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Abstract

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based
on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We
compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi,
and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering
problems, Theoretical Computer Science, 235(1):25-42, 2000], and [J. Povh and F. Rendl,
A copositive programming approach to graph partitioning, SIAM Journal on Optimization,
18(1):223-241, 2007].
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1 Introduction

Let G = (V,E) be an undirected simple graph with |V | = n. The graph bandwidth problem is
a graph labeling problem. A numbering of the vertex set V is a one-to-one mapping φ : V →
{1, . . . , n}. The bandwidth of a numbering φ of the graph G is defined as

bw(G,φ) = max
(u,v)∈E

|φ(u)− φ(v)|.

The bandwidth of G, denoted by bw(G) or simply bw, when the graph is clear from the context,
is

bw(G) = min
φ
{bw(G,φ) : φ is a numbering of G} .

The bandwidth minimization problem appears in a wide range of applications, like sparse
matrix computations, parallel computations, VLSI layout, etc; see, for example [19]. Papadim-
itriou [24] showed that it is NP-complete, and Garey et al. [14] proved that the bandwidth
problem is NP-complete even if it is restricted to trees with maximum degree 3. The bandwidth
problem can be solved in polynomial time [1] for caterpillars of strand length at most 2. Recall
that caterpillar is a tree on which all vertices of degree greater than 2 lie on a single path. A
strand (or hair) of the caterpillar is a path that connects a leaf to this single path. In [23] Monien
showed that the bandwidth problem for caterpillars of strand length at most 3 is NP-complete.

There are graphs for which the bandwidth is known. For example, the bandwidth of:

• the path Pn is one;

• the rectangular grid graph Pn × Pm (i.e. the Cartesian product of the paths Pn and Pm)
is min{n,m} [6];
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• the complete graph Kn is n− 1;

• the complete bipartite graph Kp,q is b(p− 1)/2c+ q assuming p ≥ q ≥ 1 [5];

• the hypercube graph Qn on 2n vertices is
∑n−1

i=0

(
i
bi/2c

)
[18];

• the complete k-level t-ary trees Tk,t is
⌈

t(tk−1−1)
2(k−1)(t−1)

⌉
[29].

The bandwidth bw(G) of a graph G = (V,E) may be computed exactly in

O
(
f(bw(G))|V |bw(G)+1

)
time, where f(bw(G)) depends only on bw(G), using dynamic programming [28]. Thus bw(G)
may be obtained in polynomial time for classes of graphs where bw(G) = O(1). In general it is
difficult to give a constant approximation on the bandwidth problem in polynomial time. Blache
et al. [3] showed that it is NP-complete to find a 3/2-approximation for general graphs and it
is also NP-complete to find a 4/3-approximation for trees. Gupta [17] presented a random-
ized O(log2.5 n)-approximation algorithm for general trees and chordal graphs, while for general
graphs there is a O(log3 n

√
log log n)-approximation algorithm by Dunagan and Vempala [12],

based on a semidefinite programming (SDP) relaxation due to Blum et al. [4].

Main results and outline

In this paper we propose two new SDP relaxations of the minimum bandwidth problem based on
the quadratic assignment problem (QAP) reformulation and compare them to SDP relaxations
by Blum et al. [4] and by Povh and Rendl [26]; see Section 2. In Section 4, we test our bounds for
the aforementioned special graphs and show that it is tight for paths, cliques, complete bipartite
graphs, but it is not tight for hypercubes, rectangular grids and complete k-level t-ary trees.

The second part of the paper deals with the approximation of cyclic bandwidth. In this case
the size of the SDP relaxation can be reduced exploiting symmetry; see Section 5. Finally, in
Section 6 we present some computational results.

Notation

The space of p × q matrices is denoted by Rp×q, the space of k × k symmetric matrices is
denoted by Sk. The trace inner product on Sk is denoted by 〈·, ·〉. Vectors, scalars and indices
are denoted by lowercase Latin letters, matrices by capital Latin letters. We use the notation
X � 0 for positive semidefinite (PSD) matrices. We denote the identity matrix of order n by
In, the all-ones matrix by Jn and the zero matrix by On. The n-by-m all-ones matrix and the
zero matrix are denoted by Jn×m and On×m, respectively. We use un to denote the all-ones
vector and 0n is the zero vector in n dimensions. We omit the subscript if the order is clear
from the context. We set Eij = eie

T
j where ei is the i-th standard basis vector. The Kronecker

product A⊗ B of matrices A ∈ Rp×q and B ∈ Rr×s is defined as the pr × qs matrix composed
of pq blocks of size r × s, with block ij given by aijB (i = 1, . . . , p), (j = 1, . . . , q). The Diag
operator maps an n-vector to an n×n diagonal matrix, while diag(A) is the vector obtained by
extracting the diagonal of A.
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2 SDP relaxations for graph bandwidth

Here we describe four different lower bounds on bandwidth of graph G = (V,E) (|V | = n) with
adjacency matrix A. These bounds are all based on SDP relaxations.

2.1 Relaxation by Blum et al.

First we present the SDP problem by Blum et al. [4], which also forms the core of the approxi-
mation algorithm in [12]. In their approach the set of nodes V = {vi : i = 1, . . . , n} is mapped
to a set of vectors on the sphere of radius n in Rn, say vi ∈ Rn (i = 1, . . . , n). These vectors are
obtained from the optimal solution of a semidefinite program.

Letting yij := vTi vj , the SDP problem is the following:

β = min b

s.t yii = n2, 1 ≤ i ≤ n,
yii − 2yij + yjj ≤ b, (i, j) ∈ E,
Y � 0, Y ≥ 0,
1
|S|
∑
j∈S

(yii − 2yij + yjj) ≥
1
6

(
|S|
2

+ 1
)

(|S|+ 1) , ∀S ⊆ {1, . . . , n}, 1 ≤ i ≤ n,

(1)

where Y = (yij).
The optimal vectors vi ∈ Rn (i = 1, . . . , n) are subsequently mapped to a quarter-circle of

radius n in the positive orthant. This ordering of V is then used as a numbering that can be
shown to yield a log n-approximation of the bandwidth; see [4] and [12] for details.

There are exponentially many of the fourth type constraints, but there is a polynomial time
separation oracle to decide which constraints are violated. Consequently, (1) may be solved in
polynomial time by the ellipsoid method; see e.g. [16]. Finally, Povh [25] showed that a lower
bound on the bandwidth is given by:

bw(G) ≥ bwBKRV :=
⌈

3
π

√
β

⌉
. (2)

(The constant 3
π is an improvement over the constant 2

π used in [4] and [12]; see Lemma 4.8 in
[25] for details.)

2.2 Relaxation by Povh and Rendl

Another SDP relaxation was studied by Povh and Rendl [26]. Their approach is based on the
graph three-partitioning problem: find a partition (S1, S2, S3) of the vertex set V with |Si| = mi

for i = 1, 2, 3, where the total weight of edges between sets S1 and S2 is minimal. This problem
can be reformulated equivalently as a copositive programming problem and its SDP relaxation
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is the following:

αm1,m2,m3 := min 〈D1,2 ⊗ Â, Y 〉
s.t. 〈Dij ⊗ In, Y 〉 = miδij , 1 ≤ i ≤ j ≤ 3,

〈J3 ⊗ Eii, Y 〉 = 1, 1 ≤ i ≤ n,
〈Vi ⊗W T

j , Y 〉 = mi, 1 ≤ i ≤ 3, 1 ≤ j ≤ n,
〈Dij ⊗ Jn, Y 〉 = mimj , 1 ≤ i ≤ j ≤ 3,
Y ≥ 0, Y � 0,

(3)

where Dij = (Eij + Eji)/2 ∈ R3×3, Â = A + 1
n(uTnAun)In − Diag(Aun), Vi = eiu

T
3 ∈ R3×3,

Wj = eju
T
n ∈ Rn×n, δij is the Kronecker delta and m1,m2,m3 ≥ 0 are given nonnegative

integers such that m1 +m2 +m3 = n.
In [26] it is proved that if the optimal value αm1,m2,m3 of (3) is positive and ᾱm1,m2,m3 =

dαm1,m2,m3e, then bw(G) ≥ max
{
m3 + 1,m3 +

⌈√
2ᾱm1,m2,m3

⌉
− 1
}

. Consequently,

bw(G) ≥ bwPR := max
ᾱm1,m2,m3>0

{
m3 + 1,m3 +

⌈√
2ᾱm1,m2,m3

⌉
− 1
}
. (4)

2.3 New SDP relaxations

In this paper we propose a polynomial time approximation based on the quadratic assignment
problem:

γQAP := max
X∈Πn

〈B,XTAX〉, (5)

where A and B are given symmetric n × n matrices and Πn is the set of n × n permutation
matrices.

Let matrix A be the adjacency matrix of G = (V,E) with |V | = n, and B be the symmetric
Toeplitz matrix with first row [uTk 0Tn−k], k > 0, i.e:

B =

k︷ ︸︸ ︷

1 . . . 1 0 . . . . . . 0

...
. . . . . .

...

1
. . . . . .

...

0
. . . . . . 0

...
. . . . . . 1

...
. . . . . .

...
0 . . . . . . 0 1 . . . 1



.

Now if the optimal value of (5) is less than 2|E|, then the bandwidth G is at least k. More
precisely,

bw(G) = max{k : γQAP < 2|E|}. (6)
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Zhao, Karisch, Rendl and Wolkowicz [32] gave the following semidefinite programming re-
laxation for the QAP problem (see also [27] for this specific formulation of the relaxation):

γZKRW := max 〈B ⊗A, Y 〉
s.t. 〈In ⊗ Eii, Y 〉 = 1, 〈Eii ⊗ In, Y 〉 = 1, i = 1, . . . , n,

〈In ⊗ (Jn − In) + (Jn − In)⊗ In, Y 〉 = 0,

〈Jn ⊗ Jn, Y 〉 = n2,

Y ≥ 0, Y � 0.

(7)

Therefore, a lower bound on the bandwidth that is based on the SDP problem (7) is:

bw(G) ≥ bwZKRW := max{k : γZKRW < 2|E|}. (8)

Finally, we introduce an SDP based bound on the bandwidth which is at least as strong as
the bound (7). De Klerk and Sotirov [10] discussed a branching type approach for QAP. In the
context of the bandwidth QAP problem (5), their idea is to only consider numberings φ such
that φ(r) = s, for given r, s. This corresponds to adding the following constraint to the SDP
relaxation (7) (see Theorem 7 in [31]):

〈Ess ⊗ Err, Y 〉 = 1. (9)

Denote by γr,s the optimal value of SDP relaxation (7) with included constraint (9), and define

bwdKS(r) := max{k : max
s
γr,s < 2|E|}. (10)

Then bwdKS(r) is a valid lower bound on the bandwidth, so that

bw(G) ≥ bwdKS := max
r

bwdKS(r). (11)

In summary, we have:
bw(G) ≥ bwdKS ≥ bwZKRW . (12)

If the automorphism group of the graph acts transitively on V , then, for fixed s, γr,s is the
same for all r; for details see [10].

3 Exploiting algebraic symmetry

In certain cases we can exploit the algebraic symmetry of the SDP problem (7). Here we only
give a short review, the interested reader may consult [7, 9, 10].

A coherent configuration is a set of matrices {A1, . . . , Ad} ⊆ {0, 1}n×n with the following
properties:

1. AiAj ∈ A := span{A1, . . . , Ad} for i, j = 1, . . . , d;

2. There is a set IA ⊆ {1, . . . , d} such that
∑

i∈IA Ai = I and A1 + · · ·+Ad = J ;

3. ATi ∈ {A1, . . . , Ad} for i = 1, . . . , d.
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For each i ∈ {1, . . . , d} we define i∗ ∈ {1, . . . , d} via Ai∗ = ATi . We also write mi = 〈J,Ai〉 for
i = 1, . . . , d.

We call A := span{A1, . . . , Ad} the associated coherent algebra. Note that A is a matrix C∗-
algebra. If the coherent configuration is commutative, namely AiAj = AjAi for i, j = 1, . . . , d,
we call it association scheme.

If A ∈ A, then we can exploit the structure of the algebra A and the SDP relaxation (7)
reduces to the following (see [7]):

max 〈B,
d∑
i=1

m−1
i 〈A,Ai〉Xi〉

s.t.
∑
i∈IA

Xi = In,

d∑
i=1

Xi = Jn,

d∑
i=1

m−1
i Ai ⊗Xi � 0,

〈J,Xi〉 = mi, Xi∗ = XT
i , Xi ≥ 0, i = 1, . . . , d.

(13)

Furthermore, if we have an algebra *-isomorphism φA : A → A′, then we may replace the linear
matrix inequality

d∑
i=1

m−1
i Ai ⊗Xi � 0

by
d∑
i=1

m−1
i φA(Ai)⊗Xi � 0.

This is useful if the size of the matrices φA(Ai) are smaller than n × n or if they have block
diagonal structure. Of course, we can do the reduction with a suitable algebra for matrix B as
well (see Section 5.2), or even with the two algebras simultaneously.

Under some further assumptions it is also possible to reduce the size of the SDP relaxation
with the fixing constraint (9). The reader may find details in [9].

4 Tightness of bounds for some graphs

In this section we inspect the bound bwZKRW in (8) on special graphs such as paths, cliques,
rectangular grids, complete bipartite graphs, hypercubes and complete k-level t-ary trees.

4.1 Tightness of the bound bwZKRW

We show that the bound bwZKRW is tight for paths, cliques and complete bipartite graphs.
Since bwZKRW ≤ bwdKS , the bound bwdKS is also tight for these graphs.
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Paths
It is easy to see, that bwZKRW ≥ 1 if the graph has at least one edge. The bandwidth of a path
is 1, so for paths the relaxation (7) gives the tight bound.

Cliques
The adjacency matrix of the clique Kn is A = Jn− In. Let B be the symmetric Toeplitz matrix
with first row [uTn−1 0] (i.e., k = n− 1). The n2 × n2 matrix Y in relaxation (7) can be divided
into n2 blocks size n-by-n. The sum of elements in each block has to be exactly one when
Y is a feasible solution, furthermore the diagonal blocks are diagonal matrices. The matrix
B⊗A has a zero diagonal and the n-by-n blocks on positions (1, n) and (n, 1) are zero matrices.
Therefore the objective value is at most n(n − 1) − 2, so it is less than n(n − 1) = 2|E|. Thus
bwZKRW (Kn) ≥ n− 1. Since the bandwidth of Kn is n− 1, (7) gives a tight bound for cliques.

Complete bipartite graphs
Chvátal [5] proved that the bandwidth of the complete bipartite graph Kp,q is b(p− 1)/2c+ q,
assuming p ≥ q ≥ 1. We have to prove, that the optimal value of SDP relaxation (7) with the
symmetric Toeplitz matrix B, k = b(p − 1)/2c + q is less than twice the number of edges, i.e.
less than 2p q.

The adjacency matrix of the graph Kp,q is

A =
(
Op×p Jp×q
Jq×p Oq×q

)
.

There are two cases: (i) p = q or (ii) p > q.
Case (i): The matrix A belongs to the coherent algebra spanned by matrices

A1 =
(
Ip Op
Op Ip

)
, A2 =

(
Jp − Ip Op
Op Jp − Ip

)
, A3 =

(
Op Jp
Jp Op

)
,

and the associated *-isomorphism φ satisfies (see e.g. [7]):

φ(A1) =

1 0 0
0 1 0
0 0 1

 , φ(A2) =

p− 1 0 0
0 −1 0
0 0 p− 1

 , φ(A3) =

p 0 0
0 0 0
0 0 −p

 .

Therefore by (13) the relaxation (7) can be reduced as follows:

max 〈B,X2〉
s.t. X2 +X3 = J − I,

X2 +X3 � −I,
X2 � (p− 1)I,
X2 −X3 � −I,
〈J,X2〉 = 2p (p− 1), 〈J,X3〉 = 2p2,

X2, X3 ∈ S2p, X2, X3 ≥ 0.

(14)

The optimal value of (14) is less than 2p q = 2p2, since

〈B,X2〉 ≤ 〈J,X2〉 = 2p(p− 1).
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Case (ii): The matrix A belongs to the coherent algebra induced by the following matrices:

A1 =
(

Ip Op×q
Oq×p Oq

)
, A2 =

(
Op Op×q
Oq×p Iq

)
, A3 =

(
Jp − Ip Op×q
Oq×p Oq

)
,

A4 =
(
Op Op×q
Oq×p Jq − Iq

)
, A5 =

(
Op Jp×q
Oq×p Oq

)
, A6 =

(
Op Op×q
Jq×p Oq

)
,

and the associated *-isomorphism φ satisfies (see e.g. [7]):

φ(A1) =


1

0
1 0
0 0

 , φ(A2) =


0

1
0 0
0 1

 , φ(A3) =


−1

0
p− 1 0

0 0

 ,

φ(A4) =


0
−1

0 0
0 q − 1

 , φ(A5) =
√
p q


0

0
0 1
0 0

 , φ(A6) =
√
p q


0

0
0 0
1 0

 .

In this case the reduced SDP relaxation is the following, by (13):

max 〈B, (X5 +XT
5 )〉

s.t. X1 +X2 = I

X3 +X4 +X5 +XT
5 = J − I,

〈J,X1〉 = p, 〈J,X2〉 = q,

〈J,X3〉 = p(p− 1), 〈J,X4〉 = q(q − 1), 〈J,X5〉 = p q,

(p− 1)X1 −X3 � 0,
(q − 1)X2 −X4 � 0,(
X1 +X3 X5

XT
5 X2 +X4

)
� 0,

X1, X2, X3, X4 ∈ Sn, X1, X2, X3, X4, X5 ≥ 0,

(15)

where n = p+ q.
Similarly as before, we can bound the optimal value of (15):

〈B, (X5 +XT
5 )〉 ≤ 2〈J,X5〉 = 2p q,

and the equality holds if and only if

〈B, (X5 +XT
5 )〉 = 2〈J,X5〉. (16)

We will show that the equality (16) cannot hold.
First we present some technical observations which we will use later on.

Lemma 1 Let A ∈ Rn×n and 0 � A � J . Then A = λJ with λ ∈ [0, 1].

8



Proof. It is enough to show that the statement is true for 2 by 2 matrices. Let A =
(
a c
c b

)
.

Since A and J − A are PSD matrices, it follows that a, b, c ∈ [0, 1]. From zTAz ≥ 0 and
zT (J −A)z ≥ 0, where z = (1, −1)T , it follows

a+ b ≥ 2c, 2− (a+ b) ≥ 2− 2c,

and consequently a + b = 2c. On the other hand the determinant of a PSD matrix has to be
nonnegative, so ab ≥ c2, i.e, a = b and so c = a.

Lemma 2 Let A =

x t x
t x x
x x x

 or

x x x
x x t
x t x

 and A � 0. Then t = x ≥ 0.

Proof. The matrix A is PSD, so x ≥ 0 and if x = 0 then t = 0. And if x > 0 then
det(A) = x(x− t)(t− x) < 0 unless t = x.

We can prove the next corollary by repeatedly using Lemma 2.

Corollary 3 Let A ∈ R2m×2m (m ≥ 2) such that diag(A) = c u2m and Aij = c if |i − j| ≥ m.
Then A � 0 if and only if A = c J with c ≥ 0.

In the sequel we show by contradiction that equality (16) cannot hold. Suppose that X5 has
zero elements on positions (i, j) where the matrix B is 0, namely if |i− j| ≥ k = b(p− 1)/2c+ q.

From the second constraint of (15) and our assumption on matrix X5, it follows that

(X3)ij + (X4)ij = 1 if |i− j| ≥ k = b(p− 1)/2c+ q. (17)

Moreover, X1 +X2 = I, diag(X3 +X4) = 0, X1 +X3 � 0 and X2 +X4 � 0, so using Lemma 1
on suitable 2× 2 submatrices of X1 +X3, we derive the following structure:

(X1)ii = t, for i ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n},
(X2)ii = 1− t, for i ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n},
(X3)ij = t, for |i− j| ≥ k,
(X4)ij = 1− t, for |i− j| ≥ k.

(18)

It is easy to check that, when k = 1, the equality (16) cannot hold, so now we assume
that k ≥ 2. First consider the submatrix of X1 + X3 induced by the first and last n − k rows
and columns. It has the same structure as the matrix in Corollary 3, so (X1 + X3)ij = t for
i, j ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n}. But the matrix X1 is diagonal, so that

(X3)ij = t for i, j ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n}, i 6= j.

Similarly,
(X4)ij = 1− t for i, j ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n}, i 6= j.

Therefore
(X5)ij = 0 for i, j ∈ {1, . . . , n− k} ∪ {k + 1, . . . , n}, i 6= j.

Recall that k = b(p − 1)/2c + q and n = p + q. Thus, the number of nonzero columns and
rows in X5 is at most n− 2(n−k) = 2b(p− 1)/2c− p+ q ≤ q− 1. Considering that the diagonal
of X5 is zero, X5 has at most (n − 1)(q − 1) < 2p q nonzero elements. Since every element of
X5 +XT

5 is at most 1, this contradicts the constraint 〈J,X5〉 = p q.
Thus we have proved the following theorem.
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Theorem 4 The bound bwZKRW in (8), and – by implication – also the bound bwdKS in (11),
are tight for paths, cliques, and complete bipartite graphs.

Remark 5 The lower bound bwPR in (4) on the bandwidth for complete bipartite graphs is not
tight; see the computational results for K6,9 in [26]. The bound bwBKRW is also not tight for
K6,9, since bwBKRW (K6,9) = 5 < 10 = bw(K6,9).

4.2 Negative results

The bandwidth problem is NP-complete, so it is not surprising that the polynomial time bounds
bwZKRW and bwdKS are not tight in general. The bound bwZKRW is not tight for:

• hypercubes, the smallest example is Q5 (see Table 6, Section 6);

• rectangular grid graphs, an example is P4 × P4 (see Table 4, Section 6);

• complete k-level t-ary trees, small examples are T5,2, T4,3 and T3,4 (see Table 2, Section 6).

The bound bwdKS is not tight for

• hypercubes, the smallest example is Q5 (see Table 6, Section 6).

The results of this section are summarized in Table 1.

Kn Kn,m Pn × Pm Qn Tn,m
bwBKRV × × × × ×

bwPR X × ? × ×
bwZKRW X X × × ×
bwdKS X X ? × ?

Table 1: Summary of known results on the tightness of different lower bounds on bw(G) for
different classes of G. ‘X’ means the bound is tight, ‘×’ that it is not tight, and ‘?’ that there
is no proof that the bound is tight, but there are also no known counterexamples.

The result in Table 1 that the bound bwPR is tight for cliques is not proven in [26], and we
therefore include a short proof here for completeness.

Theorem 6 The bound bwPR in (4) is tight for cliques.

Proof: Consider the clique Kn. We show that the optimal value of the SDP problem (3) is
positive for m = [1, 1, n− 2] and so, by (4), bwPR(Kn) ≥ n− 1.

The adjacency matrix of Kn is Jn − In, i.e. Â = Jn − In in (3). Considering the constraints
〈D1,2 ⊗ In, Y 〉 = m1δ1,2 = 0 and 〈D1,2 ⊗ Jn, Y 〉 = m1m2 = 1, we get that the optimal value of
(3) is one.
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5 Reduction of (7) for trees and rectangular grids

The SDP relaxation (7) is also suitable for computing the cyclic bandwidth. In this case we can
take a symmetric circulant Toeplitz matrix as B, namely

B =

k︷ ︸︸ ︷ k−1︷ ︸︸ ︷

1 . . . 1 1 . . . 1

...
. . . . . .

...

1
. . . 1

. . . . . .

1
. . . 1

...
. . . . . .

...
1 . . . 1 1 . . . 1


.

Due to the extra symmetry that appears in the corresponding problem, we can reduce the size
of the SDP relaxation (see for e.g., [7]).

5.1 Cyclic bandwidth

The cyclic bandwidth of a numbering φ of the graph G on n nodes is defined as

cbw(G,φ) = max
(u,v)∈E

|φ(u)− φ(v)|c,

where |x|c = min{|x|, n− |x|}. The cyclic bandwidth of G, denoted by cbw(G) is

cbw(G) = min
φ
{cbw(G,φ) : φ is a numbering of G} .

From the definition we can see, that cbw(G) ≤ bw(G). Lam et al. [20] proved that for a
graph G in general bw(G) ≤ 2 cbw(G). It means that, if we give an α-approximation for the
cyclic bandwidth, then we also give a 2α-approximation for the bandwidth problem. But there
are graphs whose bandwidth and cyclic bandwidth are the same. Lam et al. [21] showed that
trees and rectangular grids are examples of such graphs.

5.2 Reduction of (7) for cyclic bandwidth

The dimension of the symmetric circulant n × n matrix space is d + 1, where d = bn/2c and a
0− 1 basis is B0, B1, . . . , Bd, where Bi has ones in the −(n− i)th,−ith, ith and (n− i)th diagonal
and zero everywhere else, so B0 = I. These matrices form an association scheme. They share a
common set of eigenvectors, given by the columns of the discrete Fourier transform matrix

Qij =
1√
n
e
−2πij

√
−1

n , i, j = 0, . . . , n− 1,

and their eigenvalues are

λm(Bi) = 2 cos(2πmi
/
n), m = 0, . . . , n− 1, i = 1, . . . , b(n− 1)/2c,
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and if n is even,
λm(Bn/2) = cos(mπ) = (−1)m.

Now the SDP problem that is equivalent to (7) in the case of the cyclic bandwidth is

max
k−1∑
i=1

〈A,Xi〉

s.t.
d∑
i=1

Xi = J − I,

I +
d∑
i=1

cos
(

2πmi
n

)
Xi � 0, m = 1, . . . , d,

Xi ≥ 0, Xi ∈ Sn, i = 1, . . . , d.

(19)

This relaxation is similar to the TSP relaxation by De Klerk, Pasechnik and Sotirov [8]. In
fact, it has the same constraint set.

6 Computational results

We computed the bounds bwBKRV , bwPR, bwZKRW and bwdKS for complete k-level t-ary trees,
rectangular grid graphs and hypercubes.

For the last two bounds we could exploit the algebraic symmetry of the problem as we
discussed in Section 3. In Section 5.2 we saw that the bandwidth and the cyclic bandwidth
are the same for trees and grid graphs, so we only needed to solve the SDP problem (19) to
obtain the bound bwZKRW . Furthermore, using GAP [13] – a system for computational discrete
algebra – we determined coherent configurations for adjacency matrices of trees and grid graphs,
and further reduced the size of the SDP. On the other hand, since the adjacency matrix of the
hypercube belongs to the Bose-Mesner algebra of the Hamming scheme [15], the size of the SDP
problem (7) for hypercubes also can be reduced according to (13). Note that in each three
cases either the automorphism group of matrix B or of the adjacency matrix A acts transitively,
therefore each fixing gives a valid bound (see [10] for details). Moreover, when we computed
the bwdKS bound for complete trees we used the fact that if the label of the root node is fixed
then the stabilizer group related to this fixing is isomorphic to the full automorphism group of
the adjacency matrix. Unfortunately, for grid graphs we can no longer exploit symmetry after
fixing. However, for hypercubes we may still exploit the structure of the Terwilliger algebra of
the Hamming scheme after fixing (see [10, 15]).

For each family of graphs we present two tables: one with the different bounds and one with
the computational times. The first column in the tables with numerical results contains the
parameter(s) of the graphs, the second column contains the number of nodes of the graphs and
the third column provides the exact value of the bandwidths. The mentioned four bounds are
given in the last four columns.

We solved the SDP problems by SeDuMi [30] using the Yalmip interface [22] with Matlab
7.9., on a 2.53GHz dual-core processors with 4GB of memory, while the bound bwdKS was
computed on 3.33GHz dual-core processor with 32GB memory. The computational times are in
seconds in Table 3, 5, 7. The second column of these tables contains the computational time of
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(1), where we used a simple cutting plane scheme where one violated inequality is added at a
time. In case of bwPR, bwZKRW and bwdKS we report the computational time of an SDP giving
the best bound. The third columns of tables with computational times contain the best choice
of the vector m in (3) which gives the bound bwPR. Furthermore, when the bound bwZKRW

was tight, we did not compute the bound bwdKS , since it is also tight by (12).

(t,k) # nodes bw bwBKRV bwPR bwZKRW bwdKS

(2,2) 3 1 1 1 1 1
(2,3) 7 2 2 1 2 2
(2,4) 15 3 2 1 3 3
(2,5) 31 4 3 1 3 4
(3,2) 4 2 2 1 2 2
(3,3) 13 3 3 1 3 3
(3,4) 40 6 5 1 5 6
(4,2) 5 2 2 1 2 2
(4,3) 21 5 4 2 4 5

Table 2: Bounds on the bandwidth of complete k-level t-ary trees.

(t,k) bwBKRV m bwPR bwZKRW bwdKS

(2,2) 0.4907 [1, 2, 0] 0.109 0.062 –
(2,3) 2.1484 [2, 5, 0] 0.937 0.359 –
(2,4) 14.7462 [2, 13, 0] 5.281 9.063 –
(2,5) 914.9767 [2, 29, 0] 311.907 22.391 87 967
(3,2) 0.7035 [2, 2, 0] 0.484 0.25 –
(3,3) 11.542 [3, 10, 0] 3.125 0.375 –
(3,4) 10 093 [2, 38, 0] 1 291.263 10.094 45 308
(4,2) 1.0165 [2, 3, 0] 0.094 0.297 –
(4,3) 94.5431 [3, 18, 0] 29.688 0.609 25.7180

Table 3: Computational times for complete k-level t-ary trees.

The numerical results show that bounds bwZKRW and bwdKS are not tight for all graphs
under consideration, but they dominate bwBKRV , and they are also stronger than bwPR for
complete trees and the hypercubes. Since we could exploit the algebraic symmetry, the compu-
tational time for bound bwZKRW is the smallest in most of the cases. The time for bound bwdKS

is much worse, because we cannot exploit as much symmetry, and the resulting SDP problems
are larger. Note that, even though the tree T5,2 has fewer vertices than T4,3, the computation
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(n,m) # nodes bw bwBKRV bwPR bwZKRW bwdKS

(2,3) 6 2 2 2 2 2
(3,3) 9 3 2 3 3 3
(3,4) 12 3 3 3 3 3
(3,5) 15 3 3 3 3 3
(4,4) 16 4 3 4 3 4

Table 4: Bounds on the bandwidth of rectangular grid graphs Pn × Pm.

(n,m) bwBKRV m bwPR bwZKRW bwdKS

(2,3) 4.065 [1, 4, 1] 1.453 0.094 –
(3,3) 12.0556 [3, 4, 2] 3.938 2.75 –
(3,4) 17.3995 [5, 5, 2] 19.484 5.734 –
(3,5) 32.117 [2, 11, 2] 48.187 25.189 –
(4,4) 46.5472 [5, 8, 3] 71.281 74.534 > 4 days

Table 5: Computational times for rectangular grid graphs Pn × Pm.

n # nodes bw bwBKRV bwPR bwZKRW bwdKS

2 4 2 2 2 2 2
3 8 4 2 4 4 4
4 16 7 4 6 7 7
5 32 13 6 10 11 12

Table 6: Bounds on the bandwidth of hypercubes Qn.

n bwBKRV m bwPR bwZKRW bwdKS

2 1.4357 [1, 2, 1] 0.75 0.047 –
3 8.9049 [2, 3, 3] 0.828 0.953 –
4 64.0411 [5, 7, 4] 92.422 8.093 –
5 3327.9 [10, 14, 8] 4031.881 675.984 1.0309e+005

Table 7: Computational times for hypercubes Qn.
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of the bound bwdKS on the latter graph is twice as fast as for the former, since the size of the
reduced SDP is smaller in this case.

7 Conclusion and summary

In this paper we have compared SDP relaxations of graph bandwidth and cyclic bandwidth both
theoretically and numerically. Two of the relaxations are new, and based on the SDP relaxations
of QAP, by Zhao et al. [32], and De Klerk–Sotirov [9]. We have shown that the SDP relaxation
of cyclic bandwidth based on the QAP relaxation of Zhao et al. [32] may be computed relatively
efficiently. Moreover it mostly gives stronger lower bound on the bandwidth in practice than
the methods of Blum et al. [4] and Povh–Rendl [26].
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