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Abstract

We formulate minmax flow problems as a DC. optimization prob-
lem. We then apply a DC. primal-dual algorithm to solve the resulting
problem. The obtained computational results show that the proposed
algorithm is efficient thanks to particular structures of the minmax
flow problems. Keywords: Minmax flow problem smooth DC opti-
mization regularization.

1 Introduction

In the minimax flow problem to be considered, we are given a directed net-
work flow N(V,E, s, t, p), where V is the set of m + 2 nodes, E is the set of
n arcs, s is the single source node, t is the single sink node, and p ∈ Rn is
the vector of arc capacities. Let ∂+ : E → V and ∂− : E → V be incidence
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functions. When h = (u, v), i.e., arc h leaves node u and enters node v, we
write ∂+h = u and ∂−h = v. A vector x ∈ Rn is said to be a feasible flow if
it satisfies the capacity constraints:

0 ≤ xh ≤ ph ∀h ∈ E (1.1)

and conservation equations
∑

∂+h=v

xh =
∑

∂−h=v

xh ∀ v ∈ V \{s, t}. (1.2)

Note that conservation equations can be simply written as

Ax = 0,

where the m × n matrix A = (avh) is the well-known node-arc incidence
matrix, whose, for each (v, h) ∈ V \{s, t} × E, the entry avh is defined as

avh =





1 if arc h leaves node v, i.e., ∂+h = v
−1 if arc h enters node v, i.e., ∂−h = v
0 otherwise.

Then, the constraint (1.1), (1.2) becomes

Ax = 0, 0 ≤ x ≤ p.

Let X denote the set of feasible flows, i.e.,

X = {x ∈ Rn : Ax = 0, 0 ≤ x ≤ p}.
For each x ∈ X, the value of the flow x is given by

dT x =
∑

∂+h=s

xh −
∑

∂−h=s

xh,

where d is a n - dimensional row vector defined as

dh =





1 if arc h leaves the source node s, i.e., ∂+h = s
−1 if arc h enters the source node s, i.e., ∂−h = s
0 otherwise.

A feasible flow x0 ∈ X is said to be a maximal flow if there is no feasible
flow x ∈ X such that x ≥ x0 and x 6= x0. We use XE to denote the set of
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maximal flows. The problem of finding a minimal value flow on the set of
all maximal flows, shortly (minmax flow problem), to be solved in this paper
can be given as

min dT x
subject to x ∈ XE.

(1.3)

Minmax flow problem was considered (see e.g. [8], [17], [18], [21]) and is
closely related to the uncontrollable flow raised by Iri (see e.g. [12], [13]).
Note that since the set XE, in general, is nonconvex, Problem (1.3), is a
nonconvex optimization one.

Some global optimization algorithms are proposed for solving minmax
flow problems (see e.g. [8], [17], [18], [21]). These algorithms can solve
minmax flow problems where the number of the criteria is relatively small.
However, in minmax flow problems, the number of the criteria is just equal to
the number of decision variables that often is large in practical applications.
To this case, local optimization approaches should be used.

Recently local optimization approaches to DC. mathematical program-
ming problems have been well developed. A well known primal-dual DC.
algorithm, called DCA, introduced by P.D. Tao (see e.g. [16]) and further
developed by L.T.H.An and P.D.Tao, has been successfully applied to solve
a lot of practical problems (see e.g. [4], [16] and the refences therein).

In this paper, first we formulate the mimax flow problem described above
as a smoothly DC. optimization problem by using a regularization technique
widely used in variational inequality. Then we apply the DCA algorithm to
solve the resulting DC. optimization problem. The main advantage of this
algorithm is that the subproblems that we need to solve at each iteration
of DCA are strongly convex quadratic programs rather than general convex
programs as in the general case.

The paper is organized as follows. In Section 2, first we show how to use
the Yoshida regularization technique to obtain a smoothly DC. optimiza-
tion formulation for the minmax flow problem. Then we describe the DCA
algorithm for the resulting DC. program to the mimax flow problem. Com-
putational results reported in the last section show that DCA is efficient for
minmax flow problems.
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2 A Smoothly DC. Optimization Formula-

tion

Clearly, XE is the set of all Pareto efficient solutions to the multiple objective
linear program

Vmax x
subject to x ∈ X.

(2.4)

As we have seen in the introduction part, for the mimax flow problem the
number of the decision variables is just equal to the number of the criteria.

From Philip [14] it is known that one can find a simplex Λ ⊂ Rn
++ such

that a point x ∈ XE if and only if there exists λ ∈ Λ such that

x ∈ argmax{λT y : y ∈ X}.

Thus,
XE = {x ∈ X : λT x ≥ φ(λ) for all λ ∈ Λ},

where
φ(λ) = max{λT y : y ∈ X}.

In our case, the simplex Λ can be defined explicitly as in the following theo-
rem.

Theorem 2.1. ([17]) Let Λ be one of the following simplices

Λ := {λ ∈ Zn : e ≤ λ ≤ ne}

or

Λ = {λ ∈ Rn : λ ≥ e;
n∑

k=1

λk = n2},

where e is the vector whose every entry is one. Then x is a maximal flow if
and only if there is λ ∈ Λ such that

x ∈ argmin{λT y : y ∈ X}.

Let c > 0, plays as a regularization parameter, and K = Λ×X. For each
(λ, x) ∈ K, we define

γc(λ, x) := max
y∈K

{〈−λ, x− y〉 − c

2
‖x− y‖2}. (2.5)
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Since the objective function 〈−λ, x − y〉 − c

2
‖x− y‖2 of problem (2.5) is

strongly concave on K with respect to y, the problem (2.5) defining γc(λ, x)
has a unique solution that we denote by yc(λ, x) ∈ K.

Proposition 2.1. For every (λ, x) ∈ Rp+n we have:

(i) yc(λ, x) = PK

(
x + 1

c
λ
)
, where PK(x+ 1

c
λ) is the projection of (x+ 1

c
λ)

on the set K;

(ii) γc(λ, x) ≥ 0 ∀ (λ, x) ∈ K, γc(λ, x) = 0, (λ, x) ∈ K if and only if
x ∈ XE;

(iii) γc(., .) is continuously differentiable on K and its gradient

∇γc(λ, x) = −[x− yc(λ, x), λ + c(x− yc(λ, x))]T .

Proof. (i) Since

1

2c
‖λ‖2 − c

2
‖x +

1

c
λ− y‖2

=
1

2c
‖λ‖2 − c

2
(‖x− y‖2 +

2

c
〈λ, x− y〉+

1

c2
‖λ‖2)

= 〈−λ, x− y〉 − c

2
‖x− y‖2,

we have

〈−λ, x− y〉 − c

2
‖x− y‖2 =

1

2c
‖λ‖2 − c

2
‖x +

1

c
λ− y‖2.

Then

γc(λ, x) = max
y∈K

{〈−λ, x− y〉 − c

2
‖x− y‖2, (λ, x) ∈ R2n}

= max
y∈K

{ 1

2c
‖λ‖2 − c

2
‖x +

1

c
λ− y‖, (λ, x) ∈ R2n}

=
1

2c
‖λ‖2 + max

y∈K
{− c

2
‖x +

1

c
λ− y‖, (λ, x) ∈ R2n}

=
1

2c
‖λ‖2 − c

2
min
y∈K

{‖x +
1

c
λ− y‖, (λ, x) ∈ R2n}

which implies that yc(λ, x) = PK(x + 1
c
λ).
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(ii) Clearly, by the definition of γc(λ, x), we have γc(λ, x) ≥ 0 for every
(λ, x) ∈ K. Let (λ∗, x∗) ∈ K such that γc(λ

∗, x∗) = 0. Then

〈−λ∗, x∗ − yc(λ
∗, x∗)〉 − c

2
‖x∗ − yc(λ

∗, x∗)‖2 = 0,

which implies

〈−λ∗, x∗ − yc(λ
∗, x∗)〉 =

c

2
‖x∗ − yc(λ

∗, x∗)‖2 ≥ 0. (2.6)

On the other hand, by the well known optimality condition for the
convex program applying to the problem defining γc(λ

∗, x∗), we can
write

〈−λ∗ + c[yc(λ
∗, x∗)− x∗], x− yc(λ

∗, x∗)〉 ≥ 0 ∀ (λ, x) ∈ K.

With x = x∗ we have

〈−λ∗ + c[yc(λ
∗, x∗)− x∗], x∗ − yc(λ

∗, x∗)〉 ≥ 0.

Thus
〈−λ∗, x∗ − yc(λ

∗, x∗)〉 − c‖x∗ − yc(λ
∗, x∗)‖2 ≥ 0.

Combining this inequality with (2.6) we can deduce that ‖x∗−yc(λ
∗, x∗)‖ ≤

0. Hence x∗ = yc(λ
∗, x∗). By (i), we have

x∗ = yc(λ
∗, x∗) = PK(x∗ +

1

c
λ∗).

On the other hand, according to properties of the projection PK(.)
we know, that x∗ = PK(x) if and only if 〈y − x∗, x∗ − x〉 ≥ 0 for all
y ∈ K. From the last inequality, by replacing x = x∗ + 1

c
λ∗ we obtain

〈−λ∗, y − x∗〉 ≥ 0 for all y ∈ K, which implies x∗ ∈ XE.

Conversely, suppose that x∗ ∈ XE. Then 〈−λ∗, y − x∗〉 ≥ 0 for all
y ∈ K.
Note that

γc(λ
∗, x∗) = max

y∈K
{〈−λ∗, x∗ − y〉 − c

2
‖x∗ − y‖2}

= max
y∈K

{−〈−λ∗, y − x∗〉 − c

2
‖x∗ − y‖2} ≤ 0.

Thus γc(λ
∗, x∗) = 0.
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(iii) Since yc(λ, x) = PK(x + 1
c
λ), by continuity of the projection, yc(., .) is

continuous on K. Then, from γc(λ, x) = 〈−λ, x − yc(λ, x)〉 − c
2
‖x −

yc(λ, x)‖2, we can see that γc(λ, x) is continuous on K.

Let u = (λ, x) and ϕ(u, y) = 〈λ, x− y〉+ c
2
‖x− y‖2. Since the function

ϕ(u, .) is strongly convex and continuously differentiable with respect to
the variable y, there exists the unique solution yc(λ, x) of the problem

min
(0,y)∈K

ϕ(u, y)

and the function γc(λ, x) is continuously differentiable. A simple com-
putation yields

∇γc(λ, x) = −∇uϕ(u, y) = −∇uϕ(u, yc(λ, x)) = −∇(λ,x)ϕ((λ, x), yc(λ, x))

= −[x− yc(λ, x), λ + c(x− yc(λ, x))]T .

By virture of this proposition the problem (1.3) can be written equiva-
lently as

min dT x

subject to

{
(λ, x) ∈ K
γc(λ, x) = 0.

(2.7)

A simple computation shows that γc(λ, x) = g(λ, x)− h(λ, x), where

g(λ, x) =
1

2
‖x‖2 +

1

2
‖λ‖2 + max

y∈X
{〈λ + cx, y〉 − c

2
‖y‖2},

h(λ, x) =
1

2
‖λ + x‖2 +

c

2
‖x‖2.

It is easy to see that both g and h are convex. Since the objective function
of the maximization problem

max
y∈X

{〈λ + cx, y〉 − c

2
‖y‖2, (λ, x) ∈ R2n}

is strongly concave, the function g is differentiable. Clearly, h is differentiable.
Thus the problem (2.7) can be converted into the DC constrained problem

min{dT x : g(λ, x)− h(λ, x) ≤ 0, (λ, x) ∈ K}. (2.8)
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For t > 0, we consider the penalized problem

min{ft(λ, x) := dT x + tg(λ, x)− th(λ, x) : (λ, x) ∈ K}. (2.9)

From [3] we know that there exists a exact penalty parameter t0 ≥ 0
such that for every t > t0, the solution sets of problems (2.7) and (2.9) are
identical.

In the minmax flow problem being consideration, we have d =
n∑

h=1

ξhe
h

where ξh ∈ {1,−1, 0} and eh denotes the h-th unit vector of Rn. In this case,
the exact penalty parameter t0 can be calculated as follows ([3]:
Let I := {h : ξh > 0}. Define t∗ by taking

0 < t∗ ≤ max{ξh : h ∈ I} if I 6= ∅ and t∗ = 0 if I = ∅.
Since ξh ∈ {−1, 0, 1}, we can take 0 < t∗ ≤ 1 whenever I 6= ∅. So in
this case by Proposition 2.4 in [3] we can take 0 < t0 ≤ 1. Note that
in the case when I = ∅, i.e., t∗ = 0, it is easy to see that any optimal

solution of the linear program min{
n∑

h=1

ξhxh : x ∈ X} solves Problem (1.3).

So in this case the minmax flow problem is reduced to the linear program

min{
n∑

h=1

ξhxh : x ∈ X}.
We now use a DC. optimization algorithm, called DCA, developed in [2]

to solve problem (2.9). The DCA can solve nonsmooth DC optimization
problems of the form

min{F (u) := G(u)−H(u) : u ∈ Rn}
where G and H are lower semicontinuous proper convex functions. For this
nonsmooth optimization problem, the sequence of iterates is constructed by
taking

vk ∈ ∂H(uk), uk+1 = argmin{G(u)− 〈vk, u〉}.
Thus, convergence of this algorithm in this nonsmooth case crucially depends
on the choice of vk ∈ ∂H(uk). In our case, since H is differentiable, vk is
uniquely defined.

Clearly, problem (2.9) is a D.C. program. For this special problem, we
can describe DCA as follows. For simple of notation we write u = (λ, x).

Starting from a point u0 = (λ0, x0) ∈ K. At each iteration k = 0, 1, ...,
having uk we construct vk and uk+1 by setting
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vk = ∇th(uk) = t[λk + xk, λk + (1 + c)xk]T ,

uk+1 = argmin{dT x + tg(u)− 〈u− uk, vk〉 : u ∈ K}.
It is proved in [2], among others, that ft(u

k+1) ≤ ft(u
k) for every k, that if

uk+1 = uk, then uk is a stationary point, and that any cluster point of the
sequence {uk} is a stationary point to the problem (2.9). In the sequel we
call uk an ε-stationary point if ||uk+1 − uk|| ≤ ε.

Thanks to specific properties of the minmax flow problem under consid-
eration, one can find a DC decomposition for the gap function γc such that
the subproblems needed to solve are strongly convex quadratic. In fact we
have the following result.

Theorem 2.2. Let γ(u) be defiend by (2.5), where c > 0 fixed. Then, for
every real number ρ satisfying cρ ≥ 1, the function

fc(u) :=
1

2
ρ||u||2 − γc(u)

is convex on K.

Proof. By definition, the function γc(u) can be written as

γc(u) =
1

2c
||λ||2 − c

2
min
y∈K

{||x +
1

c
λ− y||2}.

Thus, we have

fc(u) =
1

2
ρ||u||2 − 1

2c
||λ||2 +

c

2
min
y∈K

{||x +
1

c
λ− y||2}.

Since u = (λ, x),

fc(u) = (
1

2
ρ− 1

2c
)||λ||2 +

1

2
ρ||x||2 +

c

2
min
y∈K

{||x +
1

c
λ− y||2}.

Clearly, if (1
2
ρ− 1

2c
) > 0, then

q(u) = (
1

2
ρ− 1

2c
)||λ||2 +

1

2
ρ||x||2

is a convex quadratic function.
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Now we show that

p(u) := p(λ, x) =
c

2
min
y∈K

{||x +
1

c
λ− y||2}

is convex on K.
Indeed, let yu, yv ∈ K such that

p(u) =
c

2
||xu +

1

c
λu − yu||2,

and

p(v) =
c

2
||xv +

1

c
λv − yv||2.

Since K is convex, θyu + (1− θ)yv ∈ K whenever 0 ≤ θ ≤ 1.
On the other hand,

p(θu + (1− θ)v) =
c

2
min
y∈K

{||θxu + (1− θ)xv +
1

c
(θλu + (1− θ)λv)− y||2}.

Hence

p(θu+(1−θ)v) ≤ c

2
||θxu+(1−θ)xv +

1

c
(θλu+(1−θ)λv)−(θyu+(1−θ)yv)||2.

We observe that the inequality

θ||xu + 1
c
λu − yu||2 + (1− θ)||xv + 1

c
λv − yv||2 ≥

||θxu + (1− θ)xv + 1
c
(θλu + (1− θ)λv)− (θyu + (1− θ)yv)||2.

is equivalent to the one

θ(1−θ){||xu+
1

c
λu−yu||2+||xv+

1

c
λv−yv||2−2〈xu+

1

c
λu−yu, xv+

1

c
λv−yv〉} ≥ 0.

It is easy to see that latter inequality is always holds true. Hence

θ(1− θ)||(xu +
1

c
λu − yu)− (xv +

1

c
λv − yv)||2 ≥ 0

which shows the convexity of fc.

From the result of Theorem 2.2, the problem (2.8) can be converted into
the DC optimization problem

α(t) := min
u∈K

{Gt(u) = bT u + 1
2
ρ||u||2 − [1

2
ρ||u||2 − tγc(u)]}, (2.10)
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where u = (λ, x), b = (0, d).
For simplicity of notation, we write

G(u) = bT u +
1

2
ρ||u||2, H(u) =

1

2
ρ||u||2 − tγc(u).

Then the problem has the form

min{G(u)−H(u) : u ∈ K} (2.11)

The sequences {uk} and {vk} constructed by DCA for the problem (2.11)
now look as

vk ∈ ∇H(uk) = ρuk − t∇γc(u
k),

uk+1 = argmin{bT u +
1

2
ρ||u||2 − 〈u− uk, vk〉 : u ∈ K}.

Thus, at each iteration k we have to solve the two strongly convex quadratic
programs

min
y∈K

‖y − (xk +
1

c
λk)‖2 (2.12)

and

min
u∈K

{bT u +
1

2
ρ||u||2 − 〈u− uk, vk〉}. (2.13)

Let yc(λ
k, xk), be the unique solution of (2.12). Then

vk = ρuk − t∇γc(u
k) = ρ(λk, xk) + t[xk − yc(λ

k, xk), λ + c(xk − yc(λ
k, xk))]T .

The DCA for this case can be described in details as follows.
Algorithm

• Initialization: Choose an exact penalty parameter 0 < t ≤ 1, a toler-
ance ε ≥ 0 and two positive numbers c and ρ such that cρ ≥ 1. Seek
u0 ∈ K.
Let k := 0.

• Iteration k (k = 0, 1, 2, ...)
∗ Calculate vk = ρuk − t∇γc(u

k).
∗ Compute uk+1 = arg min{bT u + 1

2
ρ||u||2 − 〈u− uk, vk〉 : u ∈ K}.

If ||uk+1 − uk|| ≤ ε, then terminate: uk is an ε-stationary point.
∗ Otherwise, go to iteration k with k := k + 1.
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3 Illustrative Example and Computational Re-

sults

To illustrate the algorithm we take an example in [8]. In this example the
network has 4 + 2 nodes and 10 arcs as shown in Fig.1, where the number
attached to each arc is the arc capacity given by
p = (p1, ..., p10)

T = (8, 3, 1, 4, 2, 1, 7, 1, 2, 8)T .

s

8
x1

4 x4

x6
1

1
x8

v1

v2

x2

3

x5

2

1 x3

v3

v4

t

8
x10

x9

2

x7

7

Fig.1. Network with 6 nodes and 10 arcs.

Initialization:
Compute an extreme maximal flow u0 = (λ0, x0), where
λ0 = (1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.400, 1.000, 1.000, 90.600);
x0 = (7.000, 3.000, 0.067, 4.000, 2.000, 1.000, 6.933, 0.067, 2.000, 8.000).
Iteration k:
At k = 1, the iterate is u1 = (λ1, x1), where
λ1 = (1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.720, 1.000, 1.000, 90.280),
x1 = (6.995, 3.000, 0.070, 4.000, 2.000, 0.995, 6.935, 0.065, 1.995, 8.000).
After 12 iterations, we obtain u∗ = (λ∗, x∗), where
λ∗ = (1.000, 1.000, 1.622, 1.000, 1.000, 1.000, 2.501, 1.000, 1.000, 88.877),
x∗ = (6.000, 3.000, 1.000, 4.000, 2.000, 0.000, 7.000, 0.000, 1.000, 8.000).
It is the same global optimal solution x∗ = (6, 3, 1, 4, 2, 0, 7, 0, 1, 8) that is
obtained in [8]. It has been observed (see [4]) that for practical problems
DCA often gives a global optimal solution. In Fig.2, the vector (x∗i , pi) is
given on each arc.

12



s

(6,8)
x1

(4,4) x4

x6

(0,1)

x8

v1

v2

x2

x5

(2,2)

(1,1) x3

v3

v4

t

(8,8)
x10

x9

(1,2)

x7

(7,7)

(3,3)

(0,1)

Fig.2. A minimum maximal flow (x∗i , pi).

To test the DCA algorithm, for each pair (m,n), we run it on 5 randomly dif-
ferent sets of data. These sets of data are chosen as in [21]. Test problems are
executed on CPU, chip Intel Core(2) 2.53 GHz, RAM 2 GB, C++(V C++2005)
programming language. Numerical results are summarized in Table 1.

Table 1. Computational Results
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m n Data Op-value Iter. Value-γc Time
6 10 data1 7 7 3.02E-07 0.77
6 10 data2 2 19 7.92E-07 0.86
6 10 data3 5 12 1.95E-06 0.53
6 10 data4 3 3 0.00E+00 0.19
6 10 data5 8 4 0.00E+00 0.23
16 20 data6 6 8 0.00E+00 0.55
16 20 data7 4 16 4.46E-07 0.67
16 20 data8 1 26 2.40E-07 1.05
16 20 data9 0 21 4.41E-07 0.88
16 20 data10 6 43 6.82E-07 1.76
30 70 data11 3 116 1.06E-05 7.05
30 70 data12 4 500 4.00E-05 30.58
30 70 data13 7 165 8.00E-06 10.14
30 70 data14 2 234 3.94E-06 14.31
30 70 data15 6 242 1.13E-06 14.73
100 200 data16 4 199 2.42E-07 41.73
100 200 data17 1 191 1.52E-05 40.52
100 200 data18 2 500 7.70E-06 105.74
100 200 data19 4 390 2.37E-05 80.19
100 200 data20 5 500 3.60E-05 103.09

where
Data: Sets of data; Value-γc: Value of γc(.);
Op-value: Optimal value; Time: Average CPU-Time in seconds.
Iter.: Number of iterations;

4 Conclusions

We have used a regularization technique to formulate the minmax flow prob-
lem as a smoothly DC optimization problem. Then we have applied the DCA
algorithm for solving the resulting DC problem. Computational results show
that DCA is a good choice for the minimax flow problem due to specific
properties of this problem.
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