settings.
Multistage robust optimization, under the name “adjustable robust optimization”, was initiated
in Ben-Tal, Goryashko, Guslitzer and Nemirovski [2], robust dynamic programming and robust
control of Markov decision processes were discussed in Iyengar [7] and Nilim and El Ghaoui [8].
Dynamic programming equations for risk averse optimization were derived in Ruszczyński and
Shapiro [16]. It turns out that some suggested approaches to dynamic risk averse optimization are
not time consistent (cf., [19]). For a discussion of time consistency concepts we may refer to [5],[17]
and references therein. As far as we know time consistency was not discussed in the context of
minimax multistage stochastic programming.

This paper is organized as follows. In the next section we give a quick introduction to risk
neutral multistage stochastic programming. For a detail discussion of this topic we may refer,
e.g., to [20]. In section 3 we discuss static and dynamic coherent risk measures. In particular
we describe a connection between law invariant coherent risk measures and the corresponding sets
of probability measures in their dual representation (Theorem 3.2). The main development is
presented in section 4. In that section we study connections between the minimax, risk averse and
nested formulations of multistage stochastic programming problems. Finally, in section 5 we give
examples and applications of the general theory. In particular, we discuss a minimax approach to
the classical inventory model.

We use the following notation throughout the paper. For random variables X and Y we denote
by E[X|Y ] or E|Y [X] the conditional expectation of X given Y . We use the same notation ξ
for a random vector and its particular realization, which of these two meanings will be used in
a specific situation will be clear from the context. For a process ξ1, ξ2, ..., and positive integers
s ≤ t we denote by ξ[s,t] := (ξs, ..., ξt) history of the process from time s to time t. In particular,
ξ[t] := ξ[1,t] = (ξ1, ..., ξt) denotes history of the process up to time t. By ∆(ξ) we denote measure of
mass one concentrated at point ξ.

2 Risk Neutral Formulation

In a generic form a T -stage stochastic programming problem can be written as
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Min
x1,x2(·),...,xT (·)

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(2.1)

Here ξ1, ξ2, . . ., ξT is a random data process, xt ∈ Rnt , t = 1, . . ., T , are decision variables, Ft :
Rnt × Rdt → R are measurable functions and Xt : Rnt−1 × Rdt ⇒ Rnt , t = 2, . . ., T , are measurable
closed valued multifunctions (point-to-set mappings). The first stage data, i.e., the vector ξ1, the
function F1 : Rn1 → R, and the set X1 ⊂ Rn1 are deterministic. In particular, the multistage
problem is linear if the objective functions and the constraint functions are linear, that is

Ft(xt, ξt) := cTt xt, X1 := {x1 : A1x1 = b1, x1 ≥ 0} ,
Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, . . ., T,

(2.2)

where ξ1 := (c1, A1, b1) and ξt := (ct, Bt, At, bt) ∈ Rdt , t = 2, . . ., T , are data vectors some/all
elements of which can be random.

Optimization in (2.1) is performed over feasible policies. A policy is a sequence of (measurable)
functions xt = xt(ξ[t]), t = 1, . . ., T . Each xt(ξ[t]) is a function of the data process ξ[t] up to time
t, this ensures the nonanticipativity property of a considered policy. A policy1 xt(·) : Rd1 × · · · ×
Rdt → Rnt , t = 1, . . ., T , is said to be feasible if it satisfies the feasibility constraints for almost
every realization of the random data process. It could be noted that since policies are elements
of appropriate functional spaces, formulation (2.1) leads to an infinite dimensional optimization
problem, unless the data process ξ1, . . ., ξT has a finite number of realizations (called scenarios).

Recall that if X and Y are two random variables, then E[X] = E{E[X|Y ]}, i.e., average of
averages is the total average. Therefore we can write the expectation in (2.1) as

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT−1

(
xT−1(ξ[T−1]), ξT−1

)
+ FT

(
xT (ξ[T ]), ξT

)]
= E|ξ1

[
· · · E|ξ[T−2]

[
E|ξ[T−1]

[F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT−1

(
xT−1(ξ[T−1]), ξT−1

)
+FT

(
xT (ξ[T ]), ξT

)
]
]]

= F1(x1) + E|ξ1
[
F2(x2(ξ[2]), ξ2) + . . .+ E|ξ[T−2]

[
FT−1

(
xT−1(ξ[T−1]), ξT−1

) ]
+E|ξ[T−1]

[
FT
(
xT (ξ[T ]), ξT

) ]]
.

(2.3)

This, together with an interchangeability property of the expectation and minimization operators
(e.g., [13, Theorem 14.60]), leads to the following nested formulation of the multistage problem
(2.1)

Min
x1∈X1

F1(x1) + E|ξ1

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) + E|ξ[2]

[
· · ·+ E|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]]]
.

(2.4)
Of course, since ξ1 is deterministic, E|ξ1 [ · ] = E[ · ]. We write it here in the conditional form for the
uniformity of notation.

This decomposition property of the expectation operator is a basis for deriving the dynamic
programming equations. That is, going backward in time the so-called cost-to-go (also called value)
functions are defined recursively for t = T, ..., 2, as follows

Vt
(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) + Vt+1

(
xt, ξ[t]

) }
, (2.5)

1In order to distinguish between a function xt(ξ[t]) and a vector xt ∈ Rnt we often write xt(·) to emphasize that
this denotes a function.
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where
Vt+1

(
xt, ξ[t]

)
= E

{
Vt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]

}
, (2.6)

with VT+1(·, ·) ≡ 0 by definition. At the first stage the following problem should be solved

Min
x1∈X1

F1(x1) + E [V2 (x1, ξ2)] . (2.7)

The optimal value of the first stage problem (2.7) gives the optimal value of the corresponding
multistage problem formulated in the form (2.1), or equivalently in the form (2.4).

A policy x̄t(ξ[t]), t = 1, . . ., T , is optimal if x̄1 is an optimal solution of the first stage problem
(2.7) and for t = 2, . . ., T ,

x̄t(ξ[t]) ∈ arg min
xt∈Xt(x̄t−1(ξ[t−1]),ξt)

{
Ft(xt, ξt) + Vt+1

(
xt, ξ[t]

)}
, w.p.1. (2.8)

In the dynamic programming formulation the problem is reduced to solving a family of finite
dimensional problems (2.5)–(2.6).

It is said that the random process ξ1, ..., ξT is stagewise independent if random vector ξt+1 is
independent of ξ[t], t = 1, ..., T−1. In case of stagewise independence the (expected value) cost-to-go
function

VT (xT−1, ξ[T−1]) = E
[
VT (xT−1, ξT )

∣∣ξ[T−1]

]
(2.9)

does not depend on ξ[T−1]. By induction in t going backward in time, it can be shown that:

• If the data process is stagewise independent, then the (expected value) cost-to-go functions
Vt(xt), t = 2, ..., T , do not depend on the data process and equations (2.5) take the form

Vt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) + Vt+1 (xt)

}
. (2.10)

In formulation (2.1) the expectations are taken with respect to a specified probability distribu-
tion of the random process ξ1, ..., ξT . The optimization is performed on average and does not take
into account risk of a possible deviation from the average for a particular realization of the data
process. Therefore formulation (2.1) is referred to as risk neutral.

3 Risk Measures

In order to proceed to a risk averse formulation of multistage programs we need to discuss the
following concept of so-called coherent risk measures. Consider a probability space (Ω,F , P ). To
measurable functions Z : Ω → R we refer as random variables. With every random variable Z =
Z(ω) we associate a number, denoted ρ(Z), indicating our preference between possible realizations
of random variables. That is, ρ(·) is a real valued function defined on a space of measurable
functions Z : Ω→ R. We refer to ρ(·) as a risk measure. For example, we can employ the expected
value ρ(Z) := EP [Z] as a risk measure. The term “risk measure” is somewhat unfortunate since it
could be confused with the concept of probability measures. However, it became quite standard,
so we will use it here.

We have to specify a space of random variables on which a considered risk measure will be
defined. In that respect it is natural to consider spaces Lp(Ω,F , P ) of random variables Z(ω)
having finite p-th order moment, p ∈ [1,∞). Note that two random variables Z(ω) and Z ′(ω) are
undistinguishable if Z(ω) = Z ′(ω) for a.e. ω ∈ Ω (i.e., for all ω ∈ Ω except on a set of P -measure
zero). Therefore Lp(Ω,F , P ) consists of classes of random variables Z(ω) such that Z(ω) and Z ′(ω)
belong to the same class if Z(ω) = Z ′(ω) for a.e. ω ∈ Ω, and E|Z|p =

∫
Ω |Z(ω)|pdP (ω) is finite. The

3



space Lp(Ω,F , P ) equipped with the norm ‖Z‖p :=
(∫

Ω |Z(ω)|pdP (ω)
)1/p becomes a Banach space.

We also consider space L∞(Ω,F , P ) of essentially bounded functions. That is, L∞(Ω,F , P ) consists
of random variables with finite sup-norm ‖Z‖∞ := ess sup |Z|, where the essential supremum of a
random variable Z(ω) is defined as

ess sup(Z) := inf {supω∈Ω Z
′(ω) : Z ′(ω) = Z(ω) a.e. ω ∈ Ω} . (3.1)

A set A ⊂ Lp(Ω,F , P ) is said to be bounded if there exists constant c > 0 such that ‖Z‖p ≤ c for
all Z ∈ A. Unless stated otherwise all topological statements related to the space Lp(Ω,F , P ) will
be made with respect to its strong (norm) topology.

Formally, risk measure is a real valued function ρ : Z → R, where Z := Lp(Ω,F , P ) for some
p ∈ [1,∞]. It is also possible to consider risk measures taking values ρ(Z) = +∞ for some Z ∈ Z.
However, with virtually every interesting risk measure is associated in a natural way an Lp(Ω,F , P )
space on which it is finite valued. It was suggested in Artzner et al [1] that a “good” risk measure
should satisfy the following axioms, and such risk measures were called coherent.

(A1) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≥ ρ(Z ′).

(A2) Convexity:
ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′)

for all Z,Z ′ ∈ Z and all t ∈ [0, 1].

(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

(A4) Positive Homogeneity: If t ≥ 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

Here the notation Z � Z ′ means that Z(ω) ≥ Z ′(ω) for a.e. ω ∈ Ω. Monotonicity property
(axiom (A1)) is a natural condition that a risk measure should satisfy (recall that we deal here
with minimization rather than maximization formulations of optimization problems). Convexity
property is also a natural one. Because of (A4) the convexity axiom (A2) holds iff the following
subadditivity property holds

ρ(Z + Z ′) ≤ ρ(Z) + ρ(Z ′), ∀Z,Z ′ ∈ Z. (3.2)

That is, risk of the sum of two random variables is not bigger than the sum of risks. Axioms
(A3) and (A4) postulate position and scale properties, respectively, of risk measures. We refer to
[6],[12],[20] for a thorough discussion of coherent risk measures.

We have the following basic duality result associated with coherent risk measures. With each
space Z := Lp(Ω,F , P ), p ∈ [1,∞), is associated its dual space Z∗ := Lq(Ω,F , P ), where q ∈ (1,∞]
is such that 1/p+ 1/q = 1. For Z ∈ Z and ζ ∈ Z∗ their scalar product is defined as

〈Z, ζ〉 :=
∫

Ω
Z(ω)ζ(ω)dP (ω). (3.3)

We denote by

P :=
{
ζ ∈ Z∗ :

∫
Ω
ζ(ω)dP (ω) = 1, ζ � 0

}
(3.4)

the set of probability density functions in the dual space Z∗.
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Theorem 3.1 Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R be a coherent risk measure. Then
ρ is continuous (in the norm topology of Z) and there exists a bounded closed convex set A ⊂ P

such that
ρ(Z) = sup

ζ∈A
〈Z, ζ〉, ∀Z ∈ Z. (3.5)

Moreover, the set A can be written in the form

A =
{
ζ ∈ P : 〈Z, ζ〉 ≤ ρ(Z), ∀Z ∈ Z

}
. (3.6)

Conversely if the representation (3.5) holds for some nonempty bounded set A ⊂ P, then ρ is a
(real valued) coherent risk measure.

The dual representation (3.5) follows from the classical Fenchel-Moreau theorem. Originally
it was derived in [1], and the following up literature (cf., [6]), for space Z := L∞(Ω,F , P ). For
general spaces Z := Lp(Ω,F , P ) this representation was obtained in [15] and it was shown there
that monotonicity (axiom (A1)) and convexity (axiom (A2)) imply continuity of the (real valued)
risk measure ρ. Note that if the representation (3.5) holds for some bounded set A, then it also
holds if the set A is replaced by the topological closure of its convex hull. Therefore, without loss
of generality, it suffices to consider only bounded closed convex sets A.

For ζ ∈ P the scalar product 〈Z, ζ〉 can be understood as the expectation EQ[Z] taken with
respect to the probability measure dQ = ζdP . Therefore the representation (3.5) can be written as

ρ(Z) = sup
Q∈Q

EQ[Z], ∀Z ∈ Z, (3.7)

where Q := {Q : dQ = ζdP, ζ ∈ A}. Recall that if P and Q are two measures on (Ω,F), then
it is said that Q is absolutely continuous with respect to P if A ∈ F and P (A) = 0 implies that
Q(A) = 0. The Radon-Nikodym theorem says that Q is absolutely continuous with respect to P iff
there exists a function η : Ω → R+ (density function) such that Q(A) =

∫
A ηdP for every A ∈ F .

Therefore the result of theorem 3.1 can be interpreted as follows.

• Let Z := Lp(Ω,F , P ), p ∈ [1,∞). Then a risk measure ρ : Z → R is coherent iff there exists
a set Q of absolutely continuous with respect to P probability measures such that the set
of densities

{
dQ
dP : Q ∈ Q

}
forms a bounded set in the dual space Z∗ and the representation

(3.7) holds.

Let us consider some examples. The following risk measure is called the mean-upper-semideviation
risk measure of order p ∈ [1,∞):

ρ(Z) := E[Z] + λ
(
E
[[
Z − E[Z]

]p
+

])1/p
. (3.8)

In the second term of the right hand side of (3.8), the excess of Z over its expectation is penalized.
In order for this risk measure to be real valued it is natural to take Z := Lp(Ω,F , P ). For any
λ ∈ [0, 1] this risk measure is coherent and has the dual representation (3.5) with the set

A =
{
ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ λ, ζ � 0

}
. (3.9)

Note that the above set A is a bounded convex closed subset of the dual space Z∗ = Lq(Ω,F , P ).
An important example of risk measure is Value-at-Risk measure

V@Rα(Z) := inf
{
z : Pr(Z ≤ z) ≥ 1− α

}
, α ∈ (0, 1). (3.10)
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That is, V@Rα(Z) = H−1(1 − α) is the left side (1 − α)-quantile of the distribution of Z. Here
H(z) := Pr(Z ≤ z) if the cumulative distribution function (cdf) of Z and

H−1(γ) := inf
{
z : H(z) ≥ γ

}
for γ ∈ (0, 1). For γ = 0 the corresponding left side quantile H−1(0) = −∞, and by the definition
H−1(1) = +∞ if Z(ω) is unbounded from above. The V@Rα risk measure is not coherent, it satisfies
axioms (A1),(A3) and (A4) but is not necessarily convex, i.e., it does not possess the subadditivity
property (3.2).

An important example of coherent risk measure is the Average Value-at-Risk measure

AV@Rα(Z) := inf
z∈R

{
z + α−1E[Z − z]+

}
, α ∈ (0, 1]. (3.11)

It is natural to take here Z := L1(Ω,F , P ). This risk measure is also known under the names
Expected Shortfall, Expected Tail Loss and Conditional Value-at-Risk. It is possible to show that
the set of minimizers of the right hand side of (3.11) is formed by (1−α)-quantiles of the distribution
of Z. In particular z∗ = V@Rα(Z) is such a minimizer. It follows that AV@Rα(Z) ≥ V@Rα(Z).
Also it follows from (3.11) that

AV@Rα1(Z) ≥ AV@Rα2(Z), 0 < α1 ≤ α2 ≤ 1. (3.12)

The dual representation (3.5) for ρ(Z) := AV@Rα(Z) holds with the set

A =
{
ζ ∈ L∞(Ω,F , P ) : ζ(ω) ∈ [0, α−1] a.e. ω ∈ Ω, E[ζ] = 1

}
. (3.13)

Note that the above set A is a bounded closed subset of the dual space Z∗ = L∞(Ω,F , P ). If
α = 1, then the set A consists of unique point ζ(ω) ≡ 1. That is, AV@R1(Z) = E[Z], this can be
verified directly from the definition (3.11). For α tending to zero we have the following limit

lim
α↓0

AV@Rα(Z) = ess sup(Z). (3.14)

In order for the risk measure ρ(Z) := ess sup(Z) to be finite valued it should be considered on the
space Z := L∞(Ω,F , P ); defined on that space this risk measure is coherent.

In both examples considered above the risk measures are functions of the distribution of the
random variable Z. Such risk measures are called law invariant. Recall that two random variables
Z and Z ′ have the same distribution if their cumulative distribution functions are equal to each
other, i.e., Pr(Z ≤ z) = Pr(Z ′ ≤ z) for all z ∈ R. We write this relation as Z D∼Z ′.

Definition 3.1 It is said that a risk measure ρ : Z → R is law invariant if for any Z,Z ′ ∈ Z such
that Z D∼Z ′ it follows that ρ(Z) = ρ(Z ′).

Suppose for the moment that the set Ω = {ω1, ..., ωK} is finite with respective probabilities
p1, ..., pK such that any partial sums of pk are different, i.e.,

∑
k∈I pk =

∑
k∈J pk for I,J ⊂

{1, ...,K} only if I = J . Then Z,Z ′ : Ω→ R have the same distribution only if Z(ω) = Z ′(ω) for
all ω ∈ Ω. In that case any risk measure, defined on the space of random variables Z : Ω → R, is
law invariant. Therefore, for a meaningful discussion of law invariant risk measures it is natural to
consider nonatomic probability spaces. It is said that measure P , and hence the space (Ω,F , P ),
is nonatomic if any set A ∈ F of positive measure P (A) contains a subset B ∈ F such that
P (A) > P (B) > 0.

A natural question is how law invariance can be described in terms of the set A in the dual
representation (3.5). Let T : Ω→ Ω be one-to-one onto mapping, i.e., T (ω) = T (ω′) iff ω = ω′ and
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T (Ω) = Ω. It is said that T is a measure-preserving transformation if image T (A) = {T (ω) : ω ∈ A}
of any measurable set A ∈ F is also measurable and P (A) = P (T (A)) (see, e.g., [4, p.311]). Let us
denote by

G := {the set of one-to-one onto measure-preserving transformations T : Ω→ Ω}.

We have that if T ∈ G, then T−1 ∈ G; and if T1, T2 ∈ G, then their composition2 T1 ◦T2 ∈ G. That
is, G forms a group of transformations.

Theorem 3.2 Suppose that the probability space (Ω,F , P ) is nonatomic. Then a coherent risk
measure ρ : Z → R is law invariant iff the set A in the dual representation (3.5) is invariant with
respect to measure-preserving transformations, i.e., iff for any ζ ∈ A and any T ∈ G and ζ ′ := ζ ◦T
it follows that ζ ′ ∈ A.

Proof. Let T ∈ G and ζ ∈ A. Consider ζ ′ := ζ ◦ T . For Z ∈ Z we have

〈Z, ζ ′〉 =
∫

Ω
Z(ω)ζ(T (ω))dP (ω) =

∫
Ω
Z(T−1(ω))ζ(ω)dQ(ω) = 〈Z ′, ζ〉 (3.15)

where Q = PT−1 = P and Z ′ := Z ◦ T−1. Since T is measure-preserving we have that Z D∼Z ′ and
since ρ is law invariant, it follows that ρ(Z) = ρ(Z ′). Therefore by (3.6) we obtain that ζ ′ ∈ A.

Conversely suppose that ζ ◦ T ∈ A for any ζ ∈ A and any T ∈ G. Let Z,Z ′ be two random
variables having the same distribution. Since the probability space (Ω,F , P ) is nonatomic, there is
T ∈ G such that Z ′ = Z ◦ T . For ε > 0 let ζ ∈ A be such that ρ(Z ′) ≤ 〈Z ′, ζ〉+ ε. By (3.15) and
since ζ ′ ∈ A it follows that

ρ(Z ′) ≤ 〈Z ′, ζ〉+ ε = 〈Z, ζ ′〉+ ε ≤ ρ(Z) + ε.

Since ε > 0 is arbitrary, we obtain that ρ(Z ′) ≤ ρ(Z). The other inequality ρ(Z ′) ≥ ρ(Z) can be
obtained in the same way and hence ρ(Z ′) = ρ(Z). This competes the proof.

With every law invariant risk measure ρ is associated its conditional analogue. That is, let Z
be a random variable and Y be a random vector. Since ρ(Z) is a function of the distribution of
Z we can consider value of ρ at the conditional distribution of Z given Y = y, which we write as
ρ(Z|Y = y). Note that ρ(Z|Y = y) = φ(y) is a function of y, and hence φ(Y ) is a random variable.
We denote this random variable φ(Y ) as ρ(Z|Y ) or ρ|Y (Z) and refer to ρ|Y (·) as conditional risk
measure. Of course, if Z and Y are independent, then distribution of Z does not depend on Y and
hence in that case ρ|Y (Z) = ρ(Z).

For example the conditional analogue of the mean-upper semideviation risk measure (3.8) is

ρ|Y (Z) = E|Y [Z] + λ
(
E|Y

[[
Z − E|Y [Z]

]p
+

])1/p
. (3.16)

The conditional analogue of the Average Value-at-Risk measure is

AV@Rα|Y (Z) = inf
z∈R

{
z + α−1E|Y [Z − z]+

}
, α ∈ (0, 1]. (3.17)

The set of minimizers of the right hand side of (3.17) is given by (1−α)-quantiles of the conditional
distribution of Z, given Y , and is a function of Y .

There is an alternative, and in a sense equivalent, approach to defining conditional risk mea-
sures which is based on an axiomatic method and using sequences of nested sigma algebras (cf.,

2Composition T = T1 ◦ T2 of two mappings is the mapping T (ω) = T1(T2(ω)).
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[11],[16]). By considering sigma subalgebra of F generated by Y , the above approach of conditional
distributions can be equivalently described in terms of the axiomatic approach. Both approaches
have advantages and disadvantages. The above approach is more intuitive, although is restricted
to law invariant risk measures. Also some properties could be easier seen in one approach than the
other.

Since ρ(Z|Y ) is a random variable, we can condition it on another random vector X. That is,
we can consider the following conditional risk measure ρ[ρ(Z|Y )|X]. We refer to this (conditional)
risk measure as the composite risk measure and sometimes write it as ρ|X ◦ρ|Y (Z). In particular, we
can consider the composition ρ ◦ ρ|Y . The composite risk measure ρ ◦ ρ|Y inherits many properties
of ρ. If ρ is a law invariant coherent risk measure, then so is the composite risk measure ρ ◦ ρ|Y .

The composite risk measures ρ ◦ ρ|Y can be quite complicated and difficult to write explicitly
(cf., [16, section 5]). In general it does not hold that

ρ ◦ ρ|Y = ρ. (3.18)

For example, for nonconstant Y equation (3.18) does not hold for ρ := AV@Rα with α ∈ (0, 1). Of
course, if Z and Y are independent, then ρ(Z|Y ) = ρ(Z) and hence ρ ◦ ρ|Y (Z) = ρ(Z), provided
ρ is coherent. In particular, (3.18) holds if Y is constant and hence Z is independent of Y for any
Z ∈ Z. This also shows that the composite risk measure ρ ◦ ρ|Y (·) depends on Y . Equation (3.18)
holds for any Y in at least in two cases, namely for ρ(·) := E(·) and ρ(·) := ess sup(·).

4 Minimax and Risk Averse Multistage Programming

Consider the following minimax extension of the risk neutral formulation (2.1) of multistage stochas-
tic programs:

Min
x1,x2(·),...,xT (·)

sup
Q∈M

{
EQ
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]}
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(4.1)

Here M is a set of probability measures associated with vector (ξ2, ..., ξT ) ∈ Rd2 × · · · × RdT . We
assume that probability measures of the set M are supported on a closed set Ξ ⊂ Rd2 × · · · ×RdT ,
i.e., for every Q ∈ M it holds that Q-almost surely (ξ2, ..., ξT ) ∈ Ξ. As in the risk neutral case
the minimization in (4.1) is performed over policies satisfying the feasibility constraints Q-almost
surely for every Q ∈ M. The set M can be viewed as the uncertainty set of probability measures
and formulation (4.1) as hedging against a worst possible distribution. Of course, if M = {P} is a
singleton, then (4.1) becomes the risk neutral formulation (2.1).

Let P be a (reference) probability measure3 on the set Ξ ⊂ Rd2 × · · · × RdT equipped with its
Borel sigma algebra B and let Z := Lp(Ξ,B, P ). That is, for p ∈ [1,∞) the space Z consists of
measurable functions Z(·) : Ξ → R viewed as random variables having finite p-th order moment
(with respect to the reference probability measure P ), and for p =∞ this is the space of essentially
bounded measurable functions. Consider a coherent risk measure ρ : Z → R. The corresponding
risk averse multistage problem can be written as

Min
x1,x2(·),...,xT (·)

ρ
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(4.2)

3Unless stated otherwise expectations and probabilistic statements will be made here with respect to the reference
measure P .
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The optimization in (4.2) is performed over policies satisfying the feasibility constraints for P -almost
every realization of the data process and such that the function (random variable)

Z(ξ[T ]) := F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT
(
xT (ξ[T ]), ξT

)
(4.3)

belongs to the considered space Z.
Using dual representation (3.7) we can write the risk measure ρ as

ρ(Z) = sup
Q∈Q

EQ[Z], ∀Z ∈ Z, (4.4)

and hence problem (4.2) can be represented in the minimax form (4.1) with M = Q. There is a
slight difference between respective formulations (4.1) and (4.2) of robust multistage programs -
the set Q consists of probability measures on (Ξ,B) which are absolutely continuous with respect
to the reference measure P , while we didn’t make such assumption for the set M. However, at this
point this is not essential, we will discuss this later.

In order to write dynamic programming equations for problems (4.1) and (4.2) we need a
decomposable structure similar to (2.3) for the expectation operator. At every stage t = 2, ..., T of
the process we know the past, i.e., we observe a realization ξ[t] of the data process. For observed at
stage t realization ξ[t] we need to define what do we optimize in the future stages. From the point of
view of the minimax formulation (4.1) we need to specify conditional distribution of ξ[t+1,T ] given
ξ[t] for every probability distribution Q ∈M of ξ[T ] = (ξ[t], ξ[t+1,T ]).

Consider a linear space Z of measurable functions Z(·) : Ξ → R, for example take Z :=
Lp(Ξ,B, P ), and sequence of spaces Z1 ⊂ Z2 ⊂ · · · ⊂ ZT with Zt being the space of functions
Z ∈ Z such that Z(ξ[T ]) does not depend on ξt+1, ..., ξT ; with some abuse of notation we write such
functions as Zt(ξ[t]). In particular, ZT = Z and Z1 is the space of constants and can be identified
with R. It could be noted that functions Zt ∈ Zt are defined on the set

Ξt :=
{
ξ[t] ∈ Rd2 × · · · × Rdt : ∃ ξ′[T ] ∈ Ξ such that ξ[t] = ξ′[t]

}
,

which is the projection of Ξ onto Rd2 × · · · × Rdt .
Consider sequence of mappings %t,T (·) : Z → Zt, t = 1, ..., T − 1, defined as

[%t,T (Z)](ξ[t]) := sup
Q∈M

EQ|ξ[t]
[
Z(ξ[T ])

]
, Z ∈ Z, (4.5)

where the notation EQ|ξ[t] means that the expectation is conditional on ξ[t] and with respect to
probability distribution Q of ξ[T ] = (ξ[t], ξ[t+1,T ]). We assume that the maximum in the right hand
side of (4.5) is finite valued. Restricted to the space Zt+1 ⊂ Z the mapping %t,T will be denoted
ρt, i.e., ρt : Zt+1 → Zt is given by

[ρt(Zt+1)](ξ[t]) = sup
Q∈M

EQ|ξ[t]
[
Zt+1(ξ[t+1])

]
, Zt+1 ∈ Zt+1. (4.6)

We also use notation %t,T |ξ[t](Z) and ρt|ξ[t](Zt+1) for [%t,T (Z)](ξ[t]) and [ρt(Zt+1)](ξ[t]), respectively.
In a sense mappings ρt can be viewed as conditional risk mappings discussed in [11],[16], where
such mappings were introduced in an axiomatic way (see section 5 for a further discussion).

After observing value ξ[t] of the data process at stage t, it is natural to perform future opti-
mization at later stages using the conditional distributions of ξ[t+1,T ] given ξ[t], that is with respect
to %t,T |ξ[t](·). This motivates to consider the composite function

%̄(Z) := %1,T (%2,T . . . (%T−1,T (Z)) . . . ), Z ∈ Z, (4.7)
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denoted %̄ = %1,T ◦%2,T ◦ · · · ◦%T−1,T . Note that mappings %t,T (·) and ρt(·) do coincide on Zt+1, and
hence %̄ = ρ1 ◦ ρ2 ◦ · · · ◦ ρT−1 as well. Since Z1 can be identified with R, we can view %̄ : Z → R as
a real valued function, i.e., as a risk measure.

Consider risk measure ρ(·) in the form (4.4), this risk measure is coherent by Theorem 3.1.
The respective composite risk measure %̄ = ρ1 ◦ ρ2 ◦ · · · ◦ ρT−1 is also coherent. For the composite
risk measure %̄ the corresponding risk averse problem can be written in the following nested form
similar to (2.4):

Min
x1∈X1

F1(x1) + ρ1|ξ[1]

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) + ρ2|ξ[2]

[
· · ·+ ρT−1|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]]]
,

(4.8)
(cf., [16]). Note that each mapping ρt, t = 1, ..., T − 1, in (4.8) can be equivalently replaced by the
respective mapping %t,T .

The risk measure ρ is not necessarily the same as the associated composite risk measure %̄, and
formulations (4.1) and (4.8) are not necessarily equivalent.

• From the point of view of information at stage t - observed realization ξ[t] of the data process
and the corresponding conditional distributions at future stages - the nested formulation (4.8)
is time consistent. Therefore from this point of view the minimax formulation (4.1) (the risk
averse formulation (4.2)) is time consistent iff it is equivalent to the nested formulation (4.8),
in particular if ρ(·) = %̄(·).

Some risk averse formulations are time consistent and some are not (cf., [19]). For a discussion and
survey of time consistency concepts we may refer to [5],[17]; we will discuss this further in the next
section.

For the nested formulation (4.8) it is possible to write dynamic programming equations in a
way similar to (2.5)–(2.6) (cf., [16]). That is, equation (2.6) should be replaced by the equation

Vt+1

(
xt, ξ[t]

)
= ρt|ξ[t]

[
Vt+1

(
xt, ξ[t+1]

)]
, (4.9)

while equation (2.5) remains the same. Similar to the risk neutral case, the cost-to-go (value)
functions Vt+1

(
xt, ξ[t]

)
do not depend on ξ[t] if the data process is stagewise independent. Here the

stagewise independence means that ξ[t+1,T ] is independent of ξ[t] for every distribution Q ∈ M of
ξ[T ] and t = 1, ..., T − 1. In terms of the set M the stagewise independence means that

M =
{
Q = Q2 × · · · ×QT : Qt ∈Mt, t = 2, ..., T

}
, (4.10)

where for t = 2, ..., T , the set Mt is a set of probability measures on a (closed) set Ξt ⊂ Rdt

equipped with its Borel sigma algebra Bt. Note that here measures Q ∈M are defined on the set
Ξ = Ξ1 × · · · × ΞT .

In order to see a relation between formulation (4.1) (formulation (4.2)) and the corresponding
nested formulation (4.8) let us observe the following. For Z ∈ Z, we can write

EQ[Z(ξ[T ])] = EQ|ξ1
[
· · · EQ|ξ[T−2]

[
EQ|ξ[T−1]

[Z(ξ[T ])]
]
· · ·
]
,

and hence for ρ(·) = supQ∈M EQ[ · ] we have

ρ(Z) = sup
Q∈M

EQ|ξ1
[
· · · EQ|ξ[T−2]

[
EQ|ξ[T−1]

[Z(ξ[T ])]
]
· · ·
]

≤ sup
Q∈M

EQ|ξ1
[
· · · sup

Q∈M
EQ|ξ[T−2]

[
sup
Q∈M

EQ|ξ[T−1]
[Z(ξ[T ])]

]
· · ·
]

= ρ1 ◦ ρ2 ◦ · · · ◦ ρT−1(Z).

(4.11)

We obtain the following result.
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Proposition 4.1 For risk measure ρ(Z) := supQ∈M EQ[Z] and the corresponding composite risk
measure %̄ = ρ1 ◦ ρ2 ◦ · · · ◦ ρT−1 the following inequality holds

ρ(Z) ≤ %̄(Z), ∀Z ∈ Z. (4.12)

It follows that the optimal value of the minimax problem (4.1) (risk averse problem (4.2)) is less
than or equal to the optimal value of the corresponding problem (4.8). As the following example
shows the inequality (4.12) can be strict even in the case of stagewise independence.

Example 1 Let T = 3 and M := M2 ×M3, with set M2 := {P} being a singleton and M3 :=
{∆(ξ) : ξ ∈ Ξ} being a set of probability measures formed by measures of unit mass at a single
point ξ ∈ Ξ. Then for Z = Z(ξ2, ξ3),

ρ(Z) = sup
Q2∈M2,Q3∈M3

EQ2×Q3 [Z(ξ2, ξ3)] = sup
ξ3∈Ξ

EP [Z(ξ2, ξ3)], (4.13)

and

%̄(Z) = sup
Q2∈M2

EQ2

[
sup

Q3∈M3

EQ3 [Z(ξ2, ξ3)]

]
= EP

{
sup
ξ3∈Ξ

Z(ξ2, ξ3)

}
. (4.14)

In (4.13) and (4.14) the expectations are taken with respect to the probability distribution P of ξ2.
As it is well known in stochastic programming the inequality

sup
ξ3∈Ξ

EP [Z(ξ2, ξ3)] ≤ EP

{
sup
ξ3∈Ξ

Z(ξ2, ξ3)

}
(4.15)

can be strict. Suppose, for example, that the set Ξ is finite. Then the maximum of Z(ξ2, ξ3) over
ξ3 ∈ Ξ is attained at a point ξ̄3 = ξ̄3(ξ2) depending on ξ2. Consequently the right hand side of
(4.15) is equal to EP [Z(ξ2, ξ̄3(ξ2))], and can be strictly bigger than the left hand side unless ξ̄3(·) is
constant. Therefore, the inequality (4.15) can be strict if the set Ξ contains more than one point.

Proposition 4.2 Let ρ(Z) := supQ∈M EQ[Z] and suppose that the stagewise independence holds,
i.e., the set M is given in the form (4.10). Then ρ(·) = %̄(·) if the interchageability property

EQ2×···×Qt

{
sup

Qt+1∈Mt+1

EQt+1

[
Zt+1(ξ[t], ξt+1)

]}
= sup

Qt+1∈Mt+1

EQ2×···×Qt+1

[
Zt+1(ξ[t], ξt+1)

]
.

(4.16)
holds for all Z ∈ Z and t = 2, ..., T − 1.

Proof. Let the set M be given in the form (4.10). Then equation (4.6) takes the form

[ρt(Zt+1)](ξ[t]) = sup
Qt+1∈Mt+1

EQt+1

[
Zt+1(ξ[t], ξt+1)

]
, (4.17)

where the expectation EQt+1

[
Zt+1(ξ[t], ξt+1)

]
is taken with respect to the distribution Qt+1 of ξt+1

for fixed ξ[t]. Suppose that condition (4.16) holds. Then

ρ(Z) = sup
Q2∈M2,...,QT∈MT

EQ2

[
· · · EQT−1

[
EQT

[Z(ξ1, ..., ξT )]
]
· · ·
]

= sup
Q2∈M2

· · · sup
QT∈MT

EQ2

[
· · · EQT−1

[
EQT

[Z(ξ1, ..., ξT )]
]
· · ·
]

= sup
Q2∈M2

· · · sup
QT−1∈MT−1

EQ2

[
· · · EQT−1

[
sup

QT∈MT

EQT
[Z(ξ1, ..., ξT )]

]
· · ·
]

= sup
Q2∈M2

EQ2

[
· · · sup

QT−1∈MT−1

EQT−1

[
sup

QT∈MT

EQT
[Z(ξ1, ..., ξT )]

]
· · ·
]
,

(4.18)

and hence ρ(Z) = %̄(Z).
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5 Applications and Examples

In this section we discuss applications and examples of the general approach outlined in sections 3
and 4. Let us start with the following example corresponding to robust formulation of multistage
programming. Let M be the set of all probability measures on (Ξ,B). Then for computing the
maximum in ρ(·) = supQ∈M EQ[ · ] it suffices to perform the maximization with respect to measures
of mass one at a point of the set Ξ, and hence the minimax formulation (4.1) can be written as

Min
x1,x2(·),...,xT (·)

sup
(ξ2,...,ξT )∈Ξ

{
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) }
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(5.1)

Here the interchageability property (4.16) holds and hence ρ(·) coincides with the correspond-
ing composite risk measure %̄(·), the minimax formulation is equivalent to the corresponding nested
formulation, and thus formulation (5.1) is time consistent. It could be noted that in this example
there is no reference probability measure with respect to which all measures Q ∈M are absolutely
continuous. Therefore strictly speaking the above ρ(·) is not a risk measure as it was defined in
section 3. In order to reformulate this in terms of risk measures we may replace “ sup ” in (5.1)
with the “ess sup ” operator (recall that ess sup(·) can be interpreted as AV@R0(·) risk measure, see
(3.14)). For ρ := AV@R0 it holds that ρ(·) = %̄(·) as well, and the minimax formulation is equivalent
to the corresponding nested formulation. All that is discussed in detail in [21].

Let now ρ(·) := AV@Rα(·) with Z := L1(Ξ,B, P ) and α ∈ (0, 1). In that case ρ is not equal to
the corresponding composite risk measure %̄ = ρ1 ◦ρ2 ◦· · ·◦ρT−1. Note that the associated mapping
ρt|ξ[t] (see (4.6)) is not the same here4 as AV@Rα|ξ[t](·). Suppose, for example, that T = 3 and the
stagewise independence holds, i.e., the set M is of the form (4.10). Then for Z = Z(ξ2, ξ3),

ρ2|ξ2(Z) = sup
ζ∈A

E|ξ2 [Z(ξ2, ξ3)ζ(ξ2, ξ3)],

where A = {ζ(ξ2, ξ3) : 0 � ζ(ξ2, ξ3) � α−1, E[ζ] = 1}. Consider the set A′ formed by densities
ζ ∈ A which are functions of ξ3 alone, i.e., A′ = {ζ(ξ3) : 0 � ζ(ξ3) � α−1, E[ζ] = 1}. Then

AV@Rα|ξ2(Z) = sup
ζ∈A′

E|ξ2 [Z(ξ2, ξ3)ζ(ξ3)].

Since A′ is a (strict) subset of A, it follows that ρ2|ξ2(Z) ≥ AV@Rα|ξ2(Z), and the inequality
can be strict. Let, for example, ξ2 and ξ3 have uniform distributions on [0,1]. Then for a given
ξ2 ∈ [0, 1] and for Z � 0, by taking ζ ∈ A such that ζ(ξ2, ξ3) = α−1 for all ξ3 ∈ [0, 1], we have that
ρ2|ξ2(Z) = α−1E|ξ2 [Z(ξ2, ξ3)].

The corresponding multistage problem (4.2) can be written as

Min
z,x1,x2(·),...,xT (·)

E
{
z + α−1

[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

)
− z
]
+

}
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(5.2)

If the multistage problem is linear and the number of scenarios (realizations of the data process)
is finite, then it is possible to write problem (5.2) as a large linear programming problem. As far
as dynamic equations are concerned let us observe that at the last stage t = T we would need to
solve problem conditional on z and decisions up to stage t = T − 1. Therefore dynamic equations

4The author is indebted to Dan Iancu for pointing this out.
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cannot be written in an obvious way and formulation (5.2) is not time consistent. The correspond-
ing nested formulation, of course, is time consistent. It is interesting to observe that in extreme
cases of α = 1 (when ρ(·) = E(·)) and α = 0 (when ρ(·) = ess sup(·)) the minimax and nested
formulations are equivalent.

As another example consider the problem of moments in a multistage setting (see, e.g., [10]
and references therein for a discussion of the problem of moments). Let Ξt ⊂ Rdt , bt ∈ Rqt and
ψt : Ξt → Rqt be a measurable mapping, t = 2, ..., T . Define Mt to be the set of probability
measures Qt on (Ξt,Bt) satisfying the following moment conditions

EQt [ψt(ξt)] = bt, t = 2, ..., T, (5.3)

and let M be the set of the form (4.10) of products of these measures . By this setting the stagewise
independence condition holds here.

In this example the minimax and nested formulations are not necessarily equivalent. In order
to see this consider the following instance. Let T = 3 and the set Ξ2 be finite. Then the moment
constraints (5.3) take a form of linear equations for the respective probabilities associated with
points of the set Ξ2. By an appropriate choice the moment constraints define a unique probability
measure on Ξ2. If furthermore the set M3 consists of all probability measures on Ξ3 ⊂ Rd3 , then
this becomes a case considered in Example 1. This shows that the corresponding inequality (4.12)
can be strict in this example.

For the respective nested formulation we can write the dynamic programming equations in the
form (2.10) with

Vt+1 (xt) = sup
Qt+1∈Mt+1

EQt+1 [Vt+1 (xt, ξt+1)] . (5.4)

It can be noted that by the Richter - Rogosinski Theorem (cf., [14]) the maximum in the right hand
side of (5.4) is attained at a probability measure supported on at most 1 + qt+1 points.

In the next section we discuss the classical inventory problem with moment constraints (see,
e.g., [23] for a thorough discussion of the inventory model).

5.1 Inventory Model

5.1.1 Static Case

Let us start by setting the problem in a static case. Suppose that a company has to decide about
order quantity x of a certain product to satisfy demand d. The cost of ordering is c > 0 per unit.
If the demand d is larger than x, then the company makes an additional order for the unit price
b ≥ 0. The cost of this is equal to b(d − x) if d > x, and is zero otherwise. On the other hand, if
d < x, then holding cost of h(x− d) ≥ 0 is incurred. The total cost is then equal to5

F (x, d) = cx+ b[d− x]+ + h[x− d]+ = max
{

(c− b)x+ bd, (c+ h)x− hd
}
. (5.5)

We assume that b > c, i.e., the back order penalty cost is larger than the ordering cost. The
objective is to minimize the total cost F (x, d), with x being the decision variable.

One has to make a decision before knowing realization of the demand d, so we model the demand
as a random variable D. Suppose that we have a partial information about probability distribution
of D. That is, we can specify a family M of probability measures on R+ and consider the following
worst case distribution problem

Min
x≥0

{
φ(x) := sup

Q∈M
EQ[F (x,D)]

}
. (5.6)

5For a number a ∈ R, [a]+ denotes the maximum max{a, 0}.
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The above problem, with the set M defined by first and second order moments of the demand D,
was studied in the pioneering paper by Scarf [18].

Suppose that range of the demand is known, i.e., it is known that D ∈ [l, u]. If there is no other
information about distribution of D, then we can take M to be the set of all probability distributions
supported on the interval [l, u]. In that case the maximum of EQ[F (x,D)] over Q ∈M is attained
at measure of mass one at a point of [l, u], and the respective optimal solution of the minimax
problem is (e.g., [20, p.5])

x∗ =
hl + bu

h+ b
. (5.7)

Suppose, further, that mean µ = E[D] of the demand is known, and hence let M be the set of
probability distributions supported on an interval [l, u] ⊂ R+ and having mean µ.

Proposition 5.1 Suppose that M is the set of probability distributions supported on an interval
[l, u] ⊂ R+ and having mean µ. Then problem (5.6) has the following optimal solution

x̄ =

{
l if b−c

b+h <
u−µ
u−l ,

u if b−c
b+h >

u−µ
u−l .

(5.8)

If b−c
b+h = u−µ

u−l , then the set of optimal solutions of (5.6) coincides with the interval [l, u].

Proof. Since the function F (x, d) is convex in d, we have by the following Lemma 5.1 that for any
x the worst probability measure in (5.6) is the measure supported on points l and u with respective
probabilities (u−µ)/(u− l) and (µ− l)/(u− l). Therefore problem (5.6) is reduced to the classical
Newsvendor Problem problem with the respective cdf of the demand:

H(t) =


0 if t < l,
u−µ
u−l if l ≤ t < u,

1 if u ≤ t.

The optimal solution of the Newsvendor Problem is x̄ = H−1
(
b−c
b+h

)
(e.g., [20, p.3]), and hence

(5.8) follows.

Lemma 5.1 Consider points l < u and µ ∈ [l, u], a convex function g : R → R and the set M of
probability measures on the interval [l, u] having mean µ. Then the problem

Max
Q∈M

EQ[g(D)] (5.9)

attains its optimal solution at probability measure supported on points l and u with respective prob-
abilities (u− µ)/(u− l) and (µ− l)/(u− l).

Proof. By the Richter - Rogosinski Theorem we have that maximum in (5.9) is attained at a
probability measure supported on two points of the interval [l, u].

Let us observe that for any c′ ≤ c, d′ ≥ d, p ∈ [0, 1] and p′ ∈ [0, 1] such that

(1− p)c+ pd = (1− p′)c′ + p′d′,

it follows by convexity of g(t) that

(1− p)g(c) + pg(d) ≤ (1− p′)g(c′) + p′g(d′). (5.10)
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Indeed, suppose for the moment that c = c′. Moreover, by making change of variables t→ t−c and
replacing g(·) with g(·)−g(c), we can assume without loss of generality that c = 0 and g(c) = 0. By
convexity of g(·) we have that for τ ∈ (0, 1) the inequality g(τd′) ≤ τg(d′) holds. Taking τ = p′/p
and noting that p′/p = d/d′, we obtain that pg(d) ≤ p′g(d′). This proves (5.10) in case of c = c′.
The other case where d = d′ can be verified in a similar way.

Since the left hand side of (5.10) is equal to the expectation of g(D) with respect to the
probability measure supported on the points c and d with respective probabilities 1− p and p such
that (1− p)c + pd = µ, and the right hand side of (5.10) is equal to the expectation of g(D) with
respect to the probability measure supported on the points c′ and d′ such that (1− p′)c′+ p′d′ = µ,
it follows that the optimal value of problem (5.9) is attained at a probability measure supported
on the points l and u. The corresponding probabilities can be computed in a straightforward way
from the equation (1− p)l + pu = µ.

5.1.2 Multistage Case

Consider the following multistage worst distribution formulation of inventory model

Min
xt≥yt

sup
Q∈M

EQ
[∑T

t=1 ct(xt − yt) + ψt(xt, Dt)
]

s.t. yt+1 = xt − dt, t = 1, ..., T − 1.
(5.11)

Here y1 is a given initial inventory level, ct, bt, ht are the ordering, backorder penalty, and holding
costs per unit, respectively, at time t, and

ψt(xt, dt) := bt[dt − xt]+ + ht[xt − dt]+.

We assume that bt > ct > 0 and ht ≥ 0, t = 1, ..., T , and that M is a set of probability measures
(distributions) of the demand process vector (D1, ..., DT ) ∈ RT

+. The minimization in (5.11) is
performed over (nonanticipative) policies of the form x1, x2(d[1]), ..., xT (d[T−1]) satisfying the feasi-
bility constraints of (5.11) for almost every realization (d1, ..., dT ) of the demand process. As before
d[t] := (d1, ..., dt) denotes history of the process up to time t.

Suppose that the distribution of (D1, ..., DT ) is supported on the set Ξ = Ξ1×· · ·×ΞT , given by
the direct product of (finite) intervals Ξt := [lt, ut] ⊂ R+, and we know respective means µt = E[Dt].
That is, let Mt be the set of probability distributions supported on the interval [lt, ut] and having
mean µt ∈ [lt, ut], t = 1, ..., T , and let M be the corresponding set of product measures of the form
(4.10).

For the nested formulation the corresponding cost-to-go functions are given by the following
dynamic equations, t = T, ..., 2,

Vt(yt) = inf
xt≥yt

{
ct(xt − yt) + sup

Qt∈Mt

EQt

[
ψt(xt, Dt) + Vt+1 (xt −Dt)

]}
, (5.12)

where VT+1(·) ≡ 0. It is straightforward to verify by induction that the functions Vt(·) are convex,
and hence by Lemma 5.1 we have that the maximum in (5.12), over probability measures Qt ∈Mt,
is attained at the probability measure

Q∗t = pt∆(lt) + (1− pt)∆(ut)

supported on points lt and ut with respective probabilities pt = (ut − µt)/(ut − lt) and 1 − pt =
(µt − lt)/(ut − lt). Therefore the respective problem is reduced to the corresponding problem with
single probability distribution Q∗ = Q∗1×· · ·×Q∗T of the demand process with the random variables
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Dt, t = 1, ..., T , being independent of each other. That is, the problem is reduced to the risk neutral
case with the demand process having finite number N = 2T scenarios.

Here the minimax and nested formulations are equivalent. Indeed, the optimal value of the
nested formulation is always greater than or equal to the optimal value of the minimax formulation.
Here the opposite inequality also holds, this can be seen by setting Q = Q∗ in (5.11).
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