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Abstract An extension of the Gauss-Newton algorithm is proposed to find local minimiz-
ers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions.
Convergence results of local type are obtained, as well as an estimate of the radius of the
convergence ball. Some applications for solving constrained nonlinear equations are dis-
cussed and the numerical performance of the method is assessed on some significant test
problems.
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1 Introduction

Given Hilbert spaces X and Y , a Fréchet differentiable nonlinear operator F : X → Y , and a
convex lower semicontinuous penalty functional J : X → R∪{+∞}, we consider the opti-
mization problem

min
x∈X

1
2
‖F(x)− y‖2 + J(x) := Φ(x). (P)

Problem (P) is in general a nonconvex and nonsmooth problem, having on the other hand
a particular structure: it is in fact the sum of a nonconvex, smooth term and a convex and
possibly nonsmooth one. The aim of the paper is to find a convergent algorithm towards a
local minimizer of Φ , assuming that it exists. Motivated by several applications [13,40,16],
problem (P) is receiving an increasing attention. In particular, for J = 0, (P) is a classical
nonlinear least squares problem [12,49]. This kind of problems can be solved by general
optimization methods, but typically is solved by more efficient ad hoc methods. In many
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DISI, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
E-mail: saverio.salzo@unige.it

S. Villa
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cases they achieve better than linear convergence, sometimes even quadratic, even though
they do not need computation of second derivatives. Among the various approaches, one of
the most popular is the Gauss-Newton method, introduced in [7]:

xn+1 = xn − [F ′(xn)
∗F ′(xn)]

−1F ′(xn)
∗(F(xn)− y). (1)

Under suitable assumptions, such a procedure is convergent to a stationary point of x (→
1
2‖F(x)− y‖2, namely to a point x̄ such that F ′(x̄)∗(F(x̄)−y) = 0. Moreover, one can easily
show that the point xn+1 defined in (1) is the minimizer of the “linearized” functional:

x (→ 1
2
‖F(xn)+F ′(xn)(x− xn)− y‖2. (2)

There is a wide literature devoted to the study of convergence results for the Gauss-Newton
method under different perspectives. In particular we can distinguish two main streams of
research: the papers devoted to a local analysis, and the ones devoted to semilocal results.
The first class of studies [12,1,2,31] assume the existence of a local minimizer, and they
actually determine a region of attraction around that point, meaning that if the starting point
is chosen inside that region the iterative process is guaranteed to converge towards the min-
imizer. On the contrary, the semilocal results — also known as Kantorovich type theorems
— do not assume the existence of a local minimizer, they just establish sufficient conditions
on the starting point in order to make the iterative procedure convergent towards a point that
is proved to be a local minimizer [3,14,18,27].

In this paper we propose a generalization of the Gauss-Newton algorithm to the case in
which J )= 0, that reads as follows:

xn+1 = proxH(xn)
J

(
xn − [F ′(xn)

∗F ′(xn)]
−1F ′(xn)

∗(F(xn)− y)
)
, (3)

where proxH(xn)
J is the proximity operator associated to J (see [33,34,35]), with respect to

the metric defined by the operator H(xn) := F ′(xn)∗F ′(xn). The algorithmic framework in
(3) is determined following the same line of (2), i.e. linearizing the functional F at the point
xn, and computing the minimizer of the corresponding “linearized” functional

x (→ 1
2
‖F(xn)+F ′(xn)(x− xn)− y‖2 + J(x)

This approach is the common way to deal with generalizations of the Gauss-Newton method,
as we better explain in the next section. The convergence results we obtain are of local
type, and they are comparable to those obtained for the classical Gauss-Newton method.
In particular, we get linear convergence in the general case, and quadratic convergence for
zero residual problems. Furthermore, we are able to give an estimate of the radius of the
convergence ball around a local minimizer. It should be noted that the computation of the
proximity operator is in general not straightforward and it may require an iterative algorithm
itself, since in general a closed form is not available. On the other hand, we could have
denoted xn+1 simply as the minimizer of the generalized version of (2). The formulation
in terms of proximity operators allows to use the well developed theory on this kind of
operators, and in our opinion enlightens the connections and the differences with other first
order methods that have recently been proposed to solve problem (P) (see the next section
for further details).

The paper is organized as follows: we start with an analysis of the state-of-the art liter-
ature on related problems in Section 2, and then in Section 3 we review the basic concepts
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that will be used: generalized Lipschitz conditions, generalized inverses and proximity op-
erators. In Section 4 the minimization problem is precisely stated and some necessary con-
ditions satisfied by local minimizers are presented. The main result of the paper, Theorem
1, is discussed in Section 5 and proved in Section 6. Section 7 gives an application to the
problem of constrained nonlinear equations and, finally, in Section 8 numerical tests are set
up and analyzed.

2 Comparison with related work

We review the available algorithms to solve this problem, enlightening the connections and
the differences with our approach.

Convex composite optimization Problem (P) can be cast, in principle, as a composite op-
timization problem of the form

min
x∈X

h(c(x)), (4)

by setting h : Y ×X → R∪{+∞} and c : X → Y ×X as follows:

h(s,v) = ‖s‖2 + J(v), c(x) = (F(x)− y,x). (5)

Problem (4) has been deeply studied in [10,26,28,29,47,48] from different point of views,
mainly in the case X = Rn and Y = Rm, but the hypotheses significantly differ, as well as
the obtained results. More specifically, in [26], the assumptions are too general to capture
the features of problem (P), and allow only to get convergence results much weaker than
the ones obtained in Theorem 1. Regarding all the remaining papers, as a matter of fact, the
following special case of inclusion problem is treated

c(x) ∈C, C = argminh. (6)

In particular, the existence of an x such that c(x) ∈ argminh is always assumed. That hy-
pothesis is of course reasonable if we think of h as a kind of norm, but if we take it as in (5),
then C = {(s,v) : s = 0,v ∈ argminJ} and we are lead to the condition

∃x ∈ X , F(x) = y and x ∈ argminJ

which is too demanding for our original problem (P).

Nonlinear inverse problems with regularization Here the problem is to solve the nonlinear
equation

F(x) = y (7)

in the ill-posed case. Typically a solution is found by introducing a regularization term
weighted with a positive parameter. There are two possible approaches. The first one em-
ploys iterative methods which deal directly with problem (7), see [4]. In this case an iterative
process is set up by minimizing at each step a simplified regularized problem (generally lin-
ear) having the structure of (P) — with a weight for J varying at each iteration. Within this
class of methods, one popular choice is the iteratively regularized Gauss-Newton method,
see [8,20,21,25]. Anyway, we remark that, despite the name, that algorithm is different
from any kind of Gauss-Newton optimization method above, since it is not designed to “op-
timize” any objective functional Φ , but, in fact, it directly looks for an exact solution of the
equation (7).
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An alternative approach is the classical Tikhonov method [13] replacing (7) by the mini-
mization of the associated Tikhonov functional. A problem of the same type of (P) arises,
with J weighted by a properly chosen parameter. Up to our knowledge, besides our method,
the papers by Ramlau and Teschke, e.g. [37,38], are the only ones providing algorithms for
the minimization of such type of functionals. In addition, the scheme they propose is dif-
ferent from ours and in general it converges only weakly. On the other hand, our algorithm
assumes the derivative F ′(x) to be injective with closed range — a hypothesis not suitable
for handling the ill-posed case.

3 Preliminaries and notations

We start with some notations. In the whole paper X and Y denote a Hilbert space and Ω is
a nonempty open subset of X . F : Ω ⊆ X → Y is an operator, in general nonlinear, and F ′

denotes its derivative (Fréchet or Gâteaux). L(X ,Y ) is the space of bounded linear operators
from X to Y . If A ∈ L(X ,Y ), R(A) and N(A) shall denote respectively its range and kernel
and A∗ its adjoint.

3.1 Generalized Lipschitz conditions

Convergence results for the Gauss-Newton algorithm are typically obtained requiring Lips-
chitz continuity of the operator F ′ [12]. In [44,45], Wang introduced some weaker notions
of Lipschitz continuity in the context of Newton’s method. Recently, also convergence of
the Gauss-Newton method has been proved under such generalized Lipschitz conditions,
see e.g. [31,1,2]. In this section we recall the definitions and review some basic properties
of generalized Lipschitz continuous functions.

First of all recall that a set U ⊂ X is called star shaped with respect to some of its points
x∗ ∈U if the segment [x∗,x] is contained in U for every x ∈U .

Definition 1 Let f : Ω ⊆ X →Y and U ⊆ Ω be a starshaped set with respect to x∗ ∈U . Fix
R∈ (0,+∞] such that supx∈U ‖x− x∗‖≤R and let L : [0,R)→R be a positive and continuous
function. The mapping f is said to satisfy the radius Lipschitz condition of center x∗ with L
average on U if

‖ f (x)− f (x∗+ t(x− x∗))‖ ≤
∫ ‖x−x∗‖

t‖x−x∗‖
L(u)du (8)

for all t ∈ [0,1] and x ∈U .

Note that denoting by Γ : [0,R)→ R a primitive function of L, e.g. Γ (u) =
∫ u

0 L(v)dv,
inequality (8) can be written as

‖ f (x)− f (x∗+ t(x− x∗))‖ ≤ Γ (‖x− x∗‖)−Γ (t‖x− x∗‖).

By definition Γ is absolutely continuous and differentiable, with Γ ′(u) = L(u). Since L ≥ 0,
Γ is monotone increasing. Assuming L to be increasing, we get that Γ is convex.

Definition 2 Assume the hypotheses of Definition 1. We say that f : Ω ⊆ X → Y satisfies
the center Lipschitz condition of center x∗ with L average on U if it verifies

‖ f (x)− f (x∗)‖ ≤
∫ ‖x−x∗‖

0
L(u)du (9)

for every x ∈U .
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The original definitions of Wang [44] do not require the continuity of the function L
but just an integrability assumption. Our choice simplifies the proofs, but we remark that
this requirement is not essential. Indeed, the proofs can be modified to handle also the more
general case of Wang, at the cost of slight technical complications. In addition, the most
well-known examples of Lipschitz averages are continuous.

Remark 1 If f is Lipschitz continuous on a convex set U with constant L then it satisfies the
radius and center Lipschitz condition of center x∗ with average constantly equal to L on U ,
for every x∗ ∈ U . Vice versa, in the definitions above, if we take L constant we obtain two
intermediate concepts of Lipschitz continuity, called radius and center Lipschitz continuity,
which are still in general weaker than the classical notion, being centered at a specific point.

Note also that the center Lipschitz condition is weaker than the corresponding radius
one.

Let F : Ω ⊆ X → Y be a a Fréchet differentiable operator. It is well-known, see e.g.
[36], that if F ′ is Lipschitz continuous with constant L then the following inequality holds
for every x,x∗ ∈ X :

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤ L
2
‖x∗ − x‖2. (10)

We are going to show that under the weaker Lipschitz conditions introduced above it is still
possible to prove two estimates which are similar to (10). To this aim we need the following
three propositions. In the first one we prove two key inequalities, and in the subsequent ones
we rewrite them in a form more similar to (10). The subsequent result is contained implicitly
in several recent papers providing local results about Gauss-Newton method, see e.g. [29,
31].

Proposition 1 Let F : Ω → Y be a Gâteaux differentiable operator. Then:

(i) if F ′ satisfies the radius Lipschitz condition of center x∗ with L average on U ⊆ Ω (with
L and U as in Definition 1), then for all x ∈U

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤
∫ ‖x−x∗‖

0
L(u)udu. (11)

(ii) if F ′ satisfies the center Lipschitz condition with L average at x∗ on U ⊆ Ω (with L and
U as in Definition 2), then for all x ∈U

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤
∫ ‖x−x∗‖

0
(2‖x− x∗‖−u)L(u)du. (12)

Proof Let x ∈U and define φ : [0,1]→ Y by setting φ(t) = F(x∗+ t(x− x∗)). Clearly φ is
differentiable and φ ′(t) = F ′(x∗+ t(x− x∗))(x− x∗). Then

F(x)−F(x∗) = φ(1)−φ(0) =
∫ 1

0
F ′(x∗+ t(x− x∗))(x− x∗)dt.

Therefore

F(x∗)−F(x)−F ′(x)(x∗ − x) =
∫ 1

0

(
F ′(x∗+ t(x− x∗))−F ′(x)

)
(x∗ − x)dt
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and hence

‖F(x∗)−F(x)−F ′(x)(x∗− x)‖ ≤
∫ 1

0
‖F ′(x∗+ t(x− x∗))−F ′(x)‖‖x− x∗‖dt.

Let us first prove (i). By (8), we get
∫ 1

0
‖F ′(x∗+ t(x− x∗))−F ′(x)‖‖x− x∗‖dt ≤‖x− x∗‖

∫ 1

0

∫ ‖x−x∗‖

t‖x−x∗‖
L(u)dudt. (13)

Note that in general, setting Γ (u) =
∫ u

0 L(v)dv, it follows
∫ 1

0

(∫ ρ

tρ
L(u)du

)
ρ dt =

∫ 1

0

(∫ ρ

0
L(u)du−

∫ tρ

0
L(u)du

)
ρ dt

= ρ Γ (ρ)−
∫ 1

0
Γ (tρ)ρ dt

= [uΓ (u)]ρ0 −
∫ ρ

0
Γ (u)du

=
∫ ρ

0
uΓ ′(u)du

=
∫ ρ

0
L(u)udu (14)

where we used the change of variables u = tρ and an integration by parts. Writing the
equality obtained in (14) for ρ = ‖x− x∗‖, (13) becomes

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤
∫ ‖x−x∗‖

0
L(u)udu,

so that (i) is proved.
To show that (ii) holds, observe that the center Lipschitz condition (9) implies

‖F ′(x∗+ t(x− x∗))−F ′(x)‖ ≤ ‖F ′(x∗+ t(x− x∗))−F ′(x∗)‖+‖F ′(x∗)−F ′(x)‖

≤
∫ t‖x−x∗‖

0
L(u)du+

∫ ‖x−x∗‖

0
L(u)du

Reasoning as in the previous case and using the same notations it follows

‖F(x∗)−F(x)−F ′(x)[x∗ − x]‖ ≤
∫ 1

0
Γ (tρ)ρ dt +Γ (ρ)ρ

=
∫ ρ

0
Γ (u)du+Γ (ρ)ρ

=
∫ ρ

0
Γ (u)du+

[
(2ρ −u)Γ (u)

]ρ
0

=
∫ ρ

0
(2ρ −u)Γ ′(u)du

=
∫ ‖x−x∗‖

0
(2‖x− x∗‖−u)L(u)du.

01
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The following Propositions are a direct consequence of Lemma 2.2 in [30], and have al-
ready been stated in a slightly different form in [31]. We include the proofs for the sake of
completeness.

Proposition 2 Given L : [0,R)→R a continuous, positive and increasing function, the func-
tion γλ defined by setting

γλ : [0,R)→ R, γλ (r) =






1
r1+λ

∫ r

0
uλ L(u)du if r ∈ (0,R)

L(0)
1+λ

if r = 0,

(15)

is well-defined, continuous, positive and increasing for all λ ≥ 0. Moreover γλ is constant
and equal to L/(1+λ ) if L is constant, and it is strictly increasing if L is strictly increasing.
Finally the following inequality holds for every r ∈ [0,R)

(1+λ )γλ (r)≤ L(r). (16)

Proof Clearly γλ is differentiable on (0,R) since it is a product of differentiable functions
and by definition

r1+λ γλ (r) =
∫ r

0
uλ L(u)du. (17)

Differentiating both members of (17), it follows

(1+λ )rλ γλ (r)+ r1+λ γ ′λ (r) = rλ L(r),

therefore
rγ ′λ (r) = L(r)− (1+λ )γλ (r), (18)

Thus, if we prove (16) we also get that γλ (r) is increasing. To this aim, taking into account
that L is increasing, we have

r1+λ γλ (r) =
∫ r

0
uλ L(u)du ≤

∫ r

0
uλ L(r)du =

r1+λ

1+λ
L(r) (19)

from which (16) follows. Note that if L is strictly increasing the inequality in (19) is strict,
therefore in this case, recalling (18), γ ′λ (r)> 0 on (0,R). On the other hand, if L is constant
the inequality in (19) is indeed an equality and γ ′λ (r) = 0 by (18) implying that γλ is constant
on (0,R). The continuity of γλ at 0 follows by L’Hospital’s rule. In fact, using that L is
continuous at 0:

lim
r→0

γλ (r) = lim
r→0

∫ r
0 uλ L(u)du

r1+λ = lim
r→0

rλ L(r)
(1+λ )rλ =

L(0)
1+λ

.

01

Using the function γ0 introduced in Proposition 2 the center Lipschitz condition with L
average can be written in the following form, resembling the classical definition of Lipschitz
continuity

‖ f (x)− f (x∗)‖ ≤ γ0(‖x− x∗‖)‖x− x∗‖.
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Proposition 3 Under the assumptions of Proposition 2, the function

γc : [0,R)→ R, γc(r) =






1
r2

∫ r

0
(2r−u)L(u)du if r ∈ (0,R)

3L(0)
2

if r = 0,

(20)

is well-defined, continuous, positive and increasing.

Proof The definition of γc immediately implies

r2γc(r) =
∫ r

0
(2r−u)L(u)du = 2r

∫ r

0
L(u)du−

∫ r

0
uL(u)du (21)

and differentiating both members of (21)

2rγc(r)+ r2(γc)′(r) = 2
∫ r

0
L(u)du+ rL(r)

Dividing by r, and using the notations of Proposition 2, we obtain

r(γc)′(r) = 2(γ0(r)− γc(r))+L(r).

Therefore, in order to prove that γc is increasing we just need to show that

2γc(r)≤ 2γ0(r)+L(r). (22)

In fact, using the definitions of the functions γc and γ0 and the monotonicity of L we have:

2r2γc(r) = 2
∫ r

0
rL(u)du+2

∫ r

0
(r−u)L(u)du

≤ 2r2γ0(r)+2L(r)
∫ r

0
(r−u)du

= 2r2γ0(r)+ r2L(r),

that clearly implies (22). The continuity of γc at 0 can be deduced as follows

lim
r→0

γc(r) = lim
r→0

2γ0(r)− γ1(r) = 2L(0)− L(0)
2

=
3
2

L(0).

relying on the continuity of γ0 and γ1 proved in Proposition 2. 01

Remark 2 Using the functions γ0,γ1 and γc introduced in (15) and in (20), the inequality (9)
written for F ′ becomes

‖F ′(x)−F ′(x∗)‖ ≤ γ0(‖x− x∗‖)‖x− x∗‖.

The inequalities (11) and (12) can be written respectively as

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤ γ1(‖x− x∗‖)‖x− x∗‖2 (23)

and

‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖ ≤ γc(‖x− x∗‖)‖x− x∗‖2, (24)

that generalize the inequality (10).
Note moreover that the functions rγ0(r),r2γ1(r) and r2γc(r) are always strictly increas-

ing and if L is a constant function equal to L, then

γ0(r) = L, γ1(r) =
L
2
, γc(r) =

3
2

L.
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Remark 3 It is worth noting that, even though only a Gâteaux differentiability has been
required, the previous inequalities together with the hypothesis on the function L implies
Fréchet differentiability at x∗.

3.2 Generalized inverses

In this section we collect some well-known results regarding the Moore-Penrose generalized
inverse (also known as pseudoinverse) A† of a linear operator A. They will be useful in the
rest of the paper. For the definition and a comprehensive analysis of the properties of the
Moore-Penrose inverse we refer the reader to [17].

Assume that A ∈ L(X ,Y ) has a closed range. The pseudoinverse of A is the linear oper-
ator A† ∈ L(Y,X) defined by means of the four “Moore-Penrose equations”

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A. (25)

Denoting by PN(A) and PR(A) the orthogonal projectors onto the kernel and the range of A
respectively, from the definition it is clear that

A†A = I −PN(A), AA† = PR(A). (26)

In case A is injective, N(A) = {0} and A†A = I, that is A† is a left inverse of A. Furthermore,
for each A ∈ L(X ,Y ) the following statements are equivalent:

– A is injective and the range of A is closed;
– A∗A is invertible in L(X ,X).

and if one of those equivalent conditions is true then A† =(A∗A)−1A∗ and ‖A†‖2 = ‖(A∗A)−1‖.
The following lemma gives a perturbation bound for the Moore-Penrose pseudoinverse,

see [42,46].

Lemma 1 Let A,B ∈ L(X ,Y ) with A injective and R(A) closed. If ‖(B−A)A†‖< 1, then B
is injective, R(B) is closed and

‖B†‖ ≤ ‖A†‖
1−‖(B−A)A†‖ .

Moreover
‖B† −A†‖ ≤

√
2‖A†‖‖B†‖‖B−A‖,

and therefore

‖B† −A†‖ ≤
√

2
‖A†‖2‖B−A‖

1−‖A†‖‖B−A‖ .

3.3 The proximity operator

This section consists of an introduction on proximity operators, which were first introduced
by Moreau in [33], and further investigated in [34,35] as a generalization of the notion of
convex projection operator. Let H : X →X be a continuous, positive and selfadjoint operator,
bounded from below, and therefore invertible. Then we can define a new scalar product on
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X by setting 〈x,z〉H = 〈x,Hz〉. The corresponding induced norm ‖·‖H is equivalent to the
given norm on X , since the following inequalities hold true

1
‖H−1‖‖x‖2 ≤ ‖x‖2

H ≤ ‖H‖‖x‖2. (27)

The Moreau-Yosida approximation of a convex and lower semicontinuous function ϕ :
X →R∪{+∞} with respect to the scalar product induced by H is the function Mϕ : X →R
defined by setting

Mϕ(z) = inf
x∈X

{
ϕ(x)+ 1

2
‖x− z‖2

H

}
. (28)

For every z ∈ X , the infimum in equation (28) is attained at a unique point, denoted
proxH

ϕ (z). In this way, an operator

proxH
ϕ : X → X

is defined, which is called the proximity operator associated to ϕ w.r.t. H. In case H = I
is the identity, the proximity operator is denoted simply by proxϕ . Writing the first order
optimality conditions for (28), we get

p = proxH
ϕ (z)⇐⇒ 0 ∈ ∂ϕ(p)+H(p− z)⇐⇒ Hz ∈ (∂ϕ +H)(p), (29)

which gives
proxH

ϕ (z) = (H +∂ϕ)−1(Hz).

We remark that the map (H +∂ϕ)−1 (in principle multi-valued) is single-valued, since
we know that the minimum is attained at a unique point.

Lemma 2 The proximity operator proxH
ϕ : X → X is Lipschitz with constant

√
‖H‖‖H−1‖

with respect to ‖·‖, namely

‖proxH
ϕ (z1)−proxH

ϕ (z2)‖ ≤
√
‖H‖‖H−1‖‖z1 − z2‖. (30)

Proof Being the proximity operator firmly nonexpansive with respect to the scalar product
induced by H (see e.g. Lemma 2.4 in [11]) we have

‖proxH
ϕ (z1)−proxH

ϕ (z2)‖H ≤ ‖z1 − z2‖H .

Using the inequalities in (27) relating ‖·‖ and ‖·‖H we get the desired result. 01

It is also possible to show that in some cases the computation of the proximity operator
with respect to the scalar product induced by H can be brought back to the computation
of the proximity operator with respect to the original norm. In particular, the following
proposition holds.

Proposition 4 Let A ∈ L(X ,Y ). Let us suppose A to be injective with closed range. Set H =
A∗A and assume ϕ : X →R∪{+∞} a proper, convex and lower semicontinuous functional.
Then

proxH
ϕ = A†proxϕ◦A† A
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Proof Being A injective, H is positive and invertible, thus

proxH
ϕ : X → X proxH

ϕ (x) = argmin
z∈X

{
ϕ(z)+ 1

2
‖z− x‖2

H

}

where
‖z− x‖2

H = 〈A∗A(z− x),z− x〉= 〈A(z− x),A(z− x)〉= ‖A(z− x)‖2.

Therefore

proxH
ϕ (x) = argmin

z∈X

{
ϕ(z)+ 1

2
‖A(z− x)‖2

}
. (31)

On the other hand, since ϕ ◦A† : Y → R∪{+∞} is convex and lower semicontinuous the
corresponding proximity operator with respect to ‖·‖ is well-defined and

proxϕ◦A† : Y → Y proxϕ◦A†(y) = argmin
t∈Y

{
ϕ(A†t)+

1
2
‖t − y‖2

}

If we set x = proxH
ϕ (x), by (31) we obtain

ϕ(x)+ 1
2
‖Ax−Ax‖2 ≤ ϕ(z)+ 1

2
‖Az−Ax‖2 ∀z ∈ X .

Moreover, by setting y = Ax, taking t ∈Y , with t = t1+ t2 such that t1 ∈ R(A) and t2 ∈ R(A)⊥

and z = A†t ∈ X , we have

ϕ(A†t)+
1
2
‖t −Ax‖2 = ϕ(A†t)+

1
2
‖t1 + t2 −Ax‖2

= ϕ(A†t)+
1
2
‖PR(A)t −Ax‖2 +‖t2‖2

≥ ϕ(A†t)+
1
2
‖AA†t −Ax‖2

= ϕ(z)+ 1
2
‖Az−Ax‖2

≥ ϕ(x)+ 1
2
‖Ax−Ax‖2

= ϕ(A†y)+
1
2
‖y−Ax‖2.

We finally get

y = argmin
t∈Y

{
ϕ(A†t)+

1
2
‖t −Ax‖2

}
= proxϕ◦A†(Ax)

and thus using (26)

proxH
ϕ (x) = x = A†Ax = A†y = A†proxϕ◦A†(Ax).

01

Since in the sequel the proximity operators will be computed with respect to a variable
norm ‖·‖H , we are interested in the behavior of the proximity operator when H varies.
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Lemma 3 Let H1 and H2 two continuous positive selfadjoint operators on X, both bounded
from below. It holds

‖proxH1
ϕ (z)−proxH2

ϕ (z)‖ ≤ ‖H−1
1 ‖‖(H1 −H2)(z−proxH2

ϕ (z))‖. (32)

Proof By (29) it follows

Hi(z−proxHi
ϕ (z)) ∈ ∂ϕ(proxHi

ϕ (z)), i = 1,2.

Then, by definition of subdifferential the following inequalities hold true

ϕ(proxH2
ϕ (z))≥ϕ(proxH1

ϕ (z))

+ 〈H1(z−proxH1
ϕ (z)),proxH2

ϕ (z)−proxH1
ϕ (z)〉

ϕ(proxH1
ϕ (z))≥ϕ(proxH2

ϕ (z))

+ 〈H2(z−proxH2
ϕ (z)),proxH1

ϕ (z)−proxH2
ϕ (z)〉.

Summing up them, we obtain

0 ≥ 〈H2(z−proxH2
ϕ (z))−H1(z−proxH1

ϕ (z)),proxH1
ϕ (z)−proxH2

ϕ (z)〉,

and equivalently

〈H1 proxH1
ϕ (z)−H2 proxH2

ϕ (z),proxH1
ϕ (z)−proxH2

ϕ (z)〉 ≤

〈(H1 −H2)z,proxH1
ϕ (z)−proxH2

ϕ (z)〉.

Adding and subtracting the same term, the previous inequality can also be written as

〈H1(proxH1
ϕ (z)−proxH2

ϕ (z)),proxH1
ϕ (z)−proxH2

ϕ (z)〉 ≤

〈(H1 −H2)(z−proxH2
ϕ (z),proxH1

ϕ (z)−proxH2
ϕ (z)〉,

from which (32) follows. 01

Note that in the previous lemma H1 and H2 play a symmetric role, so that they can be
interchanged.

Remark 4 Combining (30) and (32), we get:

‖proxH1
J z1 −proxH2

J z2‖ ≤ ‖proxH1
J z1 −proxH1

J z2‖+‖proxH1
J z2 −proxH2

J z2‖

≤
(
‖H1‖‖H−1

1 ‖
)1/2‖z1 − z2‖ (33)

+‖H−1
1 ‖‖(H1 −H2)(z2 −proxH2

J z2)‖,

for every z1,z2 ∈ X and H1,H2 continuous and positive selfadjoint operators on X , bounded
from below.
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4 Setting the minimization problem

In this section we collect some basic properties of the solutions of problem (P). The fol-
lowing will be standing hypotheses throughout the paper.

(SH)






F : Ω ⊆ X → Y is Gâteaux differentiable

J : X → R∪{+∞} is proper, lower semicontinuous and convex.

Recall that J proper means the effective domain dom(J) := {x∈X : J(x)<+∞} is nonempty.
Without loss of generality, we shall assume y = 0 in the problem (P), since the gen-

eral case can be recovered just by replacing F with F − y. Thus, hereafter, the following
optimization problem will be considered

min
x∈X

1
2
‖F(x)‖2 + J(x) := Φ0(x). (P0)

The functional Φ0 is in general nonconvex and searching for global minimizers turns out to
be a challenging task. Therefore, the focus of this paper is on local minimizers of Φ0, whose
existence shall be assumed from now on. Generally speaking, Gauss-Newton methods are of
a local character, and allow to find a local minimizer. As it is well-known a local minimizer
x∗ of Φ0 is a point such that x∗ ∈ dom(J)∩Ω and there exists a neighborhood U of x∗ such
that Φ0(x∗)≤ Φ0(x) for all x ∈U .

By the way, hypotheses (SH) are not enough to guarantee the existence of a global
minimizer of the problem (P0). Such existence can be proved relying on the Weierstrass
theorem as soon as we impose F to be weak to weak continuous and Φ0 (weakly) coercive,
namely lim‖x‖→+∞ Φ0(x) = +∞.

We start by providing first order conditions for local minimizers.

Proposition 5 Suppose (SH) are satisfied and let x∗ ∈ Ω be a local minimizer of Φ0. Then
the following stationary condition holds

−F ′(x∗)∗F(x∗) ∈ ∂J(x∗).

Moreover, if F ′(x∗) is injective and R(F ′(x∗)) is closed, then x∗ satisfies the fixed point
equation

x∗ = proxH(x∗)
J (x∗ −F ′(x∗)†F(x∗)),

with H(x∗) := F ′(x∗)∗F ′(x∗).

Proof Suppose that x∗ is a local minimizer of Φ0. Denoting by Φ ′
0(x∗,v) the directional

derivative of Φ0 at x∗ in the direction v ∈ X , which exists thanks to (SH), the first order
optimality conditions for x∗ implies

Φ ′
0(x∗,v)≥ 0 ∀v ∈ X . (34)

As a consequence of the differentiability of F and the convexity of J (34) can be rewritten
as

−F ′(x∗)∗F(x∗)v ≤ J′(x,v) ∀v ∈ X ,

and consequently, by Proposition 3.1.6 in [9], also as

−F ′(x∗)∗F(x∗) ∈ ∂J(x∗), (35)
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which is the stationary condition of the thesis. To prove that x∗ satisfies the fixed point
equation note that adding H(x∗)x∗ to both members of (35) we have

H(x∗)x∗ −F ′(x∗)∗F(x∗) ∈ (H(x∗)+∂J)(x∗).

Since H(x∗) is invertible, then the previous equation can be also rewritten as

H(x∗)(x∗ −H(x∗)−1F ′(x∗)∗F(x∗)) ∈ (H(x∗)+∂J)(x∗).

Recalling equation (29) and the properties enjoyed by the pseudoinverse we obtain the sec-
ond assertion. 01

5 The algorithm - convergence analysis

In this section we state the main result of the paper, consisting in the study of the con-
vergence of a generalized Gauss-Newton method for solving problem (P0). The flavor is
similar to the most recent results concerning the standard Gauss-Newton method, proved in
[31]. We start describing some basic properties of the proposed algorithmic framework.

Fix x0 ∈ dom(J), and then, given xn, define xn+1 by setting

xn+1 = argmin
x∈X

1
2
‖F(xn)+F ′(xn)(x− xn)‖2 + J(x). (36)

Note that since the quantity inside the norm has been linearized, this problem can be solved
explicitly, for instance using first order methods for the minimization of nonsmooth con-
vex functions, such as bundle methods or forward-backward methods (see [19,11]). Writing
down the first order optimality conditions we will get a similar formula to the one in Propo-
sition 5 for a minimizer x∗.

Proposition 6 Suppose F ′(xn) is injective with closed range and set H(xn)=F ′(xn)∗F ′(xn).
Then, the formula (36) defining xn+1 is equivalent to

xn+1 = proxH(xn)
J (xn −F ′(xn)

†F(xn)). (37)

Proof Thanks to the assumptions made on F ′(xn) the operator H(xn) is invertible. Writing
the first order necessary conditions, which are satisfied by xn+1 we obtain

0 ∈ F ′(xn)
∗[F(xn)+F ′(xn)(xn+1 − xn)]+∂J(xn+1)

⇐⇒ F ′(xn)
∗F ′(xn)xn −F ′(xn)

∗F(xn) ∈ (F ′(xn)
∗F ′(xn)+∂J)(xn+1)

⇐⇒ xn+1 = (F ′(xn)
∗F ′(xn)+∂J)−1(F ′(xn)

∗F ′(xn)xn −F ′(xn)
∗F(xn))

⇐⇒ xn+1 = (F ′(xn)
∗F ′(xn)+∂J)−1F ′(xn)

∗F ′(xn)
(
xn −F ′(xn)

†F(xn)
)

⇐⇒ xn+1 = proxH(xn)
j

(
xn −F ′(xn)

†F(xn)
)

01

In the next theorem we provide a local convergence analysis of the proximal Gauss-
Newton method, under the generalized Lipschitz conditions on F ′ introduced in Section
3.1. The proof is postponed to Section 6.
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Theorem 1 Suppose that (SH) are satisfied. Let U ⊆ Ω be an open starshaped set with
respect to x∗, where x∗ ∈ dom(J)∩U is a local minimizer of Φ0. Moreover assume

1. F ′(x∗) is injective with closed range;

2. F ′ : Ω ⊆ X → L(X ,Y ) is center Lipschitz continuous of center x∗ with L average on U
(L as in the definition 2 and increasing);

3. [(1+
√

2)κ+1]αβ 2L(0)< 1, where α = ‖F(x∗)‖,β = ‖F ′(x∗)†‖, κ = ‖F ′(x∗)†‖‖F ′(x∗)‖,
the conditioning number of F ′(x∗).

Define R̄ and q : [0, R̄)→ R+ by setting R̄ = sup{r ∈ (0,R) : γ0(r)r < 1/β} and

q(r) =
β

1−βγ0(r)r

{
βγ0(r)γc(r)r2 +κγc(r)r

(1−βγ0(r)r)
+

(1+
√

2)αβ 2γ0(r)2r
1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}
.

The function q is continuous and strictly increasing. If we define

r̄ = sup{r ∈ (0, R̄] : q(r)< 1}, (38)

and we fix r ∈ R, with 0 < r ≤ r̄, such that Br(x∗)⊆U, we get that the sequence

x0 ∈ Br(x∗),

xn+1 = proxH(xn)
J

(
xn −F ′(xn)

†F(xn)
)

with H(xn) := F ′(xn)∗F ′(xn), is well-defined, i.e. xn ∈ Br(x∗) and F ′(xn) is injective with
closed range and it holds

‖xn − x∗‖ ≤ qn
0‖x0 − x∗‖,

where q0 := q(‖x− x0‖)< 1.
More precisely, the following inequality is true

‖xn+1 − x∗‖ ≤C2‖xn − x∗‖2 +C1‖xn − x∗‖,

for constants C1 ≥ 0 and C2 > 0 defined as

C1 =
[(1+

√
2)κ +1]αβ 2γ0(ρx0)

(1−βγ0(ρx0)ρx0)
2 ;

C2 =
κβγc(ρx0)+(1+

√
2)αβ 3γ0(ρx0)

2 +β 2γ0(ρx0)γc(ρx0)ρx0

(1−βγ0(ρx0)ρx0)
2 ,

with ρx0 = ‖x− x0‖.

Since r̄ is chosen as the biggest value ensuring q(r) ≤ 1 (a sufficient condition making the
Gauss-Newton sequence convergent), r̄ can be thought as the radius of the basin of attraction
around the local minimum point x∗, even though in general we can’t prove the optimality of
this value.
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Remark 5 An analogous theorem is true if in the assumption 2 we suppose F ′ to satisfy
the radius Lipschitz condition. All the statements remain true, just replacing γc with γ1. For
instance the expression of q(r) becomes

q(r) =
β

1−βγ0(r)r

{
βγ0(r)γ1(r)r2 +κγ1(r)r

1−βγ0(r)r
+

(1+
√

2)αβ 2γ0(r)2r
1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}
.

Remark 6 The hypotheses we impose are in line with the state-of-art literature about clas-
sical Gauss-Newton method (J = 0), see [31]. It is worth noting that the expression of r̄ is
not affected by the choice of J. On the other hand, the presence of the function J reduces the
radius of convergence of the Gauss-Newton method. Indeed, the expression for r̄ obtained
in (38), which is valid also in the case J = 0 is always smaller than the maximum radius of
convergence that can be derived from equation (3.4) in [31], namely

r0 = sup{r ∈ (0, R̄) : q0(r)< 1},

with

q0(r) =
β

1−βγ0(r)r
{

γc(r)r+
√

2βαγ0(r)
}
.

The reason is that the bound (30) we use, is not sharp in case J = 0, and this causes an
additional term in the expression of q(r).

Conditions ensuring quadratic convergence. As in the classical case, also with the ad-
ditional term J, for zero residual problems quadratic convergence holds. In fact, from the
expression of C1, we see that C1 = 0 if α = 0, i.e. F(x∗) = 0.

5.1 The case of constant average L

In case the function L is constant, we can derive also an explicit expression for the maximum
ray of convergence r̄.

Corollary 1 Let the assumptions of Theorem 1 be satisfied and moreover assume F ′(x∗)
to be center Lipschitz continuous of center x∗ with constant average L on U. Define q :
[0,1/(βL))→ R+ as

q(r) =
β

1−βLr

{
3(βL2r2 +κLr)

2(1−βLr)
+

(1+
√

2)αβ 2L2r
1−βLr

+
[(1+

√
2)κ +1]αβL

1−βLr

}
, (39)

which is continuous and strictly increasing in its domain. If we define

h = [(1+
√

2)κ +1]αβ 2L (< 1),

r̄ =
1

βL



−
(

2+
3κ
2

+(1+
√

2)αβ 2L
)
+

√(
2+

3κ
2

+(1+
√

2)αβ 2L
)2

+2(1−h)




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and we fix r ∈ R with 0 < r ≤ r̄ such that Br(x∗) ⊆ U the conclusions of Theorem 1 hold
with

C1 =
[(1+

√
2)κ +1]αβ 2L

(1−βLρx0)
2 ;

C2 = β
3κ +(1+

√
2)αβ 2L2 +3βL2ρx0

2(1−βLρx0)
2 .

Proof Using the expressions of γ0 and γc found in Remark 2, one can easily show that
R = 1/(βL) and q can be written as in (39).

As before q is continuous and strictly increasing on the interval [0,1/(βL)), and

q(0) = h < 1, lim
r→1/(βL)

q(r) = +∞.

Therefore r̄ defined in (38) is the unique solution in (0,1/(βL)) of the equation q(r) = 1.
We are going to find that point explicitly by solving the equation q(r) = 1. The latter is
equivalent to the following quadratic equation

z2 +(4+3κ +2(1+
√

2)αβ 2L)z−2(1−h) = 0,

with z ∈ [0,1), z = βLr. That equation has the two distinct solutions

z =−
(

2+
3
2

κ +(1+
√

2)αβ 2L
)
±

√(
2+

3
2

κ +2(1+
√

2)αβ 2L
)2

+2(1−h).

Of course, we discard the negative solution, and we keep the one with the plus sign, which
can be easily checked to belong to (0,1). 01

Along the same line, a similar result concerning the case of radius Lipschitz continuity
can be proved.

Corollary 2 Let the assumptions of Theorem 1 be satisfied and moreover assume F ′(x∗)
to be radius Lipschitz continuous of center x∗ with constant average L on U. Define q :
[0,1/(βL))→ R+ as

q(r) =
β

1−βLr

{
βL2r2 +κLr
2(1−βLr)

+
(1+

√
2)αβ 2L2r

1−βLr
+

[(1+
√

2)κ +1]αβL
1−βLr

}
,

which is continuous and strictly increasing in its domain. If we define

h = [(1+
√

2)κ +1]αβ 2L(< 1),

r̄ =
1

βL

[(
2+

κ
2
+(1+

√
2)αβ 2L

)
−
√(

2+
κ
2
+(1+

√
2)αβ 2L

)2
−2(1−h)

]

and we fix r ∈ R with 0 < r ≤ r̄ such that Br(x∗) ⊆ U the conclusions of Theorem 1 hold
with

C1 =
[(1+

√
2)κ +1]αβ 2L

(1−βLρx0)
2 ;

C2 = β
κ +(1+

√
2)αβ 2L2 +βL2ρx0

2(1−βLρx0)
2 .

for r < 1/(βL).
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6 Proof of Theorem 1

We are going to state some auxiliary results for proving convergence of the algorithm dis-
cussed in the previous section. The following proposition will be one of the building blocks
to show that convergence holds.

Proposition 7 Let G : D ⊆ X → X, be a mapping and x∗ ∈ D a fixed point of G. Let U ⊆ D
be an open starshaped set with respect to x∗ ∈U. Assume G to satisfy the inequality

‖G(x)−G(x∗)‖ ≤ q(‖x− x∗‖)‖x− x∗‖, for all x ∈U (40)

for a given increasing function q : [0,R)→ [0,+∞), continuous at 0 and such that q(0)< 1.
Define

r̄ = sup{r ∈ (0,R) : q(r)< 1}.

Then r̄ > 0 and given r ∈ R with 0 < r ≤ r̄ and Br(x∗)⊆U, it follows G(Br(x∗))⊆ Br(x∗),
thus, given x0 ∈ Br(x∗) the sequence defined by setting xn+1 = G(xn) is well-defined. More-
over, denoting q0 = q(‖x0 − x∗‖) it holds q0 < 1 and

‖xn+1 − x∗‖ ≤ qn
0‖x0 − x∗‖.

Proof First note that r̄ = sup{r ∈ (0,R) : q(r) < 1} > 0 being q(0) < 1 and q continuous
at 0. Fix r ∈ R, 0 < r ≤ R̄ such that Br(x∗) ⊆ U and x ∈ Br(x∗). Then by definition of r̄,
q(‖x− x∗‖)< 1 and therefore (40) implies that

‖G(x)− x∗‖ ≤ ‖x− x∗‖< r,

i.e. G(x) ∈ Br(x∗). Thus G(Br(x∗)) ⊆ Br(x∗) and a sequence can be defined in Br(x∗) by
choosing x0 ∈ Br(x∗) and setting xn+1 = G(xn). Being ‖xn − x∗‖< r̄, again from the defini-
tion of r̄ we have q(‖xn − x∗‖)< 1, and from (40) we get

‖xn+1 − x‖= ‖G(xn)− x∗‖ ≤ q(‖xn − x∗‖)‖xn − x∗‖< ‖xn − x∗‖.

This implies that q(‖xn+1 − x∗‖) ≤ q(‖xn − x∗‖), since q is increasing. Therefore, denoting
q(‖x0 − x∗‖) =: q0 we get q(‖xn − x∗‖)≤ q0 < 1 for all n ∈ N and

‖xn+1 − x∗‖ ≤ q(‖xn − x∗‖)‖xn − x∗‖ ≤ q0‖xn − x∗‖ ≤ . . .≤ qn
0‖x0 − x∗‖.

01

We now introduce some notations, allowing for rewriting the conditions which have been
described in Proposition 5 for a local minimizer of Φ0. Define G and G̃ by setting

G(x) = x−F ′(x)†F(x) and G̃(x) = proxH(x)
J (G(x)), (41)

where H(x) = F ′(x)∗F ′(x). The domain of G and G̃ is the subset D of Ω defined as

D = {x ∈ Ω : F ′(x) is injective and R(F ′(x)) is closed}. (42)

If x∗ ∈ D is a local minimizer of (P0) the fixed point equation of Proposition 5 can be
restated by saying that x∗ is a fixed point for G̃, namely

x∗ = G̃(x∗). (43)
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Proposition 8 Assume (SH) and let x∗ be a local minimizer of Φ0 belonging to D. Suppose
that U ⊆ Ω is open and starshaped with respect to x∗. Moreover assume

i) F ′ : Ω ⊆ X → L(X ,Y ) is center Lipschitz continuous of center x∗ with L : [0,R)→ R+

average on U ⊆ Ω ;
ii) α = ‖F(x∗)‖, β = ‖F ′(x∗)†‖ and κ = ‖F ′(x∗)†‖‖F ′(x∗)‖.

Then, defining R̄ by setting

R̄ = sup{r ∈ (0,R) : γ0(r)r < 1/β}

it follows that for all r ∈ R with 0 < r ≤ R̄ and Br(x∗)⊆U, G̃ satisfies

‖G̃(x)− x∗‖ ≤ q(‖x− x∗‖)‖x− x∗‖,

for all x ∈ Br(x∗), where q : [0, R̄)→ R+ is defined as

q(r) =
β

1−βγ0(r)r

{
βγ0(r)γc(r)r2 +κγc(r)r

(1−βγ0(r)r)
+

(1+
√

2)αβ 2γ0(r)2r
1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

and it is continuous and strictly increasing.

Proof Since x∗ is a local minimizer of Φ0 and x∗ ∈ D, with D defined as in (42), x∗ is a fixed
point of G̃ (see (43)), therefore

G(x∗)−proxH(x∗)
J G(x∗) = G(x∗)− x∗ = F ′(x∗)†F(x∗). (44)

Fix r ∈R, with 0 < r ≤ R̄ such that Br(x∗)⊆U and take x ∈ Br(x∗). Adopting the notations
of Proposition 2, as noted in Remark 2, from the center Lipschitz hypothesis we get

‖F ′(x)−F ′(x∗)‖‖F ′(x∗)†‖ ≤ γ0(‖x− x∗‖)‖x− x∗‖β .

Recalling that Remark 2 ensures that the function ρ (→ ργ0(ρ) is continuous, strictly in-
creasing and takes value 0 in 0, we have that R̄ > 0 and

‖F ′(x)−F ′(x∗)‖‖F ′(x∗)†‖< βγ0(r)r ≤ 1,

and thus applying Lemma 1, F ′(x) is injective, with closed range, and

‖F ′(x)†‖ ≤ β
1−βγ0(ρx)ρx

, where ρx = ‖x− x∗‖. (45)

Applying inequality (33) with H1 =H(x), H2 =H(x∗), z1 =G(x) and z2 =G(x∗), and taking
into account (44) we get

‖G̃(x)− x∗‖= ‖proxH(x)
J (G(x))−proxH(x∗)

J (G(x∗))‖

≤
(
‖H(x)‖‖H(x)−1‖

)1/2‖G(x)−G(x∗)‖

+‖H(x)−1‖
∥∥(H(x)−H(x∗))

(
G(x∗)−proxH(x∗)

J G(x∗)
)∥∥

=
(
‖H(x)‖‖H(x)−1‖

)1/2‖G(x)−G(x∗)‖

+‖H(x)−1‖‖(H(x)−H(x∗))F ′(x∗)†F(x∗)‖. (46)
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Moreover

‖H(x)‖= ‖F ′(x)∗F ′(x)‖= ‖F ′(x)‖2

‖H(x)−1‖= ‖[F ′(x)∗F ′(x)]−1‖= ‖F ′(x)†‖2.

Recalling the properties of the Moore-Penrose generalized inverse in (26) and Lemma 1 we
get

(H(x)−H(x∗))F ′(x∗)† = (F ′(x)∗F ′(x)−F ′(x∗)∗F ′(x∗))F ′(x∗)†

= F ′(x)∗F ′(x)F ′(x∗)† −F ′(x∗)∗F ′(x∗)F ′(x∗)†

= F ′(x)∗F ′(x)F ′(x∗)† −F ′(x)∗PR(F ′(x∗))

+F ′(x)∗PR(F ′(x∗))−F ′(x∗)∗PR(F ′(x∗))

= F ′(x)∗(F ′(x)−F ′(x∗))F ′(x∗)†

+(F ′(x)−F ′(x∗))∗PR(F ′(x∗)),

therefore,

‖(H(x)−H(x∗))F ′(x∗)†‖ ≤
(
‖F ′(x)‖‖F ′(x∗)†‖+1

)
‖F ′(x)−F ′(x∗)‖. (47)

Hence, substituting in (46) the bound derived in (47) we obtain

‖G̃(x)− x∗‖ ≤ ‖F ′(x)‖‖F ′(x)†‖‖G(x)−G(x∗)‖ (48)

+‖F ′(x)†‖2 (‖F ′(x)‖‖F ′(x∗)†‖+1
)
‖F ′(x)−F ′(x∗)‖‖F(x∗)‖.

On the other hand, thanks to the properties of the Moore-Penrose pseudoinverse reported in
(26) and the injectivity of F ′(x)

G(x)−G(x∗) = x− x∗ −F ′(x)†F(x)+F ′(x∗)†F(x∗)

= F ′(x)†[F ′(x)(x− x∗)−F(x)+F(x∗)]

+(F ′(x∗)† −F ′(x)†)F(x∗)

and thus, using Lemma 1

‖G(x)−G(x∗)‖ ≤ ‖F ′(x)†‖‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖

+‖F ′(x∗)† −F ′(x)†‖‖F(x∗)‖

≤ ‖F ′(x)†‖‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖

+
√

2‖F ′(x)†‖‖F ′(x∗)†‖‖F ′(x)−F ′(x∗)‖‖F(x∗)‖

= ‖F ′(x)†‖
{
‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖

+
√

2‖F ′(x∗)†‖‖F(x∗)‖‖F ′(x)−F ′(x∗)‖
}

(49)

Substituting (49) in (48)

‖G̃(x)− x∗‖ ≤ ‖F ′(x)†‖2
{
‖F ′(x)‖

(
‖F(x∗)−F(x)−F ′(x)(x∗ − x)‖

+(1+
√

2)‖F ′(x∗)†‖‖F(x∗)‖‖F ′(x)−F ′(x∗)‖
)

(50)

+‖F ′(x)−F ′(x∗)‖‖F(x∗)‖
]}
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Taking into account Remark 2, we can rewrite inequality (50) as

‖G̃(x)− x∗‖

≤ ‖F ′(x)†‖2
{
‖F ′(x)‖

[
γc(ρx)ρ2

x +(1+
√

2)‖F ′(x∗)†‖‖F(x∗)‖γ0(ρx)ρx

]

+‖F(x∗)‖γ0(ρx)ρx

}

To find a bound for the quantity ‖F ′(x)‖, recall that κ is the conditioning number of F ′(x∗),
i.e. κ := ‖F ′(x∗)†‖‖F ′(x∗)‖, and by the triangular inequality and Remark (2) we get ‖F ′(x)‖≤
‖F ′(x)−F ′(x∗)‖+‖F ′(x∗)‖ ≤ γ0(ρx)ρx +κ/β . Thus, recalling (45), we finally obtain

‖G̃(x)− x∗‖

≤ β 2

(1−βγ0(ρx)ρx)
2

{
(γ0(ρx)ρx +κ/β )

[
γc(ρx)ρ2

x +(1+
√

2)βαγ0(ρx)ρx

]

+αγ0(ρx)ρx

}
,

or, equivalently

‖G̃(x)− x∗‖ ≤
β

1−βγ0(ρx)ρx

{
βγ0(ρx)γc(ρx)ρ2

x +κγc(ρx)ρx

1−βγ0(ρx)ρx

+
(1+

√
2)αβ 2γ0(ρx)2ρx

1−βγ0(ρx)ρx
+

[(1+
√

2)κ +1]αβγ0(ρx)

1−βγ0(ρx)ρx

}
ρx

= q(‖x− x∗‖)‖x− x∗‖,

where we set

q(r) =
β

1−βγ0(r)r

{
βγ0(r)γc(r)r2 +κγc(r)r

(1−βγ0(r)r)
+

(1+
√

2)αβ 2γ0(r)2r
1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

Finally, it is easy to prove that q is continuous and strictly increasing relying on Remark 2.

Proof of Theorem 1
Let G and G̃ be defined as in (41) and define R̄ and q as in Proposition 8. Now fix r < r̄

such that Br(x∗) ⊆ U . Then, thanks to hypothesis 3), it is possible to apply Proposition 7
and to get the first part of the thesis. Finally, relying on the structure of the function q shown
in Proposition 8, and denoting ρx0 = ‖x− x0‖, the expression of the constants C1,C2 easily
follows.
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7 Applications

Algorithm (37) is a two-steps algorithm, consisting of the classical Gauss-Newton step fol-
lowed by a “J-projection” in a variable metric. In this section the general framework shall
be specialized to solve constrained nonlinear systems of equations in the least squares sense.
We remark that due to hypotheses of Theorem 1 we are dealing with regular problems in the
sense of Bakushinskiı̆ and Kokurin [5]. In the finite dimensional case this implies the num-
ber of equations to be greater than the number of unknowns. This subject has been studied
in [6,24,22,43] (see also references therein). Denoting by C a closed and convex subset of
X , we consider the problem

min
x∈C

‖F(x)‖2, (51)

which can be cast in our framework by setting J(x) = ιC(x), where ιC denotes the indicator
function of the set C, i.e. ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise. The proximity
operator of ιC with respect to H(xn) = F ′(xn)∗F ′(xn), turns out to be the projection onto C
w.r.t. the metric defined by H(xn), and therefore algorithm (37) reads as follows

xn+1 = PH(xn)
C (xn −F ′(xn)

†F(xn)). (52)

Since in general a closed form of the projection operator is not available, a further algorithm
is needed for solving the projection task, which adds an inner iteration to the main procedure.
We choose the forward-backward algorithm [11]. Though there are many other methods for
that purpose, we do not carry out any comparison among them, because this is beyond the
scope of the present paper. By definition of proximity operator, given H = A∗A, A injective
with closed range, we have

PH
C (z) = proxH

ιC (z)

= argmin
{

ιC(v)+
1
2
‖v− z‖2

H

}

= argmin
{

ιC(v)+
1
2
‖Av−Az‖2

}
.

If PC denotes the projection onto the convex set C, now with respect to the original metric
of the space X , the sequence defined by

v0 ∈ X
vk+1 = PC(vk −σH(vk − z)),

with σ ≤ 2/‖A‖2, is strongly convergent to the point PH
C (z) [39]. Eventually, the full algo-

rithm is 



x0 ∈C

zn = xn −F ′(xn)
†F(xn)

[
v0,n ∈C, σn ≤ 1/2‖F ′(xn)‖2

vk+1,n = PC(vk,n −σnF ′(xn)
∗F ′(xn)(vk,n − zn))

xn+1 = lim
k

vk,n.

(53)

It is worth noting that the inner iteration is not required when zn belongs to C. Indeed, in
that case, the projection leaves zn untouched and the full step of the algorithm (52) reduces
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to the classical Gauss-Newton step. Such situation asymptotically occurs when x∗ is internal
to C.

Algorithm (53) requires explicit evaluation of the projection PC, which can be done
for simple sets, like spheres, boxes, etc. Particularly relevant from the point of view of the
applications — see [6] and references therein — is the case of box constraints in Rn. We
point out that when PC can be computed explicitly the algorithm generates a sequence of
feasible points, no matter when the inner iteration is stopped. This feature can be useful in
forcing the sequence of iterates to remain in regions where the function is well-behaved,
avoiding the Gauss-Newton step to lead to sites where the derivative is ill-conditioned.

8 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order to
verify the effectiveness of algorithm (53) for solving real-life constrained nonlinear least-
squares problems. In particular, we consider the case of box constraints, namely

min
x∈Rn

‖F(x)− y‖2, a ≤ x ≤ b,

where a and b are in Rn, a ≤ b and C = ∏n
i=1[ai,bi], F : Ω ⊇C → Rm.

The aim of the tests is to illustrate the behavior of our algorithm on some representative
examples and show that it can be successfully applied to real problems. The algorithm is
implemented in MatLab, and the convergence tests

‖xn+1 − xn‖< ε, ‖vk+1,n − vk,n‖< ε

are used with precision ε = 10−12.
We remark that the implementation of the algorithm (53) computes the projection only

approximately, meaning that the internal iteration is stopped either because the required
precision has been attained or because an a priori fixed maximum number of iterations has
been reached. For this reason, the projection step depends on the algorithm selected to that
aim and the forward-backward algorithm is just one choice among several possibilities.
Furthermore, the number of evaluations of F and F ′ depends only on the number of outer
iterations. Therefore we provide just the number of outer iterations needed to reach the target
precision as a measure of our method’s performance. Yet, the number of inner iterations
does affect the number of outer iterations. In fact, in our experiments we observed that,
even though the algorithm is quite robust with respect to errors in the computation of the
projection, the number of outer iterations can increase if the required inner precision is not
attained (inner iterations reach the maximum allowed).

The experiments are performed on some standard small residual test problems. One
group of them is taken from [15] and a second group comes from the extensive library NLE
[41], which is accessible through the web site: www.polymath-software.com/library.
We considered only problems for which the solution (or a good estimate of it) is known
in advance and for which the Gauss-Newton method is known to be effective — since
our proposal in fact extends the classical one. The problems we select in the first group
are Rosenbrock, Osborne1, Osborne2 [32] and Kowalik [23]. They are actually uncon-
strained problems, to which we added some box constraints set up in order to make the
provided solution fall on the boundary of the box (faces, edges, vertices, etc.). Besides, on
Rosenbrock’s example we tried out our method also in case the global minimizer is kept
outside the fixed box.
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Table 1 Results of numerical experiments on the test problems specified in the first column for the box
constraints given by a and b with starting point x0. The point x∗ is the detected minimizer, which we show
with five digits precision for conciseness.

Function n m a b x0 x∗ avg. n. iter.

Rosenbrock 2 2
[
−3
−2

] [
3

0.8

]
20 random

[
0.89475
0.80000

]
7

Kowalik 4 11





0.1928
0.1916
0.1234
0.1362









1
1
1
1



 20 random





0.19281
0.19165
0.12340
0.13620



 7

Osborne1 5 31





0.3754
1
−2

0.01287
0









1
2
0
1
1




20 random





0.37546
1.93569
−1.46461
0.01287
0.02212




21

Osborne2 11 65





1.31
0.4314
0.6336

0.5
0.5
0.6
1
4
2

4.5689
5









1.4
0.8
1
1
1
3
5
7

2.5
5
6





20 random





1.31000
0.43157
0.63367
0.59941
0.75423
0.90423
1.36573
4.82393
2.39867
4.56890
5.67535





17

Twoeq6 2 2
[

0.0001
0.0001

] [
0.9999
+∞

] [
0.9
0.5

][
0.6
0.1

] [
0.75739
0.02130

]
20

Teneq1b 10 10





0.0001
0.0001
0.0001
0.0001

0
0
0
0
0
0









+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞









1
1
20
1
0
0
0
0
0
1









2
5

40
1
0
0
0
0
0
5









2.99763
3.96642
79.99969
0.00236
0.00060
0.00136
0.06457
3.53081
26.43154
0.00449





10

The remaining problems, Twoeq6 and Teneq1b, come as truly constrained and are la-
beled as “higher difficulty level” in the NLE library. Unlike the first group, here the con-
strained minimizers of Twoeq6 and Teneq1b lie in the interior of the feasible set. Observe
in addition that the given constraints define a convex set that is not closed. More specifically,
in Teneq1b example, the feasible region is the positive orthant of R10, excluding four co-
ordinate hyperplanes where the first derivative is undefined. We overcome this difficulty by
shrinking slightly the feasible region of a small amount δ

Cδ =
{
(x1, . . . ,x10) : xi ≥ δ for i = 1, . . . ,4, xi ≥ 0 for i ≥ 5

}
,
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and solving the problem in the closed and convex set Cδ with δ = 0.0001. The same trick
has been used also for solving problem Twoeq6 too.

The experimental protocol is different for the two test groups: in the former group, 20
points belonging to the box are randomly chosen as initial guesses and the average number
of required iterations is provided; whereas in the latter one the algorithm is fed with two
critical initializations reported in the NLE’s problem description. The results are collected
in Table 1.

In all tests the algorithm reached the solution up to the required precision, and we did not
detect any significant variation in the number of iterations depending on the starting points.
Along the path we checked the condition number of F ′, observing that it always keeps
bounded from above, the problem thus remaining well-conditioned. In case of Osborne2,
we saw that the classical Gauss-Newton method does not converge for some initializations,
due to ill-conditioning of the derivative F ′. We were able to correct this behavior by setting
the constraints properly around the known minimizer.

9 Conclusions

This paper shows that the local theory on the convergence of the Gauss-Newton method
can be extended to deal with the more general case of least squares problems with a convex
penalty. The main theoretical result demonstrates that, under weak Lipschitz conditions on
the derivative, convergence rates analogous to those existing for the standard case can be
derived. An explicit formula for the radius of the convergence ball is also provided. A valu-
able application we propose concerns nonlinear equations with constraints. Our algorithm
has been found effective and robust in solving such problems as shown in several numerical
tests. Both the cases of solutions on the boundary of the feasible set as well as solutions in
its interior as been treated successfully.

Acknowledgements We are grateful to Alessandro Verri for his constant support and advice. We further
thank Curzio Basso for carefully reading our paper.
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