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Abstract4

In this paper, we study 0−1 mixed-integer bilinear covering sets. We derive several families of facet-5

defining inequalities via sequence-independent lifting techniques. We then show that these sets have6

polyhedral structures that are similar to those of certain fixed-charge single-node flow sets. As a result, we7

obtain new facet-defining inequalities for these sets that generalize well-known lifted flow cover inequalities8

from the integer programming literature.9

1 Introduction and motivation10

Nonlinear branch-and-bound is a method to solve mixed-integer nonlinear programming (MINLP) problems to11

global optimality; see [9, 17]. This method has been implemented in commercial solvers such as BARON [27]12

and LINDO Global [18]. It requires that convex relaxations of the problem be recursively solved over smaller13

and smaller subsets of the feasible region obtained by branching on variables. Most existing commercial14

software use a method proposed by McCormick [21] to obtain these convex relaxations for factorable problems.15

McCormick’s relaxation is an instantiation of a more general technique that relaxes (nonconvex) constraints16

of the form g(x) ≥ r into (convex) constraints of the form ḡ(x) ≥ r where ḡ(x) is a concave overestimator17

of g(x). This technique does not use the right-hand-side of the inequality in the process. As a result, the18

relaxation obtained is typically not the strongest possible.19

Some of the functional forms that appear most frequently in the formulation of nonlinear programs are20

probably multilinear inequalities and equalities. In particular, bilinear inequalities of the covering type21

∑

j∈N

ajxjyj ≥ d, (1)22

where aj > 0, xj ∈ S ⊆ R+, and yj ∈ S′ ⊆ R+ appear in the formulation of various practical problems23

(including trimloss applications; see Harjunkoski et al. [16] for an example), and are among the simplest24

nonconvex inequalities that can be studied. Therefore, sets of the form (1) provide an important test bed25

for the derivation of new, stronger convexification methods that use right-hand-side information. When26

variables do not have upper bounds, we have derived in [30] closed-form expressions for the convex hull of27

feasible solutions of (1) over various subsets of the nonnegative orthant. For problems where variables are28

continuous and have finite upper bounds, we also derived in [29] convex relaxations of (1) that are stronger29

than McCormick’s.30

In this paper, we study further the convex hull of feasible solutions to (1) when variables are bounded.31

In particular, we consider 0−1 mixed-integer bilinear covering sets of the form32

B =



(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
n∑

j=1

ajxjyj ≥ d



 ,33
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where n ∈ Z++, aj > 0 ∀j ∈ N := {1, . . . , n}, and d > 0. Results similar to those derived in this paper can34

also be obtained for sets defined through constraints of the form
∑k

j=1(ajxjyj + bjxj) +
∑n

j=k+1 ajyj ≥ d.35

This generalization allows us to extend the applicability of our study to problems where the bounds on y are36

not 0 and 1 and, in addition, to problems where some of the x variables are fixed. Our proofs extend easily37

to such a setup because the two sets share strong relationships that are described in Proposition 5.1 and the38

discussion following it.39

In order to guarantee that B is not empty, we impose40

Assumption 1.
∑n

j=1 aj ≥ d.41

On the theoretical side, we are interested in studying relaxation techniques for B that will take both42

the right-hand-side d and upper bounds on the variables into account. On the one hand, it follows from43

the separability of
∑

j∈N ajxjyj over j that conv
{
(x, y, z) ∈ {0, 1}n × [0, 1]n × R | z ≤ ∑

j∈N ajxjyj

}
is44

described by the McCormick constraints that overestimate each bilinear term separately [1]. Therefore, the45

tightest relaxation of the type ḡ(x) ≥ d, where ḡ(x) is a concave overestimator of
∑

j∈N ajxjyj restricted46

to {0, 1}n × [0, 1]n over [0, 1]2n, is the relaxation described above that uses McCormick constraints. On the47

other hand, if upper bounds on the variables are absent, the convex hull of the bilinear covering set can be48

obtained explicitly [30]. Yet, as we will see in Proposition 1.1, it is difficult to optimize linear functions over B49

and therefore the study of PB will help us understand better the difficulties that arise from the simultaneous50

presence of a right-hand-side and upper-bounds on the variables.51

On the practical side, we are interested in deriving convex relaxations of B since they directly yield convex52

relaxations for problems with constraints of the form
∑n

j=1 fj(z)xj ≥ d, where z ∈ Rp, by replacing fj(z) with53

ajyj + bj where yj ∈ [0, 1]. We are also interested in studying B because of its relations to some important54

mixed-integer linear sets. In particular, since the set B is a relaxation of the fixed-charge single-node flow55

set without inflows56

F =



(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
n∑

j=1

ajyj ≥ d, xj ≥ yj ∀j ∈ N



 ,57

see Lemma 4.1 for a proof, valid inequalities for B will also be valid for F . Further, we will show in Section 458

that facets of either F or B can be easily identified if facet-defining inequalities for the other set are known.59

As a result, the inequalities we derive for B also reveal new families of facet-defining inequalities for the60

convex hull of F .61

We next argue that it is typically difficult to find globally optimal solutions to problems containing B as62

a constraint by showing that it is NP-hard to optimize a linear function over B. To this end, consider the63

following optimization problem (Q) that seeks to minimize a linear objective function over the bilinear set64

B:65

(Q) min





n∑

j=1

bjxj +
n∑

j=1

cjyj

∣∣∣∣ (x, y) ∈ B



66

where b ∈ Rn and c ∈ Rn.67

Proposition 1.1. Problem (Q) is NP-hard.68

Proof. The proof is by reduction from the 0−1 knapsack problem, which is proven to be NP-hard in [10].69

Consider the following 0−1 knapsack instance:70

(K) zK = min





n∑

j=1

bjxj

∣∣∣∣
n∑

j=1

ajxj ≥ d, xj ∈ {0, 1} ∀j ∈ N



 .71

We define a corresponding instance of (Q) by setting cj = −1 for all j ∈ N , i.e.72

(P) zP = min





n∑

j=1

bjxj −
n∑

j=1

yj

∣∣∣∣
n∑

j=1

ajxjyj ≥ d, xj ∈ {0, 1}, yj ∈ [0, 1] ∀j ∈ N



 .73
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The reduction from (K) to (P ) is clearly polynomial. Observe further that if x∗ is a feasible solution to (K),74

then (x∗,1) is feasible to (P ), therefore showing that zP ≤ zK−n. Similarly, if (x∗, y∗) is an optimal solution75

to (P ), then x∗ is feasible to (K) as
∑n

j=1 ajx
∗
j ≥

∑n
j=1 ajx

∗
jy
∗
j ≥ d. Therefore zK ≤ zP + 1ᵀy∗ ≤ zP + n.76

We conclude that zP = zK − n and that x∗ is an optimal solution to (K) if and only if (x∗,1) is an optimal77

solution to (P ).78

79

In this paper, we are interested in studying the convex hull of B, conv(B), that we denote by PB. Since80

B is a finite union of polytopes, PB is polyhedral.81

Proposition 1.2. PB is a polytope.82

It follows that, when studying PB, it is sufficient to consider linear inequalities. Proposition 1.1 suggests83

that finding a complete closed-form expression for the convex hull of B is difficult. As a result, we will84

focus our efforts on constructing families of strong cutting planes for optimization problems containing the85

constraints of B by studying the convex hull of B. To construct these inequalities, we will use lifting. Lifting is86

a well-known integer programming technique that generates strong inequalities for a given set by transforming87

an inequality valid for a restricted subset of the feasible region into a globally valid constraint. Early work on88

lifting in integer programming can be found in Wolsey [32, 33]. A generalization to nonlinear programming89

is given in Richard and Tawarmalani [24]. In particular, lifting is said to be sequence-independent if the90

order in which the restrictions are removed does not change the derived inequality. Subadditivity of a certain91

perturbation function, called the lifting function, is a sufficient condition for lifting to be sequence-independent92

when the restrictions involve fixing the variables at their bounds; see Proposition 3.2 and [24]. In this paper,93

we derive new tools to verify that functions are subadditive that we exploit to derive large families of facet-94

defining inequalities for PB. These results illustrate that lifting can successfully use bounds on variables in95

the generation of cuts for MINLPs. Further, the results have implications for fixed-charge flow models, a96

family of problems both theoretically and practically important in mixed-integer linear programming.97

The paper is structured as follows. In Section 2, we derive basic polyhedral results about PB. We provide98

necessary and sufficient conditions for trivial inequalities to be facet-defining. Then, we derive a linear99

description of PB for the special case where n = 2. This result is used to identify the seed inequalities that100

will be used in lifting procedures. In Section 3, we show that for a general class of multi-dimensional functions,101

it suffices to check the subadditivity condition at certain points to establish the subadditivity of the function102

everywhere. Then, using this result, we derive, in closed-form, three families of facet-defining inequalities for103

PB using sequence-independent lifting techniques. One requires the use of a subadditive approximation of the104

lifting function. In Section 4, we prove that there are some tight connections between the facets of PB and105

those of PF . In particular, we show that the lifted inequalities developed for PB generalize certain families106

of flow cover cuts and yield new facet-defining inequalities for the fixed-charge single-node flow set without107

inflows F . We summarize the contributions of our work and conclude with directions of future research in108

Section 5.109

2 Basic polyhedral results110

In this section, we derive basic results about the polyhedral structure of PB. First, we provide necessary and111

sufficient conditions for PB to be full-dimensional.112

Proposition 2.1. PB is a full-dimensional polytope if and only if
∑n

j=1 aj − ai ≥ d for all i ∈ N .113

Proof. First, we show that if
∑n

j=1 aj − ai ≥ d for all i ∈ N , then PB is full-dimensional. For all i ∈ N ,114

construct pi = (1 − ei,1) and qi = (1,1 − ei). Also define r = (1,1). The points pi, qi, and r belong to115

B. These points are affinely independent because r − pi and r − qi for all i ∈ N are linearly independent.116

Since we have described 2n+1 affinely independent points in PB, we have shown that PB is full-dimensional.117

Next, we prove that if PB is a full-dimensional polyhedron, then
∑n

j=1 aj − ai ≥ d for all i ∈ N . Assume by118

contradiction that
∑n

j=1 aj − ai < d for some i ∈ N . Since
∑n

j=1 aj ≥ d from Assumption 1, B is nonempty119

and so xi = 1 in every feasible solution of B, showing that PB is not full-dimensional. This is the desired120

contradiction.121
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In the remainder of this paper, we will assume that PB is full-dimensional.122

Assumption 2.
∑n

j=1 aj − ai ≥ d for all i ∈ N .123

Observe that Assumption 2 strictly dominates Assumption 1 and implies that n ≥ 2. We next identify124

some basic characteristics of the facet-defining inequalities of PB.125

Proposition 2.2. Let126

n∑

j=1

αjxj +
n∑

j=1

βjyj ≥ δ (2)127

be a facet-defining inequality for PB that is not a scalar multiple of xi ≤ 1 for i ∈ N or yi ≤ 1 for i ∈ N .128

Then, (i) αi ≥ 0, ∀i ∈ N , (ii) βi ≥ 0, ∀i ∈ N , and (iii) δ ≥ 0.129

Proof. Select i ∈ N . Since (2) is a facet-defining inequality for PB that is not a scalar multiple of xi ≤ 1,130

there exists (x∗, y∗) ∈ B with x∗i < 1 such that131

n∑

j=1

αjx
∗
j +

n∑

j=1

βjy
∗
j = δ. (3)132

Consider now (x̄, ȳ) = (x∗, y∗) + (1− x∗i )(ei, 0). This point belongs to B and therefore satisfies (2), i.e.,133

n∑

j=1

αj x̄j +
n∑

j=1

βj ȳj ≥ δ. (4)134

Subtracting (3) from (4), we obtain that αi ≥ 0. The proof that βi ≥ 0 for all i ∈ N is similar. The fact that135

δ ≥ 0 then follows from (3) after noting that all terms in the left-hand-side are nonnegative.136

The following proposition further studies facet-defining inequalities whose right-hand-sides are zero.137

Proposition 2.3. Let138

n∑

j=1

αjxj +
n∑

j=1

βjyj ≥ 0 (5)139

be a facet-defining inequality for PB. Then, (5) is a scalar multiple of xj ≥ 0 for j ∈ N or of yj ≥ 0 for140

j ∈ N .141

Proof. Assume for a contradiction that (5) is not a scalar multiple of xj ≥ 0 for j ∈ N or of yj ≥ 0 for j ∈ N .142

Then, for each i ∈ N , there exists (xi, yi) ∈ B such that xi
i > 0 and for which143

n∑

j=1

αjx
i
j +

n∑

j=1

βjy
i
j = 0. (6)144

Since we know from Proposition 2.2 that αj ≥ 0 and βj ≥ 0 for all j ∈ N , we obtain from (6) that145

0 =
n∑

j=1

αjx
i
j +

n∑

j=1

βjy
i
j ≥ αix

i
i ≥ 0. (7)146

We conclude that, for each i ∈ N , αi = 0 since xi
i > 0. Similarly, we can establish that βi = 0 ∀i ∈ N . This147

is a contradiction to the fact that (5) is facet-defining for PB.148

We now focus on these inequalities that play a special role in Propositions 2.2 and 2.3 and characterize149

when they are facet-defining for PB. We refer to these inequalities as bound inequalities.150

Proposition 2.4. The upper bound inequalities xi ≤ 1, yi ≤ 1 are facet-defining for PB for all i ∈ N .151

Further, for i ∈ N , the lower bound inequalities xi ≥ 0, yi ≥ 0 are facet-defining for PB if and only if152 ∑n
j=1 aj − ai − al(i) ≥ d where l(i) ∈ argmax{aj | j ∈ N \ {i}}.153
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Proof. The validity of all these inequalities is trivial since they belong to the description of B. Assume for a154

contradiction that xi ≤ 1 is not facet-defining for PB. Then, it follows from Proposition 2.2 that (ei, 0) is a155

recession direction of PB, a contradiction to the fact that PB is a polytope; see Proposition 1.2. The proof156

that yi ≤ 1 is facet-defining for PB is similar.157

Now, we show that xi ≥ 0 is facet-defining if
∑n

j=1 aj−ai−al(i) ≥ d by describing 2n affinely independent158

points in B that satisfy xi = 0. For k ∈ N \{i}, we construct the 2(n−1) points, p̄k = (1−ei−ek,1−ei−ek)159

and q̄k = (1 − ei − ek,1 − ei). We also define r1 = (1 − ei,1 − ei) and r2 = (1 − ei,1). Clearly, the points160

r1, r2 and p̄k, q̄k for k ∈ N \ {i} satisfy xi ≥ 0 at equality and are feasible for B since
∑n

j=1 aj − ai ≥161 ∑n
j=1 aj − ai − ak ≥

∑n
j=1 aj − ai − al(i) ≥ d. These points are affinely independent since p̄k − r1, q̄k − r1,162

and r2 − r1 can be easily verified to be linearly independent. To prove the reverse direction, assume now163

that xi ≥ 0 is facet-defining for PB. We claim that
∑n

j=1 aj − ai − al(i) ≥ d. Assume for a contradiction164

that
∑n

j=1 aj − ai − al(i) < d. This condition implies that every feasible solution (x, y) of PB with xi = 0165

also must satisfy xl(i) = 1. As a result, the dimension of the face defined by xi = 0 is less or equal to166

2n− 2, which is a contradiction. Similarly, it can be proven that yi ≥ 0 is facet-defining for PB if and only167

if
∑n

j=1 aj − ai − al(i) ≥ d.168

Observe that the above proofs are also valid when yi ∈ {0, 1} instead of yi ∈ [0, 1] for some subset J ⊆ N .169

We next study another simple facet-defining inequality for PB.170

Proposition 2.5. The inequality
∑n

j=1 ajyj ≥ d is facet-defining for PB.171

Proof. Validity is easily verified since
∑n

j=1 ajyj ≥
∑n

j=1 ajxjyj ≥ d. To prove that
∑n

j=1 ajyj ≥ d is facet-172

defining, we present 2n points (xi, yi) in B that satisfy
∑n

j=1 ajy
i
j ≥ d at equality and such that the system173

αxi + βyi = δ for i = 1, . . . , 2n only has solutions (α, β, δ) that are scalar multiples of (0, a, d). Consider the174

2n points pk = (1, ∆k(1− ek)) and qk = (1− ek,∆k(1− ek)) where ∆k = d∑n
j=1 aj−ak

for k ∈ N . Note that175

because of Assumption 2, 0 < ∆k ≤ 1 for all k ∈ N . Clearly, pk and qk belong to B and satisfy
∑n

j=1 ajyj ≥ d176

at equality. These 2n points yield the system:177

n∑

j=1

αj + ∆k




n∑

j=1

βj − βk


 = δ ∀k ∈ N, (8)178

n∑

j=1

αj − αk + ∆k




n∑

j=1

βj − βk


 = δ ∀k ∈ N. (9)179

By subtracting (8) from (9), we obtain that αk = 0 for k ∈ N . From (8) and the definition of ∆k, we then180

conclude that, for all k, l ∈ N ,181

n∑

j=1

βj − βk =
δ

d




n∑

j=1

aj − ak


 and

n∑

j=1

βj − βl =
δ

d




n∑

j=1

aj − al


 .182

Subtracting these expressions yields βk − δ
dak = βl − δ

dal. After defining βk − δ
dak = θ for k ∈ N and using183

these relations in (8), we obtain that θ = 0, which implies βk = δ
dak for k ∈ N . Therefore, we conclude that184

all solutions (α, β, δ) to the system (8) and (9) are scalar multiples of (0, a, d).185

In the remainder of this paper, we will often use the term facet to refer to a facet-defining inequality. We186

will also refer to inequalities xi ≤ 1, yi ≤ 1, and
∑n

j=1 ajyj ≥ d as trivial facets of PB. To illustrate the187

richness of the polyhedral structure of PB, we present an example next. The linear inequalities describing188

the convex hull of this set were obtained using PORTA; see Christof and Löbel [6].189

Example 2.6. Consider the 0−1 mixed-integer bilinear covering set190

B =
{

(x, y) ∈ {0, 1}4 × [0, 1]4
∣∣∣∣ 19x1y1 + 17x2y2 + 15x3y3 + 10x4y4 ≥ 20

}
.191
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The linear description of PB has 58 inequalities that are presented in the Appendix. They include:192

50x1 + 90x3 + 45x4 + 76y1 + 153y2 ≥ 135 (10)193

70x1 + 90x2 + 27x4 + 38y1 + 135y3 ≥ 117 (11)194

19x1 + 17x2 + 15y3 + 10y4 ≥ 20 (12)195

17x2 + 15x3 + 19y1 + 10y4 ≥ 20 (13)196

19y1 + 17y2 + 15y3 + 10y4 ≥ 20 (14)197

14x1 + 10x3 + 5x4 + 17y2 ≥ 15 (15)198

12x2 + 10x3 + 5x4 + 19y1 ≥ 15 (16)199

10x3 + 5x4 + 19y1 + 17y2 ≥ 15 (17)200

x1 + x2 + x3 + 10y4 ≥ 2 (18)201

x1 + x2 + x3 + x4 ≥ 2 (19)202

x1 ≥ 0 (20)203

y1 ≥ 0 (21)204

x1 ≤ 1 (22)205

y1 ≤ 1 (23)206

Among the inequalities in Example 2.6, we recognize the upper bound inequalities (22) and (23) that207

are shown to be facet-defining for PB in Proposition 2.4. In this example, the lower bound inequalities208

(20) and (21) are also facet-defining, as can be established from Proposition 2.4. Further, (14) is the trivial209

facet-defining inequality studied in Proposition 2.5. Our goal is now to discover families of valid inequalities210

for PB that would explain (10)− (13) and (15)− (19).211

To derive these nontrivial facet-defining inequalities, we first study the convex hull of B when n = 2 with212

the goal of identifying seed inequalities for subsequent lifting procedures. We show that the linear description213

of PB has at most three nontrivial inequalities. In this study, Assumption 2 requires that a1 ≥ d and a2 ≥ d.214

Proposition 2.7. Let215

B2 =
{

(x, y) ∈ {0, 1}2 × [0, 1]2
∣∣∣∣ a1x1y1 + a2x2y2 ≥ d

}
,216

where a1 ≥ d, a2 ≥ d and d > 0. Then,217

conv(B2) = X :=





(x, y) ∈ [0, 1]2 × [0, 1]2

∣∣∣∣∣∣∣∣

x1+ x2 ≥ 1
dx1+ a2y2 ≥ d

a1y1+ dx2 ≥ d
a1y1+ a2y2 ≥ d





.218

Proof. We prove the result using disjunctive programming techniques; see [5]. We define219

X10 := B2 ∩ {x1 = 1, x2 = 0} = {(1, y1, 0, y2) | d
a1
≤ y1 ≤ 1, 0 ≤ y2 ≤ 1},

X01 := B2 ∩ {x1 = 0, x2 = 1} = {(0, y1, 1, y2) | 0 ≤ y1 ≤ 1, d
a2
≤ y2 ≤ 1},

X11 := B2 ∩ {x1 = 1, x2 = 1} = {(1, y1, 1, y2) | a1y1 + a2y2 ≥ d, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}.
220

It is easily verified that conv(B2) = conv(X10 ∪X01 ∪X11) = conv(X2 ∪X11) where X2 := conv(X10 ∪X01).221

We first use disjunctive programming techniques to obtain a linear description of X2 and then compute222

conv(B2) as conv(X2 ∪X11). Using Theorem 2.1 in Balas [5], we write223

X2 = proj
(x,y)





(x1, y1, x2, y2, z̄1, z̄2, ẑ1, ẑ2, λ)

∣∣∣∣∣∣∣∣∣∣∣

(x1, y1, x2, y2) = (λ, z̄1 + ẑ1, 1− λ, z̄2 + ẑ2),
d

a1
λ ≤ z̄1 ≤ λ, 0 ≤ z̄2 ≤ λ,

0 ≤ ẑ1 ≤ 1− λ,
d

a2
(1− λ) ≤ ẑ2 ≤ 1− λ,

0 ≤ λ ≤ 1





.224

We then use Fourier-Motzkin elimination [34] to compute the projection. We first eliminate the variables λ,225

ẑ1 and ẑ2 using the equations λ = x1, ẑ1 = y1 − z̄1, and ẑ2 = y2 − z̄2. We obtain226

x1 + x2 = 1, 0 ≤ x1 ≤ 1,227
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and228
d
a1

x1 ≤ z̄1 ≤ x1,

x1 + y1 − 1 ≤ z̄1 ≤ y1,
0 ≤ z̄2 ≤ 1− x2,

y2 − x2 ≤ z̄2 ≤ y2 − d
a2

x2,

229

from which we project variables z̄1 and z̄2 to obtain230

X2 = conv(X10 ∪X01) =



(x1, y1, x2, y2)

∣∣∣∣∣∣
x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0,
d

a1
x1 ≤ y1 ≤ 1,

d

a2
x2 ≤ y2 ≤ 1



231

since x1 ≤ 1 and x2 ≤ 1 are implied by x1 + x2 = 1, x1 ≥ 0 and x2 ≥ 0. Now, compute conv(X2 ∪X11) as232

proj
(x,y)





(x1, y1, x2, y2, ū1,
ū2, v̄1, v̄2, v̂1, v̂2, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(x1, y1, x2, y2) = (ū1 + (1− λ), v̄1 + v̂1, ū2 + (1− λ), v̄2 + v̂2),
ū1 + ū2 = λ, ū1 ≥ 0, ū2 ≥ 0,
d

a1
ū1 ≤ v̄1 ≤ λ,

d

a2
ū2 ≤ v̄2 ≤ λ,

a1v̂1 + a2v̂2 ≥ d(1− λ),
0 ≤ v̂1 ≤ 1− λ, 0 ≤ v̂2 ≤ 1− λ,
0 ≤ λ ≤ 1





.233

We again obtain the projection using Fourier-Motzkin elimination. Using the equations x1 = ū1 + 1 − λ,234

x2 = ū2 +1−λ, and ū1 + ū2 = λ, we obtain that λ = 2− (x1 +x2), ū1 = 1−x2, and ū2 = 1−x1. Using these235

relations together with v̄1 = y1 − v̂1 and v̄2 = y2 − v̂2 to eliminate the corresponding variables, we obtain236

x1 ≤ 1, x2 ≤ 1, 1 ≤ x1 + x2 4 2,237

and238

y1 + x1 + x2 − 2 ≤ v̂1 ≤ y1 − d
a1

(1− x2),
−a2

a1
v̂2 + d

a1
(x1 + x2 − 1) ≤ v̂1,

0 ≤ v̂1 ≤ x1 + x2 − 1,
y2 + x1 + x2 − 2 ≤ v̂2 ≤ y2 − d

a2
(1− x1),

0 ≤ v̂2 ≤ x1 + x2 − 1,

239

where inequality 4 is clearly redundant. Projecting v̂1, we obtain240

x1 ≤ 1, x2 ≤ 1, 1 ≤ x1 + x2, y1 ≤ 1, d
a1

(1− x2) ≤ y1,

a1x1 + (a1 − d)x2 4 2a1 − d
241

and242
d
a2

x1 − a1
a2

y1 ≤ v̂2,
(d−a1)(x1+x2−1)

a2
4 v̂2,

y2 + x1 + x2 − 2 ≤ v̂2 ≤ y2 − d
a2

(1− x1),
0 ≤ v̂2 ≤ x1 + x2 − 1,

243

where obviously redundant inequalities have been omitted. Again, inequalities 4 are redundant since x1 ≤ 1,244

x2 ≤ 1, x1 + x2 ≥ 1, a1 ≥ d and a2 ≥ d > 0. Projecting v̂2, we obtain the system245

x1 ≤ 1, x2 ≤ 1, 1 ≤ x1 + x2, y1 ≤ 1, d
a1

(1− x2) ≤ y1,246

and247

d ≤ a1y1 + a2y2,
a2 4 (a2 − d)x1 + a1y1 + a2x2, (R)
(a2 − d)x1 + a2x2 4 2a2 − d,
y2 ≤ 1,
d
a2

(1− x1) ≤ y2,

1 4 x1 + x2,

248
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where inequalities 4 are either repeated or redundant. In particular, (R) is redundant since it can be obtained249

as a conic combination with weights (a2 − d) and 1 of valid inequalities x1 + x2 ≥ 1 and a1y1 + dx2 ≥ d.250

Therefore, conv(X2 ∪ X11) is defined by bounds and the four inequalities given in the description of X,251

concluding the proof.252

Next, we give generalizations of the nontrivial facets of conv(B2) that we prove are facet-defining for253

more general instances of conv(B). In particular, we give a generalization of inequalities dx1 + a2y2 ≥ d254

and a1y1 + dx2 ≥ d in Proposition 2.9 and of inequality x1 + x2 ≥ 1 in Proposition 2.11. We will use these255

generalizations as seed inequalities for lifting procedures in Section 3.256

Lemma 2.8. Inequality257 ∑

j∈N

min{dxj , ajxj , ajyj} ≥ d (24)258

is valid for PB.259

Proof. We first show that
∑

j∈N min{dxj , ajxjyj} ≥ d is valid for B. Consider (x, y) ∈ B. If there exists260

j ∈ N such that dxj < ajxjyj then xj = 1 and, consequently, the inequality is satisfied. Otherwise, the261

inequality reduces to the defining inequality of B. Since (xj , yj) ∈ [0, 1]2 implies that xjyj ≤ min{xj , yj} and262

aj ≥ 0, it follows that min{dxj , ajxjyj} ≤ min{dxj , ajxj , ajyj} and, therefore, (24) is valid for PB.263

The set of solutions in [0, 1]2n that satisfy (24) is a subset of the convex relaxations of B discussed in264

Section 1. In particular, when each bilinear term is outer-approximated using McCormick envelopes, we265

obtain the inequality
∑

j∈N aj min{xj , yj} ≥ d, which is clearly implied by (24). Further, using orthogonal266

disjunctions, see [30], it can be shown that267

O := conv
{

(x, y) ∈ R2n
+

∣∣∣
∑

j∈N

ajxjyj ≥ d
}

=
{

(x, y) ∈ R2n
+

∣∣∣
∑

j∈N

√
ajxjyj ≥

√
d
}

.268

This convex relaxation is obtained without making use of the bounds or the integrality of the variables269

x. It follows from the inequality relating elementary means (see Theorem 5 in [15]) that
√

dajxjyj ≥270

min{dxj , ajyj}. Therefore, the feasible solutions to (24) are contained in O. However, when (x, y) ∈ C ( Rn
+,271

a procedure described in [29] permits strengthening relaxation O by restricting attention to C. When one272

exploits the fact that (x, y) ∈ C = {0, 1}n × [0, 1]n, this construction yields (24).273

Proposition 2.9. Let L ⊆ N be such that
∑

j∈N\L aj > d. Define ā =
∑

j∈N\L aj − maxi∈N\L ai and274

assume that S = {(x, ȳ) ∈ {0, 1}|L| × [0, 1] | ∑i∈L min{ai, d}xi + āȳ = d} 6= ∅. Then,275

∑

j∈L

min{aj , d}xj +
∑

j∈N\L
ajyj ≥ d (25)276

is facet-defining for PB. In particular, (25) is facet-defining for PB if (i) L∩L> 6= ∅, or (ii) L = ∅, or (iii)277

ā ≥ maxi∈L min{ai, d}, or as a special case (iv) ā ≥ d where L> := {j ∈ N | aj > d}.278

Proof. Validity of (25) for PB follows from Lemma 2.8. We now prove that (25) is facet-defining for PB by279

providing 2n affinely independent points (xi, yi) in B that satisfy (25) at equality. Assume without loss of280

generality that L = {1, . . . , l}. Define n′ = |N \ L| and denote the points as (xL, xN\L, yL, yN\L).281

Let (x′, ȳ′) ∈ S and define a′ =
∑

j∈N\L aj . Let p0 = (0,1, 0, d
a′1) and pj = p0 + ε(0, 0, 0, 1

aj
ej− 1

aj+1
ej+1)282

for j = 1, . . . , n′ − 1. For i ∈ L, define qi = (ei,1, ei,
d−min{ai,d}
a′−min{ai,d}1), ri = p0 + (0, 0, ei, 0) if ai ≤ d, and283

ri = (ei,1, d
ai

ei, 0) if ai > d. For j ∈ {1, . . . , n′}, sj = (x′L,1 − ej ,1, ȳ′ ā∑
i∈N\(L∪{j}) ai

(1 − ej)). It can be284

easily verified that p0, qi, sj and ri belong to B and that pj belongs to B when ε is sufficiently small.285

We now show that the above points are affinely independent. Clearly, for j ∈ {0, . . . , n′ − 2}, p0, . . . , pj
286

satisfy
∑j+1

i=1 ai( d
a′ − yl+i) = 0, whereas pj+1 does not. Therefore, pj are affinely independent. Further, for287

i ∈ L, qi are affinely independent of pj since the latter satisfy (xi, yi) = (0, 0). For i ∈ L, ri are independent288

of pj and qj since the latter satisfy yi = xi. Finally, si are affinely independent of pj , qj , rj since the latter289

satisfy xi = 1.290
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The family of inequalities described in Proposition 2.9 is typically exponential in size. In the case of291

Example 2.6, it contains multiple inequalities including (12-14). More generally, it can be verified that292

inequalities (10)-(19) in the Appendix are of the form (25).293

In the remainder of the paper, we use the following notation extensively. For N0, N1 ⊆ N such that294

N0 ∩N1 = ∅ and Ñ0, Ñ1 ⊆ N such that Ñ0 ∩ Ñ1 = ∅, we let295

B(N0, N1, Ñ0, Ñ1) :=
{

(x, y) ∈ B

∣∣∣∣
xj = 0 for j ∈ N0, xj = 1 for j ∈ N1,

yj = 0 for j ∈ Ñ0, yj = 1 for j ∈ Ñ1

}
.296

We also define PB(N0, N1, Ñ0, Ñ1) := conv(B(N0, N1, Ñ0, Ñ1)). In particular, B(∅, ∅, ∅, N) is equivalent to297

the classical 0−1 knapsack set298 {
x ∈ {0, 1}n

∣∣∣∣
n∑

j=1

ajxj ≥ d

}
,299

whose polyhedral structure was first studied by Balas [4], Hammer et al. [14] and Wolsey [31]. The following300

proposition describes, among other things, relations between the bilinear set B and the 0−1 knapsack set301

B(∅, ∅, ∅, N).302

Proposition 2.10. Let303 ∑

j∈N

αjxj +
∑

j∈I

βjyj ≥ δ (26)304

be an inequality for PB(∅, ∅, ∅, N \ I) that is not a scalar multiple of a bound inequality. Then, (26) is305

facet-defining for PB(∅, ∅, ∅, N \ I) if and only if (26) is facet-defining for PB.306

Proof. We first prove that if (26) is facet-defining for PB(∅, ∅, ∅, N \ I), then (26) is facet-defining for PB.307

To show that (26) is valid for B, we assume for a contradiction that there exists a point (x′, y′) ∈ B with308 ∑
j∈N αjx

′
j +

∑
j∈I βjy

′
j < δ. Since (x′, y′) ∈ B, we have that

∑
j∈N ajx

′
jy
′
j ≥ d. Next, we define (x̄, ȳ)309

as x̄ = x′, ȳj = y′j for j ∈ I, and ȳj = 1 for j ∈ N \ I. Observe that (x̄, ȳ) ∈ B(∅, ∅, ∅, N \ I) as310 ∑
j∈I aj x̄j ȳj +

∑
j∈N\I aj x̄j ≥

∑
j∈N ajx

′
jy
′
j ≥ d. Since (26) is valid for B(∅, ∅, ∅, N \ I), (x̄, ȳ) satisfies311 ∑

j∈N αjx
′
j +

∑
j∈I βjy

′
j =

∑
j∈N αj x̄j +

∑
j∈I βj ȳj ≥ δ. This is the desired contradiction.312

Next, we show that (26) is facet-defining for PB. Since (26) is facet-defining for PB(∅, ∅, ∅, N \ I) and313

δ 6= 0 as (26) is not a bound, there exist n + |I| linearly independent points in B(∅, ∅, ∅, N \ I), call them314

(xk, yk), that satisfy (26) at equality. Clearly, these points belong to B and satisfy (26) at equality. Now, for315

each j ∈ N \ I, we construct one new point in B \ B(∅, ∅, ∅, N \ I) that satisfies (26) at equality. Choose j316

arbitrarily in N \ I. Since (26) is not a scalar multiple of xj ≤ 1, there exists kj ∈ {1, . . . , n + |I|} such that317

x
kj

j = 0. Now define (x̄kj , ȳkj ) such that x̄
kj

i = x
kj

i ∀i ∈ N , ȳ
kj

i = y
kj

i ∀i ∈ N \ {j} and y
kj

j = 0. Clearly, the318

point (x̄kj , ȳkj ) belongs to B and satisfies (26) at equality. Further, it is easily seen that the points (xk, yk)319

and (x̄kj , ȳkj ) for j ∈ N\I are linearly independent and therefore show that (26) is facet-defining for PB.320

To prove the reverse implication, we assume that (26) is a facet-defining inequality for PB that is not321

a scalar multiple of a bound. Validity is trivial since for B(∅, ∅, ∅, N \ I) ⊆ B. Now, we show that (26) is322

facet-defining for PB(∅, ∅, ∅, N \ I). Since δ 6= 0 as (26) is not a bound, the set of 2n affinely independent323

points (xk, yk) in B for k = 1, . . . , 2n that satisfy (26) at equality are also linearly independent. Therefore,324

∣∣∣∣∣∣∣∣

x1
1 . . . x1

n y1
1 . . . y1

n

x2
1 . . . x2

n y2
1 . . . y2

n

. . . . . .
x2n

1 . . . x2n
n y2n

1 . . . y2n
n

∣∣∣∣∣∣∣∣
6= 0.325

Therefore, there must exist n + |I| rows i1, . . . , in+|I| where I = {j1, . . . , j|I|} such that326

∣∣∣∣∣∣∣∣∣

xi1
1 . . . xi1

n yi1
j1

. . . yi1
j|I|

xi2
1 . . . xi2

n yi2
j1

. . . yi2
j|I|

. . . . . .

x
in+|I|
1 . . . x

in+|I|
n y

in+|I|
j1

. . . y
in+|I|
j|I|

∣∣∣∣∣∣∣∣∣
6= 0.327
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Hence, we see that the n+ |I| points (xik
1 , . . . , xik

n ; yik
j1

, . . . , yik
j|I|) for k = 1, . . . , n+ |I| are linearly independent.328

Now, define the points (x̃ik , ỹik) for k = 1, . . . , n + |I| such that x̃ik = xik , ỹik
j = yik

j for j ∈ I, and ỹik
j = 1329

for j ∈ N \ I. The points (x̃ik , ỹik) are feasible to B(∅, ∅, ∅, N \ I) and satisfy (26) at equality. Therefore, we330

conclude that (26) is facet-defining for PB(∅, ∅, ∅, N \ I).331

Observe that Proposition 2.10 implies that all nontrivial facets of the 0−1 knapsack polytope can be found332

in B and that it is sufficient to study the facets of B to obtain the facets of the 0−1 knapsack polytope.333

Next, we use Proposition 2.10 to generalize the inequality x1 + x2 ≥ 1 of Proposition 2.7 into an inequality334

that will be used as a seed for lifting procedures in Section 3.4.335

Proposition 2.11. Assume that
∑

j∈N aj −ak−am < d for all k, m ∈ N with k 6= m. The clique inequality336

∑

j∈N

xj ≥ |N | − 1 (27)337

is facet-defining for PB.338

Proof. Because of Proposition 2.10. it is sufficient to prove that (27) is facet-defining for PB(∅, ∅, ∅, N). To339

prove validity, assume for a contradiction that there exists x′ ∈ B(∅, ∅, ∅, N) such that
∑

j∈N ajx
′
j ≥ d and340 ∑

j∈N x′j ≤ |N |−2. Since
∑

j∈N x′j ≤ |N |−2, there exist k, m ∈ N with k 6= m such that x′k = 0 and x′m = 0.341

Therefore,
∑

j∈N aj−ak−am ≥ ∑
j∈N ajx

′
j ≥ d. This contradicts the assumption that

∑
j∈N aj−ak−am < d342

for all k,m ∈ N with k 6= m. We next show that (27) is facet-defining for PB(∅, ∅, ∅, N). It can be easily343

verified using Assumption 2 that the points pk = (1 − ek,1) for k ∈ N belong to B(∅, ∅, ∅, N). Since344

these points are linearly independent and satisfy (27) at equality, we conclude that (27) is facet-defining for345

PB(∅, ∅, ∅, N).346

3 Lifted inequalities347

In this section, we derive three families of strong valid inequalities for PB via lifting. The first two families348

are obtained using sequence-independent lifting from (25) and are facet-defining for PB. In this case, lifting349

is simple since the lifting function is subadditive. The third inequality is obtained by lifting (27). Although350

the lifting function associated with this seed inequality is not subadditive, we obtain lifted inequalities using351

approximate lifting. We then identify conditions under which these inequalities are facet-defining for PB.352

3.1 Sequence-independent lifting for bilinear covering sets353

Sequence-independent lifting is a well-known technique to construct strong valid inequalities for mixed-integer354

linear programs; see Wolsey [33] and Gu et al. [13]. We next give a brief description of how this technique355

can be used to derive strong valid inequalities for PB. A more general treatment of lifting in nonlinear356

programming is given in Richard and Tawarmalani [24].357

Given ∅ 6= S ( N , we consider B(S, ∅, S, ∅), which is the restriction of B obtained when all variables358

(xj , yj) for j ∈ S are fixed to (0, 0). Let S = {s, . . . , n} for some s ≥ 2 and define Si = {i + 1, . . . , n} for359

i ∈ S. Assume that the inequality360

s−1∑

j=1

αjxj +
s−1∑

j=1

βjyj ≥ δ (28)361

is facet-defining for PB(S, ∅, S, ∅). In sequential lifting, we reintroduce the variables (xj , yj) for j ∈ S one at362

the time in (28). Assuming that variables (xj , yj) have already been lifted in the order j = s, . . . , i − 1, we363

next review how to lift variables (xi, yi) in the inequality364

i−1∑

j=1

αjxj +
i−1∑

j=1

βjyj ≥ δ, (29)365
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which is assumed to be facet-defining for PB(Si−1, ∅, Si−1, ∅). To perform this lifting, we first compute the366

lifting function367

P i(w) = max δ −




i−1∑

j=1

αjxj +
i−1∑

j=1

βjyj



368

s.t.

i−1∑

j=1

ajxjyj ≥ d− w369

xj ∈ {0, 1}, yj ∈ [0, 1] j = 1, . . . , i− 1.370

Once the lifting function P i(w) is computed, the lifting coefficients (αi, βi) are obtained from P i(w) as371

follows.372

Proposition 3.1 (Richard and Tawarmalani [24]). Let (29) be a valid inequality for B(Si−1, ∅, Si−1, ∅).373

Assume that there exist (αi, βi) ∈ R2 such that374

αixi + βiyi ≥ P i(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (30)375

Then, the inequality376

i∑

j=1

αjxj +
i∑

j=1

βjyj ≥ δ (31)377

is valid for B(Si, ∅, Si, ∅).378

The result of Proposition 3.1 can be applied recursively to construct a valid inequality for PB from379

(28). Note that, at each step, the lifting function P i(w) must be recomputed to account for the changes380

in the lifted inequality. Further, if B(S, ∅, S, ∅) is full-dimensional, the seed inequality (28) is facet-defining381

for B(S, ∅, S, ∅), and for each i ∈ S, the lifting coefficients (αi, βi) of the variables (xi, yi) are chosen so382

that (30) is satisfied at equality by two points (x1
i , y

1
i ) and (x2

i , y
2
i ) such that (0, 0), (x1

i , y
1
i ) and (x2

i , y
2
i )383

are affinely independent (a feature we refer to as maximal lifting), then the final lifted inequality will be384

facet-defining for PB. In this scheme, (re)computing the lifting functions P i(w) for each i ∈ S is often the385

most computationally demanding task. However, this computational work is unnecessary when the lifting386

function P s(w) is subadditive. This observation, first made by Wolsey [33], leads to the following result.387

Proposition 3.2 (Richard and Tawarmalani [24]). Assume that (28) is valid for B(S, ∅, S, ∅). Assume also388

that (i) P s(w) is subadditive over R+, i.e, P s(w1) + P s(w2) ≥ P s(w1 + w2) ∀w1, w2 ∈ R+, and (ii) there389

exist (αi, βi) ∈ R2 for all i ∈ S such that390

αixi + βiyi ≥ P s(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (32)391

Then, the inequality392

n∑

j=1

αjxj +
n∑

j=1

βjyj ≥ δ (33)393

is valid for PB. Further, if (i) Inequality (28) is facet-defining for B(S, ∅, S, ∅), (ii) B(S, ∅, S, ∅) is full-394

dimensional and (iii) coefficients (αi, βi) are chosen in a way that two linearly independent points satisfy395

(32) at equality, then (33) is facet-defining for PB.396

The fundamental difference between Proposition 3.1 and Proposition 3.2 lies in equations (30) and (32).397

In the latter, the lifting coefficients of all variables (xi, yi) are obtained from the same lifting function P s(w)398

while in the former, they are obtained from P i(w) for i ∈ S. Although this difference might seem minor, it399

has important practical implications. In particular, the subadditivity of lifting functions typically permits400

the derivation of closed-form expressions for lifting coefficients that would otherwise be difficult to obtain.401

Observe also that in Proposition 3.2, the subadditivity of P s(w) is required only over R+ since all coefficients402

ai in PB are assumed to be nonnegative.403
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Proposition 3.1 describes how to perform lifting when then variables (xj , yj) for j ∈ S are fixed at (0, 0).404

When variables (xj , yj) are fixed at (1, 1), similar results can be obtained. In this case, condition (30) must405

be changed to406

αi(xi − 1) + βi(yi − 1) ≥ P i(aixiyi − ai) for (xi, yi) ∈ {0, 1} × [0, 1] \ {1, 1}. (34)407

Similarly, Proposition 3.2 can be adapted to allow sequence-independent lifting for variables (xj , yj) fixed at408

(1, 1) by replacing P i(w) with P s(w) in (34) and by requiring that the lifting function P s(w) is subadditive409

over R−. Subadditive lifting can also be used to generate facets of PB if B(∅, S, ∅, S) is full-dimensional, the410

seed inequality (28) is facet-defining for B(∅, S, ∅, S), and for each i ∈ S, the lifting coefficients (αi, βi) of the411

variables (xi, yi) are chosen so that (34) is satisfied at equality by two points (x1
i , y

1
i ) and (x2

i , y
2
i ) such that412

(1, 1), (x1
i , y

1
i ) and (x2

i , y
2
i ) are affinely independent.413

We next show in the following proposition that all interesting lifted inequalities that can be obtained by414

fixing variables (xi, yi) at (0, 1) or (1, 0) can also be obtained by fixing variables (xi, yi) at (0, 0).415

Proposition 3.3. Assume that (29) defines a nonempty face of PB(Si−1, ∅, Si−1, ∅) = PB(Si−1, ∅, ∅, Si−1) =416

PB(∅, Si−1, Si−1, ∅). Then any inequality obtained from maximally lifting (29) in PB(Si−1, ∅, ∅, Si−1) or417

PB(∅, Si−1, Si−1, ∅) could have been obtained by maximally lifting (29) in PB(Si−1, ∅, Si−1, ∅).418

Proof. First, we consider the case when (xi, yi) is fixed at (1, 0). In this situation, valid lifting coefficients419

must satisfy420

αi(xi − 1) + βiyi ≥ P i(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1]. (35)421

We next show that maximal lifting coefficients (αi, βi) in (35) must also satisfy422

αixi + βiyi ≥ P i(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] (36)423

and be maximal for (36). This is sufficient to prove the result since restricting (xi, yi) = (0, 0) instead of424

(1, 0) does not change the restricted set and, therefore, the seed inequality is still a face of same dimension.425

Let (0, y∗i ) satisfy (35) at equality. Such a point exists since lifting is assumed to be maximal. Then,426

0 ≥ αi = βiy
∗
i ≥ P i(aiy

∗
i ) ≥ 0,427

where the first inequality follows from (35) by setting (xi, yi) = (0, 0), the equality holds since (0, y∗i ) satisfies428

(35) at equality, the second inequality is satisfied from (35) with (xi, yi) = (1, y∗i ) and the last inequality429

is verified since aiy
∗
i ≥ 0. Therefore, equality holds throughout and, in particular, αi = 0. It follows that430

αi(xi − 1) + βiyi = αixi + βiyi and, consequently, (αi, βi) is valid and maximal to (36).431

Now, we fix (xi, yi) at (0, 1). Then, we show that any (αi, βi) that is valid and maximal to432

αixi + βi(yi − 1) ≥ P i(aixiyi) (37)433

is also valid and maximal to (36). Let y∗i = min{yi ∈ [0, 1] | αi + βi(yi − 1) = P i(aiyi)}, i.e., (1, y∗i ) satisfies434

(37) at equality. It follows that435

0 ≤ βi(y∗i − 1) = P i(aiy
∗
i )− αi ≤ P i(aiy

∗
i )− P i(ai) ≤ 0,436

where the first inequality follows from (37) by substituting (xi, yi) = (0, y∗i ), the equality is satisfied since437

(1, y∗i ) satisfies (37) at equality, the second inequality is verified by substituting (1, 1) in (37), and the last438

inequality holds since P i(·) is non-decreasing and aiy
∗
i ≤ ai. Therefore, the equality holds throughout and,439

in particular, βi(y∗i − 1) = 0. It follows that either βi = 0 or y∗i = 1. We show that βi = 0 in the latter case440

as well. If y∗i = 1, because lifting is assumed to be maximal and because of the definition of y∗i , there is a441

y′i ∈ [0, 1) such that (0, y′i) satisfies (37) at equality. Therefore, βi(y′i − 1) = 0 and so βi = 0. It follows that442

αixi + βi(yi − 1) = αixi + βiyi and, consequently, (αi, βi) is valid and maximal for (36).443
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3.2 Subadditivity of lifting functions444

In this section, we provide a general result that helps in proving subadditivity of functions. For specific445

functions, it has been observed (see Proposition 3.10 in [23], Theorem 7 in [11], Proposition 4.2 in [8], and446

Lemma 21 in [25]) that subadditivity of a function over Rn can often be established by checking it at a small447

subset of points. The corresponding proofs are often detailed and are the key step in proving subadditivity.448

In Theorem 3.4, we identify a fairly large class of functions for which a similar result holds. We use this449

result to prove subadditivity of functions that arise during lifting of inequalities for mixed-integer 0−1 bilinear450

covering set. The scope of applications of Theorem 3.4 is, however, much larger and we provide this general451

result with the hope that it may be useful in other applications.452

Theorem 3.4. For i ∈ N = {1, . . . , n}, let bi ∈ Rm, fi ∈ R, and hi(x) : Rm 7→ R be subadditive functions.453

Let h(x) : Rm 7→ R be a function with h(0) = 0 that majorizes hi(x) for all i. Let Bi = {x ∈ Rm | hi(x−bi) =454

h(x − bi)}. Define f(x) : Rm 7→ R as f(x) = minn
i=1

{
fi + hi(x − bi)

)}
. Then, f(x) + h(y − x) ≥ f(y) for455

each (x, y) ∈ Rm × Rm. For x ∈ Rm, let i(x) ∈ N be such that f(x) = fi(x) + hi(x)(x − bi(x)). If x ∈ Bi(x)456

then f(bi(x))− f(bi(x) + y) ≤ f(x)− f(x + y). Further, if y ∈ Bi(y) as well, then457

f(bi(x)) + f(bi(y))− f(bi(x) + bi(y)) ≤ f(x) + f(y)− f(x + y).458

Proof. Let (x, y) ∈ Rm × Rm. Then,459

f(x)+h(y−x) ≥ f(x)+hi(x)(y−x) = fi(x)+hi(x)(x−bi(x))+hi(x)(y−x) ≥ fi(x)+hi(x)(y−bi(x)) ≥ f(y), (38)460

where the first inequality follows since h(·) ≥ hi(x)(·), the second inequality holds since hi(x) is a subadditive461

function, and the third since the minimum defining f(y) includes a term that equals fi(x) + hi(x)(y − bi(x)).462

Note that 0 ≤ hi(x)(0) ≤ h(0) = 0 where the first inequality follows from subadditivity of hi(x). Therefore,463

hi(x)(0) = 0. Further, if x ∈ Bi(x):464

f(x) = fi(x) + hi(x)(x− bi(x)) ≥ f(bi(x)) + hi(x)(x− bi(x)) = f(bi(x)) + h(x− bi(x)) ≥ f(x),465

where the first inequality holds since hi(x)(0) = 0 implies f(bi(x)) ≤ fi(x) as fi(x) is one of the terms in466

minimum defining f(bi(x)), the second equality since x ∈ Bi(x) and the last inequality by (38). Therefore,467

equality holds throughout and, in particular, fi(x) = f(bi(x)). Now, consider (x, y) ∈ Rm×Rm with x ∈ Bi(x).468

Then,469

f(bi(x))− f(bi(x) + y) = f(x)− h(x− bi(x))− f(bi(x) + y) ≤ f(x)− f(x + y), (39)470

where the equality follows from the definition of i(x), x ∈ Bi(x), and fi(x) = f(bi(x)), and the inequality471

follows from (38) since f(bi(x) + y) + h(x− bi(x)) ≥ f(x + y). Further, if y ∈ Bi(y),472

f(bi(x)) + f(bi(y))− f(bi(x) + bi(y)) ≤ f(bi(x)) + f(y)− f(bi(x) + y) ≤ f(x) + f(y)− f(x + y),473

where each of the inequalities follows from (39).474

Any function, say g(x), that is subadditive and satisfies g(0) = 0 can be expressed as f(x), defined in475

Theorem 3.4, by setting n = 1, b1 = 0, f1 = 0, and h(x) = h1(x) = g(x). Observe that lifting functions476

derived from seed inequalities that are tight on the restricted set always satisfy the condition g(0) = 0. In477

other words, Theorem 3.4 can be interpreted as a recursive tool for proving subadditivity of such lifting478

functions, f(x), that exploits the subadditivity of the constituent simpler functions, hi(·). For example,479

Theorem 3.4 shows that it suffices to check the subadditivity of f(x) at a small subset of points if f(x) can be480

expressed as a minimum of finitely many translates of a subadditive function. Since positively-homogenous481

convex functions belong to the class of subadditive functions, see Theorem 4.7 in [26], they can be used as482

building blocks in the application of Theorem 3.4. In Corollaries 3.5 and 3.6, we apply Theorem 3.4 to prove483

subadditivity of two functions that will be used in Sections 3.3 and 3.4 to derive inequalities for the 0−1484

mixed-integer bilinear covering set. In both cases, functions hi are univariate positively-homogenous convex485

functions.486
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Corollary 3.5. Let ν and Di for i = 0, 1, . . . , r be nonnegative integers that satisfy ν > 0, D0 = 0, and487

Di ≥ Di−1 + ν for i = 1, . . . , r. Then the function488

g(w) :=





0 if w < D0

w − iν if Di ≤ w < Di+1 − ν, i = 0, . . . , r − 1,
Di − iν if Di − ν ≤ w < Di, i = 1, . . . , r − 1,
Dr − rν if Dr − ν ≤ w

489

is subadditive over R if and only if Di + Dj ≥ Di+j for 0 ≤ i ≤ j ≤ r with i + j ≤ r.490

Proof. First note that g(w) = minr
i=0

{
Di−iν+hi(w−Di)

}
, where hi(w) = max{0, w} for i = 0, . . . , r−1 and491

hr(w) = 0. We observe that i(x) = 0 for x < D1 − ν, i(x) = i for x ∈ [Di − ν,Di+1 − ν) and i = 1, . . . , r− 1,492

and i(x) = r for x ≥ Dr − ν. Let h(w) = max{0, w}. We also see that B0 = B1 = . . . = Br−1 = R and493

Br = R−.494

Assume that Di + Dj ≥ Di+j for 0 ≤ i ≤ j ≤ r with i + j ≤ r. Consider x, y ∈ R with x ≤ y. We495

argue next that g(x) + g(y) ≥ g(x + y). Define i = i(x) and j = i(y). Clearly, i ≤ j. We consider two cases.496

Assume first that j = r. Then, g(y) = Dr − rν ≥ g(x + y) and therefore g(x) + g(y) ≥ g(x + y) as g(x) ≥ 0.497

Assume next that j ≤ r − 1. Since x ≤ y < Dr − ν, it follows that x ∈ Bi and y ∈ Bj and, therefore, from498

Theorem 3.4 that499

g(Di) + g(Dj)− g(Di + Dj) ≤ g(x) + g(y)− g(x + y)500

We next argue that the left-hand-side of the above expression is nonnegative, which proves the result. Let501

t = min{j, r − i}. Then,502

g(Di+Dj) = g(Di+Dt) = g(Di+t+Di+Dt−Di+t) ≤ g(Di+t)+Di+Dt−Di+t = g(Di)+g(Dt) ≤ g(Di)+g(Dj),503

where the first equality holds since t = r − i implies Di + Dj ≥ Di + Dt ≥ Dr, the first inequality follows504

from (38) and Di+t ≤ Di + Dt, the second equality since g(Di) = Di − iν, and the last inequality from (38)505

since Dt ≤ Dj .506

We now prove the reverse implication. For w > 0,507

g(Dk − w) ≥ g(Dk − ν)−max{0, w − ν} = g(Dk)−max{0, w − ν} > g(Dk)− w, (40)508

where the first inequality follows from (38) and the last inequality since ν > 0 and w > 0. If i + j ≤ r and509

Di + Dj < Di+j then510

g(Di) + g(Dj)− g(Di + Dj) < g(Di) + g(Dj)− g(Di+j)−Di −Dj + Di+j = 0,511

yields a contradiction to subadditivity of g, where the strict inequality follows from (40) where k = i + j and512

w = Di+j−Di−Dj since Di+Dj < Di+j and the equality holds since g(Dk) = Dk−kν for k ∈ {i, j, i+j}.513

Corollary 3.5 equivalently shows the superadditivity of w− g(w), generalizing prior similar results in the514

literature. In particular, see Lemmas 6 and 7 in [3] and Definition 4 in [19].515

Corollary 3.6. Let λ and Ci for i = 0, 1, . . . , s be nonnegative integers that satisfy λ > 0, C0 = 0 and516

Ci−1 + λ ≤ Ci for i = 1, . . . , s. Then the function517

g(w) =





0 if w < C0

i + w−Ci

λ if Ci ≤ w < Ci + λ, i = 0, . . . , s,
i if Ci−1 + λ ≤ w < Ci, i = 1, . . . , s,
s + 1 if Cs + λ ≤ w.

518

is subadditive over R if and only if Ci + Cj ≤ Ci+j for 0 ≤ i ≤ j ≤ s with i + j ≤ s.519

Proof. Let Cs+1 = max{Ci + Cj | i + j = s + 1}. Note that g(w) = mins+1
i=0

{
i + hi(w − Ci)

)}
where520

hi(w) = max{0, w
λ } for i = 0, . . . , s and hs+1(w) = 0. Let h(w) = max{0, w

λ }.521

Assume that Ci + Cj ≤ Ci+j for 0 ≤ i ≤ j ≤ s with i + j ≤ s. Consider x, y ∈ R with x ≤ y. We522

argue next that g(x) + g(y) ≥ g(x + y). Define i = i(x) and j = i(y). Assume first that j = s + 1. Then523
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g(y) = s + 1 ≥ g(x + y) and therefore, g(x) + g(y) ≥ g(x + y) as g(x) ≥ 0. Next assume that j ≤ s. Since524

x ≤ y < Cs + λ, it follows that x ∈ Bi and y ∈ Bj and therefore, from Theorem 3.4 that525

g(Ci) + g(Cj)− g(Ci + Cj) ≤ g(x) + g(y)− g(x + y).526

We next argue that the left-hand-side of the above expression is nonnegative, which proves the result. Let527

t = min{j, s + 1− i}. Then,528

g(Ci + Cj) ≤ g(Ci+t) = i + t ≤ i + j = g(Ci) + g(Cj),529

where the first inequality follows from (38) and Ci+t ≥ Ci + Cj when t = j and from hs+1(w) = 0 when530

t < j, and the last equality holds because g(Ck) = k for k ∈ {i, j}.531

We now prove the reverse implication. For w > 0 and i ≤ s,532

g(Ck + w) ≥ g(Ck) + max
{

0,
w

λ

}
> g(Ck), (41)533

where the first inequality follows from (38) and the strict inequality from w > 0 and λ > 0. If i + j ≤ s and534

Ci + Cj > Ci+j then535

g(Ci) + g(Cj)− g(Ci + Cj) < g(Ci) + g(Cj)− g(Ci+j) = 0,536

yields a contradiction to subadditivity of g(·) where the strict inequality follows from (41) where k = i + j537

and w = Ci + Cj − Ci+j and the equality holds since g(Ck) = k for k ∈ {i, j, i + j}.538

3.3 Lifted inequalities by sequence-independent lifting539

In this section, we derive strong inequalities for PB through lifting using (25) as seed inequality. To describe540

the general form of these inequalities, we use the notion of a cover, which is adapted from the definition of a541

cover for the 0−1 knapsack polytope; see Balas [4], Hammer et al. [14], and Wolsey [31].542

Definition 3.7. Let C ⊆ N . We say that C is a cover for B if
∑

j∈C aj > d. Further, we define the excess543

of the cover as µ =
∑

j∈C aj − d > 0.544

We create lifted inequalities by first partitioning the set of variables N into (C ′, {l},M, T ) in such a way545

that:546

(A1) C := C ′ ∪ {l} is a cover for B with excess µ,547

(A2) al ≥ aj , ∀j ∈ C ′,548

(A3) al > µ,549

(A4)
∑

j∈C∪T aj > d + al, i.e.,
∑

j∈T aj > al − µ.550

Note that (A1) and (A3) might be reminiscent of conditions that make a cover minimal for the 0−1 knapsack551

polytope. We note however that minimal covers require aj > µ for all j ∈ C and not simply al > µ. Note552

also that (A4) implies that T 6= ∅. To obtain lifted inequalities from (C ′, {l},M, T ), we first fix the variables553

(xj , yj) for j ∈ M to (0, 0) and the variables (xj , yj) for j ∈ C ′ to (1, 1). The resulting (full-dimensional) set554

B(M, C ′,M,C ′) is then defined by the inequality555

alxlyl +
∑

j∈T

ajxjyj ≥ d−
∑

j∈C′
aj = al − µ.556

Since al > µ and
∑

j∈T aj > al−µ from Conditions (A3) and (A4), we conclude from Proposition 2.9(i) that557

(al − µ)xl +
∑

j∈T

ajyj ≥ al − µ (42)558
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is facet-defining for PB(M,C ′,M, C ′). We will create two different families of lifted inequalities for PB by559

reintroducing the variables (xj , yj) for j ∈ M ∪ C ′ in different orders. To derive both families, we use the560

lifting function561

P (w) := max (al − µ)−


(al − µ)xl +

∑

j∈T

ajyj



562

s.t. alxlyl +
∑

j∈T

ajxjyj ≥ al − µ− w (43)563

xj ∈ {0, 1}, yj ∈ [0, 1] ∀j ∈ {l} ∪ T.564

We next derive a closed-form expression for P (w).565

Proposition 3.8.

P (w) =





−∞ if w < −∑
j∈T aj − µ,

w + µ if −∑
j∈T aj − µ ≤ w < −µ,

0 if −µ ≤ w < 0,
w if 0 ≤ w < al − µ,
al − µ if al − µ ≤ w.

566

Further, P (w) is subadditive over R− and R+ respectively.567

Proof. We first derive a closed-form expression for P (w). Observe that, if (43) is feasible, there exists an568

optimal solution (x∗, y∗) to (43) for which x∗j = 1 for j ∈ T and y∗l = 1 since the coefficients of xj for569

j ∈ T and yl in the objective are equal to 0. Defining ā =
∑

j∈T aj and ȳ =
∑

j∈T ajyj

ā , we can simplify the570

formulation of P (w) in (43) as:571

P (w) = max (al − µ)− {(al − µ)xl + āȳ}572

s.t. alxl + āȳ ≥ al − µ− w (44)573

xl ∈ {0, 1}, ȳ ∈ [0, 1].574

When w < −ā− µ, (44) is infeasible and so P (w) = −∞. When w ≥ al − µ, the optimal solution is x∗l = 0575

and ȳ∗ = 0 with P (w) = al−µ. For −ā−µ ≤ w < al−µ, there are two cases. When −ā−µ ≤ w < al− ā−µ,576

then every feasible solution (x∗l , ȳ
∗) has x∗l = 1. Further, the optimal solution has ȳ∗ = max{−µ−w

ā , 0}. It577

follows that P (w) = min{w+µ, 0}. When al− ā−µ ≤ w ≤ al−µ, an optimal solution must be found among578

the solutions (1, (−µ−w)+

ā ) and (0, al−µ−w
ā ). It follows that P (w) = max{(w + µ)−, w} from which we obtain579

the desired expression for P (w) after considering both the cases where al − ā < 0 and al − ā ≥ 0.580

581

Subadditivity of P (w) over R− and R+ follows from Karamata/Hardy-Littlewood-Polya inequality [15],582

concavity of P (w) over these domains and P (0) = 0.583

We note that, although P (w) is subadditive over R+ and over R−, P (w) is not subadditive over R as584

P (2al − µ) + P (−al) = (al − µ) + (−al + µ) = 0 < al − µ = P (al − µ).585

3.3.1 Lifted bilinear cover inequalities586

To obtain lifted bilinear cover inequalities, we will lift first the variables (xi, yi) for i ∈ C ′ from (1, 1) and587

then lift the variables (xi, yi) for i ∈ M from (0, 0). Since P (w) is subadditive over R−, we can apply588

sequence-independent lifting for the variables (xi, yi) for i ∈ C ′.589

Proposition 3.9. Under Conditions (A1), (A2), (A3) and (A4),590

∑

j∈C

(aj − µ)+xj +
∑

j∈T

ajyj ≥
∑

j∈C

(aj − µ)+ (45)591

is facet-defining for PB(M, ∅,M, ∅).592
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Proof. The seed inequality (42) is facet-defining for the full-dimensional polytope PB(M, C ′,M,C ′). Since593

P (w) is subadditive over R−, we obtain from the remark following Proposition 3.2 that the lifting coefficients594

(αi, βi) for (xi, yi) for i ∈ C ′ are valid if they satisfy595

αi(xi − 1) + βi(yi − 1) ≥ P (aixiyi − ai) for (xi, yi) ∈ {0, 1} × [0, 1] \ {1, 1}. (46)596

This condition can be also written as597

βi ≤ inf
0≤φ<1

−P (aiφ− ai)
1− φ

, (47)598

αi + sup
0≤φ≤1

βi(1− φ) ≤ −P (−ai). (48)599

From Conditions (A2) and (A4), we know that ai ≤ al <
∑

j∈T aj + µ, ∀i ∈ C ′. Therefore, in (47)600

aiφ− ai ∈ (−∑
j∈T aj − µ, 0) for all φ ∈ [0, 1). Since P (w) ≤ 0 for w ≤ 0, we conclude that601

−P (aiφ− ai)
1− φ

≥ 0, ∀ 0 ≤ φ < 1,602

and therefore choosing βi = 0 for i ∈ C ′ satisfies (47). Further, as βi = 0, it is simple to verify that choosing603

αi = −P (−ai) = (ai − µ)+ satisfies (48). Finally, observe that (46) is satisfied at equality by the two604

points (0, 0) and
(
1, (ai−µ)+

ai

)
that are affinely independent of (1, 1). Therefore, we conclude that (45) is605

facet-defining for PB(M, ∅, M, ∅).606

Now, we lift the variables (xj , yj) for j ∈ M in (45). The corresponding lifting function is607

PC(w) := max
∑

j∈C

(aj − µ)+ −




∑

j∈C

(aj − µ)+xj +
∑

j∈T

ajyj



608

s.t.
∑

j∈C∪T

ajxjyj ≥
∑

j∈C

aj − µ− w (49)609

xj ∈ {0, 1}, yj ∈ [0, 1] ∀j ∈ C ∪ T.610

We next derive a closed-form expression for PC(w). To this end, we assume without loss of generality that611

C = {1, . . . , p} and that a1 ≥ a2 ≥ . . . ≥ ap. We also let q ∈ C be such that aq > µ ≥ aq+1. We define612

A0 = 0 and Ai =
∑i

j=1 aj for all i ∈ {1, . . . , q}.613

Proposition 3.10. For w ≥ 0,614

PC(w) =





w − iµ if Ai ≤ w < Ai+1 − µ, i = 0, . . . , q − 1,
Ai − iµ if Ai − µ ≤ w < Ai, i = 1, . . . , q − 1,
Aq − qµ if Aq − µ ≤ w.

615

Proof. First, observe that there exists an optimal solution (x∗, y∗) of (49) in which x∗j = 1 for j ∈ T and616

y∗j = 1 for j ∈ C since the corresponding objective coefficients are zero. Since aq > µ ≥ aq+1, we have617

(aj − µ)+ = 0 for j = q + 1, . . . , p, which similarly implies that we can assume x∗j = 1 for j = q + 1, . . . , p.618

Defining ā =
∑

j∈T aj and ȳ =
∑

j∈T ajyj

ā , we simplify the expression of PC(w) as619

PC(w) = max
q∑

j=1

(aj − µ)−




q∑

j=1

(aj − µ)xj + āȳ



620

s.t.

q∑

j=1

ajxj + āȳ ≥
q∑

j=1

aj − µ− w (50)621

xj ∈ {0, 1}, ∀j = 1 . . . , q, ȳ ∈ [0, 1].622

Next, we solve (50). When w ≥ Aq − µ, it is clear that x∗j = 0 for j = 1, . . . , q and ȳ∗ = 0 is an optimal623

solution for (50), showing that PC(w) = Aq − qµ. It is therefore sufficient to consider w ∈ [0, Aq − µ). We624

consider two cases:625
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1. Assume that Ai−µ ≤ w < Ai+1−µ for i ∈ {1 . . . , q−1}. Let θ = (Ai+1−µ)−w. Clearly, 0 < θ ≤ ai+1.626

Define first the solution (x∗, ȳ∗) where x∗j = 0 for j = 1, . . . , i+1, x∗j = 1 for j = i+2, . . . , q, and ȳ∗ = θ
ā .627

When θ ≤ ā, (x∗, ȳ∗) is a feasible solution to (50) with objective value z∗ = Ai+1−(i+1)µ−θ = w−iµ.628

Next consider the solution (x′, ȳ′) where x′j = 0 for j = 1, . . . , i, x′j = 1 for j = i + 1, . . . , q, and ȳ′ = 0.629

Solution (x′, ȳ′) is feasible to (50) and has objective value z′ = Ai − iµ. It is clear that z∗ ≥ z′ when630

θ ≤ ai+1 − µ and that z′ ≥ z∗ when ai+1 − µ ≤ θ ≤ ai+1. Further, solution (x∗, ȳ∗) is feasible when631

θ ≤ ai+1 − µ as ai+1 − µ ≤ a1 − µ ≤ ā because of Condition (A4). Therefore, we conclude that632

PC(w) ≥ w − iµ if Ai ≤ w ≤ Ai+1 − µ and PC(w) ≥ Ai − iµ if Ai − µ ≤ w < Ai.633

We now prove that the proposed solutions are optimal. Pick any feasible solution (x◦, ȳ◦) to (50).634

Define N1 = {j ∈ {1, . . . , q} | x◦j = 1}. Consider first the case where |N1| = q− i + k for k ∈ {0, . . . , i}.635

Since
∑q

j=1 ajx
◦
j + āȳ◦ ≥ ∑q

j=1 ajx
◦
j ≥ Aq −Ai−k, the objective value associated with (x◦, ȳ◦) satisfies636

z◦ =
∑q

j=1(aj−µ)(1−x◦j )− āȳ◦ ≤ Ai−k−(i−k)µ = Ai−iµ−∑i
j=i−k+1(aj−µ) ≤ z′. Second, consider637

the case where |N1| = q − i − k for k ∈ {1, . . . , q − i}. Since
∑q

j=1 ajx
◦
j + āȳ◦ ≥ Aq − Ai+1 + θ from638

feasibility, the corresponding objective value is z◦ =
∑q

j=1(aj−µ)(1−x◦j )−āȳ◦ ≤ Ai+1−θ−(i+k)µ ≤ z∗.639

Since whenever the solution (x∗, ȳ∗) corresponding to z∗ is infeasible, z∗ ≤ z′, the result is proven.640

2. Assume that 0 ≤ w < A1 − µ. An argument similar to that presented above shows that the feasible641

solution x∗1 = 0, x∗j = 1 for j = 2, . . . , q, and ȳ∗ = A1−µ−w
ā is optimal for (50), which implies that642

PC(w) = w.643

644

In the following result, we argue that PC(w) is subadditive. This result enables us to use Proposition 3.2645

to perform sequence-independent lifting for the variables in M .646

Corollary 3.11. The lifting function PC(w) is subadditive over R+.647

Proof. In Corollary 3.5, define ν = µ, r = q, and Di = Ai. Since ai ≥ µ for i = 1, . . . , q, it is clear that648

Ai ≥ Ai−1 + µ. Further, since Ai is defined as the sum of the largest i coefficients in C, it is clear that649

Ai + Aj ≥ Ai+j for 0 ≤ i, j ≤ q with i + j ≤ q. Therefore, Corollary 3.5 shows that PC(w) is subadditive650

over R+.651

We next illustrate the results of Proposition 3.9, Proposition 3.10, and Corollary 3.11 on an example.652

Example 3.12. Consider the 0−1 mixed-integer bilinear covering set653

B =
{

(x, y) ∈ {0, 1}5 × [0, 1]5
∣∣∣∣ 21x1y1 + 19x2y2 + 17x3y3 + 15x4y4 + 10x5y5 ≥ 20

}
.654

Let (C ′, {l},M, T ) = ({5}, {4}, {1, 2}, {3}). Clearly, (C ′, {l},M, T ) satisfies Conditions (A1)-(A4) since655

C = C ′ ∪ {l} is a cover with µ = 5, a4 ≥ a5, a4 > µ and
∑

j∈C∪T aj = 17 + 15 + 10 > 20 + 15 = d + al. By656

Proposition 3.9, the inequality657

17y3 + 10x4 + 5x5 ≥ 15 (51)658

is facet-defining for PB(M, ∅,M, ∅). Using Proposition 3.10, the lifting function PC(w) is given by659

PC(w) =





w if 0 ≤ w < 10,
10 if 10 ≤ w < 15,
w − 5 if 15 ≤ w < 20,
15 if 20 ≤ w.

660

Function PC(w) is represented in Figure 1. Corollary 3.11 shows that this function is subadditive over R+.661

We now compute the lifting coefficients of variables (xi, yi) for i ∈ M from PC(w). It follows from662

Proposition 3.2 that lifting coefficients (αi, βi) for i ∈ M must be chosen to satisfy663

αixi + βiyi ≥ PC(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (52)664

18



0 5 10 15 20
0

2

4

6

8

10

12

14

16
P C(w)

A1 − µ A1 A2 − µ

w

Figure 1: Lifting function PC(w) of (51)

For the problem described in Example 3.12, PC(aixiyi) is represented in Figure 2(a) for i = 1. In this figure,665

we observe that PC(aixiyi) is equal to zero when xi = 0 and is equal to PC(aiyi) when xi = 1. Condition (52)666

requires that the lifting coefficients (αi, βi) be chosen in such a way that the plane αixi+βiyi (passing through667

the origin (0, 0)) overestimates the function PC(aixiyi) over {0, 1} × [0, 1]. Possible overestimating planes668

are represented in Figure 2(b). A similar geometric interpretation was used in Richard and Tawarmalani [24]669

to obtain lifted inequalities for 0−1 mixed-integer bilinear knapsack sets. It is clear from Figure 2 that good670

overestimating planes αixi +βiyi are in direct correspondence with the concave envelope p(w) of PC(w) over671

[0, ai]. This observation motivates the following result.672

Lemma 3.13. For i ∈ M , define673

qi :=





0 if ai ≤ A1 − µ,
j if Aj − µ < ai ≤ Aj+1 − µ, j = 1, . . . , q − 1,
q if Aq − µ < ai.

674

Let Qi
0 = 0, Qi

j = Aj −µ for j = 1, . . . , qi and Qi
qi+1 = ai. Further, define ∆i

j = Qi
j+1−Qi

j for j = 0, . . . , qi.675

Define pi
j(w) = PC(Qi

j) + P C(Qi
j+1)−P C(Qi

j)

∆i
j

(w −Qi
j) for j = 0, . . . , qi. Then, the function676

pi(w) := min
{

pi
j(w)

∣∣∣ j ∈ {0, . . . , qi}
}

(53)677

is a concave overestimator of PC(w) over [0, ai].678

Proof. Clearly, pi(w) is concave since it is defined as the minimum of affine functions. Observe that, for679

j = 0, . . . , qi, pi
j(w) ≥ pi

j+1(w) when w ≥ Qi
j+1, pi

j(w) ≤ pi
j+1(w) when w < Qi

j+1, and pi
j(w) ≥ PC(w)680

when w ∈ [Qi
j , Q

i
j+1]. Now, consider j ∈ {0, . . . , qi} and k 6= j. Then, for w ∈ [Qi

j , Q
i
j+1], PC(w) ≤ pi

j(w) ≤681

pi
k(w).682

Observe that the concave overestimator of PC(w) derived in Lemma 3.13 has qi+1 linear pieces. Also note683

that the definition of qi implies that ∆i
j > 0 for all j = 0, . . . , qi. Next, we compute maximal lifting coefficients684

for the variables (xi, yi) where i ∈ M using the sequence-independent lifting result of Proposition 3.2 and685

Lemma 3.13.686

Theorem 3.14. Under Conditions (A1), (A2), (A3) and (A4), the lifted bilinear cover inequality687

∑

j∈C

(aj − µ)+xj +
∑

j∈T

ajyj +
∑

i∈M

αixi +
∑

i∈M

βiyi ≥
∑

j∈C

(aj − µ)+ (54)688
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Figure 2: Deriving lifting coefficients for Example 3.15

is facet-defining for PB if689

(αi, βi) ∈
(
PC(ai), 0

) qi⋃

j=0

(
PC(Qi

j)−
PC(Qi

j+1)− PC(Qi
j)

∆i
j

Qi
j ,

PC(Qi
j+1)− PC(Qi

j)
∆i

j

ai

)
690

for i ∈ M in (54) where Qi
j, ∆i

j, and qi are as defined in Lemma 3.13.691

Proof. Because PC(w) is subadditive over R+, we know that (54) is valid for PB if the lifting coefficients692

(αi, βi) of (xi, yi) for i ∈ M are chosen to satisfy the condition693

αixi + βiyi ≥ PC(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (55)694

Condition (55) can be rewritten as695

βiφ ≥ PC(0) for 0 < φ ≤ 1, (56)696

αi + βiφ ≥ PC(aiφ) for 0 ≤ φ ≤ 1. (57)697

To prove that (54) is facet-defining for PB, we also need to show two linearly independent points (xi, yi)698

for which (55) is satisfied at equality. First, consider the case where (αi, βi) = (PC(ai), 0). Condition (56)699

is satisfied since βi = 0 and PC(0) = 0. Condition (57) also holds because αi = PC(ai) and PC(w) is700

non-decreasing over R+. Further, (55) is satisfied at equality at the two points, (0, 1) and (1, 1). Finally,701

consider702

(αi, βi) =

(
PC(Qi

j)−
PC(Qi

j+1)− PC(Qi
j)

∆i
j

Qi
j ,

PC(Qi
j+1)− PC(Qi

j)
∆i

j

ai

)
703

for any j ∈ {0, . . . , qi}. Clearly, (αi, βi) satisfies (56) since βi ≥ 0 and PC(0) = 0. From Lemma 3.13, we704

have that705

PC(aiφ) ≤ PC(Qi
j) + P C(Qi

j+1)−P C(Qi
j)

∆i
j

(
aiφ−Qi

j

)

=
(

PC(Qi
j)−

P C(Qi
j+1)−P C(Qi

j)

∆i
j

Qi
j

)
+ P C(Qi

j+1)−P C(Qi
j)

∆i
j

aiφ

= αi + βiφ,

706
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showing that (αi, βi) satisfy (57) for j = 0, . . . , qi. Further, (55) is satisfied at equality at the two points707 (
1,

Qi
j

ai

)
and

(
1,

Qi
j+1
ai

)
. Therefore, we conclude that (54) is facet-defining for PB.708

The concave overestimator of Lemma 3.13 is in fact the concave envelope of PC(w) over w ∈ [0, ai]. The709

concave envelope of PC(aixy) over {0, 1} × [0, 1] implicit in the proof of Theorem 3.14 can also be obtained710

using the technique for constructing envelopes of functions that satisfy pairwise complementarity described711

in [28]. We refer to Section 3 of [28] for definitions and, in particular, Proposition 3 therein for relevant712

constructions. The same construction also yields the concave envelope of Ψ(aixy) over {0, 1} × [0, 1] proved713

later in Theorem 3.26 using the concave overestimator of Ψ(w) derived in Lemma 3.25.714

Recall that Figure 2(a) depicts PC(a1x1y1) for inequality (51). Observe that in Figure 2(b), lifting715

coefficients (0, a1) define the plane passing through (0, 0) and (1, 0) while lifting coefficients (PC(ai), 0)716

define the plane passing through (0, 0) and (0, 1) (which is identical to the plane obtained when j = q1 = 2).717

Since there are several choices for the values of each of the pair of lifting coefficients (αi, βi), the family718

of inequalities (54) contains an exponential number of members. Theorem 3.14 therefore provides a new719

illustration that sequence-independent lifting from a single seed inequality can produce exponentially large720

families of inequalities, a property that was discussed in a more general setting in Section 2 of [24]. We721

illustrate this characteristic of lifted bilinear cover inequalities in Example 3.15.722

Example 3.15. In Example 3.12, we established that (51) is facet-defining for PB(M, ∅,M, ∅) and described723

the corresponding lifting function PC(w). We compute that q1 = 2 (with Q1
0 = 0, Q1

1 = 10, Q1
2 = 20, Q1

3 = 21)724

and q2 = 1 (with Q2
0 = 0, Q2

1 = 10, Q2
2 = 19). Applying Theorem 3.14, we obtain the nine inequalities725





21y1

5x1 + 21
2 y1

15x1



 +





19y2
50
9 x2 + 76

9 y2

14x2



 + 17y3 + 10x4 + 5x5 ≥ 15726

which are all facet-defining for PB. The three possible choices for the lifting coefficients of (x1, y1) are depicted727

in Figure 2(b). The fact that there are three possible choices for (x2, y2) follows similarly with the exception728

that coefficient a2 falls in the second interval (A1 − µ, A2 − µ].729

Another look at Figure 2 also suggests that if we had fixed (x1, y1) at (0, 1) or (1, 0), we would only have730

been able to obtain a single lifted inequality and so fixing variables at (0, 0) in this case is crucial in discovering731

the exponential family of lifted inequalities. This provides a graphical illustration of Proposition 3.3, which732

states that all interesting lifting coefficients that can be obtained from fixing variables at (0, 1) or (1, 0) can733

also be obtained from fixing variables at (0, 0).734

3.3.2 Lifted reverse bilinear cover inequalities735

In Theorem 3.14, we derived lifted bilinear cover inequalities by first lifting the variables (xj , yj) for j ∈ C ′736

and then lifting the variables (xj , yj) for j ∈ M . Here, we derive another family of lifted inequalities that we737

call lifted reverse bilinear cover inequalities by changing the lifting order: we start the lifting procedure with738

the same seed inequality (42), but we now lift the variables (xj , yj) for j ∈ M before the variables (xj , yj)739

for j ∈ C ′. In this case, we do not assume that al ≥ ai for i ∈ C, i.e., we do not require Condition (A2).740

Proposition 3.16. Under Conditions (A1), (A3), and (A4), the inequality741

(al − µ)xl +
∑

j∈M

min{aj , al − µ}xj +
∑

j∈T

ajyj ≥ al − µ (58)742

is facet-defining for PB(∅, C ′, ∅, C ′).743

Proof. It follows from Proposition 2.9 that744

(al − µ)xl +
∑

j∈T

ajyj ≥ al − µ745
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is facet-defining for the full-dimensional polytope PB(M, C ′,M,C ′). Its lifting function P (w) is derived in746

Proposition 3.8 where it is also proven to be subadditive over R+. Therefore, Proposition 3.2 shows that747

lifting coefficients (αi, βi) for (xi, yi) for i ∈ M are valid if they satisfy the condition748

αixi + βiyi ≥ P (aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (59)749

Condition (59) can be rewritten as750

βiφ ≥ P (0) for 0 < φ ≤ 1, (60)751

αi + βiφ ≥ P (aiφ) for 0 ≤ φ ≤ 1. (61)752

We now show that (αi, βi) = (P (ai), 0) are valid lifting coefficients. Clearly, βi = 0 satisfies (60) since753

P (0) = 0. Further, since P (aiφ) = min{aiφ, al − µ}, it is also clear that αi = P (ai) = min{ai, al − µ} ≥754

min{aiφ, al − µ} = P (aiφ). To show that (58) is facet-defining for PB(∅, C ′, ∅, C ′), it suffices to verify that755

the two points (0, 1) and (1, 1) satisfy (59) at equality.756

Proposition 3.16 also follows directly from Proposition 2.9. We provided a proof of Proposition 3.16 based757

on lifting techniques to emphasize that the cover and reverse-cover inequalities are obtained by reversing the758

order of lifting of M and C ′. We remark that the above result does not require Condition (A2). Also,759

note that lifting coefficients (αi, βi) = (0, ai) for i ∈ M are valid for (59). These coefficients yield facet-760

defining inequalities for PB(∅, C ′, ∅, C ′) because (59) is satisfied at equality for (1, 0) and
(
1,min

{
1, al−µ

ai

})
.761

However, these variables could have been treated directly as elements of T in (42) since adding more elements762

to T will not violate Condition (A4).763

To obtain facet-defining inequalities for PB, we lift the remaining variables (xj , yj) for j ∈ C ′ in (58). To764

this end, we first compute the function765

PM (w) := max (al − µ)−


(al − µ)xl +

∑

j∈M

min{aj , al − µ}xj +
∑

j∈T

ajyj



766

s.t. alxlyl +
∑

j∈M∪T

ajxjyj ≥ al − µ− w (62)767

xj ∈ {0, 1}, yj ∈ [0, 1] ∀j ∈ {l} ∪M ∪ T.768

Let M = M1 ∪ M2 where M1 = {i ∈ M | ai > al − µ} and M2 = M \ M1. Assume without loss of769

generality that {l} ∪M1 = {1, . . . , q} and a1 ≥ a2 ≥ . . . ≥ aq where q = |M1| + 1. Further, define A0 = 0770

and Ai =
∑i

j=1 aj for i = 1, . . . , q. Observe that al +
∑

j∈M∪T aj = Aq +
∑

j∈M2
aj +

∑
j∈T aj . We derive a771

closed-form expression for PM (w) in the following proposition.772

Proposition 3.17.

PM (w) =





−∞ if w < −µ−∑
j∈M∪T aj ,

w + Aq − q(al − µ) if −µ−∑
j∈M∪T aj ≤ w < −Aq + (al − µ),

−i(al − µ) if −Ai+1 + (al − µ) ≤ w < −Ai, i = 0, . . . , q − 1,
w + Ai − i(al − µ) if −Ai ≤ w < −Ai + (al − µ), i = 1, . . . , q − 1,

773

Proof. First, we observe that, if (62) has a feasible solution, then it has an optimal solution (x∗, y∗) that774

satisfies x∗j = 1 for j ∈ T and y∗j = 1 for j ∈ M ∪ {l} since the objective coefficients corresponding to these775

variables are zero. Using the notation ā =
∑

j∈T aj and ȳ =
∑

j∈T ajyj

ā , we simplify the expression of PM (w)776

as777

PM (w) = max (al − µ)−




∑

j∈{l}∪M1

(al − µ)xj +
∑

j∈M2

ajxj + āȳ



778

s.t.
∑

j∈{l}∪M1

ajxj +
∑

j∈M2

ajxj + āȳ ≥ al − µ− w (63)779

xj ∈ {0, 1} ∀j ∈ {l} ∪M1 ∪M2, ȳ ∈ [0, 1].780
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After introducing â =
∑

j∈M2
aj + ā and ŷ =

∑
j∈M2

ajxj+āȳ

â , we claim that PM (w) can be written as781

PM (w) = max (al − µ)−




q∑

j=1

(al − µ)xj + âŷ



782

s.t.

q∑

j=1

ajxj + âŷ ≥ al − µ− w (64)783

xj ∈ {0, 1} ∀j ∈ {1, . . . , q}, ŷ ∈ [0, 1].784

We next prove that (63) and (64) are equivalent. To do so, we show that (63) has a feasible solution785

(x∗l , x
∗
M1

, x∗M2
, ȳ∗) with objective value ζ∗ if and only if (64) has a feasible solution (x∗l , x

∗
M1

, ŷ∗) with objective786

value ζ∗. On the one hand, given (x∗l , x
∗
M1

, x∗M2
, ȳ∗), we can obtain (x∗l , x

∗
M1

, ŷ∗) directly from the definition of787

ŷ. The objective values of these two solutions are identical. On the other hand, let M2 = {q+1, . . . , m}. Define788

Â0 = 0 and Âi =
∑q+i

j=q+1 aj for i = 1, . . . , m− q. Then, for a given (x∗l , x
∗
M1

, ŷ∗), we build (x∗l , x
∗
M1

, x∗M2
, ȳ∗)789

as follows. Define m̂ = max{i ∈ {0, . . . , m− q} | Âi ≤ âŷ∗} and set x∗q+j = 1 for j ≤ m̂, x∗q+j = 0 for j > m̂790

and ȳ∗ = âŷ∗−Âm̂

ā . We argue next that this solution is feasible. First observe that âŷ∗ − Âm̂ ≤ aq+m̂+1791

when m̂ ≤ m − q − 1 and that âŷ∗ − Âm̂ ≤ ā when m̂ = m − q. Since ā =
∑

j∈T aj > al − µ ≥ ai for all792

i ∈ M2 because of Condition (A4) and the definition of M2, we easily conclude that 0 ≤ âŷ∗−Âm̂

ā ≤ 1. Also,793 ∑
j∈{l}∪M1

ajx
∗
j +

∑
j∈M2

ajx
∗
j + āȳ∗ =

∑
j∈{l}∪M1

ajx
∗
j + Âm̂ + âŷ∗ − Âm̂ =

∑
j∈{l}∪M1

ajx
∗
j + âŷ∗. This794

shows that the proposed solution is feasible for (63) and has the same objective value as (x∗l , x
∗
M1

, ŷ∗).795

Next, we study (64). It is clear that this problem is infeasible if and only if w < al − µ − Aq − â =796

−µ−∑
j∈M∪T aj . Therefore assume that w ≥ −µ−∑

j∈M∪T aj . Consider now any optimal solution (x∗, ŷ∗)797

for which x∗i < x∗t and i < t for some i, t ∈ {1 . . . , q}. Then the solution (x̄, ŷ∗) where x̄k = x∗k if k 6= i798

and k 6= t, x̄i = x∗t , and x̄t = x∗i is also feasible for (64) since ai ≥ at and has the same objective value as799

(x∗, ŷ∗). It follows that (64) has an optimal solution that satisfies x∗1 = . . . = x∗i = 1 and x∗i+1 = . . . = x∗q = 0800

for some i ∈ {1, . . . , q}. Consider such a solution further. On the one hand, if
∑i

j=1 aj ≥ al − µ − w, then801 ∑i−1
j=1 aj < al−µ−w and ŷ∗ = 0 otherwise the solution x◦j = 1 for j = 1, . . . , i−1, x◦j = 0 for j = i, . . . , q and802

ŷ◦ = 0 would be feasible and would have a better objective value. On the other hand if
∑i

j=1 aj < al−µ−w803

for i ≤ q − 1 then
∑i+1

j=1 aj ≥ al − µ − w. Otherwise the solution x◦j = 1 for j = 1, . . . , i + 1, x◦j = 0 for804

j = i+2, . . . , q and ŷ◦ = ŷ∗− ai+1
â would be feasible and would have an objective value ai+1− (al−µ) larger805

than that of (x∗, y∗). This is a contradiction since ai+1 > al − µ.806

We consider two situations. First, assume −Aq + (al − µ) − â ≤ w < −Aq + (al − µ), it follows from807

the above discussion that there is an optimal solution (x∗, ŷ∗) with x∗ = 1. Then ŷ∗ = al−µ−w−Aq

â . Clearly,808

ŷ∗ ∈ [0, 1] and so PM (w) = w + Aq − q(al − µ). Second, assume −Ai+1 + (al − µ) ≤ w < −Ai + (al − µ) for809

some i ∈ {0, . . . , q − 1}, it follows from the above discussion that one of the following two solutions810

x�1 = x�2 = . . . = x�i+1 = 1, x�i+2 = . . . = x�q = 0, ŷ� = 0, and811

x�1 = x�2 = . . . = x�i = 1, x�i+1 = . . . = x�q = 0, ŷ� =
al − µ− w −Ai

â
812

with objective values z� = −i(al − µ) and z� = −i(al − µ) + (w + Ai) is optimal for (64) since al − µ−w ∈813

(Ai, Ai+1]. Note that the second solution is feasible only when al − µ − w − Ai ≤ â. We now consider two814

cases. When w ≤ −Ai then z� ≥ z� and so PM (w) = −i(al − µ). When w > −Ai, then z� > z�. Further,815

solution (x�, ŷ�) is feasible since al − µ − w − Ai < al − µ ≤ â because of Condition (A4). It follows that816

PM (w) = −i(al − µ) + (w + Ai).817

To perform sequence-independent lifting for the variables (xj , yj) for j ∈ C ′, we verify that the function818

PM (w) is subadditive over R−.819

Proposition 3.18. The lifting function PM (w) is subadditive over R−.820
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Proof. First, note that PM (w) is subadditive over R− if it is subadditive over I = [−µ − ∑
j∈M∪T aj , 0].821

Consider Corollary 3.5 and define Di = Ai, ν = al−µ, r = q, and notice that PM (w) = g(−w) + w. Clearly,822

Ai + Aj ≥ Ai+j for 0 ≤ i ≤ j ≤ q with i + j ≤ q since Ai is the sum of the largest i coefficients in M1 ∪ {l}.823

It then follows from Corollary 3.5 that PM (w) is subadditive over I, proving the result.824

We next illustrate the results of Propositions 3.16, 3.17, and 3.18 via an example.825

Example 3.19. For the set B of Example 3.12, consider the partition (C ′, {l},M, T ) = ({3}, {4}, {5}, {1, 2}).826

This partition satisfies Conditions (A1), (A3), and (A4) since C is a cover with µ = 12, a4 > µ, and827 ∑
j∈C∪T aj = 21 + 19 + 17 + 15 > 20 + 15 = d + al. We obtain from Proposition 3.16 that828

3x4 + 3x5 + 21y1 + 19y2 ≥ 3 (65)829

is facet-defining for PB(∅, C ′, ∅, C ′). Further, the lifting function PM (w) over R− is given by830

PM (w) =





−∞ if w < −62
w + 19 if −62 ≤ w < −22
−3 if −22 ≤ w < −15
w + 12 if −15 ≤ w < −12
0 if −12 ≤ w ≤ 0,

831

as described in Proposition 3.17 since q = 2, A0 = 0, A1 = 15 and A2 = 25.832

Similar to Theorem 3.14, we compute the lifting coefficients for the variables (xi, yi) for i ∈ C ′ using833

sequence-independent lifting; refer to the discussion following Proposition 3.2.834

Theorem 3.20. Suppose that Conditions (A1), (A3), and (A4) hold. Then, the lifted reverse bilinear cover835

inequality836

(al − µ)xl −
∑

j∈C′
PM (−aj)xj +

∑

j∈M

min{aj , al − µ}xj +
∑

j∈T

ajyj ≥ (al − µ)−
∑

j∈C′
PM (−aj) (66)837

is facet-defining for PB.838

Proof. Since PM (w) is subadditive over R−, the lifting coefficients (αi, βi) of the variables (xi, yi) for i ∈ C ′839

are valid if they are chosen to satisfy840

αi(xi − 1) + βi(yi − 1) ≥ PM (aixiyi − ai) for (xi, yi) ∈ {0, 1} × [0, 1] \ {1, 1}. (67)841

Condition (67) can be rewritten as842

βi ≤ inf
0≤φ<1

−PM (aiφ− ai)
1− φ

, (68)843

αi + sup
0≤φ≤1

βi(1− φ) ≤ −PM (−ai). (69)844

Because of Assumption 2, we know that ai ≤
∑

j∈N aj−d =
∑

j∈C∪M∪T aj−(
∑

j∈C aj−µ) = µ+
∑

j∈M∪T aj845

for all i ∈ C ′ ⊆ N and so PM (aiφ − ai) > −∞ for all φ ∈ [0, 1). Choosing βi = 0 satisfies (68) since846

PM (aiφ − ai) ≤ 0 for all φ ∈ [0, 1). Moreover, as βi = 0, it is easily verified that choosing αi = −PM (−ai)847

satisfies (69). Finally, note that (67) is tight at the points (0, 0) and
(
1, (ai−A1+al−µ)+

ai

)
, which proves that848

(66) is facet-defining for PB.849

Note that the lifted reverse bilinear cover inequality (66) we obtained through lifting is unique. This is a850

significant difference from lifted bilinear cover inequalities (54). We next illustrate in an example the reason851

that we obtain a single lifted reverse bilinear cover inequality and show that not all lifted reverse bilinear852

cover inequalities (66) can be derived as lifted bilinear cover inequalities (54).853
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Example 3.21. For the partition (C ′, {l},M, T ) = ({3}, {4}, {5}, {1, 2}), we established in Example 3.19854

that (65) is facet-defining for PB(∅, C ′, ∅, C ′). Applying Theorem 3.20, we obtain the following lifted reverse855

bilinear cover inequality856

3x3 + 3x4 + 3x5 + 21y1 + 19y2 ≥ 6, (70)857

which is facet-defining for PB. We represent in Figure 3(a), the function PM (a3x3y3 − a3) that was overes-858

timated to construct valid lifting coefficients. We represent in Figure 3(b) the only choice of coefficients that859

yields an overestimating plane to PM (a3x3y3−a3) over (x3, y3) ∈ {0, 1}× [0, 1] and is tight at (1, 1). Further,860

Inequality (70) cannot be obtained as a lifted bilinear cover inequality (54). In fact, if (70) was of the form861

(54), it should be that C ⊆ {3, 4, 5}. However, none of the four possible covers C1 = {3, 4}, C2 = {3, 5},862

C3 = {4, 5} and C4 = {3, 4, 5} yield (70).863
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Figure 3: Deriving lifting coefficients for Example 3.21

3.4 Inequalities through approximate lifting864

We now derive another family of lifted inequalities from the seed inequality (27) developed in Proposition 2.11.865

To this end, we first identify a partition (K, M) of the set of variables N that satisfies the following conditions866

(C1)
∑

j∈K aj − ak ≥ d for all k ∈ K,867

(C2)
∑

j∈K aj − ak − am < d for all k 6= m ∈ K, i.e., ak + am > µ for all k 6= m ∈ K,868

where µ =
∑

j∈K aj − d is the excess of K. Note that Condition (C1) implies that K is a cover. Further,869

Condition (C1) requires that K \ {k} is also a cover for all k ∈ K and so ak ≤ µ for all k ∈ K. It also follows870

from Condition (C1) that |K| ≥ 2. We refer to a set K satisfying Conditions (C1) and (C2) as a clique. After871

fixing the variables (xi, yi) for i ∈ M to (0, 0), it follows from Proposition 2.11 that the clique inequality872

∑

j∈K

xj ≥ |K| − 1 (71)873

is facet-defining for PB(M, ∅, M, ∅).874

We now lift the remaining variables (xi, yi) for i ∈ M in two steps. We assume without loss of generality875

that K = {1, . . . , r} and that a1 ≤ a2 ≤ . . . ≤ ar. We define µ′ = a1+a2−µ. We assume that ar+1 ≤ · · · ≤ an876

and define p such that
∑p

i=r+1 ai < µ′ ≤ ∑p+1
i=r+1 ai. (More generally, M̂ can be taken to be any subset of877

M such that
∑

i∈M̂
ai < µ′ without altering the form of the derived inequality.) Let M̂ = {ar+1, . . . , ap}.878

We show that (71) is facet-defining for PB(M\M̂, ∅,M\M̂, ∅). First, we show by contradiction that the879
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inequality is valid. Let (x, y) be such that
∑

j∈K xj < r − 1. Then,880

p∑

j=1

ajxjyj ≤
p∑

j=3

aj = d− µ′ +
p∑

j=r+1

aj < d,881

where the first inequality holds since a1 ≤ · · · ≤ ar and
∑

j∈K xj < r− 1 and the last inequality follows since882 ∑p
j=r+1 aj < µ′. This inequality implies that (x, y) 6∈ B(M\M̂, ∅, M\M̂, ∅), the desired contradiction. By883

Proposition 2.10, it suffices to show that (71) is facet-defining for PB(M\M̂, ∅, M\M̂, K∪M̂). Define χ such884

that χj = 1 for j ∈ K and χj = 0 for j ∈ M̂ . Then, by (C1), pk = χ− ek for k ∈ K and qk = χ− e1 + ek for885

k ∈ M̂ , are feasible. Since these points are linearly independent, (71) is facet-defining.886

We now lift variables (xi, yi) for i ∈ M = M\M̂ . The lifting function corresponding to (71) is defined as887

Φ(w) := max (|K| − 1)−
∑

j∈K

xj888

s.t.
∑

j∈K

ajxjyj +
∑

j∈M̂

ajxjyj ≥ d− w (72)889

xj ∈ {0, 1}, yj ∈ [0, 1] ∀j ∈ K.890

We define a′ =
∑

j∈M̂
aj , µ̄ = µ′−a′, B0 = 0, and Bi =

∑i
j=1 aj+2−a′ for i = 1, . . . , r−2. It follows from891

the definition of M̂ that µ̄ > 0. Observe that B0 ≤ B1 because a3−a′ ≥ a3−µ′ = a3−a1−a2+µ ≥ −a2+µ ≥ 0,892

where the last inequality follows from (C1). Also, observe that Br−2 + µ̄ = d − a′ and, for all i ∈ M ,893

ai ≥ ap+1 ≥ µ′ − a′ = µ̄, where the last inequality follows from the definition of M̂ .894

Proposition 3.22. For w ≥ 0,895

Φ(w) =





0 if 0 ≤ w < µ̄,
i if Bi−1 + µ̄ ≤ w < Bi + µ̄, i = 1, . . . , r − 2,
r − 1 if Br−2 + µ̄ ≤ w.

896

Proof. Problem (72) is feasible for w ≥ 0 and has an optimal solution (x∗, y∗) that satisfies (x∗j , y
∗
j ) = 1 for897

j ∈ M̂ and y∗j = 1 for j ∈ K since the objective coefficients of these variables are zero. Hence, Φ(w) can be898

rewritten as899

Φ(w) = max (|K| − 1)−
∑

j∈K

xj900

s.t.
∑

j∈K

ajxj ≥ d− a′ − w (73)901

xj ∈ {0, 1} ∀j ∈ K.902

Further, we claim that there exists an optimal solution x∗ to (73) in which903

x∗1 ≤ x∗2 ≤ . . . ≤ x∗r . (74)904

This is because, given any solution x∗ to (73) with x∗i > x∗j for i < j, the solution x̄ defined as x̄k = x∗k if905

k 6= i and k 6= j, x̄i = x∗j , and x̄j = x∗i , is feasible and has the same objective value. It follows from (74)906

that, given w ∈ [
0, d− a′

]
, the solution907

x∗j =
{

0 if j = 1, . . . , t(w)− 1,
1 if j = t(w), . . . , r,908

where t(w) = max
{
i

∣∣ ∑r
j=i aj ≥ d− a′ −w = Br−2 + µ̄−w

}
is optimal for (73) and has an objective value909

of t(w) − 2. When w ∈ [0, µ̄), d − a′ − w ∈ (Br−2, Br−2 + µ̄] showing that t(w) = 2 and Φ(w) = 0. When910

w ∈ [Bi−1 + µ̄, Bi + µ̄) for i = 1, . . . , r − 2, d − a′ − w ∈ (
∑r

j=i+3 aj ,
∑r

j=i+2 aj ] showing that t(w) = i + 2911

and Φ(w) = i. Finally, when w ≥ d− a′, it is clear that Φ(w) = |K| − 1 = r − 1.912
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In Section 3.3.1, all lifting functions were subadditive over appropriate ranges. As a result, strong valid913

inequalities for PB were easily obtained using sequence-independent lifting. The lifting function Φ(w) derived914

in Proposition 3.22, however, is not subadditive. To circumvent the difficulties associated with sequence-915

dependent lifting in such a situation, Gu et al. [13] proposed to use approximate lifting. Following their916

approach, we say that Ψ(w) is a valid subadditive approximation of Φ(w) if Ψ(w) ≥ Φ(w) for all w ∈ R+ and917

Ψ(w) is subadditive. We say that a valid subadditive approximation Ψ(w) is nondominated if there is no918

other valid subadditive approximation Ψ′(w) of Φ(w) with Ψ′(w) ≤ Ψ(w) for all w ∈ R+ and Ψ′(w′) < Ψ(w′)919

for some w′ ∈ R+. We also define the notion of maximal set E = {w ∈ R+ | Φi(w) = Φ(w) ∀i ∈920

M, for all coefficients ai ∈ R+ and for all lifting orders}. A valid subadditive approximation Ψ(w) of Φ(w) is921

called maximal if Ψ(w) = Φ(w) for all w ∈ E. It is clear that a maximal nondominated approximation of Φ922

leads to strong inequalities that can be obtained efficiently for PB. The approximation of Φ(w) we use has923

the form presented in Corollary 3.6.924

We next describe in Proposition 3.23 a subadditive, nondominated and maximal approximation of Φ(w)925

over R+.926

Proposition 3.23. The function927

Ψ(w) :=





i + w−Bi

µ̄ if Bi ≤ w < Bi + µ̄, i = 0, . . . , r − 2,

i if Bi−1 + µ̄ ≤ w < Bi, i = 1, . . . , r − 2,
r − 1 if Br−2 + µ̄ ≤ w,

928

is a valid subadditive approximation of Φ(w) that is nondominated and maximal over R+.929

Proof. Note that Ψ(w) = Φ(w) when w ∈ [Bi−1 + µ̄, Bi] for i ∈ {1, . . . , r − 2} and when w ≥ Br−2 + µ̄.930

Further,931

Ψ(w) = Φ(w) +
w −Bi

µ̄
≥ Φ(w)932

when w ∈ (Bi, Bi+µ̄) for i ∈ {0, . . . , r−2}. Next, we show that Ψ(w) is subadditive over R+. In Corollary 3.6,933

let s = r − 2, Ci = Bi and λ = µ̄. Since Bi is the sum of the smallest i coefficients in K\{1, 2}, it is clear934

that Bi + Bj ≤ Bi+j for 0 ≤ i ≤ j ≤ r − 2 with i + j ≤ r − 2. Therefore, Ψ(w) is subadditive over R+. We935

now argue nondominance and maximality over R+. To this end, we first observe that for all w′ ∈ R+ there936

exists w′′ ∈ R+ such that937

Ψ(w′) + Ψ(w′′) = Φ(w′ + w′′). (75)938

In particular, w′′ can be chosen to be Bi+µ̄−w′ when w′ ∈ (Bi, Bi+µ̄) and w′′ can be chosen to be 0 otherwise.939

If Ψ′ dominates Ψ strictly at w′ then Ψ′(w′+w′′) ≤ Ψ′(w′)+Ψ′(w′′) < Ψ(w′)+Ψ(w′′) = Φ(w′+w′′) yielding940

a contradiction to the assumption that Ψ′ is an overestimator of Φ. Similarly, if Φ(w′) < Ψ(w′) then (75)941

implies that Φ(w′+w′′)−Φ(w′) > Ψ(w′′) ≥ Φ(w′′). Therefore, Φ(w′′) does not yield a valid lifting coefficient942

for the sequential perturbation of w′′ after w′.943

Example 3.24. For the bilinear set B studied in Example 3.12, consider K = {3, 4, 5}. Set K satisfies944

Conditions (C1) and (C2) with µ = 22. It follows from Proposition 2.11 that945

x3 + x4 + x5 ≥ 2 (76)946

is facet-defining for B({1, 2}, ∅, {1, 2}, ∅). Let M̂ = ∅. The lifting function of (76) obtained using Proposi-947

tion 3.22 and its valid subadditive approximation Ψ(w) obtained in Proposition 3.23 are given by948

Φ(w) =





0 if 0 ≤ w < 3,
1 if 3 ≤ w < 20,
2 if 20 ≤ w

and Ψ(w) =





w
3 if 0 ≤ w < 3,
1 if 3 ≤ w < 17,
1 + w−17

3 if 17 ≤ w < 20,
2 if 20 ≤ w

949

as r = 3, µ̄ = 3, B0 = 0, and B1 = 17.950
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In Figure 4, we present the lifting function Φ(w) of the clique inequality derived in Proposition 3.22 and951

its valid subadditive approximation Ψ(w) obtained in Proposition 3.23 for the particular case of inequality952

(76) discussed in Example 3.24. The function Φ(w) is depicted with a dotted line while Ψ(w) is represented953

using a solid line. Observe that, for 0 < w ≤ µ̄ = 3, the approximation is exact only when w = µ̄ = 3, i.e.,954

Ψ(µ̄) = Φ(µ̄). For w ≥ µ̄ = 3, the approximation is exact when 3 = µ̄ ≤ w ≤ B1 = 17 and w ≥ B1 + µ̄ = 20.955

Next, we obtain a concave overestimator of Ψ(w) in Lemma 3.25 that we will use in Theorem 3.26 to compute956

lifting coefficients for the variables in M .957

0 5 10 15 20
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0.5
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µ̄ B1 B1 + µ̄

w

Figure 4: A valid subadditive approximation Ψ(w) of Φ(w) for Example 3.24.

Lemma 3.25. For i ∈ M , define958

qi :=





0 if ai ≤ µ̄,
j + 1 if Bj + µ̄ < ai ≤ Bj+1 + µ̄, j = 0, . . . , r − 3,
r − 1 if Br−2 + µ̄ < ai.

959

Let W i
0 = 0, W i

j = Bj−1 + µ̄ for j = 1, . . . , qi and W i
qi+1 = ai. Define ∆i

j = W i
j+1 −W i

j for j = 0, . . . , qi.960

Define also ψi
j(w) = Ψ(W i

j ) + Ψ(W i
j+1)−Ψ(W i

j )

∆i
j

(w −W i
j ) for j = 0, . . . , qi. Then, the function961

ψi(w) := min
{

ψi
j(w)

∣∣∣ j ∈ {0, . . . , qi}
}

(77)962

is a concave overestimator of Ψ(w) over [0, ai].963

Proof. First, ψi(w) is concave since it is obtained as the minimum of affine functions. Observe that, for964

j = 0, . . . , qi, ψi
j(w) ≥ ψi

j+1(w) when w ≥ W i
j+1, ψi

j(w) ≤ ψi
j+1(w) when w < W i

j+1, and ψi
j(w) ≥ Ψ(w)965

when w ∈ [W i
j ,W

i
j+1]. Now, consider j ∈ {0, . . . , qi} and k 6= j. Then, for w ∈ [W i

j ,W
i
j+1], Ψ(w) ≤ ψi

j(w) ≤966

ψi
k(w).967

The concave overestimator ψi(w) of Lemma 3.25 can be used to obtain lifting coefficients in a manner968

similar to that of Theorem 3.14. Because of the way the concave overestimator is built, it can be observed that969

all of its affine pieces (except possibly ψi
qi

) touch the original lifting function Φ at two points and therefore970

can be used to generate strong lifting coefficients. To describe whether ψi
qi

touches Φ in two points, we define971

I(ai) to be the function that returns 0 if Φ(ai) = Ψ(ai) and returns 1 otherwise, i.e.,972

I(ai) :=
{

0 if Bqi−1 + µ̄ < ai ≤ Bqi or ai > Br−2 + µ̄,
1 if Bqi < ai ≤ Bqi + µ̄.

973

We observe that, when I(ai) = 0, it is possible to derive maximal lifting coefficients (with respect to Φ) from974

all affine pieces of ψi. When I(ai) = 1, however, we can only guarantee the derivation of maximal lifting975
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coefficients (with respect to Φ) from ψi for i = 0, . . . , qi − 1. This intuitive observation is formally proven in976

the following theorem.977

Theorem 3.26. Under Conditions (C1) and (C2),978

∑

j∈K

xj +
∑

i∈M

αji

i xi +
∑

i∈M

βji

i yi ≥ |K| − 1 (78)979

defines a face of PB of dimension at least (2n − 1) −∑
i∈M I(ai) × 1{ji≥qi} for all ji ∈ {0, . . . , qi + 1} and980

for all i ∈ M where981

(αj
i , β

j
i ) =

(
Ψ(W i

j )−
Ψ(W i

j+1)−Ψ(W i
j )

∆i
j

W i
j ,

Ψ(W i
j+1)−Ψ(W i

j )
∆i

j

ai

)
for j = 0, . . . , qi (79)982

(αqi+1
i , βqi+1

i ) = (Ψ(ai), 0)983

and µ̄, W i
j , ∆i

j and qi are as defined in Lemma 3.25. For a given inequality of the form (78), let L = {i ∈984

M | ji ≥ qi, I(ai) = 1}. In particular, (78) is facet-defining for PB if one of the following conditions holds:985

1. L = ∅.986

2. ∃ı̄ ∈ M such that jı̄ = 0.987

Proof. It follows from Proposition 3.23 that Ψ(w) is a valid subadditive approximation of Φ(w) for w ≥ 0.988

Hence, lifting coefficients (αi, βi) of (xi, yi) for i ∈ M are valid if they satisfy the condition989

αixi + βiyi ≥ Ψ(aixiyi) for (xi, yi) ∈ {0, 1} × [0, 1] \ {0, 0}. (80)990

Condition (80) can be restated as991

βiφ ≥ Ψ(0) for 0 < φ ≤ 1, (81)992

αi + βiφ ≥ Ψ(aiφ) for 0 ≤ φ ≤ 1. (82)993

To prove that (78) defines a face of PB of dimension at least (2n− 1)−∑
i∈M I(ai)× 1{ji≥qi} when lifting994

coefficients are chosen according to (79), we will show that, for each i ∈ M ,995

αixi + βiyi = Φ(aixiyi) (83)996

is satisfied at equality by at least 2− I(ai)× 1{ji≥qi} independent points.997

First, consider the case where (αi, βi) = (Ψ(ai), 0). Observe that (81) is satisfied since βi = 0 and998

Ψ(0) = 0. Further, (82) holds as αi = αi + βiφ = Ψ(ai) ≥ Ψ(aiφ) since Ψ is a nondecreasing function. It is999

easily verified that (83) is satisfied at equality at the point (0, 1). Further, when I(ai) = 0, then (83) is also1000

satisfied at equality at the point (1, 1).1001

Second, consider the case where1002

(αi, βi) =

(
Ψ(W i

j )−
Ψ(W i

j+1)−Ψ(W i
j )

∆i
j

W i
j ,

Ψ(W i
j+1)−Ψ(W i

j )
∆i

j

ai

)
.1003

Clearly, (αi, βi) satisfies (81) since βi ≥ 0. From Lemma 3.25, we have that1004

Φ(aiφ) ≤ Ψ(aiφ) ≤ Ψ(W i
j ) + Ψ(W i

j+1)−Ψ(W i
j )

∆i
j

(aiφ−W i
j )

=
(
Ψ(W i

j )−
Ψ(W i

j+1)−Ψ(W i
j )

∆i
j

W i
j

)
+ Ψ(W i

j+1)−Ψ(W i
j )

∆i
j

aiφ

= αi + βiφ.

1005

We now present points that satisfy (83) at equality. Observe first that, for j = 0, . . . , qi, the point (x∗i , y
∗
i ) =1006 (

1,
W i

j

ai

)
satisfies (83) at equality since Ψ(aix

∗
i y
∗
i ) = Ψ(W i

j ) = Ψ(Bj−1 + µ̄) = Φ(Bj−1 + µ̄). Similarly, for1007
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j = 0, . . . , qi − 1, the point (x∗i , y
∗
i ) =

(
1,

W i
j+1
ai

)
satisfies (83) at equality. For j = qi, the point

(
1,

W i
j+1
ai

)
1008

reduces to (1, 1) which satisfies (83) at equality when Ψ(ai) = Φ(ai), i.e., when I(ai) = 0. Therefore, we1009

conclude that (78) defines a face of PB of dimension at least (2n− 1)−∑
i∈M I(ai)× 1{ji≥qi}.1010

We conclude from the above derivation that when, for all i ∈ M , either ji < qi or I(ai) = 0, then the1011

face of PB that (78) defines has dimension 2n− 1 showing that (78) is facet-defining for PB and proving 1.1012

Now, we show that (78) is also facet-defining if jı̄ = 0 for some ı̄ ∈ M . We first lift (xı̄, yı̄). Since aı̄ ≥ µ̄1013

(see discussion preceding Proposition 3.22) it follows that (α0
ı̄ , β

0
ı̄ ) = (0, aı̄

µ̄ ). Then, we lift the variables1014

in M\{L ∪ {ı̄}} and choose any ji ≤ qi + 1 for these variables. The above proof shows that the resulting1015

inequality is facet-defining for PB(L\{ı̄}, ∅, L\{ı̄}, ∅). Since PB(L\{ı̄}, ∅, L\{ı̄}, ∅) ⊆ PB, all the points tight1016

for (78) are feasible to PB. Now, we lift a variable i′ ∈ L\{ı̄}. Let1017

F (w, a) =

{
(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
∑

i∈K

aixiyi ≥ d− a′ − w and
∑

i∈K

xi = |K| − 1− a

}
.1018

We show that there exists p ∈ F (Bqi′ + µ, qi′ + 1) which is feasible to PB and tight on (78). First note that1019

F (Bqi′ + µ, qi′ + 1) 6= ∅ because Φ(Bqi′ + µ) = qi′ + 1. Let p = (x′, y′). By the definition of F (w, a), we are1020

free to redefine (x′i, y
′
i) for i 6∈ K. Let x′i = y′i = 0 for i ∈ M\{L ∪ {ı̄}} and let x′i = y′i = 1 for i ∈ M̂ . Let1021

x′ı̄ = 1 and y′ı̄ =
Bq

i′+µ̄−ai′
aı̄

. Since aı̄ ≥ µ̄ and Bqi′ < ai′ ≤ Bqi′ + µ̄ it follows that 0 < yı̄ ≤ 1. Finally, we set1022

(x′i′ , y
′
i′) = (1, 1). Note that aı̄x

′
ı̄y
′
ı̄ + ai′x

′
i′y
′
i′ = Bqi′ + µ̄ and1023

α0
ı̄ x
′
ı̄ + β0

ı̄ y′ı̄ + α
ji′
i′ x′i′ + β

ji′
i′ y′i′ =

Bqi′ + µ̄− ai′

µ̄
+ qi′ +

ai′ −Bqi′

µ̄
= qi′ + 1 = Ψ(Bqi′ + µ) = Φ(Bqi′ + µ),1024

where the first equality holds since (α0
ı̄ , β

0
ı̄ ) = (0, aı̄

µ̄ ),
(
α

ji′
i′ , β

ji′
i′

)
=

(
qi′ − θ

Bq
i′−1

+µ̄

ai′
, θ

)
when ji′ = qi′ and1025 (

α
ji′
i′ , β

ji′
i′

)
= (Ψ(ai′), 0) when ji′ = qi′ + 1 where θ = (Ψ(ai′ )−qi′ )ai′

ai′−Bq
i′−1−µ̄ and Ψ(ai′) = qi′ +

ai′−Bq
i′

µ̄ . Therefore,1026

p ∈ PB and is tight for (78). For ji′ = qi′ , we have already demonstrated that there exists a point of PB1027

tight for (78) that sets (xi′ , yi′) =
(
1,

W i′
j
i′

ai′

)
and for ji′ = qi′ +1, there is a point of PB tight for (78) such that1028

(xi′ , yi′) = (0, 1). For ji′ = qi′ , affine independence follows since ai′ > W i′
ji′

implies that (0, 0), (1, 1), and1029

(
1,

W i′
j
i′

ai′

)
are affinely independent. For ji′ = qi′+1, affine independence follows from the affine independence1030

of (0, 0), (1, 1), and (0, 1).1031

Inequalities (78) can be facet-defining depending on the value of the coefficients ai and the choice of lifting1032

coefficients (αi, βi) for i ∈ M . As mentioned before, M̂ may be chosen to be any subset of M that satisfies1033 ∑
i∈M̂

ai < µ′. In this case, (78) will be facet-defining if max{ai | i ∈ M, ji = 0} ≥ µ̄ but it may not be1034

facet-defining otherwise. The next example illustrates the use of (78) in deriving facets of PB.1035

Example 3.27. Consider the clique inequality (76) of Example 3.24 and its corresponding approximate lifting1036

function. We have q1 = 2 and q2 = 1 with W 1
0 = 0, W 1

1 = 3, W 1
2 = 20, W 1

3 = 21, and W 2
0 = 0, W 2

1 = 3,1037

W 2
2 = 19. Applying Theorem 3.26, we obtain the following nine inequalities1038





21
3 y1

14
17x1 + 21

17y1

2x1



 +





19
3 y2

21
24x2 + 19

24y2
5
3x2



 + x3 + x4 + x5 ≥ 2,1039

which define faces of PB of dimension at least 8 since I(a1) = 0 and I(a2) = 1. It follows from the first1040

condition of Theorem 3.26 that following three inequalities1041





21
3 y1

14
17x1 + 21

17y1

2x1



 +

19
3

y2 + x3 + x4 + x5 ≥ 21042

are facet-defining for PB since j2 < q2. The two inequalities1043

21
3

y1 +
{

21
24x2 + 19

24y2
5
3x2

}
+ x3 + x4 + x5 ≥ 21044
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are also facet-defining for PB since they satisfy the second condition for facet-defining inequalities in Theo-1045

rem 3.26 as j1 = 0.1046

4 Relations to fixed-charge single-node flow model without inflows1047

In Section 3, we derived strong valid inequalities for the bilinear set B using lifting. In this section, we show1048

that many of these lifted inequalities are also facet-defining for the convex hull of the fixed-charge single-node1049

flow model without inflows1050

F =
{

(x, y) ∈ {0, 1}n × [0, 1]n
∣∣∣∣

n∑

j=1

ajyj ≥ d, xj ≥ yj ∀j ∈ N

}
.1051

In the following lemma, we show that F ⊆ B.1052

Lemma 4.1. The bilinear covering set B is a relaxation of the flow set F .1053

Proof. We prove that F ⊆ B. Let (x, y) ∈ {0, 1}n × [0, 1]n be an arbitrary point of F . It suffices to show1054

that
∑n

j=1 ajxjyj ≥ d. Let N0 = {j ∈ N | xj = 0} and N1 = {j ∈ N | xj = 1}. Since (x, y) ∈ F , yj = 0 for1055

all j ∈ N0. Then,1056 ∑

j∈N

ajxjyj =
∑

j∈N1

ajyj =
∑

j∈N

ajyj ≥ d,1057

where the last inequality holds because (x, y) ∈ F .1058

Fixed-charge single-node flow sets are important in practice since they can be used as a source of cutting1059

planes for 0−1 mixed-integer programs. Further, they naturally arise in the formulation of fixed-charge1060

network problems; see [2, 12, 19, 20, 22]. The fixed-charge single-node flow set F without inflows was first1061

studied by Padberg et al. [22] under the assumptions that (i) ai ≤ d and (ii)
∑n

j=1 aj > d + ai for all i ∈ N .1062

In the following, we relate the facets of PF to those of PB without assuming that the sets are full-dimensional.1063

Lemma 4.2 (Adapted from Proposition 8 in Padberg et al. [22]). Every facet-defining inequality of PF that1064

is not a multiple of yi ≤ xi can be expressed as αx + βy ≥ δ, where β ≥ 0.1065

Proof. If for some i, βi < 0 then the only points tight on this inequality are such that yi = xi. If F satisfies1066

this equality then we may rewrite the facet-defining inequality as αx + βixi + βy − βiyi ≥ δ.1067

In the following, we refer to the facet-defining inequalities of PF that are not a multiple of yi ≤ xi as1068

non-trivial facet-defining inequalities.1069

Lemma 4.3. aff(F ) = aff(B).1070

Proof. Clearly, aff(F ) ⊆ aff(B) since F ⊆ B by Lemma 4.1. It therefore remains to prove that aff(B) ⊆1071

aff(F ). Consider any point (x, y) ∈ B. If (x, y) ∈ F , then clearly (x, y) ∈ aff(F ). We may therefore1072

assume that (x, y) ∈ B\F . Define p = (x′, y′) where (x′i, y
′
i) = (xi, xiyi) for i ∈ N . It is easy to see that1073 ∑

i∈N aiy
′
i =

∑
i∈N aixiyi ≥ d and y′i ≤ x′i for i ∈ N and so p ∈ F . Let I ′ = {i ∈ N | yi > xi}. We show next1074

that for each i ∈ I ′, pi = p+(0, ei) ∈ aff(F ). To this end, observe that x′i = 0 for each i ∈ I ′. It follows easily1075

that qi = p + (ei, 0) and ri = p + (ei, ei) belong to F . Therefore, pi = p + (ri − qi) ∈ aff(F ). Now, observe1076

that (x, y) = p +
∑

i∈I′ yi(pi − p) ∈ aff(F ). It follows that B ⊆ aff(F ) and therefore aff(B) ⊆ aff(F ).1077

Proposition 4.4. Assume that1078

αx + βy ≥ δ (84)1079

is valid for PF and, for each i ∈ N , either αi ≤ 0 or βi ≥ 0. Then, (84) is valid for PB. Further, for every1080

non-trivial facet (84) of PF with β ≥ 0, (84) is facet-defining inequality for PB.1081
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Proof. We first show that (84) is valid for B. Consider (x, y) ∈ B. Let I = {i ∈ N | αi ≤ 0}. Define (x′, y′)1082

such that (x′i, y
′
i) = (1, yi) for i ∈ I and (x′i, y

′
i) = (xi, xiyi) for i ∈ N \ I. Then,1083

∑

i∈N

aiy
′
i =

∑

i∈I

aiyi +
∑

i∈N\I
aixiyi ≥

∑

i∈N

aixiyi ≥ d,1084

where the last inequality holds because (x, y) ∈ B. Further, since y′i ≤ x′i, it follows that (x′, y′) ∈ F . Then,1085

δ ≤ αx′ + βy′ ≤ αx + βy,1086

where the first inequality holds because (x′, y′) ∈ F and the second inequality is satisfied since, by construc-1087

tion, α(x′ − x) + β(y′ − y) ≤ 0. It follows that (84) is valid for PB.1088

Consider a non-trivial facet-defining inequality α′x + β′y ≥ δ′ of PF with β′ ≥ 0. Then, by the first part1089

of this result, it follows that α′x+β′y ≥ δ′ is valid for PB. Since, by Lemmas 4.1 and 4.3 respectively, B ⊇ F1090

and dim(B) = dim(F ), it follows that α′x + β′y ≥ δ defines a facet of B.1091

In Proposition 4.4, the assumption that β ≥ 0 for a facet-defining inequality is without loss of generality1092

because of Lemma 4.2. As an immediate consequence of Proposition 4.4, it can be shown that lifting functions1093

associated with inequalities αx+βy ≥ δ, such that for each i either αi ≤ 0 or βi ≥ 0 are identical when they are1094

computed over B or over F . Since the inequalities derived in Section 3 as well as the seed inequalities satisfy1095

these assumptions, many of our results in Section 3 extend to the study of F . We record this observation in1096

the following corollary.1097

Corollary 4.5. Let (α, β) ∈ R2n and, for each i ∈ N , assume that either αi ≤ 0 or βi ≥ 0. Let B(w) =1098 {
(x, y) ∈ {0, 1}n × [0, 1]n

∣∣ ∑
i∈N aixiyi ≥ d − w

}
, and F (w) =

{
(x, y) ∈ {0, 1}n × [0, 1]n

∣∣ ∑
i∈N aiyi ≥1099

d − w and yi ≤ xi for all i ∈ N
}
, where ai ≥ 0 for all i ∈ N . Let zB(w) = min

{
αx + βy

∣∣ (x, y) ∈ B(w)
}

1100

and zF (w) = min
{
αx + βy

∣∣ (x, y) ∈ F (w)
}
. Then, zB(w) = zF (w).1101

Proof. By Lemma 4.1, B(w) ⊇ F (w). It follows that zB(w) ≤ zF (w). We now argue that zB(w) ≥ zF (w). By1102

the definition of zF (w), αx+βy ≥ zF (w) is valid for F (w), which is a flow-set. Let (x′, y′) ∈ argmin{αx+βy |1103

(x, y) ∈ B(w)}. Then, zB(w) = αx′ + βy′ ≥ zF (w), where the inequality follows from Proposition 4.4. We1104

conclude that zB(w) = zF (w).1105

Now, we illustrate Proposition 4.4 via an example.1106

Example 4.6. Consider the fixed-charge single-node flow set without inflows1107

F =
{

(x, y) ∈ {0, 1}4 × [0, 1]4
∣∣∣∣ 19y1 + 17y2 + 15y3 + 10y4 ≥ 20, xj ≥ yj , ∀j = 1, . . . , 4

}
,1108

corresponding to the bilinear covering set B discussed in Example 2.6. We obtained a complete linear de-1109

scription of PF using PORTA; see Christof and Löbel [6]. This linear description is given in the Appendix.1110

We observe that inequalities (10), (11), (17), and (18) are facets for both PB and PF . However, it can be1111

verified that inequalities (12), (13), (15), and (16) are facet-defining for PB but not for PF . We mention1112

that the inequalities of PF described in the Appendix have been numbered according to their counterparts in1113

PB.1114

Proposition 4.4 is surprising in light of Lemma 4.1 because on the one hand F ( B and on the other hand1115

the nontrivial facets of PF are facets of PB. In other words, a polyhedral description of PF can be derived1116

from that of PB by adding the trivial facets of PF . The converse, however, is not true. As an illustration,1117

inequality (20) in the Appendix is a non-trivial facet-defining inequality of PB that is not facet-defining for1118

PF . Surprisingly, a partial converse to Proposition 4.4 does hold.1119

We will show that an inequality description of PB can be obtained given the facet-defining inequalities1120

for PF . The key to this construction is the result of Lemma 4.7 which shows that F and B can be viewed as1121

projections of the same set onto different subspaces. Let1122

S =



(x, y, z) ∈ {0, 1}n × [0, 1]n × Rn

∣∣∣∣∣∣

n∑

j=1

ajzj ≥ d, zj = xjyj ,∀j ∈ N



 .1123
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Lemma 4.7. The projection of S onto the (x, z) space is F while the projection of S onto (x, y) space is B.1124

Consequently, proj(x,z) conv(S) = PF and proj(x,y) conv(S) = PB.1125

Proof. First, we show that proj(x,z) S = F . If (x, y, z) ∈ S, it is clear that (x, z) ∈ F since 0 ≤ zj ≤ xj and1126 ∑n
j=1 ajzj ≥ d. If (x, z) ∈ F , then 0 ≤ zj ≤ xj and xj ∈ {0, 1} imply that zj = xjzj . Therefore, (x, z, z) ∈ S.1127

Second, we show that proj(x,y) S = B. This follows by substituting xjyj for zj in
∑n

j=1 ajzj ≥ d. The last1128

statement follows since conv(AS) = A conv(S) for any linear transformation A.1129

Surprisingly, conv(S) can be described using facet-defining inequalities for PF . We write that (α, β, γ) ∈1130

F(PF ) if αx + βy ≥ γ is a facet-defining inequality of PF that is not a multiple of yj ≤ xj . Define1131

G = {(x, y, z) | αx + βz ≥ γ ∀(α, β, γ) ∈ F(PF ), z ≤ min{x, y}, y ≤ z + 1− x}.1132

Theorem 4.8. G = conv(S).1133

Proof. (⊇) To show that conv(S) ⊆ G, it suffices to show that S ⊆ G because G is convex. Consider1134

(x, y, z) ∈ S. Then, by Lemma 4.7, (x, z) ∈ F and, therefore, αx+βz ≥ γ for all (α, β, γ) in F(PF ). Further,1135

by McCormick inequalities, xj + yj − 1 ≤ xjyj ≤ min{xj , yj}. Therefore, (x, y, z) satisfies the defining1136

inequalities of G.1137

(⊆) Now, we show that G ⊆ conv(S). If (x, y, z) ∈ G, then (x, z) ∈ PF and z ≤ y ≤ z +1−x. Therefore,1138

there exists I such that (x, z) =
∑

i∈I λi(xi, zi) where (xi, zi) ∈ F , λi ≥ 0 for i ∈ I, and
∑

i∈I λi = 1. We1139

define fj = yj−zj

1−xj
if xj < 1 and 0 otherwise. Let I1

j = {i ∈ I | xi
j = 1}. Now, consider (xi, yi, zi) where1140

yi
j = zi

j if i ∈ I1
j and yi

j = fj if i ∈ I \ I1
j . Then, zi

j ≤ xi
j and xi

j ∈ {0, 1} imply that zi
j = xi

jy
i
j . Further,1141

∑

i∈I

λiy
i
j =

∑

i∈I1
j

λiz
i
j +

∑

i∈I\I1
j

λifj = zj + (1− xj)fj = yj ,1142

where the second equality follows since zj =
∑

i∈I λiz
i
j =

∑
i∈I1

j
λiz

i
j ,

∑
i∈I1

j
λi = xj , and

∑
i∈I λi = 1, and1143

the last equality since xj = 1 implies that zj = yj . Therefore, (x, y, z) =
∑

i∈I λi(xi, yi, zi) ∈ conv(S).1144

Finally, we show that the projections of G to (x, z) space and (x, y) space are not altered even if G is1145

relaxed in a certain way. Let1146

R = {(x, y, z) | αx + βz ≥ γ ∀(α, β, γ) ∈ F(PF ), z ≤ min{x, y}, y ≤ 1}.1147

Corollary 4.9. PF = proj(x,z) R and PB = proj(x,y) R.1148

Proof. We will show that proj(x,z) R = proj(x,z) G and proj(x,y) R = proj(x,y) G. Then, the result follows1149

from Lemma 4.7 and Theorem 4.8. Since z + 1 − x ≤ 1, it follows that R ⊇ G. First, we show that1150

proj(x,z) R ⊆ proj(x,z) G. Assume that (x, y, z) ∈ R. Then, define y′ = z + 1 − x. Since z + 1 − x ≥ z it1151

follows that (x, y′, z) ∈ G. Second, we show that proj(x,y) R ⊆ proj(x,y) G. Assume that (x, y, z) ∈ R. Then,1152

let z′ = max{z, x+y−1}. By Lemma 4.2, for all (α, β, γ) ∈ F(PF ), β ≥ 0. Therefore, αx+βz′ ≥ αx+βz ≥ γ.1153

Further, z′ = max{z, x + y − 1} ≤ min{x, y} since z ≤ min{x, y} and x, y ∈ [0, 1]2. Finally, by construction,1154

y ≤ z′ + 1− x. Therefore, (x, y, z′) ∈ G.1155

Corollary 4.9 implies every non-trivial facet of PB arises as a conic combination of a single non-trivial1156

facet of PF and (possibly multiple) trivial facet-defining inequalities yj ≤ xj .1157

Corollary 4.10. Let αx + βy ≥ γ be a facet-defining inequality for PB where β ≥ 0. Then, αx + βy ≥ γ1158

defines a non-empty face of F . Further, there exists (α′, β′) and λ ≥ 0 such that (α, β) = (α′ + λ, β′ − λ),1159

where α′x + β′y ≥ γ is facet-defining for PF and for j = 1, . . . , n, λjβj = 0.1160

Proof. Let δ = min{αx + βy | (x, y) ∈ PF}. Since, by Lemma 4.1, F ⊆ B, it follows that δ ≥ γ. By1161

Proposition 4.4, αx + βy ≥ δ is valid for PB. Therefore, δ ≤ γ. In other words, δ = γ and αx + βy ≥ γ1162

defines a non-empty face of F . By Corollary 4.9 and Fourier-Motzkin elimination of z from R it follows that,1163

PB = {(x, y) | α′x + β′Jx + β′N\Jy ≥ γ′∀(α′, β′, γ′) ∈ F(PF ) and J ⊆ N, y ≤ 1},1164

where β′Jj = β′j if j ∈ J and β′Jj = 0 otherwise. Since (α, β, γ) is not a multiple of yj ≤ 1, it follows that1165

there exists J ⊆ N and (α′, β′, γ′) ∈ F(PF ) such that (α, β) = (α′ + β′J , β′ − β′J ).1166
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Example 4.11. Consider the inequality 126x1+90x3+45x4+153y2 ≥ 135 that is facet-defining for the bilinear1167

covering set of Example 2.6 but not facet-defining for the corresponding flow set presented in Example 4.6; see1168

Appendix for a complete description of facet-defining inequalities of PB where this inequality is numbered (20).1169

Then, as Corollary 4.10 proves, this inequality can be expressed as a sum of 50x1+90x3+45x4+76y1+153y2 ≥1170

135 and 76x1− 76y1 ≥ 0, which are the facet-defining inequalities of the corresponding flow-set numbered (1)1171

and (f1) in the Appendix.1172

Proposition 4.4 and Corollary 4.9 show that a polyhedral description of either PF or PB can be derived1173

explicitly given the facet-defining inequalities of the other. In fact, Proposition 4.4 also shows that an affine1174

function over either B or F can be optimized if we have an oracle for optimizing an affine function over the1175

other set. We discuss the reduction below. Let l(x, y) = αx+βy− γ and define I = {i ∈ N | αi > 0, βi < 0}.1176

Let zB(l) = min{l(x, y) | (x, y) ∈ B} and zF (l) = min{l(x, y) | (x, y) ∈ F}. Define l′(x, y) = αx +1177 ∑
i∈N\I βiyi +

∑
i∈I βi − γ. While minimizing l(x, y) over B, yi can be set to 1 whenever βi ≤ 0. Therefore,1178

it follows that zB(l) = zB(l′). However, by Proposition 4.4, zF (l′) = zB(l′). Therefore, zB(l) = zF (l′). If1179

(x, y) is the optimal solution to zF (l′), the optimal solution to zB(l) is (x, y′) where y′i = 1 if i ∈ I and1180

y′i = yi otherwise. Now, we consider the converse. Define l′′(x, y) = αx+
∑

i∈I βixi +
∑

i∈N\I βiyi−γ. While1181

minimizing l(x, y) over F , yi can be set to xi whenever βi ≤ 0. Therefore, zF (l) = zF (l′′). But, then by1182

Proposition 4.4, zF (l′′) = zB(l′′). Therefore, zF (l) = zB(l′′). The optimal solution can be obtained as in the1183

proof of Proposition 4.4.1184

Given the relationships between the polyhedra PB and PF , it is reasonable to expect that the inequalities1185

we developed in Section 3 reveal facets of PF . We now provide a detailed discussion of which inequalities are1186

facet-defining for PF . For the remainder of this section, we assume, as we did for PB, that1187

Assumption 3.
∑n

j=1 aj ≥ d + ai for all i ∈ N .1188

Under Assumption 3, it follows from Lemma 4.3 that PF is a full-dimensional polytope.1189

Theorem 4.12. A lifted bilinear cover inequality (54) is facet-defining for PF if and only if1190

(αi, βi) ∈
qi⋃

j=0

(
PC(Qi

j)−
PC(Qi

j+1)− PC(Qi
j)

∆i
j

Qi
j ,

PC(Qi
j+1)− PC(Qi

j)
∆i

j

ai

)
(85)1191

for all i ∈ M .1192

Proof. The proof of Proposition 2.9 already shows that (42) is facet-defining for PF (M,C ′, M, C ′) since all1193

the points considered are feasible to the flow set.1194

Now, it suffices to show that sufficiently many of the tight points added when lifting variables (xi, yi) for1195

i ∈ M ∪C ′ also belong to PF . When we lifted variables (xi, yi) for i ∈ C ′ in the proof of Proposition 3.9, we1196

added the two affinely independent points (0, 0) and
(
1, (ai−µ)+

ai

)
that both correspond to feasible solutions1197

of F ; see (42) and Corollary 4.5. When lifting the variables (xi, yi) for i ∈ M in Theorem 3.14, we added the1198

two points
(
1,

Qi
j

ai

)
and

(
1,

Qi
j+1
ai

)
that both correspond to feasible solutions of F ; see (45) and Corollary 4.5.1199

Next, we show that if (54) is facet-defining for PF , then (αi, βi) must be chosen as in (85). It suffices to1200

show that if (αi, βi) = (PC(ai), 0) for some i ∈ M and if at least one of the coefficients pair (PC(ai), 0) does1201

not reduce to coefficients studied before (which happens when PC(av) 6= PC(Qv
qv

) for some v), then (54) is1202

not facet-defining for PF . We will do so by showing that in such a case, (54) can be obtained by combining1203

a different (facet-defining) inequality of the form (54) for PF with trivial facets yi ≤ xi of PF . Let V ⊆ M1204

be the set of lifting coefficients (αv, βv) chosen to be (PC(av), 0). Inequality (54) then reduces to1205

∑

v∈V

PC(av)xv +
∑

i∈C

(ai − µ)+xi +
∑

j∈T

ajyj +
∑

i∈M\V
αixi +

∑

i∈M\V
βiyi ≥

∑

i∈C

(ai − µ)+. (86)1206

Using the first part of this proof, we know that choosing lifting coefficients1207

((
PC(Qv

qv
)− PC(Qv

qv+1)− PC(Qv
qv

)
∆v

qv

Qv
qv

)
,

(
PC(Qv

qv+1)− PC(Qv
qv

)
∆v

qv

av

))
1208
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for v ∈ V yields the following facet-defining inequality1209

∑

v∈V

(
PC(Qv

qv
)− PC(Qv

qv+1
)− PC(Qv

qv
)

∆v
qv

Qv
qv

)
xv +

(
PC(Qv

qv+1)− PC(Qv
qv

)
∆v

qv

av

)
yv (87)1210

+
∑

i∈C

(ai − µ)+xi +
∑

j∈T

ajyj +
∑

i∈M\V
αixi +

∑

i∈M\V
βiyi ≥

∑

i∈C

(ai − µ)+1211

for PF . Summing (87) with1212

(
PC(Qv

qv+1)− PC(Qv
qv

)
∆v

qv

av

)
(xv − yv) ≥ 0, ∀v ∈ V (88)1213

we obtain (86) since Qv
qv+1 = av and ∆v

qv
= av − Qv

qv
. Since we assumed that PC(av) − PC(Qv

qv
) > 0 for1214

some v ∈ V and because it is easy to see that (88) does not define the same face of PF that (87) defines, we1215

conclude that (86) is not facet-defining for PF .1216

We remark that in the proof of Theorem 4.12, we proved that a few inequalities of the type (54) are facet-1217

defining for PB but not for PF . This was shown by expressing these inequalities using another non-trivial1218

facet of PF and the inequalities yj ≤ xj . We have already shown in Corollary 4.10 that this construction1219

can be used to describe all facet-defining inequalities of PB that are not facet-defining for PF . We will use1220

similar constructions later in the section. As a consequence of Theorem 4.12, we obtain the following result1221

initially obtained by Padberg et al. [22].1222

Corollary 4.13. (Adapted from Proposition 12 in Padberg et al. [22]) Assume that (i) C is a cover with1223

excess µ̄ =
∑

j∈C aj −d such that ā = maxj∈C aj > µ̄ and (ii) L ⊆ N \C is chosen so that 0 < ā− µ̄ < ak ≤ ā1224

for all k ∈ L and
∑

j∈N\L aj > d + ā. Then1225

∑

j∈C
(aj − µ̄)+xj +

∑

j∈L
(ā− µ̄)xj +

∑

j∈N\(C∪L)

ajyj ≥
∑

j∈C
(aj − µ̄)+ (89)1226

is facet-defining for PF .1227

Proof. Let C and L ⊆ N \ C be given that satisfy conditions (i) and (ii) of Corollary 4.13. Select l ∈1228

argmax{aj | j ∈ C}. Define C ′ = C \ {l}, M = L, and T = N \ (C ∪ L). Clearly, µ = µ̄. Observe further that1229

al = ā > µ and that
∑

j∈T aj > al − µ̄ since
∑

j∈N\L aj > d + ā. It follows that (C ′, {l},M, T ) is a partition1230

of N that satisfies Conditions (A1), (A2), (A3), and (A4) of Theorem 3.14. We obtain from Assumption (ii)1231

that A1 − µ < ai ≤ A1 < A2 − µ for i ∈ M , which implies that qi = 1 for all i ∈ M in Lemma 3.13. Further,1232

since Qi
1 = A1 − µ and Qi

2 = ai for i ∈ M , we can select (αi, βi) as (A1 − µ, 0) in (54), yielding1233

∑

j∈C

(aj − µ)+xj +
∑

j∈T

ajyj +
∑

j∈M

(A1 − µ)xj ≥
∑

j∈C

(aj − µ)+,1234

which is exactly (89) after performing the substitutions C = C, T = N \ (C ∪ L), M = L, A1 = ā and1235

µ = µ̄.1236

Observe that in (89), for each j ∈ N , either the coefficient of xj or that of yj is zero, whereas this is not1237

the case for (54). Therefore, the facet-defining inequalities obtained via (89) are strictly contained in the1238

facet-defining inequalities obtained via (54). In Padberg et al. [22], the authors did not explicitly impose the1239

condition
∑

j∈N\L aj > d + ā. However, in its absence, the inequalities are not necessarily facet-defining as1240

we show in Example 4.14. The authors’ proof implicitly made use of this assumption during an induction1241

step. The next example illustrates that without this assumption (89) may not define a facet of the flow set.1242

Example 4.14. Consider the flow set defined by

F =
{

(x, y) ∈ {0, 1}4 × [0, 1]4
∣∣∣∣ 7y1 + 6y2 + 5y3 + 4y4 ≥ 10, xj ≥ yj ∀j = 1, . . . , 4

}
.
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Define C = {1, 3} and L = {2} where ā = 7 and µ̄ = 2. Clearly ā − µ̄ < a2 ≤ ā. However, the assumption1243

that
∑

j∈N\L aj > d + ā does not hold. Inequality (89) takes the form1244

5x1 + 5x2 + 3x3 + 4y4 ≥ 8. (90)1245

Observe that whenever (90) is satisfied at equality by a point of F , the inequality x1 + x2 ≥ 1 is also tight.1246

Since x1 + x2 ≥ 1 is clearly valid for F , it follows that (90) is not facet-defining for PF .1247

We next show that the family of lifted bilinear cover inequalities that are proven to be facet-defining for1248

PF in Theorem 4.12 is larger than the family given by (89).1249

Example 4.15. As established in Example 4.6, (10) and (11) are facet-defining lifted bilinear cover in-1250

equalities (54) for both PB and PF . They are obtained by choosing (C ′, l, M, T ) = ({4}, {3}, {1}, {2}) and1251

(C ′, l, M, T ) = ({4}, {2}, {1}, {3}) respectively in Theorem 3.14. However, as mentioned above, (10) and (11)1252

cannot be obtained using Corollary 4.13.1253

Next, we show that the lifted reverse bilinear cover inequalities (66) that were shown to define facets of1254

PB in Section 3 also define facets of PF .1255

Theorem 4.16. Lifted bilinear reverse cover inequalities (66) are facet-defining for PF if and only if ai >1256

al − µ for all i ∈ M .1257

Proof. Assume first that ai > al−µ for all i ∈ M . It is clear that (66) is valid for F since F ⊆ B. Recall that1258

(66) is obtained in Section 3 by lifting the seed inequality (42) which is facet-defining for PB(M, C ′,M,C ′).1259

We have shown in the proof of Theorem 4.12 that (42) is facet-defining for PF (M, C ′,M,C ′). Now, we show1260

that the tight points added when lifting variables (xi, yi) for i ∈ M ∪ C ′ also belong to PF . When we lifted1261

the variables (xi, yi) for i ∈ M in the proof of Proposition 3.16, we added the two linearly independent1262

points (0, 1) and (1, 1). The first of these points is not feasible for F and cannot be used for the present1263

derivation. However, when ai > al − µ, the solution (1, 1 − ε) for ε sufficiently small is feasible for F and1264

satisfies (59) at equality. Therefore, (1, 1) and (1, 1 − ε) provide the desired two tight independent feasible1265

solutions of F ; see (42) and Corollary 4.5. When lifting the variables (xi, yi) for i ∈ C ′ in Theorem 3.20, we1266

added the two points (0, 0) and
(
1, (ai−A1+al−µ)+

ai

)
which are affinely independent of (1, 1) and correspond1267

to feasible solutions of F ; see (58) and Corollary 4.5. This proves that (66) is facet-defining for PF .1268

Assume now that ai ≤ al − µ for some i ∈ M . Define M2 = {i ∈ M | ai ≤ al − µ} 6= ∅ and M1 = M\M2.1269

Inequality (66) can be written as1270

(al − µ)xl −
∑

j∈C′
PM (−aj)xj +

∑

j∈M1

(al − µ)xj +
∑

j∈M2

ajxj +
∑

j∈T

ajyj ≥ (al − µ)−
∑

j∈C′
PM (−aj). (91)1271

Observe next that partition (C ′, {l},M1, T∪M2) satisfies Conditions (A1), (A2) and (A4) since (C ′, {l},M, T )1272

does. Further, since ai > al − µ for i ∈ M1, it follows from the first part of this proof that the lifted reverse1273

bilinear cover inequality1274

(al − µ)xl −
∑

j∈C′
PM1(−aj)xj +

∑

j∈M1

(al − µ)xj +
∑

j∈T∪M2

ajyj ≥ (al − µ)−
∑

j∈C′
PM1(−aj) (92)1275

is facet-defining for PF , where it is easy to verify that PM1(w) = PM (w) for w ≤ 0. Now, observe that (91)1276

can be obtained by summing (92) and inequalities1277

aj(xj − yj) ≥ 0 (93)1278

for j ∈ M2. Since (92) and (93) define different facets of the full-dimensional polyhedron PF , we conclude1279

that (91) is not facet-defining for PF .1280

The inequalities of Theorem 4.16 are known to be valid for PF , as first shown in Gu et al. [12].1281
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Corollary 4.17 (Adapted from Theorem 12 in Gu et al. [12]). Assume that (i) C ⊆ N is a generalized cover1282

for F such that
∑

j∈C aj = d−λ with λ > 0 and (ii) L 6= ∅ and
∑

j∈N\L aj > d where L = {j ∈ N\C | aj > λ}.1283

Assume also that L = {j1, j2, . . . , jr} with aji
≥ aji+1 for i = 1, . . . , r − 1. Let r = |L|, A0 = 0, and1284

Ai =
∑i

k=1 ajk
for i = 1, . . . , r. Further, let d′ =

∑
j∈N\C aj − λ. Define1285

f(z) =





iλ if Ai ≤ z ≤ Ai+1 − λ, i = 0, . . . , r − 1,
z −Ai + iλ if Ai − λ ≤ z ≤ Ai, i = 1, . . . , r − 1,
z −Ar + rλ if Ar − λ ≤ z ≤ d′.

(94)1286

Then, the lifted simple generalized flow cover inequality (LSGFCI)1287

∑

j∈L
λxj +

∑

j∈C
f(aj)xj +

∑

j∈N\(C∪L)

ajyj ≥ λ +
∑

j∈C
f(aj) (95)1288

is facet-defining for PF .1289

Proof. For a given generalized cover C of F , we define C = C ∪ {l} where l ∈ L 6= ∅. Set C is a cover1290

since aj > λ for all j ∈ L. Further,
∑

j∈C aj = d + al − λ > d and so µ = al − λ > 0, i.e. C satisfies1291

Conditions (A1) and (A3) in Theorem 3.20. Now set M = L \ {l} in (66). Condition (A4) in Theorem 3.201292

also holds since
∑

j∈N\(L\{l}) aj − d =
∑

j∈N\L aj + al − d > 0. Next, we observe that C ∪M = C ∪ L and1293

that min{ai, al − µ} = min{ai, λ} = λ = al − µ for all i ∈ M . Substituting al − µ = λ in Proposition 3.17,1294

we obtain that f(w) = −PM (−w) since M ∪ {l} = L. Therefore, we conclude that (95) is a lifted reverse1295

bilinear cover inequality (66).1296

Because in Gu et al. [12] the fixed-charge single-node flow set studied is more general than F , the authors1297

focused mainly on the derivation of valid inequalities and discussed only indirectly whether the resulting1298

inequalities are facet-defining. The result of Corollary 4.17 is therefore different from that of Theorem 12 in1299

Gu et al. [12] in two ways. First we added the condition
∑

j∈N\L aj > d. This condition guarantees that1300

the simple generalized flow cover inequality (SGFCI) that is used as seed inequality for lifting procedures in1301

Gu et al. [12] is facet-defining for the problem restriction. Second, we replaced the statement that inequality1302

(95) is valid for PF with the stronger statement that it is facet-defining for PF .1303

We conclude this section by presenting conditions under which the lifted clique inequalities (78) are1304

facet-defining for the flow set PF .1305

Theorem 4.18. A lifted clique inequality (78) is facet-defining for PF if (i)
∑

j∈K aj −ak > d for all k ∈ K1306

and (ii) lifting coefficients are chosen according to (79) and (iii) one of the following conditions holds:1307

1. L = ∅.1308

2. ∃ı̄ ∈ M such that jı̄ = 0 and, for all i ∈ L\{ı̄}, ji = qi.1309

Proof. Using a proof technique similar to that used in Theorems 4.12 and 4.16, we show that seed inequality1310

(71) is facet-defining for PF (M\M̂, ∅, M\M̂, ∅) and that lifting (xi, yi) for i ∈ M adds two tight independent1311

points in (78) that belong to F . Let K = {1, . . . , l} and M̂ = {l + 1, . . . , h}. Define χ such that χj = 1 for1312

j ≤ l and 0 for l + 1 ≤ j ≤ k. Consider pi = (χ− ei, χ− ei) for i = 1, . . . , l, qi = (χ− ei, χ− ei − εei+1) for1313

i = 1, . . . , l−1, ql = (χ−el, χ−el−εe1) where ε is positive, and, for j = l+1, . . . , h, rj =
(
χ−e1 +ej , χ−e1)1314

and sj = (χ − e1 + ej , χ − e1 + ej). These points satisfy (71) at equality, are affinely independent and,1315

because of Assumption (i), belong to F when ε is sufficiently small. This shows that (71) is facet-defining1316

for PF (M, ∅, M, ∅). Assume first that L = ∅ and consider now the lifting of variables (xi, yi) for i ∈ M in the1317

proof of Theorem 3.26. For ji ∈ {0, . . . , qi}, lifting adds the two independent points
(
1,

W i
j

ai

)
and

(
1,

W i
j+1
ai

)
1318

that both correspond to feasible solutions of F because of (71) and Corollary 4.5, proving the result. Then1319

it follows from the first part of this proof that the inequality obtained after lifting the variables in M\L is1320

facet-defining for PF (L\{ı̄}, ∅, L\{ı̄}, ∅). Consider now the lifting of variables (xi, yi) for i ∈ L\{ı̄}. When1321

ji = qi, we derived in the proof of Theorem 3.26 that lifting adds the two independent points (1, 1) and1322

(1,
W i

ji

ai
) that both correspond to feasible solutions of F because the first point sets (xı̄, yı̄) =

(
1,

Bqi
+µ̄−ai

aı̄

)
,1323

and the structure of (71) satisfies the assumptions of Corollary 4.5.1324

To the best of our knowledge, Theorem 4.18 presents a new family of facet-defining inequalities for fixed-1325

charge single-node flow models without inflows.1326
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5 Discussion and Conclusion1327

Many of the results presented in this paper extend to 0−1 mixed integer sets defined by constraints of the1328

form
∑k

i=1(aixiyi + bixi) +
∑n

i=k+1 aiyi ≥ d, i.e. bilinear covering sets where a linear term has been added1329

to the left-hand-side. The primary reason the inequalities extend without significant changes is summarized1330

in the next simple observation.1331

Proposition 5.1. Consider an inequality αx + βy ≥ γ such that for each i, αiβi = 0. Let H+ = {(x, y) ∈1332

R2n | αx + βy ≥ γ}. Let I = {i ∈ N | αi = 0} and Ic = N \ I. Let ai ∈ R and (bi, ci) ∈ R2
+ be such that,1333

for each i ∈ N , ai + min{bi, ci} ≥ 0. Consider the sets A(w) = {(x, y) ∈ {0, 1}n × [0, 1]n | ∑n
i=1(aixiyi +1334

bixi + ciyi) ≥ d − w} and B(w) = {(x, y) ∈ {0, 1}n × [0, 1]n | ∑
i∈I(ai + ci)xiyi +

∑
i∈Ic(ai + bi)xiyi ≥1335

d−∑
i∈I bi −

∑
i∈Ic ci −w}. Then, min{αx + βy | (x, y) ∈ A(w)} = min{αx + βy | (x, y) ∈ B(w)}. Further,1336

H+ ⊇ A(w) if and only if H+ ⊇ B(w).1337

Proof. Consider a point (x′, y′) with x′i = 1 for i ∈ I and y′i = 1 for i ∈ Ic. Then, for i ∈ I, aix
′
iy
′
i +1338

bix
′
i + ciy

′
i = (ai + ci)x′iy

′
i + bi. Similarly, for i ∈ Ic, aix

′
iy
′
i + bix

′
i + ciy

′
i = (ai + bi)x′iy

′
i + ci. In other1339

words,
∑

i∈I(ai + ci)x′iy
′
i +

∑
i∈Ic(ai + bi)x′iy

′
i −

∑
i∈I bi −

∑
i∈Ic ci =

∑n
i=1(aix

′
iy
′
i + bix

′
i + ciy

′
i). Therefore,1340

(x′, y′) ∈ A(w) if and only if (x′, y′) ∈ B(w). Now, it easy to see that1341

zA(w) = min{αx + βy | (x, y) ∈ A(w)} = min{αx + βy | (x, y) ∈ A(w), xi = 1∀i ∈ I, yi = 1∀i ∈ Ic}1342

= min{αx + βy | (x, y) ∈ B(w), xi = 1∀i ∈ I, yi = 1∀i ∈ Ic} = min{αx + βy | (x, y) ∈ B(w)} = zB(w),1343

where the second and the second last equality follow from the assumptions which imply that aixiyi + bixi +1344

ciyi ≤ min{aixi + bixi + ci, aiyi + bi + ciyi}, (ai + ci)xiyi ≤ (ai + ci)yi, and (ai + bi)xiyi ≤ (ai + bi)xi. Since1345

zA(w) = zB(w) and H+ ⊇ A(w) (resp. H+ ⊇ B(w)) if and only if zA(w) ≥ γ (resp. zB(w) ≥ γ), it follows that1346

H+ ⊇ A(w) if and only if H+ ⊇ B(w).1347

Note that the seed inequalities and the intermediate inequalities we derive during lifting satisfy the1348

condition αiβi = 0 for all i. Then, Proposition 5.1 essentially shows that the lifting functions derived for the1349

problem with only bilinear terms on the left-hand-side also carry over to problems containing a linear term.1350

For detailed derivations of facet-defining inequalities for bilinear covering sets with linear terms, we refer the1351

reader to [7].1352

In this paper, we study the polyhedral structure of the 0−1 mixed-integer bilinear covering set. We give1353

a complete linear description of its convex hull when n = 2. We also show that, for a fairly large class of1354

functions, it is sufficient to check that subadditivity holds on a subset of points of the domain to show that the1355

function is subadditive over Rn. This result enables short subadditivity proofs for many practically useful1356

functions. In particular, we use this result to derive three families of strong inequalities for PB that can1357

be obtained using sequence-independent lifting. Among them, two families have an exponential number of1358

members. We study relations between 0−1 mixed-integer bilinear covering sets and fixed-charge single-node1359

flow sets without inflows. We show that valid inequalities for bilinear sets are also valid for flow sets and1360

prove that all nontrivial facets of PF can be obtained through the study of facets of PB. We then show that1361

the inequalities we derive generalize two classical families of lifted flow cover inequalities for PF and provide1362

a new family for PF . Future research will focus on evaluating the computational benefits of using these lifted1363

cuts in branch-and-bound frameworks for both linear and nonlinear mixed integer programming.1364

References1365

[1] F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics of Operations1366

Research, 8:273–286, 1983.1367

[2] A. Atamtürk. Flow pack facets of the single node fixed-charge flow polytope. Operations Research1368

Letters, 29:107–114, 2001.1369

[3] A. Atumtürk. On the facets of the mixed-integer knapsack polyhedron. Mathematical Programming, 98:1370

145–175, 2003.1371

[4] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–164, 1975.1372

38



[5] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied1373

Mathematics, 89:3–44, 1998. Original manuscript was published as a technical report in 1974.1374
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Appendix1431

Linear descriptions of conv(B) and conv(F )1432

The linear description of the convex hulls of the bilinear set B and the flow set F are obtained by PORTA1433

as the following:1434

B =
{

(x, y) ∈ {0, 1}4 × [0, 1]4
∣∣∣∣ 19x1y1 + 17x2y2 + 15x3y3 + 10x4y4 ≥ 20

}
1435

(1) 50x1 +90x3 +45x4 +76y1 +153y2 ≥ 1351436

(2) 70x1 +90x2 +27x4 +38y1 +135y3 ≥ 1171437

(3) 25x1 +65x3 +45x4 +76y1 +153y2 ≥ 1101438

(4) +50x2 +70x3 +35x4 +133y1 +34y2 ≥ 1051439

(5) +25x2 +45x3 +35x4 +133y1 +34y2 ≥ 801440

(6) 21x1 +41x2 +27x4 +38y1 +135y3 ≥ 681441

(7) 30x1 +35x2 +21x3 +19y1 +70y4 ≥ 561442

(8) 18x1 +23x2 +21x3 +19y1 +70y4 ≥ 441443

(9) 19x1 +17x2 +15y3 +10y4 ≥ 201444

(10) 19x1 +15x3 +17y2 +10y4 ≥ 201445

(11) 19x1 +10x4 +17y2 +15y3 ≥ 201446

(12) 19x1 +17y2 +15y3 +10y4 ≥ 201447

(13) +17x2 +15x3 +19y1 +10y4 ≥ 201448

(14) +17x2 +10x4 +19y1 +15y3 ≥ 201449

(15) +17x2 +19y1 +15y3 +10y4 ≥ 201450

(16) +15x3 +10x4 +19y1 +17y2 ≥ 201451

(17) +15x3 +19y1 +17y2 +10y4 ≥ 201452

(18) +10x4 +19y1 +17y2 +15y3 ≥ 201453

(19) +19y1 +17y2 +15y3 +10y4 ≥ 201454

(20) 14x1 +10x3 +5x4 +17y2 ≥ 151455
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(21) +12x2 +10x3 +5x4 +19y1 ≥ 151456

(22) +10x3 +5x4 +19y1 +17y2 ≥ 151457

(23) 12x1 +10x2 +3x4 +15y3 ≥ 131458

(24) +10x2 +10x3 +3x4 +19y1 ≥ 131459

(25) +10x2 +3x4 +19y1 +15y3 ≥ 131460

(26) 10x1 +10x2 +x4 +15y3 ≥ 111461

(27) 10x1 +10x3 +x4 +17y2 ≥ 111462

(28) 10x1 +x4 +17y2 +15y3 ≥ 111463

(29) 7x1 +5x2 +3x3 +10y4 ≥ 81464

(30) +5x2 +3x3 +19y1 +10y4 ≥ 81465

(31) +5x2 +3x3 +5x4 +19y1 ≥ 81466

(32) +3x2 +3x3 +3x4 +19y1 ≥ 61467

(33) 5x1 +x3 +17y2 +10y4 ≥ 61468

(34) 5x1 +5x2 +x3 +10y4 ≥ 61469

(35) 5x1 +x3 +5x4 +17y2 ≥ 61470

(36) 3x1 +x2 +15y3 +10y4 ≥ 41471

(37) 3x1 +x2 +3x3 +10y4 ≥ 41472

(38) 3x1 +x2 +3x4 +15y3 ≥ 41473

(39) x1 +x2 +x3 +10y4 ≥ 21474

(40) x1 +x2 +x4 +15y3 ≥ 21475

(41) x1 +x3 +x4 +17y2 ≥ 21476

(42) x1 +x2 +x3 +x4 ≥ 21477

(43) x1 ≥ 01478

(44) x2 ≥ 01479

(45) x3 ≥ 01480

(46) x4 ≥ 01481

(47) y1 ≥ 01482

(48) y2 ≥ 01483

(49) y3 ≥ 01484

(50) y4 ≥ 01485

(51) y4 ≤ 11486

(52) y3 ≤ 11487

(53) y2 ≤ 11488

(54) y1 ≤ 11489

(55) x4 ≤ 11490

(56) x3 ≤ 11491

(57) x2 ≤ 11492

(58) x1 ≤ 11493

F =
{

(x, y) ∈ {0, 1}4 × [0, 1]4
∣∣∣∣ 19y1 + 17y2 + 15y3 + 10y4 ≥ 20, xj ≥ yj ∀j = 1, . . . , 4

}
1494

(1) 50x1 +90x3 +45x4 +76y1 +153y2 ≥ 1351495

(2) 70x1 +90x2 +27x4 +38y1 +135y3 ≥ 1171496

(3) 25x1 +65x3 +45x4 +76y1 +153y2 ≥ 1101497

(4) +50x2 +70x3 +35x4 +133y1 +34y2 ≥ 1051498

(5) +25x2 +45x3 +35x4 +133y1 +34y2 ≥ 801499

(6) 21x1 +41x2 +27x4 +38y1 +135y3 ≥ 681500

(7) 30x1 +35x2 +21x3 +19y1 +70y4 ≥ 561501

(8) 18x1 +23x2 +21x3 +19y1 +70y4 ≥ 441502

(19) +19y1 +17y2 +15y3 +10y4 ≥ 201503

(22) +10x3 +5x4 +19y1 +17y2 ≥ 151504

(24) +10x2 +10x3 +3x4 +19y1 ≥ 131505
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(25) +10x2 +3x4 +19y1 +15y3 ≥ 131506

(26) 10x1 +10x2 +x4 +15y3 ≥ 111507

(27) 10x1 +10x3 +x4 +17y2 ≥ 111508

(28) 10x1 +x4 +17y2 +15y3 ≥ 111509

(30) +5x2 +3x3 +19y1 +10y4 ≥ 81510

(31) +5x2 +3x3 +5x4 +19y1 ≥ 81511

(32) +3x2 +3x3 +3x4 +19y1 ≥ 61512

(33) 5x1 +x3 +17y2 +10y4 ≥ 61513

(34) 5x1 +5x2 +x3 +10y4 ≥ 61514

(35) 5x1 +x3 +5x4 +17y2 ≥ 61515

(36) 3x1 +x2 +15y3 +10y4 ≥ 41516

(37) 3x1 +x2 +3x3 +10y4 ≥ 41517

(38) 3x1 +x2 +3x4 +15y3 ≥ 41518

(39) x1 +x2 +x3 +10y4 ≥ 21519

(40) x1 +x2 +x4 +15y3 ≥ 21520

(41) x1 +x3 +x4 +17y2 ≥ 21521

(42) x1 +x2 +x3 +x4 ≥ 21522

(47) y1 ≥ 01523

(48) y2 ≥ 01524

(49) y3 ≥ 01525

(50) y4 ≥ 01526

(55) x4 ≤ 11527

(56) x3 ≤ 11528

(57) x2 ≤ 11529

(58) x1 ≤ 11530

(f1) x1 −y1 ≥ 01531

(f2) x2 −y2 ≥ 01532

(f3) x3 −y3 ≥ 01533

(f4) x4 −y4 ≥ 01534
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