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Abstract In this work, we present new insights into the dynamic stability of electricity
markets. In particular, we discuss how short forecast horizons, incomplete gaming,
and physical ramping constraints can give rise to stability issues. Using basic concepts
of market efficiency, Lyapunov stability, and predictive control, we construct a new
stabilizing market design. A numerical case study is used to illustrate the developments.
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1 Introduction

Electricity market models have become an indispensable tool for analyzing and pre-
dicting the impact of diverse dynamic drivers (e.g., weather, load, fuel prices, and
wind supply), physical constraints (e.g., ramping, transmission congestion), and gam-
ing behaviors (e.g., bidding strategies) on market efficiency and prices [26]. These mod-
els range from data-based time-series models [23,8] to mechanistic models based on
agent-based systems [7,25] and game-theoretical formulations [6,15]. Game-theoretical
models, in particular, make a systematic use of mechanistic gaming insights and phys-
ical constraints and thus provide more comprehensive predictive capabilities.

Several game-theoretical models based on a range of market structure assumptions
have been proposed in the past. Most of these models are static in the sense that they
assume some sort of steady-state behavior (e.g., periodicity) of the dynamic drivers.
In the absence of dynamic constraints, these models can provide a reasonable repre-
sentation of the long-term behavior of a market. Consequently, these models are useful
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in analyzing steady-state constraints such as transmission congestion in planning and
market design exercises. Static models, however, cannot explain the coupled effect of
dynamic constraints and non stationary behavior of dynamic drivers on future price
stability, which is critical in day-ahead and real-time operations.

A widely used game-theoretical dynamic market model was originally proposed in
[1,2]. This model assumes that the players bid recursively in time in the direction that
minimizes their marginal cost. Every bidding step can be interpreted as a steepest-
descent step that converges to a steady-state equilibrium as time evolves. While this
model is useful for analyzing market stability properties, it is based on mathematical
rather than mechanistic assumptions and thus has limited applicability. Recently, a
dynamic market model based on predictive control concepts was proposed in [14,13].
Here, supply functions and receding horizon concepts are incorporated in the model,
providing a more natural representation of actual bidding procedures. This model has
been used to analyze the effect of dynamic disturbances such as wind on prices under
high penetration levels. A limitation of this framework, however, is that the dynamic
model of the players is still based on the marginal-cost descent assumption.

Dynamic market models based on mechanistic bidding and physical constraints
considerations have also been proposed [9,19,17]. These models can be used to ex-
plain how fluctuations of fundamental variables such as prices can arise from physical
dynamic constraints such as ramping. Ramp constraints depend on multiple physical
factors such as generator controller performance [3,4], thermal stresses, and wall ca-
pacitances [24]. These dynamic constraints affect market performance in a similar way
as transmission congestion does [12].

The effect of dynamic constraints on market stability will become stronger in the
presence of more volatile environments, such as those expected under high wind-power
supply and smart-grid programs. Motivated by this situation, we revisit some of the
issues affecting market stability. In particular, we establish a control-theoretical frame-
work that uses concepts arising in electricity markets, dynamic games, and Lyapunov
stability of predictive control. We derive a market-specific Lyapunov function that can
be used to study the long-term stability of a given market. The Lyapunov function
is constructed by using a summarizing state in terms of a basic definition of mar-
ket efficiency. We demonstrate that the framework can be used to design, implement,
and analyze market clearing procedures and gaming rules. In particular, we use the
framework to explain how incomplete gaming solutions (as those used in practice),
short foresight horizons, and limited ramping capacity can significantly affect market
stability.

The paper is structured as follows. In Section 2 we present the market structure
under consideration. In Section 3 we discuss implementation issues arising from incom-
plete gaming. In Section 4 we derive a framework to analyze market stability properties.
In Section 5 we present a numerical case study. In Section 6 we provide concluding
remarks and recommendations for future extensions.
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2 Market Structure

We first define the market structure under consideration and discuss the underlying
modeling assumptions.

2.1 Suppliers

We consider a supply-function equilibrium market structure similar to those proposed
in [16,17]. Here, the supplier decisions are the parameters ait, b

i
t of the affine supply

function:

qit(pt, b
i
t, a

i
t) = bit · (pt − ait). (1)

Here, qit is the production quantity of supplier i ∈ S := {1..S} at time t; pt ≥ 0 is
the price at time t, and ait, b

i
t are the bidding coefficients at time t for supplier i. We

assume that the supply function is non decreasing in pt. Consequently, we impose the
requirement that bit ≥ 0. In our analysis, we will assume that the generation quantities
qit and pt are always non-negative. Consequently, will restrict the intercept parameter
ait to be non-negative as well. The supply function can also be expressed in inverse
form as

pt(q
i
t, b

i
t, a

i
t) =

1

bit
qit + ait. (2)

The consumer demands can also be represented as affine functions of the form

djt = njt − γ
j
t pt, (3)

where njt is the nominal (inelastic) demand trajectory for consumer j ∈ C := {1..C} at
time t and γjt is the elasticity for consumer j. The inverse form of the demand function
is

pt(d
j
t , n

j
t , γ

j
t ) =

1

γjt
(njt − d

j
t ). (4)

The supplier problem can be posed as follows. Starting at time k, given the price
signals pt over the future horizon T = {k..k + T}, where T is the horizon length and

q̂ik, â
i
k, b̂

i
k are the current states at time k for the supplier, find the bidding parameters

trajectories ait, b
i
t, t ∈ T , that maximize the future profit (revenue minus marginal

cost). To do so, we assume that the suppliers i ∈ S solve the following problem:

max
ait,b

i
t,q

i
t

∑
t∈T

φit :=
∑
t∈T

(
pt · qit − cit(qit)

)
(5a)

s.t. qit = bit · (pt − ait), t ∈ T (5b)

qi ≤ qit ≤ qi, t ∈ T (5c)

ait, b
i
t ≥ 0, t ∈ T (5d)

qik = q̂ik, a
i
k = âik, b

i
k = b̂ik, (5e)
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where qi, qi ≥ 0 are the lower and upper production limits, respectively. We emphasize

that the quantities qit in (5) act only as dummy variables. The accumulated future
profit is denoted by

∑
t∈T φ

i
t. The marginal cost function is assumed to have the form

cit(q
i
t) = hit · qit +

1

2
git · (qit)2. (6)

We make the common assumption that git > 0 so the marginal cost is convex in qit [21].
Consequently, we have that the supplier problem is convex in the space of qit (e.g., the
Cournot game case). However, we can observe that the problem is ill-posed in the space
of ait, b

i
t, since different combinations of these parameters can reach the same optimal

quantities and profit. Since this introduces difficulties in analyzing the properties of
the supplier problem, we will assume that the intercept parameters ait are zero. This
assumption will not affect the solution of the game as long as the price is assumed to
be non-negative since there will always exist bit ≥ 0 that can map a given price to any
production quantity satisfying (5c).

We also note that the case where pt = 0 has a feasible solution only if bit = qit = 0
is admissible (i.e., the minimum capacity must be qi = 0). This can be seen from the
optimality condition (20c) in the Appendix. We summarize the problem properties in
the following statement.

Property 1 If pt ≥ 0, ait = 0, and git ≥ 0, problem (5) is convex. If pt > 0, the problem
has a feasible solution for any qi, qi ≥ 0. If pt = 0, the problem admits a solution only

if qi
t

= 0.

Since the quantities qit in (5) act only as dummy variables, we can pose this problem
entirely in terms of the prices pt and the supply function parameters ait, b

i
t by substi-

tuting (5b) into (5a) and (5c). In addition, we interpret the bidding parameters ait, b
i
t

as suppliers states. These modifications lead to the following equivalent formulation in
state-space form:

max
bit,∆b

i
t

∑
t∈T

(
pt · bit · pt − cit

(
bit · pt

))
(7a)

s.t. bit+1 = bit +∆bit, t ∈ T − (7b)

qi ≤ bit · pt ≤ qi, t ∈ T (7c)

bit ≥ 0, t ∈ T (7d)

bik = b̂ik, (7e)

where T − := T \ {T}. The bidding increments ∆bit are interpreted as the control
actions of the supplier. Note that these are unconstrained, implying that the suppliers
can adjust their bids infinitely fast. A direct consequence is that the feasible set of the
problem is invariant to the initial states b̂ik. In addition, the feasible set is invariant
to the price signals pt since it is always possible to find bit ≥ 0 mapping any pt to a
feasible quantity qit. Consequently, we denote the feasible set of this problem as Ωi.

To simplify our analysis, we assume that the demands are inelastic. This is equiv-
alent to assuming that the consumers do not bid into the market and djt = njt . This
assumption will not affect the generality of our framework. However, it is well known
that, in practice, elasticity can have significant effects on market stability.
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2.2 ISO Market Clearing

The independent system operator (ISO) receives the bidding states bit and clears the
market by determining the generation quantities (and implicitly the prices) that bal-
ance total supply and demand. The main objectives of the ISO are to maximize social
welfare and efficiency and to ensure market stability. The interaction between the ISO
and the suppliers results in a game in which each player tries to maximize its own
performance metric. The interaction is sketched in Figure 1.

Supplier 1

ISO

Supplier S

Fig. 1 Schematic representation of game between ISO and suppliers.

In this work, market stability will be interpreted as the ability to keep prices
bounded from a given reference in the presence of dynamic fluctuations of demands
and renewable supply and physical constraints. To do so, we propose to use the basic
concept of market efficiency as a measure of stability. To define efficiency, we first
define an ideal unconstrained market clearing problem. This problem can be stated as
follows. Given supply function states bit, solve [6]:

min
qit

∑
t∈T

ϕ̄t :=
∑
t∈T

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (8a)

s.t. ∑
i∈S

qit ≥
∑
j∈C

djt , t ∈ T (8b)

qi ≤ qit ≤ qi, i ∈ S, t ∈ T , (8c)

where ∫ qit

0

pt(q, b
i
t)dq =

1

2 bit
(qit)

2. (9)

The objective function is the negative social welfare, denoted as
∑
t∈T ϕ̄t. Since we have

assumed that the consumers do not bid into the market, this reduces to the aggregated
income of the suppliers. We have that ϕ̄t ≥ 0 since qit, b

i
t ≥ 0. The multipliers for the

constraint (8b) are the prices p̄t ≥ 0. Note that the feasible set of this problem is not
affected by the bidding parameters, since they enter only in the objective function.
In addition, in this unconstrained formulation, we assume that the generators can
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move infinitely fast between production levels (no ramp constraints). This assumption
decouples the problem in time. Hence, the feasible set of this problem is invariant to
the current state of the generators q̂ik.

The unconstrained market clearing problem is convex for fixed bit ≥ 0. The case
where bit = 0 only has a feasible solution if qit = 0 is admissible (i.e., qi = 0). This
can be seen from the optimality condition (24b) in the Appendix. In this case, it is
possible to eliminate qit from the formulation by fixing its value to zero. The problem
always has a feasible solution as long as the demand is reachable. This can be achieved
if the demand satisfies

∑
i∈S q

i ≤
∑
j∈C d

t
j ≤

∑
i∈S q

i, t ∈ T . We summarize these
properties in the following.

Property 2 If bit ≥ 0, problem (8) is convex. The problem has a feasible solution if∑
i∈S q

i ≤
∑
j∈C d

t
j ≤

∑
i∈S q

i holds. If bit > 0, feasibility holds for any qi
t
, qit ≥ 0. If

bit = 0, the problem admits a solution only if qi
t

= 0.

For our analysis, we note that having infinitely fast dynamics in the generators is
equivalent to assume that their ramp capacities are equal to the distance between the
maximum and minimum generation capacities qi and qi, respectively. Thus, we can
pose (8) in the following equivalent state-space form:

min
qit,∆q

i
t

∑
t∈T

ϕ̄t :=
∑
t∈T

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (10a)

s.t.

qit+1 = qit +∆qit, i ∈ S, t ∈ T − (10b)∑
i∈S

qit ≥
∑
j∈C

djt , t ∈ T (10c)

− (qi − qi) ≤ ∆qit ≤ (qi − qi), i ∈ S, t ∈ T − (10d)

qi ≤ qit ≤ qi, i ∈ S, t ∈ T (10e)

qik = q̂ik, i ∈ S. (10f)

The variables ∆qit are the generation ramp increments that are bounded by ±(qi− qi),
the maximum generation ramp that is physically possible. We will see in the following
proposition that it is possible to drop the dynamic constraints (10b). Hence, the feasible
set invariant to the initial states of the suppliers q̂ik. Accordingly, the feasible set of
this problem will be denoted as ΩISOUNC(q̂ik) or ΩISOUNC .

Proposition 1 Problems (8) and (10) are equivalent.

Proof: The unconstrained problem (8) generates optimal trajectories {qit}, i ∈ S.
Since qi ≤ qit ≤ qi, t ∈ T , we have −(qi−qi) ≤ qit+1−qit ≤ (qi−qi), t ∈ T −. Moreover,

this trajectory is invariant to the initial states q̂ik since qi ≤ q̂ik ≤ qi. For problem (10),

since the ramp increments ∆qit are bounded by ±(qi − qi), the optimal trajectories of

(8) can be reached from any initial condition q̂ki . This is equivalent to removing the
variables ∆qit, dynamic constraints (10b), and initial conditions (10f). �
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The solution of the unconstrained market clearing problem represents the ideal
performance for the market (in the absence of ramping constraints). We now consider
the constrained market clearing problem:

min
qit,∆q

i
t

∑
t∈T

ϕt :=
∑
t∈T

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (11a)

s.t. qit+1 = qit +∆qit, i ∈ S, t ∈ T − (11b)∑
i∈S

qit ≥
∑
j∈C

dtj , t ∈ T (11c)

− ri ≤ ∆qit ≤ ri, i ∈ S, t ∈ T − (11d)

qi ≤ qit ≤ qi, i ∈ S, t ∈ T (11e)

qik = q̂ik, i ∈ S. (11f)

The multipliers for the constraint (11c) are the prices pt ≥ 0. In this formulation, the
ramps are bounded by ri, ri ≤ (qi − qi), respectively. This constrains the dynamic

response of the generators. As before, we note that the bidding parameters bit enter
only the cost function and thus do not affect the feasible set. In this case, however,
the dynamic constraints introduce time coupling because the ramp constraints might
become active. Consequently, the feasible set does depend on the initial conditions q̂ik.
Accordingly, the feasible set of this problem will be denoted as ΩISO(q̂ik).

The constrained social welfare is denoted as
∑
t∈T ϕt with ϕt ≥ 0 since bit, q

i
t ≥ 0.

It is easy to prove that
∑
t∈T ϕt ≥

∑
t∈T ϕ̄t since ΩISO(q̂ik) ⊆ ΩISOUNC(q̂ik). In other

words, the performance of the constrained clearing problem is bounded by that of the
unconstrained counterpart. It is not obvious, however, that ϕt ≥ ϕ̄t holds point wise
since the constrained problem (11) exhibits time coupling. We prove this in a different
way in the following proposition.

Proposition 2 For fixed bit ≥ 0, the point social welfare ϕt evaluated at a solution of
problem (11) and ϕ̄t evaluated at a solution of (8) satisfy ϕt ≥ ϕ̄t, t ∈ T .

Proof: At t = k we have that ϕk = ϕ̄k since the initial conditions q̂ik are fixed. The
unconstrained cost ϕ̄k+1 is invariant to the state of the current time step since there
are no ramp constraints. Consequently, there does not exist a feasible combination of
increments ∆qik that can reach a feasible state qik+1 satisfying ϕk+1 < ϕ̄k+1. Using
induction over t = k, ..., k + T , we have that ϕt ≥ ϕ̄t point wise with equality if and
only if the ramp constraints are non-binding. �

We now formally define the point market efficiency ηt as

ηt :=
ϕ̄t
ϕt

= 1− ϕt − ϕ̄t
ϕt

, t ∈ T . (12)

By definition and from Proposition 2, we have that ηt ∈ [0, 1]. The case where
ηt = 1 is achieved if and only if ϕt = ϕ̄t. This implies that the prices are close to
those of the unconstrained market clearing problem, which represents the ideal market
performance. The case where ηt = 0 occurs if and only if the constrained social welfare
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diverges to infinity. This case occurs when the future demands cannot be met given
the current states the generators and the ramping constraints. This implies that the
prices pt diverge (i.e., a small change in demand leads to large changes in price). In the
following section, we show that the distance in performance between the constrained
and unconstrained games can be bounded by the magnitude of the ramp limits.

2.3 Stability of the Game Variational Inequality

Using the equivalence between (10) and (8), we have that the only difference between
problems (10) and (11) are the ramp lower and upper bounds. Consequently, problem
(11) results from parameter embedding of (10) with perturbations ri − (qi − qi) and

ri − (qi − qi), i ∈ S. Using this observation we can analyze stability for the solution
of the unconstrained game under perturbations of the ramp limits and thus relate its
solution to that of the constrained game.

To establish stability of the unconstrained game, we need to ensure that the map-
ping matrix of the variational inequality resulting from coupling the optimality con-
ditions of problems (10) and (8) is nonsingular. The optimality conditions of these
problems are given in the Appendix.

Lemma 1 Consider the following block matrix (where the diagonal blocks are square).

L =


G 0 0 A 0
I P 0 BH 0
0 −B−2 B−1 MT NT

0 0 M 0 0
0 0 N 0 0


We make the following assumptions:

[A1 ] The matrix G is invertible.
[A2 ] The matrices P , B are diagonal and positive, with entries equal to the prices pt

and bidding parameters bti, respectively.
[A3 ] The blocks G,P,B have the same dimensions.
[A4 ] The matrix [MTNT ] has full column rank.
[A5 ] The diagonal entries of B are bounded below.

Then, there exist positive values q∗, p∗, independent of G such that, if pt · bit > q∗
and pt > p∗, then the matrix L is nonsingular.

Proof: Since from assumptions [A1],[A2] we have that G, P are invertible, we
immediately have the following algebraic relationship[

G 0
I P

]−1
=

[
G−1 0

−P−1G−1 P−1
]

We construct the Schur complement of the upper 2 × 2 block of blocks, which we
denote by S
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S =

B−1 MT NT

M 0 0
N 0 0

−
 0 −B−2

0 0
0 0

[ G−1 0
−P−1G−1 P−1

] [
0 A 0
0 BH 0

]

=

B−1 MT NT

M 0 0
N 0 0

−
 0

[
B−2P−1G−1A−B−1P−1H

]
0

0 0 0
0 0 0


=

B−1 [MT −B−2P−1G−1A+B−1P−1H
]
NT

M 0 0
N 0 0



From the properties of Schur complements (and of determinants) it follows that L
is invertible if and only if S is invertible. Using the Schur complement argument again,
we obtain that since B (Assumption [A2]) is invertible, then S is invertible if and only
if the Schur complement

T =

[
M
N

]
B

[
M
N

]T
+

[
M
N

] [
[−B−1P−1G−1A+ P−1H] 0

]
is invertible. But from [A4], [A5] it follows that the first matrix in the sum has eigen-
values bounded below away from 0. Since the matrices M,N,G−1, A,H are fixed it
follows that if P−1B−1 and P−1 are sufficiently small, then the matrix T is positive
definite (even if not symmetric) and thus invertible. The conclusion follows. �.

We now analyze the stability of the solution of the game created by the coupled
solution of (5) and (11).

Theorem 1 Let J be the reduced Jacobian of the game (5) and (11) (the Jacobian of
the coupled KKT conditions of the game, with the variables that reached their bounds
eliminated). Then, if at a solution of the game each of the optimization problems sat-
isfies LICQ and the prices pt, t ∈ T and the production qit, t ∈ T , i ∈ S values are
large enough, then J is invertible.

Proof: We write the supplier optimization problem (5) in a slightly different way by
extracting the bidding trajectory parameters bit outside the problem (we are considering
only the case with ait = 0) and solving (5) in terms of qit. Subsequently, bit is obtained by
solving for it from the supply function equation (5b). To make the intended application
of Lemma 1 more clearly justified, we rewrite (5b) as q = B ∗ (IS ⊗ IT ) p. Here q are
the overall production levels, B is a matrix whose diagonal are the bidding parameters,
and p is the vector of prices. Here ⊗ is the Kronecker product.

Then bit is used as a parameter in the optimization problem of the ISO (11). In the
latter optimization problem, we eliminate ∆qit using (11b).

It then follows that the active Jacobian of the game that couples (5), (5b), and (11)
has precisely the structure of the matrix from Lemma 1. The variables (corresponding
to the columns of that matrix) are, in order, qit, λ (production levels and Lagrange
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multipliers of the supplier problem), bit, q
i
t (production levels of the ISO problem), the

prices pt, and the Lagrange multipliers of the ISO problem.

The first row corresponds to the gradient of the KKT conditions of (5). The matrix
G is the KKT matrix of that problem reduced on the active set, and the matrix A
appears from the gradient of the KKT conditions with respect to the price (which is the
only exogenous variable that impacts the supplier optimization problem). The second
row corresponds to the Jacobian of the equation (5b). Here we define P = (IS ⊗ IT ) p.
We also define H to be the matrix that satisfies B (IS ⊗ IT ) p = BHp (such a matrix
must exist since the form on the left is bilinear in b and p). We note that (5b) can then
also be written as q = BH · p.

The last three rows correspond to the KKT conditions of the ISO game where the
fourth row corresponds to the demand satisfaction constraint and the last row to all
other constraints. Moreover, they are coupled with the other optimization problem
only through the parameters B that account for the B−2 block in the (3,2) position.

We note that assumptions of Lemma 1 are satisfied. Indeed [A1] follows from the
assumption that LICQ holds for (5) and the fact that its objective function is strongly
convex in q. Assumptions [A2],[A3] follow by construction. Assumption [A4] follows
from the fact that (11) satisfies LICQ.

We then obtain from Lemma 1 that the reduced Jacobian matrix is invertible as
long as pt · bit and pt are sufficiently large. From (5b) the first is equivalent with qit
being sufficiently large, which proves the claim. �

We note that our stability condition is necessary but not sufficient for the stability
of the solution of the resulting variational inequality [11], at least not in the general
case. The typical result for stability involves a P property, which we do not prove here.
On the other hand, such a result is sufficient in the case where strict complementarity
holds.

In any case, the result gives us an interesting insight, which is that among the cases
for which we can guarantee stability are the cases where the prices and production levels
are sufficiently high. This seems a reasonable conclusion from a modeling perspective.
Assuming stability of the solution of the underlying variational inequality given by
the game, we can establish the following result that bounds the distance between the
solution of the unconstrained and constrained games

Theorem 2 Assume that a solution of the unconstrained game ϕ̄t, p̄t, η̄ = 1, t ∈ T
given by (7) and (10) is locally stable. Then, there exist Lipschitz constants Lϕ, Lp, Lη ≥
0 such that the solution of the constrained game ϕt, pt, ηt, t ∈ T given by (7) and (11)
satisfies,

|ϕt − ϕ̄t| ≤ Lϕ
∑
i∈S

(
|ri − (qi − qi)|+ |ri − (qi − qi)|

)
|pt − p̄t| ≤ Lp

∑
i∈S

(
|ri − (qi − qi)|+ |ri − (qi − qi)|

)
|ηt − 1| ≤ LηLϕ

∑
i∈S

(
|ri − (qi − qi)|+ |ri − (qi − qi)|

)
.
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Proof: The result is immediate from stability of the solution of the unconstrained
game [11], from the fact that the constrained game is a parametric embedding of the
unconstrained counterpart, and from the definition of efficiency (12). �

We note that the Lipschitz constants depend on the initial conditions of the gen-
erators, on the demand, and on the horizon length. In particular, if the demand and
the initial conditions are such that the ramp constraints are not active, the Lipschitz
constants will be zero.

In this analysis, we have not considered network constraints in order to simplify the
presentation. However, the definition of efficiency can account for any other physical
constraints limiting performance with respect to the unconstrained clearing problem
(8).

Based on the definition of efficiency, maximizing efficiency is equivalent to minimiz-
ing the social welfare. While this is an obvious result from a modeling point of view,
we will see that adding the efficiency definition in the market clearing problem (11) is
advantageous from a market stability point of view.

3 Implementation Issues

To represent the game given by (7) and (11) in abstract form, we define the market
states xt as the set of quantities qit and prices pt and define the aggregated vector from
time k to k+T as xk+Tk := {xk, ..., xk+T } with initial conditions x̂k. The controls ut are

defined as the set of ramps for all suppliers ∆qit, i ∈ S with uk+T−1k = {uk, ..., uk+T−1}.
The bidding increments ∆bit are interpreted as the supplier controls and are denoted

as wit, and we define wt := {w1
t , ..., w

S
t }. We define the supplier vectors wk+T−1,i

k , i ∈ S
and the total vector wk+T−1

k . The bidding states bit are interpreted as the supplier states

zt with aggregated vector zk+Tk and initial conditions ẑk. We include the problem data

over the horizon (in this case given by the demands) in the aggregated vector mk+T
k .

We can eliminate the states xt, zt by forward elimination. With this, we can express
the supplier and market clearing problem entirely in terms of the controls and initial
state conditions. We thus have the supplier problem,

min
wk+T−1,i
k

∑
t∈T

φit(w
i
t, ut) (13a)

s.t. wk+T−1,i
k ∈ Ωi, (13b)

for i ∈ S and the constrained market clearing problem,

min
uk+T−1
k

∑
t∈T

ϕt(ut, wt) (14a)

s.t. uk+T−1k ∈ ΩISO(x̂k). (14b)

Since the decisions of the players do not affect each others feasible sets, the resulting
game is a pure Nash equilibrium problem [10].

For implementation, the game given by (13) and (14) can be solved over a receding
horizon. One way of doing so is as follows. At time k we use the forecast data mk+T

k
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(e.g.; demands djt , t ∈ T = {k..k + T}) and the current states x̂k, ẑk. We solve the

game (13) and (14) over the horizon T to obtain uk+T−1k

∗
,wk+T−1

k

∗
. The system will

evolve from its current state x̂k, ẑk into the state x̂k+1, ẑk+1. In the nominal case (no
forecast errors in the data mk+T

k ), the state will evolve as predicted from the model.
At the next step k + 1, we introduce feedback in the market by shifting the horizon
of the game to obtain T ← {k + 1..k + T + 1} and use the new state x̂k+1, ẑk+1 as
initial conditions. The new data mk+1+T

k+1 is forecast and the game problem is solved to

obtained the new decisions uk+Tk+1

∗
,wk+T

k+1

∗
. Note that even in the nominal case feedback

is required because the horizon T is usually finite (at time k it is not possible to foresee
demands beyond time k+T ). This implementation framework is intuitive, but it is not
used in practice, mainly because of constraints in information exchange and in decision
times.

The current strategy used in practice is to solve the game by iterating between the
suppliers and the ISO in a distributed manner [20,5]. Here, each supplier guesses the

ISO states (e.g. prices) or, implicitly, its decisions. This guess is denoted by uk+T−1k

`
,

where ` is an iteration counter. The suppliers compute bidding parameters wk+T−1,`
k

by solving (13). These are sent to the ISO to solve the market clearing problem (14)

to update the controls uk+T−1,`+1
k . This can be interpreted as a Jacobi-like iteration.

The Jacobi iterate uk+T−1,`+1
k ,wk+T−1,`+1

k is feasible but not optimal for the game.

Feasibility follows since the suppliers decisions wk+T−1
k do not enter the feasible set

ΩISO(·) and since the supplier problems always have a feasible solution for any deci-
sions of the ISO uk+T−1k . This suboptimal strategy is an incomplete gaming strategy
between the suppliers and the ISO. A key observation is that the resulting incomplete
gaming error generated at each step is propagated forward in time through the initial
states b̂ik, q̂

i
k and thus introduces additional dynamics into the market. As we discuss in

the next section, this can lead to market stability issues. For instance, the suboptimal
gaming solution obtained at time k might place the generators at a future state k + 1
from which the future demands at times k + 1...k + 1 + T cannot be reached, thus
making the game infeasible at k + 1 infeasible.

4 Dynamic Stability Issues

Stability, in the context of wholesale electricity markets, reflects strong fluctuations
and divergence of prices. Traditional control-theoretic stability analysis tools are not
directly applicable in this context because the market is inherently dynamic and does
not exhibit a natural equilibrium for the states. While it is possible to design mar-
ket clearing procedures (these can be viewed as market controllers) that artificially
introduce equilibria (i.e., by enforcing periodicity in some form), this strategy can con-
strain and degrade market performance. New stability analysis tools are thus needed
to enable a systematic design, analysis, and implementation of robust and stabilizing
market clearing procedures that can sustain market manipulation and strong dynamic
variations of demands and renewable supply. In this section, we take a first step toward
this goal by making use of a market-specific Lyapunov stability framework.
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We can express the market efficiency as an implicit function of the states of the
form ηk(xk, zk) or ηk for short-hand notation. Here, we use the following definition of
market stability.

Definition 1 The market system defined by the game (13) and (14) is said to be
stable if, given η0 ∈ Ωη(ε) := {η | η ≥ ε} with ε ∈ [0, 1], there exist feasible sequences
uk, wk over k = 0..∞ such that ηk ∈ Ωη(ε).

Here, ε is an efficiency threshold value. We note that efficiency is a state derived
from the system physical states. This value implicitly sets a measure of stability for the
prices. Here, we propose to measure price stability as the distance between the prices
of the constrained and unconstrained market clearing problems |pt − p̄t|. Having such
a relative measure is important since high efficiencies do not necessarily imply large
prices and viceversa.

We now define the summarizing market state:

δk+1 := (1− (ηk(xk, zk)− ε)) · δk, k = 0..∞, (15)

with initial conditions δ0 ≥ α > 0. Here, we can use δ0 := (1 − (η0(x0, z0)− ε))µ
with µ > 0 as long as η0(x0, z0) ≥ ε. If ηk(·, ·) ≥ ε, k = 0..∞, then for any α > 0
such that δ0 ≥ α there exists κ ≥ 0 such that δk → κ for all k = 0..∞. In other
words, the summarizing market state has a stable origin. Stability of this origin implies
market stability in the sense of Definition 1. On the other hand, if at any step we have
ηk(·, ·) < ε, the summarizing market state will increase. Subsequent violations of the
efficiency threshold will make the summarizing state diverge from the origin.

Using this basic set of definitions, we now illustrate how to establish sufficient
stability conditions for a given market design. In addition, we demonstrate that the
current market design given by the incomplete solution of the game (13) and (14) is
not stabilizing.

We propose to extend the market clearing problem (14) by making use of the
definition of the summarizing state as follows.

min
uk+T−1
k

∑
t∈T −

(δt+1 − δt) (16a)

s.t. uk+T−1k ∈ ΩISO(x̂k) (16b)

δt+1 = (1− (ηt(xt, zt)− ε)) · δt, t ∈ T − (16c)

ηt(xt, zt) ≥ ε, t ∈ T (16d)

δk = δ̂k, (16e)

The detailed formulation of this problem is presented in the Appendix. The objective
function of this market clearing problem will be used as a summarizing market function,
which we define formally as

V (δk) := −
∑
t∈T −1

(δt+1 − δt) = (δk − δT ). (17)

The solution of the game (13) and (16) provides the feedback law (uk, wk) = h(δk). A
crucial observation is that the summarizing market function can be used as a Lyapunov
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function that we can use to establish stability of the origin for the summarizing state
δk. To prove this, we first make the following definition.

Definition 2 A function V (δk) is a Lyapunov function for system δk+1 = f(δk, h(δk))
if (1) it is positive definite: in a region Ω containing the origin if for δk ∈ Ω we have
V (δk) ≥ 0 for δk ≥ 0 for all k, and (2) it is non increasing: ∆V (δk) ≤ 0, for all k.

We now establish stability following the traditional approach of using the cost
function of the controller (in this case market clearing problem) as a Lyapunov function
[18].

Theorem 3 If the game given by (13) and (16) has a feasible solution, the summa-
rizing cost function (17) with infinite horizon T = ∞ is positive definite and non
increasing.

Proof: From feasibility of (16d) we have that −(δt+1−δt) ≥ 0, t ∈ T − so V (δk) =∑
t∈T − −(δt+1− δt) ≥ 0. Consequently, positive definiteness follows. To prove that the

function is non increasing, we consider the cost function of two consecutive problems
generating two trajectories δkt , t ∈ {k..k + T} and δk+1

t , t ∈ {k + 1..k + 1 + T} with
T =∞, δkk = δk and δk+1

k+1 = δk+1. We then have

∆V (δk) = V (δk+1)− V (δk)

=

∞∑
t=k+1

(δk+1
t+1 − δ

k+1
t )−

∞∑
t=k

(δkt+1 − δkt )

= (δk+1 − δk+1
∞ )− (δk − δk∞)

≤ (δk+1 − δk)

= (1− (ηk − ε)) · δk − δk
= −(ηk − ε) · δk
≤ 0.

The proof is complete. �

With this, we have established that the decay of the summarizing function is a
sufficient condition for market stability. We note that if at any point we have that
ηk < ε, then δk+1 > δk, and the decay condition will not hold.

A crucial observation in our analysis is the need of the incorporation of the sta-
bilizing constraint (16d). With this, the feasible set of the market clearing problem
depends on the bidding states of the suppliers. A consequence is that the ISO and
the suppliers might need to iterate several times (e.g., in a Jacobi manner) to be sure
of obtaining a feasible solution to the game. Another consequence of this analysis is
the fact that the existing market design where a single iterate is performed between
the ISO and the suppliers cannot be guaranteed to be stable in the sense of Definition
1 since not every set of bidding parameters can be guaranteed to lead to a market
clearing solution satisfying the stabilizing constraint. In other words, the current mar-
ket design does not enable the ISO to correct the bidding quantities to stabilize the
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market. Hence, the market is more prone to be manipulated and destabilized by the
suppliers if these do not have appropriate means to guess the ISO decisions (e.g., by
price forecasting). Finding a feasible solution to the game (13) and (16) avoids these
problems. Our construct provides a mechanism to design and analyze market designs
with stability guarantees.

We highlight the fact that, in practice, it is not strictly necessary to solve problem
(16) as long as the stabilizing constraint (16d) is satisfied by the given market design.
Another issue arising in implementation is the fact that the market clearing problem
is normally solved over a finite receding horizon T = {k..k + T}. Hence, even if the
infinite horizon game is feasible, the solution of the receding horizon game cannot be
guaranteed to be feasible. Stability conditions can also be established in this case but
they require the existence of a stable terminal controller able to stabilize the summariz-
ing state beyond the current terminal time k+T [18]. Constructing such a controller in
a systematic manner remains an open research question. However, it is possible to es-
tablish stability conditions for finite horizon controllers. For two consecutive problems
we have

∆V (δk) = V (δk+1)− V (δk)

=

k+T∑
t=k+1

(δk+1
t+1 − δ

k+1
t )−

k+T−1∑
t=k

(δkt+1 − δkt )

= (δk+1 − δk+1
k+1+T )− (δk − δkk+T )

= (δk+1 − δk) + (δkk+T − δk+1
k+1+T ).

Consequently, as long as (δk+1− δk) ≤ 0 (equivalent to ηk ≥ ε) and (δkk+T − δ
k+1
k+1+T ) ≤

−(δk+1− δk), stability will follow. In other words, these conditions guarantee that the
controller is making progress toward the origin.

5 Numerical Case Study

In this section, we illustrate the effect of ramping constraints, foresight horizon, and
incomplete gaming solutions on market stability and price dynamics. We consider a
market system with three suppliers and one demand. One of the suppliers has fast
dynamics (high ramping capacity) but high cost such as natural gas generators, the
second one has slow dynamics but also low cost such as a coal generator, and the third
one is used as a slack generator with infinite ramp limits (equal to generation capacity)
and a large cost. This last supplier acts as a slack to avoid infeasibility. The nominal
parameters used are q = [0, 0, 0], q = [50, 70, 120], r = −[5, 10, 120], r = [5, 10, 120],
h = [4, 2, 5], and g = [2, 1, 5]. We used q̂0 = [0, 40, 40] as initial conditions. We consider
the demand profile presented in Figure 2, which is obtained from a periodic signal
perturbed with Gaussian noise. We set the market stability threshold to ε = 0.65.

To illustrate the main developments of the paper, we consider three market imple-
mentations. The first one uses a foresight horizon of six hours and performs a single
Jacobi-like iteration at each clearing time (incomplete gaming). This implementation
is labeled as (T = 6Jac) and represents current practice. The second implementation
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Fig. 2 Demand profile used for numerical case study.

uses the same horizon length, but the game is converged to optimality (T = 6Opt)
satisfying the stabilizing constraint. The third implementation uses an horizon of 24
hours, and the game is converged to optimality (T = 24Opt). To compute the refer-
ence social welfare used in the definition of market efficiency, we also implemented an
unconstrained market clearing procedure.

In Figure 3 we present the profiles of the summarizing state δt for the three market
implementations, in Figure 4 we present efficiency profiles ηt, and in Figure 5 we present
the resulting clearing price signals pt. From Figure 3 it is clear that the summarizing
state obtained from the suboptimal implementation T = 6Jac is not strictly decreasing
during days 1 and 3 and thus its market clearing cost cannot be used as a Lyapunov
function. This indicates that the efficiency is crossing the threshold at certain times,
as can be observed in Figure 4. This clearly illustrates that incomplete gaming can
introduce market instability. The other two control implementations remain stable,
but, as expected, a longer foresight horizon improves performance. This is observed
from the faster decay of the summarizing state for T = 24Opt when compared with
T = 6Opt and from the efficiency profiles. The efficiencies of T = 24Opt remain farther
away from the threshold. This illustrates that the length of the foresight horizon can
have important effects on market stability. This is mainly because longer foresights can
anticipate and manage ramping constraints more efficiently.

In Figure 5 we observe the spikes in the prices for T = 6Jac during the first
hours of the simulation and during the third day. In particular, note the strong price
fluctuations when compared with the optimal unconstrained prices. These prices were
obtained from the solution of the unconstrained market clearing problem. Note that
in the absence of ramping constraints, the prices remain stable and nearly periodic.
On the other hand, when the ramp constraints are active, strong price variations are
observed. In particular, during the third day, the prices for T = 6Jac reach levels of
150$/MW . The prices of T = 24Opt stay well below 100$/MW and much closer to
the optimal unconstrained prices. These levels are a consequence of having a longer
foresight horizon and converging the game to optimality to ensure that the efficiency is
above the stability threshold. As a quantitative result, we computed the sum of squared
errors SSE =

∑
t |pt − p̄t|2 over the entire simulation horizon of 7 days. Here, pt are
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the constrained price signals, and p̄t are the unconstrained price signals. For T = 6Jac
we obtained SSE=2.16× 105 while for T = 24Opt we have SSE=4.19× 104. This is an
improvement of nearly an order of magnitude. We have also observed that performing
an extra Jacobi-like iteration for T = 6Jac stabilizes the prices. In addition, we have
observed that extending the horizon of T = 24Opt does not improve its performance
significantly.

In Figure 6 we present price profiles for T = 6Jac and T = 24Opt with relaxed
ramp constraints. In this case, we increased the ramp limits from their nominal values
to r = −[10, 20, 120], r = [10, 20, 120]. As can be seen, the price signals for both
implementations are close to those of the unconstrained clearing problem. The signals
of T = 24Opt get closer to the unconstrained reference faster because of a combined
effect of complete gaming and forecast horizon. In particular, we observe that T =
6Jac performs well in this case. The reason is that when the ramp limits are relaxed,
subsequent gaming solutions become closer to each other. This case illustrates how
ramping constraints can have strong effects on market efficiency and stability and how
alternative market designs can help mitigate those effects.

0 1 2 3 4 5 6 7
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Fig. 3 Summarizing state for market implementations.

6 Conclusions and Future Work

We have established a framework to analyze and design stabilizing market designs. The
framework uses a game theoretical framework incorporating physical constraints, mar-
ket efficiency concepts, and Lyapunov analysis tools. We explain how market stability
issues can arise in current market designs as a result of incomplete gaming between
the ISO and the suppliers and short foresight horizons. The framework is general and
can be extended and modified to consider other operational scenarios such as network
constraints, forward and real-time markets, forecast errors, stochastic formulations,
piece-wise supply functions, and Cournot games. In any of these developments, we
believe it is critical to establish a consistent framework that can be used to design and
compare different market designs by characterizing their stabilizing and robustness
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Fig. 6 Clearing prices for market implementations under relaxed ramp constraints.

properties. The issue of incomplete gaming opens the door to several questions regard-
ing appropriate distributed approaches to implement the bidding-clearing procedure in
real-time. In particular, Jacobi-like iterations cannot be guaranteed to converge [10].
A potential alternative would be to apply projected-gradient descent schemes [22].
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A Problem Formulations and Optimality Conditions

A.1 Suppliers

For the supplier problem (5) we have the following. Given the prices pt, t ∈ T solve

min
bit

∑
t∈T

(
cit(q

i
t)− pt · qit

)
(18a)

s.t. qit = bit · pt, t ∈ T (18b)

qi ≤ qit ≤ qi, t ∈ T (18c)

bit ≥ 0, i ∈ S, t ∈ T (18d)

qik = q̂ik, b
i
k = b̂ik. (18e)

Since this problem is decoupled in time, we can derive its optimality conditions by looking at the
Lagrange function at a time instant t:

Lit(pt) = cit(q
i
t)− pt · qit + λqit ·

(
qit − bit · pt

)
− νqit · (q

i
t − qit)− ν

qi
t · (qit − qit)− νb

i
t · bit, i ∈ S, t ∈ T . (19)

The optimality conditions are

∇qitL
i
t(pt) = hit + git · qit − pt + λqit − νqit + νqit = 0, i ∈ S, t ∈ T . (20a)

∇bitL
i
t(pt) = −λqit · pt − νb

i
t = 0, i ∈ S, t ∈ T (20b)

∇λqitL
i
t(pt) = qit − bit · pt = 0, i ∈ S, t ∈ T (20c)

0 ≤ νqit ⊥ (qit − qi) ≥ 0, i ∈ S, t ∈ T (20d)

0 ≤ νqit ⊥ (qi − qit) ≥ 0, i ∈ S, t ∈ T (20e)

0 ≤ νbit ⊥ bit ≥ 0, i ∈ S, t ∈ T . (20f)

A.2 Unconstrained ISO

For the unconstrained ISO market clearing problem (8) we have that the optimality conditions are
decoupled in time as well. The Lagrange function at a time instant t is given by

L̄t(bit) =
∑
i∈S

1

2 bit
(qit)

2 − p̄t

∑
i∈S

qit −
∑
j∈C

dtj


−
∑
i∈S

νqit · (q
i
t − qi)−

∑
i∈S

νqit · (qi − qit), t ∈ T . (21)
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The optimality conditions are

∇qit L̄t(b
i
t) =

1

bit
qit − pt − νqit + νqit = 0, t ∈ T (22a)

0 ≤ p̄t ⊥

∑
i∈S

qit −
∑
j∈C

dtj

 ≥ 0, t ∈ T (22b)

0 ≤ νqit ⊥ (qit − qi) ≥ 0, i ∈ S, t ∈ T (22c)

0 ≤ νqit ⊥ (qi − qit) ≥ 0, i ∈ S, t ∈ T . (22d)

A.3 Constrained ISO

For the ISO problem (11) the Lagrange function is given by

L(bit) =
∑
t∈T

∑
i∈S

1

2 bit
(qit)

2 −
∑
t∈T

pt

∑
i∈S

qit −
∑
j∈C

dtj


+
∑
t∈T−

∑
i∈S

λit+1(qit+1 − qit −∆qit)−
∑
t∈T−

∑
i∈S

ν∆
i
t(∆q

i
t − ri)−

∑
t∈T−

∑
i∈S

ν∆
i
t(r

i −∆qit)

−
∑
t∈T

∑
i∈S

νqit(q
i
t − qi)−

∑
t∈T

∑
i∈S

νqit(q
i − qit) +

∑
i∈S

λik(qik − q̂
i
k). (23)

The optimality conditions are

∇qi
T
L =

1

biT
qiT − pT + λiT − ν

qi
t + νqit = 0, i ∈ S (24a)

∇qitL =
1

bit
qit − pt + λit − λit+1 − νqit + νqit = 0, i ∈ S, t ∈ T − (24b)

∇∆qitL = −λit+1 − ν∆
i
t + ν∆

i
t = 0, i ∈ S, t ∈ T − (24c)

∇λit+1
= qit+1 − qit −∆qit = 0, i ∈ S, ∈ T − \ {k} (24d)

∇λi0 = qi0 − q̂ik = 0, i ∈ S (24e)

0 ≤ pt ⊥

∑
i∈S

qit −
∑
j∈C

dtj

 ≥ 0, t ∈ T (24f)

0 ≤ ν∆it ⊥ ri −∆qit ≥ 0, i ∈ S, t ∈ T − (24g)

0 ≤ ν∆it ⊥ ∆q
i
t − ri ≥ 0, i ∈ S, t ∈ T − (24h)

0 ≤ νqit ⊥ qi − qit ≥ 0, i ∈ S, t ∈ T (24i)

0 ≤ νqit ⊥ q
i
t − qi ≥ 0, i ∈ S, t ∈ T . (24j)
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A.4 Stabilizing ISO

The stabilizing ISO formulation (16) can be written as

min
qit,∆q

i
t

δT (25a)

s.t. ϕt =
∑
i∈S

1

2 bit
(qit)

2, t ∈ T (25b)

ϕt · ηt = ϕ̄t, t ∈ T (25c)

ηt ≥ ε, t ∈ T (25d)

δt+1 = (1− (ηt+1 − ε)) · δt, t ∈ T − (25e)∑
i∈S

qit ≥
∑
j∈C

dtj , t ∈ T (25f)

qit+1 = qit +∆qit, i ∈ S, t ∈ T − (25g)

ri ≤ ∆qit ≤ ri, i ∈ S, t ∈ T − (25h)

qi ≤ qit ≤ qi, i ∈ S, t ∈ T (25i)

qik = q̂ik, δk = δ̂k, i ∈ S. (25j)

Here, ϕ̄t, t ∈ T is obtained from (8). The Lagrange function is

L(bit) = δT +
∑
t∈T

λϕt

ϕt −∑
i∈S

1

2 bit
(qit)

2

+
∑
t∈T

ληt (ϕtηt − ϕ̄t)−
∑
t∈T

νηt (ηt − ε)

+
∑
t∈T−

λδt+1 (δt+1 − (1− (ηt − ε)) · δt)−
∑
t∈T

pt

∑
i∈S

qit −
∑
j∈C

dtj


+
∑
t∈T−

∑
i∈S

λit+1(qit+1 − qit −∆qit)−
∑
t∈T−

∑
i∈S

ν∆
i
t(∆q

i
t − ri)−

∑
t∈T−

∑
i∈S

ν∆
i
t(r

i −∆qit)

−
∑
t∈T

∑
i∈S

νqit(q
i
t − qi)−

∑
t∈T

∑
i∈S

νqit(q
i − qit) +

∑
i∈S

λik(qik − q̂
i
k) + λδk(δk − δ̂k). (26)
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The optimality conditions are,

∇δT L = 1 + λδT = 0 (27a)

∇δtL = λδt − (1− (ηt − ε)) · λδt+1 = 0, t ∈ T − (27b)

∇ηtL = ληt · ϕt − ν
η
t + λδt+1 · δt = 0, t ∈ T − (27c)

∇ηT L = ληT · ϕT − ν
η
t = 0, (27d)

∇ϕtL = λϕt + ληt ηt = 0, t ∈ T (27e)

∇qitL = −λϕt
1

bit
qit − pt + λit − λit+1 + νqit − νqit = 0, i ∈ S, t ∈ T − (27f)

∇qi
T
L = −λϕT

1

biT
qiT − pT + λiT + νqiT − νq

i
T = 0, i ∈ S (27g)

∇∆qitL = −λit+1 + ν∆
i
t − ν∆

i
t = 0, i ∈ S, t ∈ T − (27h)

∇λϕt L = ϕt −
∑
i∈S

(
1

2 bit
qit + ait

)
qit = 0, t ∈ T (27i)

∇ληt L = ηtϕt − ϕt = 0, t ∈ T (27j)

∇λδtL = δt+1 − (1− (ηt − ε)) · δt = 0, t ∈ T − (27k)

∇λit+1
L = qit+1 − qit −∆qit = 0, i ∈ S, t ∈ T − (27l)

∇λi
k
L = qik − q̂

i
k = 0, i ∈ S (27m)

∇λδ
k
L = δk − δ̂k (27n)

0 ≤ pt ⊥

∑
i∈S

qit −
∑
j∈C

dtj

 ≥ 0, t ∈ T (27o)

0 ≤ νηt ⊥ (ηt − ε) ≥ 0, t ∈ T (27p)

0 ≤ ν∆it ⊥ (ri −∆qit) ≥ 0, i ∈ S, t ∈ T − (27q)

0 ≤ ν∆it ⊥ (∆qit − ri) ≥ 0, i ∈ S, t ∈ T − (27r)

0 ≤ νqit ⊥ (qi − qit) ≥ 0, i ∈ S, t ∈ T (27s)

0 ≤ νqit ⊥ (qit − qi) ≥ 0, i ∈ S, t ∈ T . (27t)
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