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ABSTRACT. In 1997, Macal and Hurter [7] have found that adding a constraint
to the lower level problem, which is not active at the computed global optimal
solution, can destroy global optimality. In this paper this property is recon-
sidered and it is shown that this solution remains locally optimal under inner
semicontinuity of the original solution set mapping. In the second part of the
paper we prove that adding a variable in the linear lower level problem can
also destroy global optimality. But here the solution remains locally optimal,
provided the optimal solution in the lower level was dual non-degenerated.

1. INTRODUCTION

Bilevel programming problems are hierarchical optimization problems where the
feasible set of the so-called upper level or leader’s problem is restricted in part by
the graph of the solution set mapping of a second optimization problem. This latter
problem is the follower’s or lower level problem.

To formulate the bilevel programming problem formally, consider the parametric
follower’s problem first:

(1.1) min{f(z,y) : 9(z,y) < 0},
where f: R" xR™ - R, g:R” x R™ — RP. Let
U(z) := Argmin {f(z,y): g(z,y) <0}
Y

be its solution set mapping. Then, the leader’s problem is given as
(1.2) min{F(z,y) : z € X, (z,y) € gph ¥},
x,Y

where gph ¥ := {(z,y) : y € U(x)} denotes the graph of the solution set mapping
of the problem (1.1), X C R™ is a closed set and F' : R" x R™ — R. This problem
has been investigated in the monographs [1, 4]. It has many applications, [5] is an
annotated bibliography on bilevel programming problems, [3] gives an overview of
the problem.

Problem (1.2) is a N'P-hard problem [6], which makes its solution difficult, es-
pecially for large problems. Hence, reduction of the dimension of the problem is
desirable. Two such reductions are used: either only some part of the constraints
in the lower level problem are used and more constraints are added if necessary.
This is done e.g. in cutting plane methods for solving discrete linear optimization
problems. Or, variables can be dropped and added only if necessary. This is e.g. the
column generation approach for solving large linear optimization problems. We will
investigate the implications of such approaches to bilevel programming problems
where the lower level problem is reduced.
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Bilevel programming problems have some surprising properties. When solving
integer optimization problems one often starts with solving its linear relaxation
where the integer variables are replaced with continuous ones. Then, if the optimal
solution is integer, too, i.e. if it satisfies all constraints of the original problem, it is
the optimal solution of the integer problem. This is in general not true for integer
bilevel programming problems [1, Section 6.3].

Adding constraints to the lower level which are not active at the computed
global optimum of a bilevel programming problem will modify the feasible set of
the problem. This can imply that global optimality at the computed solution is
lost [7].

The outline of the paper is as follows. In Section 2 we reconsider the result in [7].
Here we will see that a global optimal solution of a bilevel programming problem
need not to be a local optimal solution after adding an irrelevant constraint to the
lower level problem. To guarantee that it remains locally optimal we need inner
semicontinuity of the solution set mapping of the original lower level problem. In
Section 3 we investigate the question if global optimality of a solution is maintained
if variables are added to the lower level problem in case this is a linear optimization
problem perturbed in the objective function, see Subsection 3.1, and in the right-
hand side vector, see Subsection 3.2. We will see that this property also fails in
general. But here, if the new variable is irrelevant, local optimality is maintained.

2. IRRELEVANT CONSTRAINTS

Definition 2.1. A point-to-set mapping I' : R" — 28" is upper semicontinuous
at T € R", if for all open sets U D I'(T) there exists an open set W with T € W
such that I'(z) C U for all x € W. It is inner semicontinuous at (Z,y) € gphT,
if for each sequence {x*}2° | with T'(z*) # () converging to 7, there is a sequence
{y*}22,, y* € I(a*) for all k, converging to ¥.

Theorem 2.2. Let (2°,9°) be a global optimal solution of the problem (1.2). Let
W be inner semicontinuous at (x°,y°). Then, (x°,9°) is a local optimal solution of
the problem

(2.1) min{F(z,y) : v € X, (v,y) € gph ¥'}
z,Y

with
Ul(z) ;= Argmin {f(z,y): g(z,y) <0, h(z,y) <0}
Y

with h : R™ x R™ — R provided that h(z°,3°) < 0 and that the function h :
R™ x R™ — R s continuous.

Proof. Since y € ¥(x) is an optimal solution of the lower level problem to (2.1)
provided it is feasible for that problem, y° € ¥!(z"). Hence, the point (2°,°) is
feasible for (2.1).

Assume that (2°,4°) is not a local optimum of problem (2.1). Then, there exists
a sequence {(z",y*)}2° | converging to (z°,y°) such that z* € X, y* € ¥!(2*) and
F(z*,y*) < F(2°,9°). Note that (2, y*) is feasible for problem (1.2).

Since W is inner semicontinuous at (x°,y°) there exists a sequence y* € W(x*)
converging to y°. By continuity of the function h, h(z*,7%) < 0 and * € Ul (2*).
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Hence, f(z*, ") = f(z*,y"),
() ={y : g(z,y) <0, h(z,y) <0, fz*,y) = f(=",7")}
Hy:g(z,y) <0, fa*y) = f(=", 7))} = (")
and, hence,

min{F(¢*,y) : y € U(2*)} < min{F(a*,y) : y € U (")} < F(a",9") < F(2°,9)
Y y
for sufficiently large k. This contradicts global optimality of (2, °). O

The assumption of inner semicontinuity is restrictive. But if it is not satisfied,
the assertion of the Theorem is in general not correct. This can be seen in the
following example.

Example 2.3. Consider the lower level problem

min{—ys : y2 <cosy; — 1+ zy1, =37 <y, < 37}.
y

For x = 0 this problem has three global minima at (y1, y2), y2 = 0,41 € {0, 2w, —27}.
For x # 0 the problem has only one global optimum at y; > 0 for z > 0 and y; < 0
if # < 0. Let the upper level objective be F(z,y) = (y1 —7)?+ (y2 +5)%. The global
optima of problem (1.2) are then (z%;y°) = (0;(0,0)) and (z';y') = (0;(27,0)).
Take (z,y) = (z',%') and add the constraint y; > 7 to the lower level problem.
Then, for x < 0 sufficiently close to zero, the lower level problem has a unique
optimal solution (7;7) with F(Z,7) < F(z!,y') converging to F(z!,y') for Z con-
verging to 2'. Hence, (x',y') is not a local optimum of (2.1).

3. IRRELEVANT VARIABLES

3.1. Parameter in the objective function of the lower level problem. Con-
sider now the bilevel programming problem

(3.1) min{F(z,y) :z € X, (z,y) € gph ¥},
Y

where X C R" is a closed set, F' : R” x R®™ — R and the linear lower level problem
parameterized in the objective function
(3.2) Uy (z):= Argmin {z'y: Ay =05, y>0}.

y
Let (Z,7) be a global optimal solution of this problem. Now, add one new variable
Yn+1 to the lower level problem with objective function coefficient z,11 and a new

column A, ;1 in the coefficient matrix of the lower level problem, i.e. replace the
lower level problem with

(3.3) ¥ni(z):= Argmin {xTy + Tog1Ynt1 P AY + Ani1Ynir = 0, Y, Yns1 > 0}
y

and consider the problem

(34) Igi;l{ﬁ(xvxn-‘rhyvyn-ﬁ-l) : (gj?xn-i-l) S 553 (I7In+1ay7yn+1) € gph \I/NL}

In the next example it is shown that, adding one new variable, global optimality of
a solution can be destroyed, but strict local optimality can be maintained.
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FEzample 3.1. Consider the following bilevel programming problem with the lower
level problem

(35)  Vp(z):= Argmin {z1y1 + 2292191 +y2 <2, —y1 +y2 <0, y > 0}
Yy

and upper level problem
(3.6) min{(z; — 0.5)% 4 (22 — 0.5)> — 3y — 3y : (z,y) € gph ¥ }.

Then, the unique global optimum is T = (0.5; 0.5), ¥ = (1;1) with optimal objective

function value —6. Now, adding one variable to the lower level problem

(3.7)

Unp(x) == Argmin {z1y1 +zoy2 + 23y : y1 +y2 +y3 <2, —y1 +42 <0, y >0}
Y

and investigating the bilevel programming problem
(3.8) min{(z; —0.5)% + (z2 — 0.5)% + 22 — 3y; — 3yo — 6y3 : (x,y) € gph Uy}

the point © = (0.5;0.5;0.5), y = (0;0;2) has objective function value —11.75.
Hence, global optimality of (Z,7) is destroyed. But, the point ((Z,0), (7,0)) remains
feasible and it is a strict local minimum.

Theorem 3.2. Consider problems (3.1) and (3.4). Let (Z,7y) be a global optimal
solution of problem (3.1). Then, if (T,ZTn11) is a local minimum of the problem

mi_n{ﬁ(x,mnﬂ,@, 0): (z,2n41) € X},

and (9,0) is a unique optimal solution of (3.3) for (z,zn41) = (Z,ZTpn11) then
(T,Tp+1,7,0) is a local minimum of (3.4).

Proof. By the assumptions and parametric linear programming there is an open
neighborhood V' of (¥, %,1) such that {(7,0)} = ¥y (z) for all (z,z,41) € V.
Since (Z,Tp+1) is a local minimum of ﬁ(x, Zn+1,Y,0) there is an open neighbor-
hood V; of (Z,Z,41) with ﬁ(x,xnﬂ,y, 0) > ﬁ(%, Zn+1,7,0) for all (x,2,41) € V7.
Moreover,

(@ Tor1, Yy Ynr1) (@ 2011) € XOVAVE, (4, Ynt1) € Unp (@, ngr)}
=(XnNnVnW) x{(y0)}.
This implies the proof. ([

Corollary 3.3. Under the assumptions of Theorem 3.2, if (Z,7) is a global optimal
solution of problem (3.1), {(7,0)} = YnL(Z,0) and

(7,0) € Argmin {F(z,2,41,%,0)},

(-'L'vl'n{»l)

then, (%,0,7,0) is a local optimal solution of problem (3.4).

The most restrictive assumption in this Corollary is the uniqueness of the opti-
mal solution of the lower level problem. We will drop the uniqueness assumption
restricting to a subclass of bilevel programming problems.

If the objective function F'(-,-) in the upper level problem is a linear or concave
one and the set X is a polyhedron, then at least one (global) optimal solution of
the problem (3.1) can be found at a vertex of the set [1, 2

{(z,y):x € X, Ay=0, y > 0}.
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Then, there exists a basic matrix B of the matrix A such that
(39) y= (?JB;?/N% T = (xB7$N)a YB = B_lba Yn = 07 ng_lA - xT S 0.

Note that the basic matrix does not need to be unique. Call a basic matrix satisfying
the conditions (3.9) a basic matriz for y and x.

Theorem 3.4. Let (2° ) be a global optimal solution for problem (3.1) and as-
sume that the functzons F F are concave, X, X are polyhedra. Let

(3.10) 2""B7YA, 1 <0 for each basic matriz for y° and

and (2°,0) be a local minimum of the problem

min{F((z, Tn41), (4, 0)) : (2, 2n11) € X, y € Up(a°)}.
Then, the point ((2°,0), (y°,0)) is a local optimal solution of problem (3.4).

Proof. Assume that ((z°,0), (y°,0)) is not a local optimum. Then, there exists a
sequence ((z*,2%,,), (4% 1y 1)) converging to ((°,0), (3°,0)) with

F((Ikv‘rﬁ-i-l)v (ykvyﬁ-‘,—l)) < F((;L‘O’O), (yO’O)) for all k.

Since ((z*,2F 1), (y*,y%,,)) is feasible for (3.4) and gph ¥, equals the union of
faces of the set [4]

{(z,y) 2 € X, Ay+ Ani1Ynt1 = b, Y, ynt1 > 0},

then, since ((z*, 2%, ,), (v*, ¥k, 1)) converges to ((z°,0), (y°,0)) there exists, with-

out loss of generality, one facet M of this set with ((2* 7:1cn+1) (y*, vk 1)) € M for
all k. Moreover, by upper semicontinuity of ¥ (-), (y°,0) € M. By [8] there
exists ¢ € R"*! such that M equals the set of optimal solutions of the problem

min{c' (¥, Ynt1)" : AY+ Apns1Yni1 = b, Y, Yns1 > 0}

Since (y°,0) € M there exists a basic matrix for (y°,0) and c¢. Then, the as-
sumptions of the theorem imply that (2°,0) # ¢ if 2,41 is a basic variable in
(y*,yk 1) (since this implies that ¢;B~'A,11 — ¢yp1 = 0 by linear optimiza-
tion). This implies that there is an open neighborhood V of (2%, 0) such that

UnL (@, Tnt1) € {(Y, Ynt+1) : Ynt1 = 0}

Hence, y* 41 = 0 for sufficiently large k.

By parametric linear programming, ¥y (z) C Wy (z°) for x sufficiently close to
29, Hence, the assertion follows. ([

Corollary 3.5. If the upper level objective function is separable, i.e. if
F((z, xn41), (U5 Ynt1)) = Fr(@, @pg1) + F2 (Y, Yns),
then (3.10) together with the assumption that (z°,0) is a local minimum of
min{Fy (z, Zni1) : (@, Tns1) € X}

will guarantee local minimality of ((2°,0), (y°,0)) for (3.4).
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3.2. Parameter in the right-hand side of the lower level problem. We
consider now the linear bilevel program

(3.11) min{z"d' +y'd*: x € X,y € Up(2)},
oy

where X is a polyhedron and the lower level is linear with right hand side parameter
x

(3.12) Uy (r) = Argmin {c¢'y: Ayy =b— Asz, y > 0}.
y

Like in the last chapter, we are interested in the behavior if we add a new variable
ZTpy1. At first, it could happen that our problem becomes infeasible, because of
different reasons.

Example 3.6. Consider the lower level problem

(3.13) Wp(z)= Argmin {y1 —y2: y1 +4ys =14z, y2+5ys =7 — 2z, y > 0}
Yy

and
(3.14) min{—y; —y2 —2z: z € [1,2], y € U (2)}

as upper level. With ¥y (z) = {(14+=,7—2,0)} for all z € [1,2], we get the global
solution T = 2, ¥ = (3,3,0). If we add a variable y, with a column (—1,—1) in
the coefficient matrix, lower level cost coefficient ¢4 and upper level cost coefficient
d3 = 0, we get the problem

(3.15) min{—y; —y2 —2z: x €[1,2],y € Unr(x)}
with

(3.16)
Uy (z) =Argmin {y1—yo+cays © y1+4ys—ys = 142, yo+5y3—ys = 72z, y > 0} .
y

If we choose ¢4 = —1 our problem becomes infeasible, because the lower level
objective function is unbounded over the feasible set for each parameter z € [1, 2].
If we choose on the other hand ¢4 = 0, we get

Unp(e) ={(1+24+ys,7—22+y4,0,y4) : y4 > 0}

and therefore the upper level objective function is unbounded over ¥, (z) for each
parameter z € [1,2].

Remark 3.7. A similar example can also be constructed to verify the results in
Subsection 3.1.

In Theorem 3.2 it was shown, that the uniqueness of the lower level solution
is needed to guarantee at least local optimality of a former global solution. Next
theorem states the same fact, but we need an additional assumption.

Theorem 3.8. Consider problem (3.11) and let (ZT,7) a global optimal solution.

The lower level problem is now replaced by

(3.17)

Uyr(z) == Argmin {¢'y+ cpt1Ynt1 : A1y + Api1Yni1 = b— Aoz, Y, Y1 > 0}
y
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and assume that (7,0) is an optimal solution of (3.17) for T. Furthermore, suppose
that all optimal basic solutions of (3.17) for T are non-degenerate and the reduced
cost coefficient of yny1 is negative. Then, (T,7,0) is a local optimal solution of

(3.18) rg}i;l{del +y P+ &yt € X, (Y, ynr1) € Unip(n)}.

Proof. Under the assumptions of the theorem, we have y,,+1 = 0 for all (y,yn+1) €
U (z) where 2 is in a small neighborhood of Z. O

Example 3.9. This example will show, that we need both non-degeneracy and

uniqueness of the lower level solution. Let us consider Example 3.6 again. We

introduce a new variable y, and get

(3.19)

Uyp(r) = Argmin {y1 —y2: y1 +4ys+ya = 1+, y2+5y3 +ys = 7— 22, y > 0}
Y

as lower level and
(3.20) min{—y; —y2 — 2 —3ys: z € [1,2], y € Uyr(2)}
as upper level. Since we have
Uyr(z) = conv{(l 4+ x,7 — 22,0,0), (0,6 — 32,0,1 + z)},

(Z,7,0) = (2,3,3,0,0) is not a local solution of (3.22).
Now, replace in (3.13) the upper level constraint « € [1,2] by x € [1,4]. Then,

we get the new global solution (Z,7y) = (%, %, 0,0). After introducing an additional
variable
(3.21)

Unp(x) = Argmin {y1—y2+ys : y1-+4yzs—ys = 1+2, yo+5yz—ys = 7—2x, y > 0}
Yy

and considering
(3.22) min{—y1 —Yo—3ys —2x: x € [1,4], Yy € \I/NL<$)}

as new upper level, we see that the optimal solution of the lower level is given by
(32 —6,0,0,2¢ — 7) for z > % Hence, (7,7,0) is not a local optimal solution of
(3.22).
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