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Abstract

In this paper, we seek the conjugate gradient direction closest to the direction of the
scaled memoryless BFGS method and propose a family of conjugate gradient methods for
unconstrained optimization. An improved Wolfe line search is also proposed, which can
avoid a numerical drawback of the Wolfe line search and guarantee the global convergence
of the conjugate gradient method under mild conditions. To accelerate the algorithm, we
develop an adaptive strategy to choose the initial stepsize and introduce dynamic restarts
along negative gradients based on how the function is close to some quadratic function during
some previous iterations. Numerical experiments with the CUTEr collection show that the
proposed algorithm is promising.

Key words: conjugate gradient method, memoryless BFGS method, unconstrained opti-
mization, global convergence, Wolfe line search.

1 Introduction

Consider the unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

where f is smooth and its gradient g is available. More exactly, we assume that f satisfies

Assumption 1.1. (i) f is bounded below; namely, f(x) > −∞ for all x ∈ Rn; (ii) f is
differentiable and its gradient g is Lipschitz continuous; namely, there exists a constant L > 0
such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for any x, y ∈ Rn, (1.2)

where ∥ · ∥ stands for the Euclidean norm.

Conjugate gradient methods are very useful for solving (1.1), especially if its dimension n is
large. They are of the form

xk+1 = xk + αkdk, (1.3)
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where the stepsize αk > 0 is obtained by some line search. The next search direction dk+1 (k ≥ 1)
is generated by

dk+1 = −gk+1 + βk dk, (1.4)

where gk+1 = −∇f(xk+1) and d1 = −g1. The scalar βk ∈ R is so chosen that (1.3)-(1.4) reduces
to the linear conjugate gradient method if f is a strictly convex quadratic function and if αk
is the exact one-dimensional minimizer. For general nonlinear functions, different choices of
βk lead to different conjugate gradient methods. Well-known formulae for βk are called the
Fletcher-Reeves (FR), Hestenes-Stiefel (HS), Polak-Ribière-Polyak (PRP) and Dai-Yuan (DY)
formulae (see [14]; [20]; [29], [30] and [8], respectively), and are given by

βFRk =
∥gk+1∥2

∥gk∥2
, βHSk =

gTk+1yk

dTk yk
,

βPRPk =
gTk+1yk

∥gk∥2
, βDYk =

∥gk+1∥2

dTk yk
,

where yk = gk+1 − gk.

Recent efforts have been made to relate the nonlinear conjugate gradient method to modified
conjugacy conditions. Specifically, Dai and Liao [7] considered the following conjugacy condition

dTk+1yk = −t gTk+1sk, (1.5)

where sk = αkdk = xk+1 − xk and t is some parameter, and derived a new formula for βk

βDLk (t) =
gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
. (1.6)

If f is a convex quadratic function and gTk+1sk ̸= 0, it was shown in [7] that a one-dimensional
minimizer along the corresponding direction of (1.6) with a small t > 0 will lead to a bigger
descent than that brought with t = 0. Due to the existence of the parameter t, it would be
more suitable to call the methods (1.3), (1.4) and (1.6) by Dai-Liao family of conjugate gradient
methods (one can see [4] and the references therein for more families of conjugate gradient
methods). Further, Dai and Liao [7] considered the following truncated form of (1.6),

βDL+k (t) = max

{
gTk+1yk

dTk yk
, 0

}
− t

gTk+1sk

dTk yk
. (1.7)

Despite of possible negative values of βDL+k , we still use the sign + to symbolize truncation
in order to remember the truncation introduced by Powell [33] and analyzed by Gilbert and
Nocedal [15] for the PRP method (they considered βPRP+

k = max{βPRPk , 0}).
Hager and Zhang [17] paid attention to the self-scaling memoryless BFGS method by Perry

[28] and Shanno [34] and proposed the formula

βNk =
gTk+1yk

dTk yk
− 2

∥yk∥2

dTk yk

gTk+1dk

dTk yk
, (1.8)

which can be regarded as (1.6) with t = 2∥yk∥2
sTk yk

. Interestingly enough, they were able to establish

for their method the sufficient descent condition

−gTk dk ≥
7

8
∥gk∥2, ∀ k ≥ 1, (1.9)
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provided that dTk yk ̸= 0. To establish global convergence for general nonlinear functions, they
considered the following truncated form

β̄Nk = max

{
βNk ,

−1

∥dk∥min{η, ∥gk∥}

}
, (1.10)

where η > 0 is a constant. A fortran code, called cg_descent, was also built based on the formula
(1.10) and the so-called approximate Wolfe line search (see [18]). In a survey paper [19], the
authors introduced a parameter θk in (1.8), yielding

βHZk (θk) =
gTk+1yk

dTk yk
− θk

∥yk∥2

dTk yk

gTk+1dk

dTk yk
(1.11)

(see the relation (7.1) in [19]). Due to the existence of the parameter θk, it would be more
convenient to call the methods (1.3), (1.4) and (1.11) by Hager-Zhang family of conjugate
gradient methods. It is obvious that βNk is corresponding to βHZk (θk) with θk ≡ 2. No any other
special choices of θk were suggested and tested in [19].

More recent advances can be found in Yabe and Takano [39] and Li et al. [21], who studied
conjugate gradient methods based on two variants of the conjugacy condition (1.5); namely, by
replacing yk with more efficient vectors. Some generalizations of the Hager-Zhang family (1.11)
were provided by Yu et al. [40, 41]. The works by Cheng and Liu [3] and Zhang et al. [42]
investigated new conjugate gradient methods that can ensure the sufficient descent property,
namely, −gTk dk ≥ c∥gk∥2 for some constant c > 0 and all k ≥ 1. More recent reviews on
nonlinear conjugate gradient methods can be found in Dai [5] and Hager and Zhang [19].

One main contribution of this paper is to seek the conjugate gradient direction that is closest
to the direction of the scaled memoryless BFGS method, providing the following family of
conjugate gradient methods for unconstrained optimization

βk(τk) =
gTk+1yk

dTk yk
−
(
τk +

∥yk∥2

sTk yk
−
sTk yk
∥sk∥2

)
gTk+1sk

dTk yk
, (1.12)

where τk is a parameter corresponding to the scaling parameter in the scaled memoryless BFGS
method. Among many others, four different choices of τk are analyzed and tested with the
following truncation,

β+k (τk) = max

{
βk(τk), η

gTk+1dk

∥dk∥2

}
, (1.13)

where η ∈ [0, 1) is some parameter. We found that the most efficient choice is corresponding to

τk =
sTk yk
∥sk∥2

, (1.14)

which was dated back to Oren and Luenberger [25, 26]. Surprisingly enough, in this case,
substituting (1.14) into (1.12) gives the following very simple formula,

βk =
gTk+1yk

dTk yk
− ∥yk∥2

sTk yk

gTk+1sk

dTk yk
, (1.15)

which is corresponding to the Dai-Liao family of methods (1.6) with t = ∥yk∥2
sTk yk

. It is also a

special member of the Hager-Zhang family of methods (1.11) with θk ≡ 1. More efficient choices
of τk in (2.12) still remains under investigation.
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The rest of this paper is organized as follows. In the next section, we will seek the conjugate
gradient direction that is closest to the direction of the scaled memoryless BFGS method and
propose a family of conjugate gradient methods for unconstrained optimization. In Section 3,
we discuss how to choose the stepsize αk in (1.3). This is also an important issue in nonlinear
conjugate gradient methods. Specifically, we will provide an adaptive strategy for the choice
of the initial stepsize (see Algorithm 3.1) and develop an improved Wolfe line search (see (3.8)
and (3.6), or Algorithm 3.2). In Section 4, we will present our conjugate gradient algorithm,
Algorithm 4.1, which is combined with dynamic restarts. Meanwhile, global convergence results
of the algorithm with or without restarts are established under the improved Wolfe line search.
In Section 5, we compare the Dolan-Moré [11] performance profile of the new algorithm with
cg_descent by Hager and Zhang [18] and test the efficiency of the new restart technique using the
unconstrained optimization problems from the CUTEr collection. Conclusions and discussions
are made in the last section.

2 A New Family of Conjugate Gradient Methods

The aim of this section is to derive a new family of conjugate gradient methods from the self-
scaling memoryless BFGS method by Perry [28] and Shanno [34], which defines the search
direction by

dk+1 = −Hk+1 gk+1, (2.1)

where

Hk+1 =
1

τk

(
I −

sky
T
k + yks

T
k

sTk yk

)
+

(
1 +

1

τk

∥yk∥2

sTk yk

)
sks

T
k

sTk yk
, (2.2)

where τk is a scaling parameter. The approximation matrix Hk+1 can be regarded to obtain
from a scaled identity matrix 1

τk
I by the BFGS updating formula. Substituting (2.2) into (2.1)

leads to the search direction with a multiplier difference

dPSk+1 = −gk+1 +

[
gTk+1yk

sTk yk
−
(
τk +

∥yk∥2

sTk yk

)
gTk+1sk

sTk yk

]
sk +

gTk+1sk

sTk yk
yk. (2.3)

Noting that sk = αk dk, the simple deletion of the last term in (2.3) leads to the conjugate
gradient method

dDk+1 = −gk+1 + βDk (τk) dk, (2.4)

where

βDk (τk) =
gTk+1yk

dTk yk
−
(
τk +

∥yk∥2

sTk yk

)
gTk+1sk

dTk yk
. (2.5)

Particularly, if τk is chosen to be the value suggested by Oren and Spedicato [26],

τHk =
∥yk∥2

sTk yk
, (2.6)

the formula (2.5) reduces to (1.8), which is provided by Hager and Zhang [17].

We are interested in more efficient conjugate gradient variants arising from (2.3) based on the
following two observations. Firstly, there are more efficient ways to choose the scaling parameter
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τk. Oren and Luenberger [25, 26] proposed the scaling parameter
sTk yk
sTkBksk

with Bk = H−1
k for the

Broyden’s family of quasi-Newton methods. If Hk is the identity matrix, this choice reduces to

τBk =
sTk yk
∥sk∥2

. (2.7)

Al-Baali [1] suggested to choose

τ̄Hk = min

{
1,

∥yk∥2

sTk yk

}
and τ̄Bk = min

{
1,

sTk yk
∥sk∥2

}
. (2.8)

For more choices on scalar τk, we refer readers to [1, 25, 26, 27] and the references therein.

Secondly, there is a more reasonable way to deal with the last term in (2.3) instead of simple
deletion. Specifically, denoting the one-dimensional manifold

Sk+1 = {−gk+1 + β dk : β ∈ R}, (2.9)

we can choose the vector in Sk+1 closest to dML
k+1 in (2.3) as the next search direction; namely,

dPk+1 = argmin
{
∥d− dML

k+1∥2 : d ∈ Sk+1

}
. (2.10)

Noting that the value ζ =
dTk yk
∥dk∥2

minimizes ∥yk − ζ dk∥ for ζ ∈ R, we can deduce that the search

direction in (2.10) is equivalent to

dPk+1 = −gk+1 + βk(τk) dk, (2.11)

where

βk(τk) =
gTk+1yk

dTk yk
−
(
τk +

∥yk∥2

sTk yk
−
sTk yk
∥sk∥2

)
gTk+1sk

dTk yk
. (2.12)

If dTk gk+1 = 0, the second term in (2.12) is missing and reduces to the HS or PRP formula.
Therefore we have obtained a family of conjugate gradient methods (1.3), (2.11) and (2.12),
where the parameter τk is corresponding to the scaling parameter in the self-scaling memoryless
BFGS method.

It is interesting to note that the formula (2.12) is corresponding to (1.6) if we adaptively
choose t to be

tk = τk +
∥yk∥2

sTk yk
−
sTk yk
∥sk∥2

. (2.13)

To establish a basic property for the family of conjugate gradient methods (1.3), (2.11) and
(2.12), we define

pk =
∥dk∥2∥yk∥2

(dTk yk)
2

and γk = τk
∥sk∥2

sTk yk
. (2.14)

Lemma 2.1. For the family of conjugate gradient methods (1.3), (2.11) and (2.12), if dTk yk ̸= 0,
we always have that

−dTk+1gk+1 ≥ min

(
γk,

3

4

)
∥gk+1∥2. (2.15)
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Proof. Noting that sk = αk dk, we can write the search direction dk+1 in the form

dPk+1 = −HP
k+1gk+1, (2.16)

where

HP
k+1 = I −

dkz
T
k

dTk yk
, zk = yk − pk sk. (2.17)

To proceed our analysis, we symmetrize HP
k+1 and define

H
P
k+1 =

1

2

[
HP
k+1 +

(
HP
k+1

)T ]
= I −

dkz
T
k + zkd

T
k

2 dTk yk
. (2.18)

For any vectors u, v ∈ Rn, notice that(
uvT + vuT

)(
u± ∥u∥

∥v∥
v

)
=
(
uT v ± ∥u∥ ∥v∥

)(
u± ∥u∥

∥v∥
v

)
. (2.19)

By this, it is not difficult to see that the minimal eigenvalue of H
P
k+1 is

λmin = min

{
1, 1− 1

2

(
dTk zk

dTk yk
+

∥dk∥ ∥zk∥
|dTk yk|

)}
. (2.20)

With the definitions of pk and γk, we can rewrite (2.20) as

λmin = min

{
1,

1

2

(
pk + γk −

√
p2k + (2γk − 3) pk +

(
γ2k − 4γk + 3

))}
. (2.21)

Now we consider the second term in the braces of (2.21). It is easy to verify that if γk ≤ 3
4 ,

it is monotonically increasing for pk ∈ [1, +∞) and hence reaches its minimum, that is γk, at
pk = 1; if γk >

3
4 , it is monotonically decreasing for pk ∈ [1, +∞) and hence is always greater

than its limit 3
4 as pk tends to +∞. Thus we always have

−gTk+1dk+1 = gTk+1H
P
k+1gk+1 ≥ λmin ∥gk+1∥2 ≥ min

(
γk,

3

4

)
∥gk+1∥2, (2.22)

which completes our proof.

Lemma 2.2. Assume that f satisfies Assumption 1.1. Consider the family of conjugate gradient
methods (1.3), (2.11) and (2.12). If τk is chosen to be any of τBk , τHk , τ̄Bk and τ̄Hk and if dTk yk ̸= 0,
we have that

−gTk+1dk+1 ≥ c ∥gk+1∥2 for some positive constant c > 0. (2.23)

Proof. (i) If τk = τBk , we have by (2.14) that γk = 1, which with Lemma 2.1 implies the truth
of (2.23) with c = 3

4 ; (ii) If τk = τHk , then γk = pk. By (2.21) and the fact that pk ≥ 1, we see
that

λmin = min

{
1, pk −

√
p2k −

7

4
pk +

3

4

}
> min

{
1, pk −

√
p2k −

7

4
pk +

49

64

}
=

7

8
. (2.24)
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So (2.23) holds with c = 7
8 ; (iii) By the Lipschitz condition (1.2) and the definitions of yk and

sk, we have that
∥yk∥ ≤ L ∥sk∥. (2.25)

If
sTk yk
∥sk∥2

< 1, we have τk =
sTk yk
∥sk∥2

and hence γk = 1. Otherwise, if
sTk yk
∥sk∥2

≥ 1, we must have from

this, the Cauchy-Schwartz inequality and (2.25) that

γk =
∥sk∥2

sTk yk
≥ ∥sk∥

∥yk∥
≥ 1

L
. (2.26)

Consequently, we always have γk ≥ min(1, 1
L). By Lemma 2.1, (2.23) holds with c = min(34 ,

1
L);

(iv) If ∥yk∥2
sTk yk

< 1, we have that γk = pk ≥ 1. Otherwise, if ∥yk∥2
sTk yk

≥ 1, we know that sTk yk > 0

and the inequality (2.26) is still valid. Thus we also have γk ≥ min(1, 1
L). By Lemma 2.1, (2.23)

holds with c = min(34 ,
1
L).

To generalize Lemma 2.2, we consider the convex combination of τHk and τBk

τk = ν
∥yk∥2

sTk yk
+ (1− ν)

sTk yk
∥sk∥2

, (2.27)

where ν ∈ [0, 1]. This formed interval of τk is corresponding to the subclass of the self-scaled

variable metric (SSVM) methods with the scaling parameter in

[
sTk yk

yTk Hkyk
,
sTkH

−1
k sk

sTk yk

]
(assuming

sTk yk > 0). This subclass was proposed in [24] and it forms the basis for the SSVM algorithms
in [25], [26] and [27]. Specially, [27] studied on this subclass of SSVM algorithms with some
additional optimal property.

Lemma 2.3. Assume that f satisfies Assumption 1.1. Consider the subfamily of conjugate
gradient methods (1.3), (2.11) and (2.12), where τk is of the form (2.27) with ν ∈ [0, 1]. If
dTk yk ̸= 0, we have that −gTk+1dk+1 ≥ 3

4 ∥gk+1∥2.

Proof. Since, by (2.12), βk(τk) is linear with τk, it is easy see that dk+1 and hence −gTk+1dk+1 is
also linear with τk. By items (i) and (ii) of the proof to Lemma 2.2, we know that (2.23) holds
with c = 3

4 for both τHk and τBk . Thus the statement is true for their convex combination.

Powell [32] constructed a counter-example showing that the PRP method with exact line
search may not converge for general nonlinear functions. Since for any τk, βk(τk) = βPRPk if
gTk+1dk = 0, Powell’s example can also be used to show the method (1.3) and (2.11) with βk(τk)
given by (2.12) need not converge for general functions. Therefore similarly to Gilbert and
Nocedal [15], who proved the global convergence of the PRP method for general functions by
restricting βk ≥ 0, we replace (2.12) by

β+k (τk) = max

{
βk(τk), η

gTk+1dk

∥dk∥2

}
, (2.28)

where η ∈ [0, 1) is some parameter and its suggested value is 0.5 in our practical computations.
This way of truncation comes from the observation that, while projecting the dPSk+1 in (2.3) into
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the one-dimensional manifold (2.9), its last term provides the contribution
gTk+1dk
∥dk∥2

dk. Further,

the following downhill direction

−gk+1 + η
gTk+1dk

∥dk∥2
dk (2.29)

seems to be a better restart direction than −gk+1 since it includes some curvature information
achieved along the previous search direction.

Lemma 2.4. Assume that f satisfies Assumption 1.1. Consider the family of conjugate gradient
methods (1.3), (2.11) and (2.12), where βk(τk) is replaced with the β+k (τk) in (2.28) and τk is
chosen to be any of τBk , τHk , τ̄Bk and τ̄Hk . If dTk yk ̸= 0, we have that

−gTk+1dk+1 ≥ c̄ ∥gk+1∥2 for some positive constant c̄ > 0. (2.30)

Proof. By Lemma 2.2, we only need to consider the case that

β+k (τk) = η
gTk+1dk

∥dk∥2
with 0 ≤ η < 1.

In this case, it is obvious that

−dTk+1gk+1 = ∥gk+1∥2 − η
(gTk+1dk)

2

∥dk∥2
≥ (1− η)∥gk+1∥2.

This, with Lemma 2.2, indicates that (2.30) holds with c̄ = min (c, (1− η)).

Remark 1. In the above, we have proposed a family of conjugate gradient methods (1.3),
(2.11) and (2.12). Its proposition is natural; namely, by projecting the self-scaling memoryless
BFGS direction by Perry [28] and Shanno [34] into the one-dimensional manifold (2.9). Four
choices for the parameter τk are presented and analyzed. The numerical experiments in Section
5 will suggest that the τBk in (2.7) is the most efficient one. If we substitute this special choice
into (2.12) and (2.28), we can obtain a relatively simple formula for βk and its truncation form.
They are

βk =
gTk+1yk

dTk yk
− ∥yk∥2

sTk yk

gTk+1sk

dTk yk
(2.31)

and

β+k = max

{
gTk+1yk

dTk yk
− ∥yk∥2

dTk yk

gTk+1sk

dTk yk
, η
gTk+1dk

∥dk∥2

}
, (2.32)

where η ∈ [0, 1). We see that the formula (2.31) is corresponding to the Dai-Liao family of

methods (1.6) with t = ∥yk∥2
sTk yk

. (2.31) also differs (1.8) only with a constant coefficient in the

second term and corresponds with the Hager-Zhang family of methods (1.11) with θk ≡ 1.

Remark 2. The interval of τk formed in (2.27) with ν ∈ [0, 1] gives a subfamily of conjugate
gradient methods with

gTk+1yk

dTk yk
− θk

∥yk∥2

sTk yk

gTk+1sk

dTk yk
, (2.33)
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where

θk ∈
[
1, 2−

(sTk yk)
2

∥sk∥2 ∥yk∥2

]
. (2.34)

Surprisingly, this subfamily has (2.31) as its special member but excludes the Hager-Zhang
choice (1.8). This, to some extent, explains the efficiency of the formula (2.31) over (1.8) in our
numerical experiments.

Remark 3. Powell [32]’s counter-example was extended in [6] to show that, for any small
constant ε > 0, the modified PRP method with βk = max {βPRPk , −ε} need not converge for
general functions. This implies to some extent that the restriction βk ≥ 0 is essential in ensuring
the global convergence of the PRP method. However, Gilbert and Nocedal [15] showed that, for
the PRP method using exact line searches, it is possible that βPRPk < −βFRk < 0 for a strongly
convex function, although it is known that the original PRP method converges globally in this
case. There have been several strategies that allow negative values of βk and guarantee global
convergence of the conjugate gradient method for general functions. For example, Dai and Liao
[7] considered the truncation in (1.7) and Hager and Zhang suggested the truncation in (1.10).
The restriction (2.28) provides another possibility and proves very useful in our convergence
analysis and practical calculations.

3 An Improved Wolfe Line Search with An Adaptive Strategy

As is known, the search direction and the line search are two important factors of a line search
algorithm. The purpose of this section is to develop an improved Wolfe line search, which allows
a small increase on the objective function value and can avoid a numerical drawback of the
Wolfe line search. As shown in the next section, this improved Wolfe line search guarantees the
global convergence of the conjugate gradient method. An adaptive strategy is also designed to
choose the initial stepsize.

For convenience, we denote the one-dimensional line search function to be

ϕk(α) = f(xk + αdk), α ≥ 0. (3.1)

When the algorithm goes on the k-th iteration, we look back at the line search function ϕk−1 at
the (k − 1)-th iteration. We have at least four function or derivative values of ϕk−1, which are
ϕk−1(0) = fk−1, ϕ

′
k−1(0) = gTk−1dk−1, ϕk−1(αk−1) = fk and ϕ′k−1(αk−1) = gTk dk−1, no matter

how the stepsize αk−1 is found. By the four values, we can define a quantity indicating how
ϕk−1 is close to a quadratic function. The basic idea is to do a quadratic interpolation to get
qk−1 by imposing the three conditions

qk−1(0) = ϕk−1(0), q′k−1(0) = ϕ′k−1(0), q′k−1(αk−1) = ϕ′k−1(αk−1) (3.2)

(later, we will use another denotation to express the interpolation function, for example, qk−1

is also denoted by q(ϕk−1(0), ϕ
′
k−1(0), ϕ

′
k−1(αk−1) ). If the value of this interpolation function

at αk−1, namely, qk−1(αk−1), is close to the real function value ϕk−1(αk−1), we think that ϕk−1

tends to be some quadratic function. More exactly, similarly to the ratio used for adjusting the
radius in trust region methods, we define the quantity

rk−1 =
ϕk−1(0)− ϕk−1(αk−1)

qk−1(0)− qk−1(αk−1)
. (3.3)
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Further, noticing that ϕk−1(0) = qk−1(0) = fk−1, ϕk−1(αk−1) = fk and by direct calculations,
qk−1(αk−1) = fk−1 +

1
2 αk−1 (g

T
k−1dk−1 + gTk dk−1), the quantity rk−1 can be simplified as

rk−1 =
2 (fk − fk−1)

αk−1 (g
T
k−1dk−1 + gTk dk−1)

. (3.4)

If rk−1 is close to 1, we think that ϕk−1 is close to some quadratic function and otherwise, not.
A successful use of this quantity rk−1 in designing gradient descent algorithms can be found in
[10]. In the nonlinear conjugate gradient field, since it is general that the function is nonlinear
at the initial stage and tends to be quadratic when the iterate is close to some solution point,
we believe that the quantity rk−1 must be very useful in designing nonlinear conjugate gradient
algorithms. As will be seen in Algorithms 3.1 and 4.1, it will be used not only in choosing the
initial stepsize but in choosing the search direction.

The choice of the initial stepsize is important for a line search. For Newton-like methods, the

choice α
(0)
k = 1 is essential in giving rapid convergence rate. For conjugate gradient methods,

it is important to use the current information about the problem to make an initial guess [23].
There have been quite a few ways to choose the initial stepsize in the conjugate gradient method,
for example, see [12, 35, 23, 17]. However, it does not reach a consensus which one is the best.
In the following, we propose an adaptive way for the choice of the initial stepsize based on to
which extent the function is close to some quadratic function during some previous iterations.

Algorithm 3.1. (An adaptive strategy for choosing the initial stepsize)

Step 0. Given positive parameters ϵα, ϵf , ψ1 and ψ2;

Step 1. If |rk−1 − 1| ≤ ϵα and
∣∣∣ϕk(ψ1αk−1)−ϕk(0)

ϕk(0)

∣∣∣ ≤ ϵf ,

set α
(0)
k = argmin q(ϕk(0), ϕ

′
k(0), ϕk(ψ1αk−1));

Step 2. Otherwise, set α
(0)
k = ψ2αk−1.

In the above algorithm, the condition
∣∣∣ϕk(ψ1αk−1)−ϕk(0)

ϕk(0)

∣∣∣ ≤ ϵf is used to guarantee that the

points xk +ψ1αk−1dk and xk are not far away from each other and q(ϕk(0)), ϕ
′
k(0), ϕk(ψ1αk−1))

denotes the interpolation function by the three values ϕk(0), ϕ
′
k(0) and ϕk(ψ1αk−1). The basic

idea of Algorithm 3.1 is that, if the function is roughly close to some quadratic function and if the
points xk + ψ1αk−1dk and xk are close to each other, then we would like to do an interpolation
and take the minimizer of the interpolation function as a new initial stepsize. This has the cost
of an extra function evaluation in computing ϕk(ψ1αk−1), but it is worthwhile. Otherwise, we
choose the initial stepsize as a multiple of the previous stepsize αk−1. In this case, a larger initial
stepsize is preferable, as ψ2 = 5 in our numerical experiments of Section 5.

Next, we introduce new line search conditions, which can avoid a numerical drawback of the
Wolfe conditions and ensure the global convergence of the conjugate gradient algorithm.

To this aim, recall the Wolfe conditions

ϕk(α) ≤ ϕk(0) + δ α ϕ′k(0), (3.5)

ϕ′k(α) ≥ σ ϕ′k(0), (3.6)

where 0 < δ < σ < 1. The Wolfe conditions (3.5)-(3.6) can be dated back to [37, 38] and was
used to analyze nonlinear conjugate gradient methods in [8, 9]. Theoretically, under Assumption
1.1 on f , if dk is a descent direction, there must exist some stepsize αk > 0 satisfying (3.5)-(3.6).

10



In practical computations, however, the first Wolfe condition, (3.5), may never be satisfied due
to the existence of the numerical errors. Assume that α∗

k > 0 is the exact minimizer of ϕk(α).
If α∗

kdk is too small, we have that ϕk(0)− ϕk(α
∗) = O(∥α∗

kdk∥2). Consequently, ϕk(α∗) is about
the same as ϕk(0) provided that ∥α∗

kdk∥ is on the order of square root of machine precision. It
turns out that in this case, it is possible that ϕk(α) ≥ ϕk(0) for all α ≥ 0 in numerical sense and
hence (3.5) is never satisfied in practical computations. This numerical drawback of the Wolfe
conditions was carefully analyzed in [17] with a one-dimensional quadratic function. We have
observed this possibility for Problem JENSMP from CUTEr collection, which was originally
introduced in [22] and has the form

f(x1, x2) = [4− (ex1 + ex2)]2 + [6− (e2x1 + e2x2)]2. (3.7)

We used the conjugate gradient method (1.3), (2.11) and (2.28) with τk replaced by (2.7) and
αk calculated by the Wolfe line search. At the 16th iteration, we obtained

x16 = (2.5782521324e-01, 2.5782521393e-01)T , d16 = (9.2964892641e-06, −2.5552928578e-06)T

with values

f16 = 1.24362182e+02, gT16d16 = −9.2954234226e-11, ∥g16∥ = 1.5815277275e-05.

We found that even with 50 trial stepsizes ranging from 1.7e-26 to 1.2e-5, the algorithm failed to
find a stepsize along the search along d16 such that the first Wolfe condition is satisfied. Figure
1 plots the overall graphs of function ϕk(α) := f(x16 + αd16) for α ∈ [0, 1] and α ∈ [0, 1.0e-11].
In this example, we did have ϕk(α) ≥ ϕk(0) numerically for all α ≥ 0 and hence a satisfactory
stepsize is not possible to be found.
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Figure 1: Graph of JENSMP along the search direction d16

To avoid the above numerical drawback of the Wolfe line search, Hager and Zhang [17] sug-
gested a combination of the original Wolfe conditions and the approximate Wolfe conditions
that σ ϕ′k(0) ≤ ϕ′k(α) ≤ (2δ − 1)ϕ′k(0). Their line search performed well in their numerical
tests, but cannot guarantee the global convergence of the algorithm in theory. Given a constant
parameter ϵ > 0, a positive sequence {ηk} satisfying

∑
k≥1 ηk < +∞ and again parameters δ

and σ satisfying 0 < δ < σ < 1, we propose the following modified Wolfe condition

ϕk(α) ≤ ϕk(0) + min
{
ϵ|ϕ′k(0)|, δαϕ′k(0) + ηk

}
(3.8)
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and call the line search satisfying (3.8) and (3.6) by improved Wolfe line search. The idea behind
the condition (3.8) is that, it allows the stepsizes satisfying (3.5) and hence is an extension of
the original Wolfe line search; meanwhile, if the trial point is close to xk, in which case

ϕk(α) ≤ ϕk(0) + ϵ |ϕk(0)| , (3.9)

we switch to require

ϕk(α) ≤ ϕk(0) + δαϕ′k(0) + ηk (3.10)

rather than (3.5). The extra positive term ηk in (3.10) or (3.8) allows a slight increase in the
function value and hence is helpful in avoiding the numerical drawback of the first Wolfe line
search condition (3.5). At the same time, the condition that the sequence {ηk} is summable can
guarantee the global convergence of the algorithm similarly to the Wolfe line search. Specifically,
we set ηk =

1
k2

in our numerical experiments.

Under Assumption 1.1 on f , if gTk dk < 0, it is obvious that there must exist a suitable stepsize
satisfying (3.8) and (3.6) since they are weaker than the Wolfe conditions. In the following, we
describe a detailed procedure to implement the improved Wolfe line search, where a point xk
and a descent direction dk are given.

Algorithm 3.2. (An Improved Wolfe Line Search)

Step 0. Determine α
(0)
k via Algorithm 3.1.

Set a0 = 0, ϕa = f(xk), ϕ
′
a = gTk dk and b0 =M , where M is some big number.

Set t1 = 1.0, t2 = 0.1, ρ > 1 and i = 0.

Step 1. Evaluate ϕk(α
(i)
k ) and test condition (3.8).

If (3.8) is satisfied, goto Step 2.

Set bi = α
(i)
k , ϕb = ϕk(α

(i)
k ), α∗ = argmin q(ϕa, ϕ

′
a, ϕb) and t1 = 0.1t1.

Choose α
(i+1)
k := min {max [α∗, ai + t1(bi − ai)] , bi − t2(bi − ai)}.

Set i = i+ 1 and goto Step 1.

Step 2. Evaluate ϕ′(α
(i)
k ) and test condition (3.6).

If (3.6) is satisfied, return αk = α
(i)
k , stop.

Set t1 = 0.1, t2 = 0.1t2. If bi =M , goto Step 3.

Set ai = α
(i)
k , ϕa = ϕ(α

(i)
k ), ϕ′a = ϕ′(α

(i)
k ) and α∗ = argmin q(ϕa, ϕ

′
a, ϕb).

Choose α
(i+1)
k := min {max [α∗, ai + t1(bi − ai)] , bi − t2(bi − ai)}.

Set i = i+ 1, goto Step 1.

Step 3. Set ai = α
(i)
k , ϕa = ϕ(α

(i)
k ), ϕ′a = ϕ′(α

(i)
k ) and α

(i+1)
k = ρα

(i)
k .

Set i = i+ 1, goto Step 1.

We can see that the above procedure is similar, but not identical, to the classical implemen-

tation of the Wolfe line search in Fletcher [13]. At first, we determine α
(0)
k via Algorithm 3.1

and initialize the interval [a0, b0] as [0,M ], where M is some big number. Then in the current

bracket [ai, bi], we choose a new trial stepsize α
(i+1)
k to be the minimizer of the quadratic in-

terpolation function q(ϕa, ϕ
′
a, ϕb), but prevent it from being arbitrarily close to the extremes of

the interval using the preset factors t1 and t2. If α
(i+1)
k satisfies (3.8) and (3.6), the line search

is terminated with αk = α
(i+1)
k . If α

(i+1)
k only satisfies (3.8), we update [ai, bi] as [α

(i+1)
k , bi];

12



otherwise, we update [ai, bi] as [ai, α
(i+1)
k ]. We should note that in case of updating [ai, M ],

α
(i+1)
k is chosen to be a multiple of ai, namely, ρ ai with ρ > 1 since M is preset to a very big

number and the interpolation in the interval [ai, M ] is likely not to be reliable. On the whole,
the procedure will generate a sequence of intervals [ai, bi] with properties [ai+1, bi+1] ⊂ [ai, bi]
for all i, |bi − ai| → 0 and

ϕk(ai) ≤ ϕk(0) + min{ϵ |ϕk(0)|, δ ai ϕ′(0) + ηk} but ϕ′k(ai) < σϕ′k(0), (3.11)

ϕk(bi) > ϕk(0) + min{ϵ |ϕk(0)|, δ bi ϕ′(0) + ηk}, (3.12)

until a satisfactory stepsize is successfully found.

For the improved Wolfe line search, we can establish the Zoutendijk condition (3.13) (see [43])
all the same.

Lemma 3.3. Assume that f satisfies Assumption 1.1. Consider the iterative method of the
form (1.3) where the direction dk satisfies gTk dk < 0 and the stepsize αk satisfies (3.8) and (3.6).
Then we have that ∑

k≥1

(gTk dk)
2

∥dk∥2
<∞. (3.13)

Proof. It follows from the Lipschitz condition (1.2) and the line search condition (3.6) that

Lαk∥dk∥2 ≥ (gk+1 − gk)
Tdk ≥ (σ − 1)gTk dk.

Thus we have

αk ≥
σ − 1

L

gTk dk
∥dk∥2

. (3.14)

It follows from (3.8) that

fk+1 ≤ fk +min{ϵ|fk|, δαkgTk dk + ηk} ≤ fk + δαkg
T
k dk + ηk, (3.15)

which with (3.14) implies that

fk − fk+1 + ηk ≥ c
(gTk dk)

2

∥dk∥2
, (3.16)

where c = δ(1 − σ)/L. Summing (3.16) over k and noting that
∑

k≥1 ηk < +∞ and that f is
bounded below, we see that (3.13) holds.

4 Algorithm and Convergence Analysis

In this section, we give the whole scheme of our new conjugate gradient algorithms with the
improved Wolfe line search. A restart technique, which makes good use of the quantity rk in
(3.4), is also incorporated to accelerate the algorithm.

More exactly, if there are continuously many iterations such that rk is close 1, we restart the
algorithm with the steepest descent direction. In this case, we think that the algorithm is very
likely to enter some region where the objective function is close to some quadratic function and
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hence a restart along −gk is worthwhile provided that not all values of rk are around one since
the last restart.

In addition, if the number of the total iterations since the last restart reaches some threshold,
MaxRestart, we also restart the algorithm. In our experiment, we choose this threshold to
be 6n to avoid frequent restarts for small nonlinear functions. For large-scale problems, this
restarting criterion is generally not active.

The following is a detailed description of our algorithm.

Algorithm 4.1. (A Nonlinear Conjugate Gradient Algorithm)

Step 0. Given x1 ∈ Rn, ε > 0, ϵr > 0 and positive integers MaxRestart, MinQuad.

Step 1. Set k := 1. If ∥g1∥ ≤ ε, stop.
Let d1 = −g1 and set IterRestart := 0 and IterQuad := 0.

Step 2. Compute a stepsize αk > 0 via Algorithm 3.2.

Step 3. Let xk+1 = xk + αkdk. If ∥gk+1∥ ≤ ε, stop.
IterRestart := IterRestart+ 1.
Compute rk by (3.4). If |rk − 1| ≤ ϵr, IterQuad := IterQuad+ 1; else, IterQuad := 0.

Step 4. If IterRestart =MaxRestart or (IterQuad =MinQuad and IterQuad ̸= IterRestart),
let dk+1 = −gk+1 and set IterRestart := 0, IterQuad := 0, k := k + 1, goto Step 2.

Step 5. Compute βk by (2.28) and dk+1 by (1.4). k := k + 1, goto Step 2.

Particularly, if the parameter τk in (2.28) is chosen to be τHk in (2.6), τBk in (2.7), τ̄Hk and τ̄Bk in
(2.8), the above algorithm is called as Algorithms 4.1(a), 4.1(b), 4.1(c) and 4.1(d), respectively.

Now we analyze the global convergence properties of the above conjugate gradient algorithm.
For convenience, assume that

gk ̸= 0, ∀ k ≥ 1

throughout this section, for otherwise a stationary point has been found. Since a restart along the
negative gradient is done in at least MaxRestart iterations, there must be global convergence
of Algorithm 4.1 for general functions. Actually, assuming that dki = −gki for some infinite
subsequence {ki}, we have from Lemma 3.3 that lim

i→∞
∥gki∥ = 0. In the following, we consider

the global convergence properties of Algorithm 4.1 without any restarts.

For uniformly convex functions, we have the following convergence result.

Theorem 4.2. Assume that f satisfies Assumption 1.1. Consider the search direction defined
by (1.3), (2.11), (2.12), where τk is chosen to be any of τHk , τBk , τ̄Hk and τ̄Bk , and where stepsize
αk is calculated by the line search satisfying (3.8) and (3.6). If, further, f is uniformly convex,
namely, there exists a constant µ > 0 such that

(∇f(x)−∇f(y))T (x− y) ≥ µ∥x− y∥2, ∀ x, y ∈ Rn, (4.1)

we have that
lim
k→∞

gk = 0. (4.2)
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Proof. It follows from (1.2) and (4.1) that

∥yk∥ ≤ L ∥sk∥, (4.3)

dTk yk ≥ µ ∥dk∥ ∥sk∥. (4.4)

By (4.1) and (4.3), it is easy to see that for any τk of τHk , τBk , τ̄Hk and τ̄Bk , there exists a positive
constant cτ such that

|τk| ≤ cτ . (4.5)

Write βk+1(τk) as the special form of (1.6) with t replaced by pk. It follows from (4.3), (4.4)
and (4.5) that

|pk| ≤
L2

µ
+ L+ cτ . (4.6)

Consequently,

∥dk+1∥ ≤ ∥gk+1∥+

∣∣∣∣∣gTk+1yk

dTk yk
− pk

gTk+1sk

dTk yk

∣∣∣∣∣ ∥dk∥
≤

(
1 +

L ∥sk∥ ∥dk∥
dTk yk

+ |pk|
∥sk∥ ∥dk∥
dTk yk

)
∥gk+1∥ (4.7)

≤
(
1 +

L2 + 2µL+ µcτ
µ2

)
∥gk+1∥.

On the other hand, Lemmas 2.2 and 3.3 imply that∑
k≥1

∥gk∥4

∥dk∥2
<∞. (4.8)

By (4.7) and (4.8), we have that ∑
k≥1

∥gk∥2 <∞,

which implies (4.2).

Denote θk to be the angle between dk and −gk; namely,

cos θk =
−gTk dk

∥gk∥ ∥dk∥
.

In the case that f is uniformly convex, we know from (2.23) and (4.7) that there must some
positive constant cθ such that

cos θk ≥ cθ, ∀ k ≥ 1.

For general nonlinear functions, similarly to [15] and [7], we can establish a weaker convergence
result in the sense that

lim inf
k→∞

∥gk∥ = 0. (4.9)

To this aim, we proceed by contradiction and assuming that there exists γ > 0 such that

∥gk∥ ≥ γ, ∀ k ≥ 1. (4.10)
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Lemma 4.3. Assume that f satisfies Assumption 1.1. Consider the family of conjugate gradient
methods of the form (1.3), where dk+1 is given by (2.11) and (2.28) and stepsize αk is calculated
by the improved Wolfe line search satisfying (3.8) and (3.6). If (4.10) holds, then dk ̸= 0 and∑

k≥2

∥uk − uk−1∥2 <∞, (4.11)

where uk = dk/∥dk∥.

Proof. First, note that dk ̸= 0, for otherwise the sufficient descent condition (2.30) would imply
gk = 0. Therefore uk is well defined. Now, divide formula (2.28) for βk into two parts as follows

β
(1)
k = max

{
gTk+1yk

dTk yk
−
(
1 + τk

sTk yk
∥yk∥2

)
∥yk∥2

dTk yk

gTk+1dk

dTk yk
+ (1− η)

gTk+1dk

∥dk∥2
, 0

}
, (4.12)

β
(2)
k = η

gTk+1dk

∥dk∥2
(4.13)

and define

wk =
−gk + β

(2)
k−1dk−1

∥dk∥
and δk =

β
(1)
k−1∥dk−1∥
∥dk∥

. (4.14)

By dk = −gk + βk−1dk−1, we have for k ≥ 2,

uk = wk + δkuk−1. (4.15)

Using the identity ∥uk∥ = ∥uk−1∥ = 1 and (4.15), we obtain

∥wk∥ = ∥uk − δkuk−1∥ = ∥δkuk − uk−1∥ (4.16)

(the last equality can be verified by squaring both sides). Using the condition δk ≥ 0, the
triangle inequality, and (4.16), we have

∥uk − uk−1∥ ≤ ∥(1 + δk)uk − (1 + δk)uk−1∥
≤ ∥uk − δkuk−1∥+ ∥δkuk − uk−1∥
= 2∥wk∥. (4.17)

By the definition of β
(2)
k in (4.13), we see that

∥ − gk + β
(2)
k−1dk−1∥ ≤ ∥gk∥+ |β(2)k−1|∥dk−1∥ ≤ (1 + η)∥gk∥. (4.18)

This bound for the numerator of wk coupled with (4.17) gives

∥uk − uk−1∥ ≤ 2∥wk∥ ≤ 2(1 + η)
∥gk∥
∥dk∥

. (4.19)

The relation (4.10), the sufficient descent condition (2.30) and the Zoutendijk condition (3.13)
indicate that ∑

k≥1

∥gk∥2

∥dk∥2
≤ 1

γ2

∑
k≥1

∥gk∥4

∥dk∥2
≤ 1

γ2 c̄2

∑
k≥1

(gTk dk)
2

∥dk∥2
< +∞. (4.20)

Thus (4.11) follows from (4.19) and (4.20).
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Now we give the following convergence theorem for general objective functions.

Theorem 4.4. Assume that f satisfies Assumption 1.1. Consider the family of methods of the
form (1.3), where dk+1 is given by (2.11) and (2.28) and stepsize αk is calculated by the improved
Wolfe line search satisfying (3.8) and (3.6). If the generated sequence {xk} is bounded, if τk is
chosen as any of τHk , τBk , τ̄Hk and τ̄Bk , the method converges in the sense that (4.9) holds.

Proof. We proceed by contradiction and assume that (4.10) holds. By the continuity of ∇f and
the boundedness of {xk}, there exists some positive constant γ̄ such that

∥xk∥ ≤ γ̄, ∥gk∥ ≤ γ̄, ∀ k ≥ 1. (4.21)

The line search condition (3.6) indicates that

gTk+1dk ≥ σ gTk dk. (4.22)

It follows from this, (2.30) and (4.10) that

dTk yk ≥ −(1− σ)dTk gk ≥ c̄(1− σ)γ2. (4.23)

Also we have by (4.22) and gTk dk < 0 that

σ

σ − 1
≤
dTk gk+1

dTk yk
≤ 1. (4.24)

For any τk of τHk , τBk , τ̄Hk and τ̄Bk , it is not difficult to know by (1.2) and (4.5) that there exists
some positive constant c̄τ such that∣∣τk sTk yk∣∣ ≤ c̄τ ∥sk∥2, ∀ k ≥ 1. (4.25)

Now we write βk(τk) in (2.12) as

βk(τk) =
gTk+1yk

dTk yk
−
(
1−

(dTk yk)
2

∥dk∥2 ∥yk∥2

)
∥yk∥2

dTk yk

gTk+1dk

dTk yk
−
τk s

T
k yk

dTk yk

gTk+1dk

dTk yk
. (4.26)

Since by (4.21), ∥sk∥ = ∥xk+1 − xk∥ ≤ 2γ̄, we can show by this, (4.26), (4.21), (4.23), (4.25),
∥yk∥ ≤ L∥sk∥ and 0 ≤ (dTk yk)

2 ≤ ∥dk∥2∥yk∥2 that

|βk(τk)| ≤ cβ∥sk∥, for some constant cβ > 0 and all k ≥ 1. (4.27)

Define b = 2cβ γ̄ and λ = 1
2c2β γ̄

. It follows from (4.27) and (4.21) that for all k,

|βk| ≤ b, (4.28)

and

∥sk∥ ≤ λ =⇒ |βk| ≤
1

b
. (4.29)

The relations (4.28) and (4.29) indicate that βk(τk) in (2.12) has Property (∗) in [15].

Now we look at the formula (2.28). By (4.10), (2.30) and (3.13), we clearly have that

∥dk∥ → +∞. (4.30)
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This means that βk(τk) can only be less than the value β
(2)
k = η

gTk+1dk
∥dk∥2

for finite times. Otherwise,

we have that
∥dk+1∥ = ∥gk+1 + β

(2)
k dk∥ ≤ (1 + η)∥gk+1∥ ≤ (1 + η)γ̄

for infinite k’s and obtain a contradiction to (4.30). Consequently, we can assume that β+k (τk) =
βk(τk) for all sufficiently large k. In this case, using Property (∗) and the fact that ∥dk∥2 is
increasing at most linearly, we can show similarly to Lemma 4.2 in [15] that for any positive
integers ∆ and k0, there exists an integer k ≥ k0 such that the size of K = {i : k ≤ i ≤
k +∆− 1, ∥si−1∥ > λ} is greater than ∆

2 . Further, using this, Lemma 4.3 and the boundedness
of {xk}, we can obtain a contradiction similarly to the proof of Theorem 4.3 in [15]. The
contradiction shows the truth of (4.9).

5 Numerical Experiments

In this section, we compare Algorithm 4.1 with the cg_descent method of Hager and Zhang in
[17]. We also examine the performance of new conjugate gradient variants introduced in Section
2 using the same line search in the cg_descent method.

Algorithm 4.1 was implemented in C language and tested in Fedora 12 Linux environment.
The computer used is a Lenovo X200 laptop with 2G RAM memory and Centrino2 processor.
The following parameters were used in our implementation

δ = 0.1, σ = 0.9, α
(0)
1 = 1, ψ1 = 1, ψ2 = 5, ϵα = 10−3, ϵf = 100,

ρ = 5, ϵr = 10−10, η = 0.5, MaxRestart = 6n, MinQuad = 3.

where n is the problem dimension. We used the same termination criterion as in cg_descent
method [17]; namely,

∥∇f(xk)∥∞ ≤ max{10−6, 10−12∥∇f(x1)∥∞}. (5.1)

The test problems are 155 unconstrained optimization problems drawn from CUTEr [16] col-
lection. For each comparison, however, we excluded those problems for which different solvers
converge to different local minimizers. Besides it, we also eliminated those easy problems for
which all the solvers can handle in less than ten iterations regardless of the problem dimension.

The performance profile by Dolan and Moré [11] is used to display the performance of the
algorithms. Define P as the whole set of np test problems and S the set of the interested solvers.
Let lp,s be the number of objective function evaluations required by solver s for problem p.
Define the performance ratio as

rp,s =
lp,s
l∗p
,

where l∗p = min {lp,s : s ∈ S}. It is obvious that rp,s ≥ 1 for all p and s. If a solver fails to solve
a problem, the ratio rp,s is assigned to be a large number M . The performance profile for each
solver s is defined as the following cumulative distribution function for performance ratio rp,s,

ρs(τ) =
size{p ∈ P : rp,s ≤ τ}

np
.

Obviously, ρs(1) represents the percentage of problems for which solver s is the best. See [11]
for more details about the performance profile. The performance profile can also be used to
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analyze the number of iterations, the number of gradient evaluations and the cpu time. Besides,
to get a clear observation, we give the horizontal coordinate a log-scale in the following figures.

Figure 2 plots the performance profile with the four variants of the new algorithms; namely,
Algorithms 4.1 (a), 4.1 (b), 4.1 (c) and 4.1 (d). After eliminating the problems for which the
four variants converge to different local minimizers or all of them can solve in less than ten
iterations, 113 problems are left. Observe that among the four algorithms, Algorithm 4.1 (b)
occupies the first place, which is fastest for about 50% of the test problems; Algorithms 4.1 (c)
and 4.1 (d) come second and Algorithm 4.1 (a) third. It indicates that the new choice βk (2.28)
with τBk in (2.7) is more efficient than the one with τHk in (2.6).
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Figure 2: Performance profile of Algorithms 4.1 (a) (b) (c) and (d) based on the numbers of
function evaluations (left) and gradient evaluations (right).

In Figure 3, we compare Algorithm 4.1 (b) with and without restarts to test the efficiency of
the new restart technique. There are 148 problems left after the elimination process mentioned
above. Figure 3 clearly shows that the new restart technique contributes to the efficiency of
Algorithm 4.1 (b). Similar observations were also made for Algorithms 4.1 (a), (c) and (d).

In the following two experiments, we examine the effect of the new choice βk and the effect
of new line search algorithm, respectively. More exactly, in Figure 4, we compare cg_descent
itself and a variant of cg_descent with βk replaced by the new choice of βk given by (2.28) and
(2.7); in Figure 5, we compare cg_descent itself and Algorithm 4.1 (b), in which we use both
the new line search algorithm and the new choice of βk in (2.28) and (2.7). Figure 4 shows that
compared with cg_descent itself, cg_descent with the new choice of βk wins about 13.9% more
problems in function evaluations and about 15.3% more problems in gradient evaluations. From
Figure 5, Algorithm 4.1 (b) wins about 17.8% more problems in function evaluations and about
28.0% more problems in gradient evaluations. In a word, Figures 4 and 5 demonstrate that the
superiority of Algorithm 4.1 (b) over cg_descent not only comes from the new choice of βk, but
also comes from the improved Wolfe line search.

6 Conclusions and Discussions

We have proposed a family of conjugate gradient methods, namely, (1.3), (1.4) and (1.12), for
unconstrained optimization via seeking the conjugate gradient direction closest to the direction
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Figure 3: Performance profile of Algorithm 4.1(b) with and without the restart technique based
on the numbers of function evaluations (left) and gradient evaluations (right).
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Figure 4: Performance profile of cg descent and cg descent with new βk in (2.7) and (2.28) based
on the numbers of function evaluations (left) and gradient evaluations (right).
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Figure 5: Performance profile of Algorithms 4.1(b) and cg descent based on the numbers of
function evaluations (left) and gradient evaluations (right).

of the scaled memoryless BFGS method. The sufficient descent condition is established for
four special members of the family. An improved Wolfe line search has been introduced, which
can avoid a numerical drawback of the Wolfe line search observed in [17] and guarantee the
global convergence of the conjugate gradient method under mild conditions. Besides it, we have
developed an adaptive strategy to choose the initial stepsize and a dynamic restart technique to
accelerate the algorithm. The numerical results indicate that Algorithm 4.1 (b), that calculates
βk by (2.28) and (2.7) or equivalently by (2.32), performs much better than the cg_descent
method by Hager and Zhang [18] for the test problems from the CUTEr collection.

To a great extent, both the new family (1.12) proposed in this paper and the Hager-Zhang
family (1.11) could be regarded as subfamilies of the Dai-Liao family (1.6). Comparing the new
family with the Hager-Zhang one, the parameter τk in (1.12) has a clear meaning; namely, it
is corresponding to the self-scaling parameter in the scaled memoryless BFGS method. On the
occasion of quasi-Newton methods, to improve the condition numbers of quasi-Newton matrices,
this parameter τk (see [25, 26]) must be such that

τBk ≤ τk ≤ τHk , (6.1)

where τBk and τHk are given in (2.7) and (2.6), respectively. This suggested the following interval
of the quantity tk in (2.13),

tk ∈
[
∥yk∥2

sTk yk
, 2

∥yk∥2

sTk yk
−
sTk yk
∥sk∥2

]
. (6.2)

In this case, the new family of methods (1.12) does not include the formula (1.8) by Hager
and Zhang [17] if sTk yk > 0 for all k. We wonder whether this suggested interval (6.2) of tk is
helpful in nonlinear conjugate gradient field. In addition, since many choices on the self-scaling
parameter τk have been proposed in [1, 25, 26, 27] and the references therein, we wonder if there
exist any other members of the new family (1.12) which are more efficient than (2.28). This still
remains under investigation.

As seen from Figure 3, the proposed dynamic restart stratgy indeed contributes to the effi-
ciency of Algorithm 4.1 (b). This is mainly based on the quantity rk−1 defined by (3.4), which
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reflects how the function is close to some quadratic function in some sense. Another useful
quantity in designing dynamical restart strategy is

ξk−1 =
gTk gk−1

∥gk∥2
. (6.3)

Specifically, Powell [31] introduced the restart criterion |ξk−1| ≥ 0.2 for Beale [2]’s three-term
conjugate gradient method and obtained satisfactory numerical results. Such a restart criterion
was also used by Shanno and his collaborator [34, 36] in building the CONMIN software. There-
fore there is still a broad room how to develop more efficient restart strategy in the design of
nonlinear conjugate gradient algorithms.

To extend the idea of this paper, we may consider the self-scaling memoryless Broyden family
of methods, whose search direction is parallel to

dk+1 = −gk+1 +

[
θk
yTk yk

sTk yk

(
gTk+1yk

yTk yk
−
gTk+1sk

sTk yk

)
− τk

gTk+1sk

sTk yk

]
sk

+

[
gTk+1yk

yTk yk
+ θk

(
gTk+1sk

sTk yk
−
gTk+1yk

yTk yk

)]
yk, (6.4)

where τk is the scaling parameter again and θk is the parameter related to the Broyden’s family.
By projecting the above direction into the one-dimensional manifold S in (2.9), we can obtain
the two-parameter family of methods where dk+1 = −gk+1 + βk(τk, θk) dk and

βk(τk, θk) =

[
θk

(
yTk yk

dTk yk
−
dTk yk
∥dk∥2

)
+
dTk yk
∥dk∥2

]
gTk+1yk

yTk yk
−
[
θk

(
yTk yk

sTk yk
−
sTk yk

sTk sk

)
+ τk

]
gTk+1sk

dTk yk
. (6.5)

If the line search is exact, in which case gTk+1sk = 0, the above formula reduces to

βk(τk, θk) =

[
θk + (1− θk)

(dTk yk)
2

∥dk∥2∥yk∥2

]
gTk+1yk

dTk yk
. (6.6)

Thus we can see that, the above two-parameter family of methods reduce to the linear conjugate
gradient method only when θk = 1, provided that the vectors dk and yk are not always parallel.
Nevertheless, we might consider some dynamical ways of choosing θk. This remains under
investigation.

Acknowledgements. The authors are very grateful to the anonymous referees for their
useful suggestions and comments, which improved the quality of this paper.

References

[1] M. Al-Baali, Numerical experience with a class of self-scaling quasi-Newton algorithms, J. Optim. Theory
and Appl., 96:3 (1998), pp. 533-553.

[2] E. M. L. Beale, A derivation of conjugate gradients, in Numerical Methods for Nonlinear Optimization, F.
A. Lootsman, ed., Academic Press, London, 1972, pp. 39-43.

[3] W. Y. Cheng and Q. F. Liu, Sufficient descent nonlinear conjugate gradient methods with conjugacy condi-
tions, Numerical Algorithms 53 (2010), pp. 113-131.

22



[4] Y. H. Dai, A family of hybrid conjugate gradient methods for unconstrained optimization, Mathematics of
Computation, 72 (2003), pp. 1317-1328.

[5] Y. H. Dai, Nonlinear Conjugate Gradient Methods, Wiley Encyclopedia of Operations Research and Man-
agement SciencePublished OnlineFeb 2011, DOI: 10.1002/9780470400531.eorms0183/pdf

[6] Y.H. Dai, J. Han, G. Liu, D. Sun, H. Yin, and Y. Yuan, Convergence properties of nonlinear conjugate
gradient methods, SIAM J. Optim., 10 (1999), pp. 345C358.

[7] Y. H. Dai and L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl.
Math. Optim., 43 (2001), pp. 87-101.

[8] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property,
SIAM J. Optim., 10 (1999), pp. 177-182.

[9] Y. H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained optimization, Annals
of Operations Research, 103 (2001), pp. 33-47.

[10] Y. H. Dai and H. Zhang, An adaptive two-point stepsize gradient algorithm, Numerical Algorithms, 27
(2001), pp. 377-385.
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