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Via di Santa Marta, 3, 50139 Firenze, Italy

e-mail: fabio.schoen@unifi.it

Abstract

In this note we establish a relation between two bounds for convex
maximization problems, the one based on a concavity cut, and the
surrogate dual bound. Both bounds have been known in the literature
for a few decades but, to the authors’ knowledge, the relation between
them has not been previously observed in the literature.
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1 Introduction

Dual bounds for nonconvex problems can sometimes be related to other
bounds for the same problems. The best known example of such relations
is represented by the Lagrangian bound. Let us consider the nonconvex
problem

max f(x)

hi(x) ≤ 0 i = 1, . . . ,m

x ∈ X

(1)

where X 6= ∅ is a convex and compact set, while f, hi, i = 1, . . . ,m, are lower
semicontinuous functions over X. For λ ∈ Rm

+ , we define the Lagrangian
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function

L(x,λ) = f(x)−
m∑
i=1

λihi(x).

Obviously, for any λ ≥ 0,

g(λ) = max
x∈X

L(x,λ)

is an upper bound for (1) and the best of such bounds corresponds to the
solution of so called Lagrangian dual

min g(λ)

λ ≥ 0
(2)

Under some regularity conditions, it has been proved (see [2, 4]) that if
functions hi’s are affine ones, then, the Lagrangian dual bound is equal to
the bound

max concf,X(x)

hi(x) ≤ 0 i = 1, . . . ,m

x ∈ X
obtained by substituting the objective function f with its concave envelope
concf,X over X. In [3] it is shown that strict dominance of the Lagrangian
bound with respect to the concave envelope one holds as soon as we drop the
assumption of affine functions hi’s.

Another dual bound is the surrogate one. This is usually more compli-
cated to compute with respect to the Lagrangian bound. However, it can
be studied for some classes of nonconvex problems. In particular, here we
consider the convex maximization problem

max f(x)

Ax ≤ b

x ≥ 0

(3)

where f is a convex function, A ∈ Rm×n, b ∈ Rm
+ , and the feasible region

P = {x ∈ Rn
+ : Ax ≤ b}
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is a nonempty polytope; we also assume that f is continuous in the feasible
set. Note that b ≥ 0 implies that the origin is a vertex of P and we further
assume that the origin is not the unique point in P .

In this paper we would like to relate the surrogate dual bound for convex
maximization problems with a well known bound based on concavity cuts.
Although both the surrogate dual bound and the bound based on concavity
cuts have been known in the literature for a few decades, to the authors’
knowledge, the relation between them has never been remarked.

In Section 2 we will recall the notion of concavity cuts. In Section 3 we
will discuss the surrogate dual. Finally, in Section 4 we will show the relation
between the two bounds.

2 γ-extensions and concavity cuts

For convex maximization problems, γ-concavity cuts have been first intro-
duced in [8] and employed within conical partitions algorithms (see, e.g.,
[5, 6, 7]). Given a polyhedral cone C lying in the nonnegative orthant and
vertexed at x0 ∈ P , i.e.,

C = {x ∈ Rn : x = x0 + Qy ≥ 0, y ∈ Rn
+},

where Q is an invertible n×n matrix whose columns are the generating rays
of C, the subproblem over C is defined as follows

max f(x)

Ax ≤ b

x ∈ C

(4)

Since by the change of variable x = x0 + Qy we can always rewrite (4) as
(3), in what follows we will always refer to (3). Now, let us consider a value
γ > f(0), e.g., γ = LB + ε, for some ε > 0, where LB is some known lower
bound for problem (3). Note that we can always take LB ≥ f(0) since 0 is
a feasible solution in view of b ∈ Rm

+ . For each j = 1, . . . , n, let us denote by

sj = sj(γ) = max{λ : f(λej) ≤ γ} > 0, (5)

where ej is the vector whose components are all equal to zero, except the
j-th one which is equal to 1. Point sjej is called γ-extension over the j-th
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axis and we notice that it might happen that sj = +∞. It can be proved
(see, e.g., [6]) that the optimal value of problem (3) is not larger than γ if
the optimal value of the following linear problem

max [
∑

j : sj<∞
xj
sj
− 1]

Ax ≤ b

x ≥ 0

(6)

is not larger than 0. Moreover, the following inequality, called γ-concavity
cut, does not remove from the feasible region P any point with function value
larger than γ ∑

j : sj<∞

xj
sj
≤ 1.

3 Surrogate dual

Let us assume, w.l.o.g., that f(0) = 0. Given u = (u1, . . . , um) ≥ 0, let us
define the function

S(u) = max f(x)

uTAx ≤ uTb

x ≥ 0

(7)

In (7) we are substituting the original constraints Ax ≤ b with the single
surrogate constraint uTAx ≤ uTb. Since

u ≥ 0, Ax ≤ b ⇒ uTAx ≤ uTb,

for any u ≥ 0 the optimal value of (7) is an upper bound for (3). The
surrogate dual returns the best possible of such bounds

min
u≥0

S(u).

Given some value γ > LB, we would like to establish whether

min
u≥0

S(u) ≤ γ.

When, for every γ > LB, every γ–extension is finite, the answer to this
question is relatively simple and can be found following [1]. We report here
an extension of the theorem and its proof.
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Theorem 1 Assume that, for every finite choice of γ > LB, the quantity
sj = sj(γ) defined in (5) is finite. Then, for each γ > LB

min
u≥0

S(u) ≤ γ.

if and only if the following linear system admits at least a solution

uTb = 1

uTAj ≥ 1/sj(γ) ∀ j (8)

u ≥ 0

where Aj is the j–th column of A.

Proof. Let u ≥ 0 be given and assume that ∃ j : uTAj ≤ 0. In this case,
the surrogate feasible set is unbounded. In particular, as (7) is a convex max-
imization problem, it will be unbounded if and only if it is unbounded along
an extreme ray of the feasible region. The extreme rays of the polyhedron

{x ∈ Rn : uTAx ≤ uTb,x ≥ 0} (9)

are:

1. ej, for all j such that uTAj ≤ 0

2. ej − uTAj

uTAi
ei, where uTAi > 0 and uTAj < 0.

As it has been assumed that sj(γ) <∞∀ γ, then f(λej)→∞ as λ→∞
and S(u) is unbounded along the ray ej.

As we wish to minimize S(u) it is thus required that u is chosen so that
the problem is not unbounded and thus the choice of u can be restricted to
those vectors which satisfy uTA > 0.

We can also assume that uTb > 0. In fact, if uTb = 0, as we are now
assuming uTA > 0, 0 would be the unique feasible solution to (7) and, thus,
to the original problem (3), which, by assumption, can not hold.

So we can restrict the analysis to the case uTb > 0 and, thanks to the
homogeneity of the constraints, we let uTb = 1.

If, as we are now assuming, S(u) is not unbounded, it must have an
optimal solution at a vertex. One vertex is the origin, while all the others lie
on axes ej for which uTAj > 0. Any vertex can be represented as

Vj = δjej
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where

δj =
uTb

uTAj

when uTAj > 0. Thus

S(u) = max

{
f(0), max

j=1,...,n:uTAj>0
f

(
uTb

uTAj
ej

)}
Thus S(u) ≤ γ if and only if

f

(
uTb

uTAj
ej

)
≤ γ ∀ j : uTAj > 0

or, equivalently, if and only if

uTb

uTAj
≤ sj(γ) ∀ j : uTAj > 0.

Consequently, S(u) ≤ γ has a solution if and only if the following system

uTb = 1

uTAj ≥ 1/sj(γ) ∀ j
u ≥ 0

is feasible.
�

Notice that in the above proof an important role is played by the assumption
that sj < ∞. In the next section we will see that when this assumption is
satisfied, a strong relationship exists between bounds derived by concavity
cuts and those obtained through the surrogate dual. However, as we will
show later, when this assumption is relaxed, the equivalence between the
two bounds does not hold any more (in fact, we will see that the surrogate
dual bound dominates the bound based on concavity cuts).

4 The relation between concavity cuts and

surrogate dual

In this section we will study the strict relation between γ-concavity cuts
and the surrogate dual. To the authors’ knowledge this relation was not
previously observed in the literature.
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Theorem 2 If sj(γ) <∞ for all γ > LB, then, given γ > LB, there exists
u:

uT b = 1

uTAj ≥ 1/sj ∀ j ∈ 1, . . . , n

u ≥ 0

if and only if

max
n∑
j=1

xj
sj
− 1

Ax ≤ b

x ≥ 0

is non positive.

Proof. In order to establish whether the linear system (8) admits a solution,
we can, obviously, solve this linear program

min 0∑m
i=1 uibi = 1∑m
i=1 uiaij ≥

1
sj

j = 1, . . . , n

ui ≥ 0 i = 1, . . . ,m

Its dual is the following problem

max
∑n

j=1
ηj
sj

+ µ∑n
j=1 aijηj + µbi ≤ 0 i = 1, . . . ,m

ηj ≥ 0 j = 1, . . . , n

(10)

Note that feasible solutions (η, µ) of the problem above either with µ > 0 or
with µ = 0 and η 6= 0 would imply that the recession cone of P contains a
vector η 6= 0, thus contradicting the fact that P is a polytope. Therefore,
we can restrict our attention to feasible solutions with µ < 0. For µ < 0, let
us rewrite (10) as follows

max −µ[
∑n

j=1−
ηj
µsj
− 1]

−µ[
∑n

j=1−aij
ηj
µ
− bi] ≤ 0 i = 1, . . . ,m

ηj ≥ 0 j = 1, . . . , n
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After the change of variables ξj = −ηj/µ, for µ < 0, the problem above will
have optimal value equal to 0 (and, consequently, the linear system (8) will
admit a solution) if and only if

max [
∑n

j=1
ξj
sj
− 1]∑n

j=1 aijξj ≤ bi i = 1, . . . ,m

ξj ≥ 0 j = 1, . . . , n

has negative optimal value. But the problem above is exactly problem (6),
thus proving the relation between the γ-concavity bound and the surrogate
dual bound. �

The case of unbounded γ–extensions

In the above proofs an important role was played by the finiteness assumption
of every sj. This assumption is crucial for proving the equivalence between
surrogate bounds and γ–concavity cuts. The following example shows that
when γ–extensions are unbounded, equivalence no longer holds. Consider
the problem

max max{0;x1 − x2 − 1}
x1 − x2 ≤ 1

x2 ≤ 1

x1, x2 ≥ 0

The objective function f(x) = max{0;x1 − x2 − 1} is null at every feasible
point; thus we choose γ = 0 and we wish to check whether a feasible point
with f(x) > 0 exixts.

The γ–extensions in this case are easily seen to be

s1 = s1(0) = 1

s2 = s2(0) =∞

thus the bound based on γ–concavity cut in this case is obtained from

max x1 − 1

x1 − x2 ≤ 1

x2 ≤ 1

x1, x2 ≥ 0
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which is attained at x1 = 2, x1 = 1 with function value 1. Thus adding the
concavity cut x1 ≤ 1 is not sufficient to show that no feasible point exists
with function value greater than 0.

If on the other side we consider the surrogate dual

S(u) = max max{0;x1 − x2 − 1}
u1x1 + (u2 − u1)x2 ≤ u1 + u2

x1, x2 ≥ 0

it is easy to see that it is possible to choose u1, u2 so that S(u) = 0 (a possible
choice is u1 = 1, u2 = 0). Then, thanks to the surrogate bound, we can prove
that no point with positive function value exists in this case. Thus, in this
case, the surrogate dual bound dominates the one obtained from γ–concavity
cuts.

The question now arises about the general relationship between the two
types of cuts. In what follows we prove that the surrogate bound always
dominates the concavity–based one; strict dominance is possible only when
at least one of the γ–extensions is unbounded.

In fact we can prove the following:

Theorem 3 If the following linear system

bTu = 1

uTAj ≥ 1/sj ∀ j : sj(γ) <∞

uTAj ≥ 0 ∀ j : sj(γ) =∞

u ≥ 0

(11)

admits a feasible solution ū, then S(ū) ≤ γ.

Proof. Let F := {j : sj(γ) = ∞} be the set of indices of coordinate axes
along which the objective function does not exceed γ. Consider the surrogate
problem

S(ū) = max f(x)

ūTAx ≤ ūTb = 1

x ≥ 0

(12)

Let
Fū = {j ∈ F : ūTAj = 0}.
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The feasible region Xū of (12) has vertices v0 = 0 and

vj =
1

ūTAj
ej ∀ j ∈ {1, . . . , n} \ Fū.

Since
1

ūTAj
≤ sj(γ), ∀ j ∈ {1, . . . , n} \ Fū

and f(0) ≤ γ, we can conclude that f(vj) ≤ γ holds at all vertices of Xū.
Then, if we are able to prove that the optimal value of problem (12) is
attained at a vertex of Xū, we are done. The extreme rays rj of Xū are the
directions of the axes ej, j ∈ Fū. Now, let

Iū = {0, . . . , n} \ Fū,

By the well known Minkovski’s theorem, each point x ∈ Xū can be repre-
sented as follows

x =
∑
j∈Iū

λjvj +
∑
j∈Fū

µjrj (13)

with
λj ≥ 0, j ∈ Iū,

∑
j∈Iū

λj = 1, µj ≥ 0, j ∈ Fū.

Let
Kx =

∑
j∈Fū

µj.

If Kx = 0, then, by convexity of f

f(x) ≤
∑
j∈Iū

λjf(vj) ≤ max
j∈Iū

f(vj) ≤ γ

and the result is proved. If Kx > 0, then take α > 0 and rewrite (13) as
follows

x =
∑
j∈Iū

(1− α)λj
vj

1− α
+
∑
j∈Fū

α
µj
Kx

Kxrj
α

Noting that ∑
j∈Iū

(1− α)λj︸ ︷︷ ︸
≥0

+
∑
j∈Fū

α
µj
Kx︸ ︷︷ ︸
≥0

= 1
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and that

f

(
Kxrj
α

)
≤ γ, j ∈ Fū,

by convexity of f we have

f(x) ≤
∑

j∈Iū (1− α)λjf
( vj

1−α

)
+
∑

j∈Fū
α
µj
Kx
f
(
Kxrj
α

)
≤∑

j∈Iū (1− α)λjf
( vj

1−α

)
+ αγ.

Letting α→ 0, by continuity of f , we end up with

f(x) ≤ max
j∈Iū

f(vj) ≤ γ,

as we wanted to prove. �

Since, by following the same proof as in Section 4, the dual of the feasibility
problem (11) turns out to be the bound based on the γ–concavity cut, we
can conclude that the surrogate dual bound is always at least as good as the
one obtained via concavity cuts and, in some cases, it is strictly preferable.

In the proof of Theorem 1 we noticed that the extreme rays of the poly-
hedron (9) are ej, for all j such that uTAj ≤ 0, and

ej −
uTAj
uTAi

ei,

where uTAi > 0 and uTAj < 0. Now, let

K = {j : sj < +∞}.

Let us assume that, given the directions

ej + δei, i ∈ K, j 6∈ K,

the range [0, δij] for the δ values such that

f(λ(ej + δei)) ≤ γ ∀ λ ≥ 0

is known. Then, we can prove the following theorem.
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Theorem 4 It holds that minu≥0 S(u) ≤ γ if and only if the optimal value
of the following linear program

max
∑

i∈K
xi
si
− 1∑

i∈K xiAi +
∑

i∈K, j 6∈K zij(Aj + δijAi) ≤ b

xi, zij ≥ 0 i ∈ K, j 6∈ K

(14)

is not larger than 0.

Proof. It holds that minu≥0 S(u) ≤ γ if and only if either the following
system admits a solution

uTb > 0

uTAj ≥ uTb
sj

j ∈ K
−uTAj

uTAi
≤ δij i ∈ K, j 6∈ K

u ≥ 0

(15)

or the following system admits a solution

uTb = 0

uTAj > 0 j ∈ K
−uTAj

uTAi
≤ δij i ∈ K, j 6∈ K

u ≥ 0

(16)

We consider the two systems separately. By homogeneity, system (15) is
equivalent to

uTb = 1

uTAj ≥ 1/sj j ∈ K

uT (Aj + δijAi) ≥ 0 i ∈ K, j 6∈ K

u ≥ 0

After adding the objective min 0 to this linear system, by the same proof
of Theorem 2, the dual of the resulting linear program can be rewritten as
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(14). Again by homogeneity, system (16) is equivalent to

uTb = 0

uTAj ≥ 1 j ∈ K

uT (Aj + δijAi) ≥ 0 i ∈ K, j 6∈ K

u ≥ 0

After adding the objective min 0 to this linear system, again by the same
proof of Theorem 2, the dual of the resulting linear program can be rewritten
as

max
∑

i∈K xi∑
i∈K xiAi +

∑
i∈K, j 6∈K zij(Aj + δijAi) ≤ b

xi, zij ≥ 0 i ∈ K, j 6∈ K

Therefore, minu≥0 S(u) ≤ γ holds if and only if either the optimal value of
the above linear program is equal to 0 or the optimal value of linear program
(14) is not larger than 0. But by noting that if the optimal value of the above
linear program is equal to 0, then the optimal value of (14) is not larger than
0, we can conclude that minu≥0 S(u) ≤ γ holds if and only if the optimal
value of (14) is not larger than 0. �

Conclusions

We have shown in this paper that for convex maximization problems over
a polytope, the surrogate dual bound is always at least as strong as the
bound based on the γ–concavity cut. Moreover, we have shown that if some
assumptions hold for the objective function which imply that f diverges to
infinity along coordinate axes, then the two bounds are equivalent.
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