
Column Generation for Extended Formulations

Ruslan Sadykov (1,2) and François Vanderbeck (2,1)
(1) project-team RealOpt, INRIA Bordeaux Sud-Ouest

(2) Institute of Mathematics, University of Bordeaux

July 8, 2011

Abstract

Working in an extended variable space allows one to develop tight reformula-
tions for mixed integer programs. However, the size of the extended formulation
grows rapidly too large for a direct treatment by a MIP-solver. Then, one can use
projection tools and derive valid inequalities for the original formulation, or con-
sider an approximate extended formulation (f.i., by aggregating variables). Both
approaches result in outer approximations of the intended extended formulation.
An alternative is to work with inner approximations defined and improved by gen-
erating dynamically the variables of the extended formulation. It assumes that the
extended formulation stems from a decomposition principle: a subproblem admits
an extended formulation from which the original problem extended formulation is
derived. Then, one can implement column generation for this extended formula-
tion by transposing the equivalent procedure for the Dantzig-Wolfe reformulation.
Pricing subproblem solutions are expressed in the variables of the extended formu-
lation and added to the current restricted version of the extended formulation along
with the subproblem constraints that are active for the subproblem solution. Such
“column-and-row generation” procedure is reviewed and analysed herein. We com-
pare numerically a direct handling of the extended formulation, a standard column
generation approach, and the “column-and-row generation” procedure, highlighting
a key benefit of the latter: lifting pricing problem solutions in the space of the ex-
tended formulation permits their recombination into new subproblem solutions and
results in faster convergence.

Keywords: Extended formulations for MIP, Column-and-Row Generation, Stabilization.

Introduction
Formulating a mixed integer program (MIP) in a higher dimensional space by intro-

ducing extra variables is a process to achieve a tight approximation of the integer convex
hull. Several classes of reformulation techniques are reviewed in [24]: some are based on
variable splitting (including multi-commodity flow, unary or binary expansions), others
rely on the existence of a dynamic programming or a linear programming separation pro-
cedure, further reformulation techniques rely on exploiting the union of polyhedra or basis

1

reduction. A unifying framework is presented in [12]. An extended formulation presents
the practical advantage to lead to a direct approach: the reformulation can be fed to
a MIP-solver. However, such approach remains limited to small size instances because
the extended formulation grows rapidly too large for practical purposes. Its size counted
as the sum of the number of variables and constraints is often pseudo-polynomial in the
input size or polynomial but with a large degree.

To alleviate the curse of dimensionality, one can in some cases project the extended
formulation into a lower dimensional space; for example by applying a Benders’ decom-
position approach [2]. Alternatively, Van Vyve and Wolsey [25] propose to “truncate” the
reformulation in order to define a good quality outer approximation of the polyhedron
defined by the projection of the full-blown extended formulation. In several application
specific contexts, they show that approximating the extended formulation may indeed
allow one to achieve significant tightening of the linear programming bound while hav-
ing manageable size. The techniques range from dropping some of the constraints (the
more complex constraints typically bring the most marginal dual bound improvements),
or in such case as multi-commodity flow reformulation, aggregating several commodities
into one or aggregating nodes, or, more generally applying the extended reformulation
paradigm to subsystems only. Such approach preserves the possibility of directly apply-
ing a standard MIP approach to the reformulation and allows one to deal with larger size
instances. In [25], the level of approximation is controlled by a parameter whose max-
imum value correspond to the full extended formulation. Their numerical results show
that the best trade-off between dual bound quality and size is often achieved for low level
approximations.

While Benders’ approach results in working with a dynamically improved outer ap-
proximation of the intended extended formulation, the ‘truncate” extended reformulation
of [25] leads to a relaxation that defines a static outer approximation. The approach
reviewed herein consists in developing an inner approximation of the intended polyhedron
by considering the extended formulation restricted to a subset of variables, delaying the
inclusion of some variables and associated constraints. In the spirit of a Dantzig-Wolfe
column generation approach, the inner approximation is iteratively improved by adding
promising variables along with the constraints that become active once those variables
are added. However it relies on specific pricing and separation strategies. Instead of sim-
ply doing variable pricing or constraint separation based on enumeration on the columns
and rows of a full-blown extended formulation, one prices over the whole set of vari-
ables by solving an optimization subproblem and insert the constraints that are binding
for that subproblem solution. For the method to apply, the application on hand must
have some decomposable structure that makes it amenable to Dantzig-Wolfe decompo-
sition. Then, the pricing subproblem is that of a standard column generation approach
applied to Dantzig-Wolfe reformulation. However, subproblem solutions are expressed in
the variables of the extended formulation (which can be understood as column “lifting”
or “disaggregation”) and added to a master program which is a restricted version of the
extended formulation.

Therefore, the method is a hybrid between an extended formulation approach and a

2

standard column generation approach. Compared to a direct use of the extended refor-
mulation, this hybrid approach can be seen as a way to handle dynamically the large
size of the reformulation. Compare to applying a standard column generation to the
Dantzig-Wolfe reformulation, the hybrid approach has the advantage of an accelerated
convergence of the column generation procedure: “lifting/disaggregating” columns acts
as a stabilization technique for column generation. Moreover, it offers a richer model in
which to define cuts or branching restrictions.

Such column-and-row generation procedure is a technique previously described in the
literature in application specific context, such as bin packing [19], multi-commodity flow
[13], split delivery vehicle routing [6, 7], or network design [7, 8]. The convincing com-
putational results of some of these papers indicate the interest of method. Although the
motivations of these studies are mostly application specific, methodological statements
made therein are to some extend generic. Moreover, there are recent effort to explore
this approach further. In [9], Frangioni and Gendron present a “structured Dantzig-Wolfe
decomposition” for which they adapt column generation stabilization techniques (from
linear penalties to the bundle method). In [7], Gendreau et al. present a branch-and-
price-and-cut algorithm where columns and cuts are generated simultaneously. In [10],
Muter et al. consider what they call a “simultaneous column-and-row generation” ap-
proach where the subproblem has itself decomposable structure.

Here, we revisit the column-and-row generation approach. Our purpose is to show
light on this approach, to emphasize its wide applicability, and to present it with a new
angle as a method that is natural when considering a problem reformulation based on an
extended reformulation of a subproblem. In the spirit of [23], column-and-row generation
is viewed herein as a generalization of standard column generation (the latter is based on
a specific subproblem extended formulation). This view leads to a new termination condi-
tion and to easy extension of the method’s formalism when one only has an approximate
extended formulation of subproblems: we establish the validity of the algorithm in a form
that encompass all special cases. Our presentation of the methodology completes those
of [7, 8, 9, 10, 13, 19]. More importantly perhaps, we analyse the interests of this hybrid
approach: the main advantage being the recombination of previously generated columns
into new subproblem solutions that results in an acceleration of the convergence.

In the sequel, we start (in Section 1) by presenting applications where a column-and-
row generation has been used, or could have been used. Next, in Section 2, we formalize
the procedure and show the validity of the algorithm. We then show that the method
extends to the case where one only has a good reformulation in an extended variable space,
but not an exact extended formulation (as in approximate extended formulation arising
from the proposal of [25]). We show that in such case, the dual bound that one obtains
is at worse that of the linear relaxation of the extended reformulation and at best the
Lagrangian dual bound based on that subproblem. We also consider the case of multiple
subproblems. In Section 3, we discuss the pros and cons of the method and we highlight
the properties that are required for the application in order to find some specific interest
in replacing standard column generation by such dynamic column-and-row generation
for an extended formulation. Finally, in Section 4, we present some numerical tests on

3

several applications where we compare a direct solution of the extended formulation linear
relaxation, a standard column generation approach for the Dantzig-Wolfe master program,
and the column-and-row generation approach applied to the extended formulation LP.
The results illustrate the stabilization effect resulting from column disaggregation and
recombinations.

1. Specific Examples

1.1 Machine Scheduling

For scheduling problems, time-index formulations are standard extensions resulting
from a unary decomposition of the start time variables. Consider a single machine schedul-
ing problem on a planning horizon T as studied by van den Akker et al. [21]. The problem
is to schedule the jobs, j ∈ J = {1, . . . , n}, a single one at the time, at minimum cost,
which can be modeled as:

[F] ≡ min{
∑
j

c(Sj) : Sj + pj ≤ Si or Si + pi ≤ Sj ∀(i, j) ∈ J × J} (1)

where Sj denotes the start time of job j and pj is its given processing time. Disjunctive
program (1) admits an extended formulation written in terms of decision variables zjt = 1
if and only if job j ∈ J∪{0} starts at the outset of period t ∈ {1, . . . , T}, where job 0 with
processing time 1 models machine idle time. By convention, period t is associated with
time interval [t − 1, t) and zjt is only defined for 1 ≤ t ≤ T − pj + 1. The reformulation
takes the form:

[R] ≡ min{
∑
jt

cjt zjt (2)

T−pj+1∑
t=1

zjt = 1 ∀j ∈ J (3)∑
j

zj1 = 1 (4)∑
j

zjt =
∑

j: t−pj≥1

zj,t−pj
∀t > 1 (5)

zjt ∈ {0, 1} ∀j, t} (6)

where (3) enforces the assignment of each job, (4) the initialization of the schedule, while
(5) forbids the use of the machine for more than one job at the time: a job j can start
in t only if one ends in t and therefore releases the machine. (The formulation can be
extended to the case in which m identical machines are available; then the rhs of (4) is
m and variables z0t represents the number of idle machines at time t.) The objective can
model any cost function that depends on job start times (or completion times). Extended
reformulation [R] has size O(|J | · T) which is pseudo-polynomial in the input size as
T ≥

∑
j pj. The subsystem defined by constraints (4-5) characterize a flow that represents

a “pseudo-schedule” satisfying non-overlapping constraints but not the single assignment

4

constraints. A standard column generation approach based on subsystem (4-5) consists
in defining reformulation:

[M] ≡ min{
∑
g∈G

cg λg :
∑
g∈G

T−pj+1∑
t=1

zgjt λg = 1 ∀j,
∑
g∈G

λg = m, λg ∈ {0, 1} ∀g ∈ G} (7)

where G is the set of “pseudo-schedules”: vector zg and scalar cg define the associated so-
lution and cost for a solution g ∈ G. As done in [20, 21], reformulation [M] can be solved
by column generation. The pricing subproblem [SP] is a shortest path problem: find a
sequence of jobs and down-times to be scheduled on the single machine with possible
repetition of jobs. The underlying graph is defined by nodes that represent periods and
arcs (t, t+pj) associated to the processing of jobs j ∈ J∪{0} in time interval [t−1, t+pj).
Figure 1 illustrates such path for a numerical instance.

Figure 1: A path associated to a pseudo-schedule solution to the sub-problem for T = 10
and J = {1, . . . , 4} and pj = j for each j ∈ J : the sequence consists in scheduling job 3,
then twice job 2 consecutively, and to complete the schedule with idle times (represented
by straight arcs).

1 2 3 4 5 6 7 8 9 10 11

An alternative to the above standard column generation approach for [M] would be to
generate dynamically the z variables for [R], not one at the time, but by solving the short-
est path pricing problem [SP] and by adding to [R] the components of the subproblem
solution zg in the time index formulation along with the flow conservation constraints that
are binding for that solution. To illustrate the difference between the two approaches,
Figure 2 shows several iterations of the column generation procedure for [M] and for the
numerical instance of Figure 1. In Figure 2, each bended arc represents a job, and straight
arcs represent idle times. Formulations [M] and [R] are initialized with the variable(s)
associated to the same pseudo-schedule depicted in Figure 2 as the initial subproblem
solution. Note that the final solution of [M] is the solution obtained as the subproblem
solution generated at iteration 11; while, for formulation [R], the final solution is a re-
combination of the subproblem solution of iteration 3 and the initial solution.

As illustrated by the numerical example of Figure 2, the interest of implementing
column generation for [R] instead of [M] is to allow for the recombination of previously
generated solutions. Observe that the final solution of [R] in Figure 2. Let us denote it by
ẑ. It would not have its equivalent in formulation [M] even if the same four subproblem
solutions had been generated: zg, for g = 1, . . . , 4. Indeed, if ẑ =

∑4
g=1 z

g λg, then λ1 > 0
and job 2 must be at least partially scheduled in period 2.

5

Figure 2: Solving the example by column versus column-and-row generation (assuming the
same data as in of Figure 1).

Iteration Subproblem solution

Initial solution

· · · · · ·

Final solution

Column generation for [M]

1

2

3

10

11

Column-and-row
generation for [R]

Subproblem solution

1.2 Bin Packing

A column-and-row generation approach for an extended formulation has been applied
to the bin packing problem by Valerio de Carvalho [19]. The bin packing problem consists
in assigning n items i ∈ I = {1, . . . , n} of given size si into bins of identical capacity C
using a minimum number of bins. A compact formulation is:

[F] ≡ min{
∑
k

δk : (8)∑
k

xik = 1 ∀i (9)∑
i

si xik ≤ C δk ∀k (10)

xik ∈ {0, 1} ∀i, k (11)
δk ∈ {0, 1} ∀k} (12)

where xik = 1 if item i ∈ I is assigned to bin k for k = 1, . . . , n and δk = 1 if bin k is
used. The standard column generation approach consists in reformulating the problem
in terms of the solution to the knapsack subproblem (10-12) for a fixed k. The master

6

program takes the form:

[M] ≡ min{min
∑
g

λg : (13)∑
g

xgiλg = 1 ∀i ∈ I (14)

λg ∈ {0, 1} ∀g ∈ G.} (15)

where G denotes the set of “feasible packings” satisfying (10-12) and vector xg defines the
associated solution g ∈ G. When solving its linear relaxation by column generation, the
pricing problem takes the form:

[SP] ≡ min{δ −
∑
i

πixi : (x, δ) ∈ X} (16)

where π are dual variables associated to (14) and

X = {(xg, δg)}g∈G = {(x, δ) ∈ {0, 1}n+1 :
∑
i

sixi ≤ C δ}.

The subproblem can be set as the search for a shortest path in an acyclic network cor-
responding to the decision graph that underlies a dynamic programming solution of the
knapsack subproblem: the nodes v ∈ {0, . . . , C} are associated with capacity consump-
tion levels; each item, i ∈ I, gives rise to arcs (u, v), with v = u+ si; wasted bin capacity
is modeled by arcs (v, C) for v = 0, . . . , C − 1. A numerical example is given on the left
of Figure 3.

Figure 3: Knapsack network for C = 6, n = 3, and s = (1, 2, 3)

60 1 2 3 4 5 60 1 2 3 4 5

The network flow model for the subproblem yields an extended formulation for the
subproblem in terms of variables f iuv = 1 if item i is in the bin in position u to v = u+ si.
The subproblem reformulation takes the form:

{(f, δ) ∈ {0, 1}n∗m+1 :
∑
i,v

f i0v + f0C = δ (17)∑
i,u

f iuv =
∑
i,u

f ivu + fv,C v = 1, . . . , C − 1 (18)∑
i,u

f iuC +
∑
v

fvC = δ (19)

0 ≤ f iuv ≤ 1 ∀i, u, v = u+ si } (20)

7

(Superscript i is redundant, but it shall help to simplify the notation below.)

Subproblem extended formulation (17-20) leads in turn to an extended formulation
for the original problem in terms of aggregate arc flow variables over all subproblems
associated with each bin k = 1, . . . , n: F i

uv =
∑

k f
ik
uv, FvC =

∑
k f

k
vC , and ∆ =

∑
k δ

k.
The extended formulation takes the form:

[R] ≡ min{∆ : (21)∑
(u,v)

F i
uv = 1 ∀i (22)

∑
i,v

F i
0v + F0C = ∆ (23)∑
i,u

F i
uv =

∑
i,u

F i
vu + FvC v = 1, . . . , C − 1 (24)∑

i,u

F i
uC +

∑
v

FvC = ∆ (25)

F i
uv ∈ {0, 1} ∀i, (u, v) : v = u+ si }. (26)

Valerio de Carvalho [19] proposes to solve the linear relaxation of (21-26) by col-
umn generation: iteratively solve a partial formulation stemming from a restricted set
of variables F i

uv, collect the dual solution π associated to (22), solve pricing problem
(16), transform its solution, x∗, into a path flow that can be decomposed into a flow on
the arcs, a solution f(x∗) to (17-20), and add in (21-26) the missing arc flow variables
{F i

vu : f ivu(x
∗) > 0}, along with the missing flow balance constraints active for f(x∗).

Observe that (17-20) is only an approximation of the extended network flow formula-
tion associated to the dynamic programming recursion to solve a 0-1 knapsack problem.
A dynamic programming recursion for the bounded knapsack problem yields state space
{(j, b) : j = 0, . . . , n; b = 0, . . . , C}, where (j, b) represents the state of a knapsack filled
up to level b with a combination of items i ∈ {1, . . . , j}. Here, it has been aggregated
into state space: {(b) : b = 0, . . . , C}. This entails relaxing the subproblem to an un-
bounded knapsack problem. Hence, feasible solutions to (17-20) can involve multiple
copies of the same item. Because (17-20) models only a relaxation of the 0-1 knapsack
subproblem, the LP relaxation of (21-26) is weaker than that of the standard master
program (13-15). For instance, consider the numerical example with C = 100, n = 5
and s = (51, 50, 34, 33, 18). Then, the LP value of (13-15) is 2.5, while in (21-26) there
is a feasible LP solution of value 2 which is F 1

0,51 = 1, F 3
51,85 = F 5

51,69 = F 5
69,87 = 1

2
,

F 2
0,50 = F 2

50,100 = 1
2
, F 3

0,34 = F 4
34,67 = F 4

67,100 = 1
2
. In [19], to avoid symmetries and to

strengthen the extended formulation, arcs associated to an item are only defined if the
tail node can be reached with a filling using items larger than si (as in the right part of
Figure 3). Note that our numerical example of a weaker LP solution for [R] does not hold
after such strengthening.

8

1.3 Multi-Commodity Capacitated Network Design

Frangioni and Gendron [8] applied a column-and-row generation technique to a multi-
commodity capacitated network design problem. Given a directed graph G = (V,A) and
commodities: k = 1, . . . , K, with a demand dk of flow between origin and destination
(ok, tk) ∈ V × V , the problem is to assign an integer number of nominal capacity on each
arc to allow for a feasible routing of traffic for all commodities, while minimizing routing
and capacity installation cost. In [8], split flows are allowed and hence flow variables are
continuous. A formulation is:

[F] ≡ min{
∑
ijk

ckij x
k
ij +

∑
ij

fij yij (27)∑
j

xkji −
∑
j

xkij = dki ∀i, k (28)∑
k

xkij ≤ uij yij ∀i, j (29)

0 ≤ xkij ≤ dk yij ∀i, j, k (30)

xkij ≥ 0 ∀i, j, k (31)
yij ∈ IN ∀i, j} (32)

where dki = dk if i = ok, dki = −dk if i = tk, and dki = 0 otherwise. Variables xkij denote
the flow of commodity k in arc (i, j) ∈ A. The design variables, yij, consists in selecting
an integer number of nominal capacity on each arc (i, j) ∈ A. The problem decomposed
into a continuous knapsack subproblem with varying capacity for each arc (i, j) ∈ A:
X ij = {(x, y) ∈ RK

+ × IN :
∑

k x
k ≤ uij y, x

k ≤ dk y ∀k}. An extended formulation for
the subproblem arises from unary disaggregation of the design variables: let ysij = 1 and
xksij = xkij if yij = s for s ∈ {1, . . . , smax

ij } with smax
ij = d

P
k d

k

uij
e. Then, the subproblem

associated to arc (i, j) can be reformulated as:

Zij = {(xksij , ysij) ∈ RK×smax
ij

+ × {0, 1}s
max
ij :∑

s

ysij ≤ 1, (s− 1) uij y
s
ij ≤

∑
k

xksij ≤ s uij y
s
ij ∀s, xksij ≤ min{dk, s uij} ysij ∀k, s}

Its continuous relaxation gives the convex hull of its integer solutions and its projection
gives the convex hull of X ij solutions as shown by Croxton, Gendron and Magnanti [5]:
reformulation Zij of subproblem X ij can be obtained as the union of polyhedra associated
with each integer value of yij = s for s = 0, . . . , smax

ij .

9

These subproblem reformulations yields a reformulation for the original problem:

[R] ≡ min{
∑
ijks

ckij x
ks
ij +

∑
ijs

fij s y
s
ij (33)∑

js

xksji −
∑
js

xksij = dki ∀i, k (34)

(s− 1) uij y
s
ij ≤

∑
k

xksij ≤ s uij y
s
ij ∀i, j, s (35)

0 ≤ xksij ≤ min{dk, s uij} ysij ∀i, j, k, s (36)∑
s

ysij ≤ 1 ∀i, j (37)

ysij ∈ {0, 1} ∀i, j, s} (38)

On the other hand, a Dantzig-Wolfe reformulation can be derived based on subsystems
X ij or equivalently Zij. Let Gij = {(xg, yg)}g∈Gij be the enumerated set of extreme
solutions to Zij. A column g is associated with a given capacity installation level σ:
ygs = 1 for a given s = σ and zero for s 6= σ while the associated flow vector xgks = 0 for
s 6= σ and define an extreme LP solution for s = σ. Then, Dantzig-Wolfe master takes
the form

[M] ≡ min{
∑

i,j,s,g∈Gij

(ckij x
g
ks + fij s y

g
s) λ

ij
g (39)

∑
js

∑
g∈Gij

xgks λ
ij
g −

∑
js

∑
g∈Gij

xgks λ
ij
g = dki ∀i, k (40)

∑
g∈Gij

λijg ≤ 1 ∀i, j (41)

λijg ∈ {0, 1} ∀i, j, g ∈ Gij} (42)

When solving [M] by column generation, the pricing problems take the form:

[SP ij] ≡ min{
∑
ks

ckij x
ks
ij +

∑
s

fij s y
s
ij : ({xksij }ks, {ysij}s) ∈ Zij} (43)

for each arc (i, j).

Fangioni and Gendron [8] proceed to solve reformulation [R] by adding dynamically
the ysij variable and associated xksij variables for a given s at the time; i.e., for each arc
(i, j), they include the solution yij = s that arises as the solution of a pricing subproblem
(43) over Zij, while a negative reduced cost subproblem solution is found. Constraints
(35-36) that are active in the generated pricing problem solutions are added dynamically
to [R]. In comparison, a standard column generation approach applied to [M] requires
more iterations to converge as shown experimentally in [9].

This comparative advantage of the approach based of reformulation [R] has an intuitive
explanation: for a fixed yij = s, one might need to generate several columns in [M]
associated to different extreme continuous subproblem solution in the x variables, while

10

when working with [R], the optimization in the x variables is decoupled from that of the
capacity setting, y. Indeed, in a column-and-row generation approach of formulation [R],
once variable ysij is included, all extreme points of polyhedral descriptions associated to
yij = s are feasible, but in the restricted master [M], the only feasible extreme points
in x are those that were generated. Thus, the interest of applying column generation to
[R] rather than [M] is to allow for a direct optimization of the trivial continuous part of
the subproblem solution instead of proceeding by enumeration of the attractive extreme
continuous solutions.

2. The Generic Procedure
Assume a pure integer program that can be stated in the form [F]:

min c x (44)
[F] A x ≥ a (45)

B x ≥ b (46)
x ∈ INn (47)

with an identified subsystem defined by

P = {x ∈ Rn
+ : Bx ≥ b} and X = P ∩ Zn (48)

where A ∈ Qm1×n and B ∈ Qm2×n are rational matrices, while a ∈ Qm1 and b ∈ Qm2 are
rational vectors. X (resp. [F]) is assumed to be a pure integer program that is feasible
and bounded. Extension to the unbounded case or mixed integer case is merely a question
of introducing more notations.

Assumption 1 There exists a polyhedron Q = {z ∈ Re
+ : H z ≥ h, z ∈ Re

+}, defined by
a rational matrix H ∈ Qf×e and a vector h ∈ Qf , and a linear transformation T defining
the projection:

z ∈ Rp
+ −→ x = (T z) ∈ Rn

+ ;

such that,

(i) Q defines an extended formulation for conv(X), i.e.,

conv(X) = projxQ = {x ∈ Rn
+ : x = T z; H z ≥ h; z ∈ Re

+} ;

(ii) Z = Q ∩ Ze
+ defines an extended IP-formulation for X, i.e.,

X = projxZ = {x ∈ Rn
+ : x = T z; H z ≥ h; z ∈ Ze

+} .

11

Condition (i) is the core of Assumption 1, while condition (ii) is merely a technical restric-
tion that simplify the presentation. It also permits one to define branching restrictions
directly in the reformulation. We also assume that Z is bounded to simplify the presen-
tation. The dimension e + f of the reformulation is typically much larger than n + m2:
while n+m2 (or n at least) is expected to be polynomial in the input size, e+ f can have
much higher polynomial degree, or even be pseudo-polynomial/exponential in the input
size.

2.1 Reformulations

The subproblem extended formulation immediately gives rise to a reformulation of [F]
to which we refer by [R]:

min c T z (49)
[R] A T z ≥ a (50)

H z ≥ h (51)
z ∈ Ze

+ . (52)

The standard Dantzig-Wolfe reformulation approach is a special case where X is refor-
mulated as:

X = {x =
∑
g∈G

xgλg :
∑
g∈G

λg = 1, λg ∈ {0, 1}|G|}, (53)

G defining the set of generators of X (as they are called in [23]), i.e., G is the set of integer
solutions of X in the case where X is a bounded pure integer program as assumed here.
Then, the reformulation takes a form known as the master program, to which we refer by
[M]:

min
∑
g∈G

c xg λg (54)

[M]
∑
g∈G

A xg λg ≥ a (55)∑
g∈G

λg = 1 (56)

λ ∈ {0, 1}|G| . (57)

Let [RLP] and [MLP] denote respectively the linear programming relaxation of [R] and
[M], while [D] denotes the dual of [MLP]. Let

vRLP = min{c T z : A T z ≥ a, H z ≥ h, z ∈ Re
+} ,

vMLP = min{
∑
g∈G

c xg λg :
∑
g∈G

A xg λg ≥ a,
∑
g∈G

λg = 1, λ ∈ R|G|+ } , and

vDLP = max{π a+ ν : π A xg + ν ≤ c xg ∀g ∈ G, π ∈ Rm1
+ , ν ∈ R1} (58)

be respectively the linear programming (LP) relaxation value of [R], [M], and [D].

12

Observation 1 Under Assumption 1, the linear programming relaxation optimum value
of both [R] and [M] are equal to the Lagrangian dual value obtained by dualizing constraints
A x ≥ a, i.e.,

v∗ = vRLP = vMLP = vDLP ,

where v∗ := min{cx : A x ≥ a, x ∈ conv(X)}.
This is a direct consequence of Assumption 1. Note that the dual bound v∗ obtained
via such reformulations is often tighter than the linear relaxation value of the original
formulation [F] (as typically conv(X) ⊂ P).

Given the potential large size of [R], both in terms of number of variables and con-
straints, one can solve its LP relaxation using dynamic column-and-row generation. If
one assumes an explicit description of [R], the standard procedure would be to start off
with a restricted set of variables and constraints (including possibly artificial variables to
ensure feasibility) and to add iteratively negative reduced cost columns and violated rows
by inspection. An alternative pricing-and-separation strategy is to implement a hybrid
between the standard Dantzig-Wolfe column generation approach for [M] and the above
standard dynamic handling of [R]: it consists in generating columns and rows for [R] not
one at the time but by lots, each lot corresponding to a solution zs of Z (which projects
onto xs = Tzs) along with the constraints (51) that need to be enforced for that solution.

2.2 Restricted Extended Formulation

Let {zs}s∈S be the enumerated set of solutions zs of Z ⊆ Ze
+. Then, S ⊂ S, defines

an enumerated subset of solutions: {zs}s∈S.
Definition 1 Given a solution zs of Z, let J(zs) = {j : zsj > 0} ⊆ {1, . . . , e} be the
support of solution vector zs and let I(zs) = {i : Hij 6= 0 for some j ∈ J(zs)} ⊆ {1, . . . , f}
be the set of constraints of Q that involve some non zero components of zs. The “restricted
reformulation” [R] defined by a subset S ⊂ S of solutions to Z is:

min c T z (59)
[R] A T z ≥ a (60)

H z ≥ h (61)

z ∈ Z|J |+ (62)

where z (resp. h) is the restriction of z (resp. h) to the components of J = ∪s∈SJ(zs), H
is the restriction of H to the rows of I = ∪s∈SI(zs) and the columns of J , while T is the
restriction of T to the columns of J .

Assume that we are given a subset S ⊂ S. We define the associated set

G = G(S) = {g ∈ G : xg = T zs for some s ∈ S}

which in turn defines a restricted formulation [M]. Let [RLP] and [MLP] denote the
LP relaxation of the restricted formulations [R] and [M]; while vRLP , vMLP denote the
corresponding LP value. Although in the end v∗ = vRLP = vMLP , as stated in Observation 1,
the value of the restricted formulations may differ.

13

Proposition 1 Let [R] and [M] be the restricted versions of formulations [R] and [M]
both associated to the same subset S ⊂ S of subproblem solutions. Under Assumption 1,
their linear relaxation values are such that:

v∗ ≤ vRLP ≤ vMLP (63)

Proof: The first inequality results from the fact that [RLP] only includes a subset of
variables of [R] whose LP value is vRLP = v∗, while the missing constraints are redundant
by definition of the current restricted formulation. Indeed, letting z̃ be a solution to the
current restricted reformulation [RLP], observe that all the missing constraints must be
satisfied by the solution that consists in extending z̃ with zero components, i.e. (z̃, 0)
defines a solution to [RLP]; for otherwise such missing constraint would involve some
components of subproblem solutions in S \ S in contradiction to the fact that solutions
of S satisfy all constraints of Z. The second inequality is derived from the fact that any
solution λ̃ to the LP relaxation of M has its counterpart z̃ =

∑
g∈G z

g λ̃g that defines a
valid solution for [RLP], where zg ∈ Z is obtained by lifting solution xg ∈ X (the existence
of the associated zg is guarantied by Assumption 1-(ii)).

The second inequality can be strict: solutions in [RLP] do not always have their
counterpart in [MLP] as illustrated in the numerical example of Section 1.1. This is an
important observation that justify considering [R] instead of [M].

Remark 1 As noted in the proof of Proposition 1, (61) defines a feasible system because
it is build from feasible solutions to Z: i.e., {z ∈ Z|J |+ : H z ≥ h} 6= ∅. However,
the restricted reformulation [R] can be infeasible due to constraints (60), hence artificial
variables can be used to patch non-feasibility until set S is expanded. (Artificial variables
are eliminated from the solution latter through raising their costs if need be.) To avoid
this technicality, we assume in the sequel that S has been properly initialized to guarantee
the feasibility of [RLP].

2.3 Column Generation

The procedure given in Table 1 is a dynamic column-and-row generation algorithm
for the linear relaxation of [R]. It is a hybrid method that generates columns for [MLP]
while getting new dual prices from a restricted version of [RLP]. Its validity derives from
the observations made in Proposition 2.

Proposition 2 Let (π, σ) denote an optimal dual solution to [RLP], associated to con-
straints (60) and (61) respectively. Let z∗ be the subproblem solution obtained in Step 2
of the procedure of Table 1 and ζ = (c− πA) T z∗ be its value. Then:

(i) The Lagrangian bound: L(π) = π a + (c − πA) T z∗ = π a + ζ, defines a valid
dual bound for [MLP] and (π, ζ) defines a feasible solution of [D], the dual of [MLP]
defined in (58). Hence, bound β, that is defined recursively in the procedure of Table
1, is a valid dual bound for [F], and β ≤ v∗.

14

(ii) If vRLP ≤ β (i.e. when the stopping condition in Step 3 is satisfied), then v∗ = β and
(π, ζ) defines an optimal solution to [D].

(iii) If vRLP > β, then [(c−πA)T −σH]z∗ < 0. Hence, some of the component of z∗ were
not present in [RLP] and have negative reduced cost for the current dual solution
(π, σ).

(iv) Inversely, when [(c − πA) T − σ H]z∗ ≥ 0, i.e., if the generated column has non
negative reduced cost in [RLP], then vRLP ≤ β (the stopping condition of Step 3 must
be satisfied) and (π, ν) defines a feasible solution to formulation [D] defined in (58)
for ν = σ h.

Proof:

(i) For any π ≥ 0, and in particular for the current dual solution associated to con-
straints (60), L(π) defines a valid Lagrangian dual bound on [F]. Moreover, as
ζ = min{(c−πA)T z : z ∈ Z} = min{(c−πA)x : x ∈ X}, (π, ζ) defines a feasible
solution of [D] and hence its value, π a+ ζ, is a valid dual bound on [MLP].

(ii) From point (i) and Proposition 1, we have L(π) ≤ β ≤ v∗ ≤ vRLP . When the stopping
condition in Step 3 is satisfied, the inequalities turn into equalities.

(iii) When vRLP > β ≥ L(π), we note that σ h > (c− π A) Tz∗ because vRLP = π a + σ h
and L(π) = π a + ζ = π a + (c − π A) Tz∗. As Hz∗ ≥ h and σ ≥ 0, this implies
that [(c − π A) T − σ H]z∗ < 0. Assume by contradiction that each component of
z∗ has non negative reduced cost for the current dual solution of [RLP]. Then, the
aggregate sum, [(c−πA)T −σH]z∗ cannot be strictly negative for z∗ ≥ 0. As (π, σ)
is an optimal dual solution to [RLP], all variables of [RLP] have positive reduced
cost. Thus, the negative reduced cost components of z∗ must have been absent from
[R].

(iv) Because Hz∗ ≥ h, [(c − πA) T]z∗ ≥ σ H z∗ implies (c − π A) Tz∗ ≥ σ h, i.e.,
ζ ≥ σ h. In turn, ζ ≥ σ h implies that (π, ν) with ν = σ h is feasible for [D] (all
constraints of [D] are satisfied by (π, ν)). Note that ζ ≥ σ h also implies vRLP ≤ β,
as vRLP = π a+ σ h ≤ π a+ ζ = L(π) ≤ β.

Remark 2 The column generation pricing problem of Step 2 in Table 1 is designed for
formulation [MLP] and not for formulation [RLP]: it ignores dual prices, σ, associated to
subproblem constraints (61).

Remark 3 For the column generation procedure of Table 1, pricing can be operated in
the original variables, x, in Step 2. Indeed, min{(c−πA)T z : z ∈ Z} ≡ min{(c−πA)x :
x ∈ X}. But, to implement Step 4, one would then need to be able to lift the solution
x∗ := argmin{(c−πA)x : x ∈ X} in the z-space in order to add variables to [R], i.e., one
must have a procedure to define z∗ such as x∗ = T z∗.

15

Table 1: Dynamic column-and-row generation for [RLP].

Step 0: Initialize the dual bound, β := −∞, and the subproblem solution set S so that
the linear relaxation of [R] is feasible.

Step 1: Solve the LP relaxation of [R] and record its value vRLP and the dual solution π
associated to constraints (60).

Step 2: Solve the pricing problem: z∗ := argmin{(c − πA) T z : z ∈ Z}, and record its
value ζ := (c− πA) T z∗.

Step 3: Compute the Lagrangian dual bound: L(π) := π a + ζ, and update the dual
bound β := max{β, L(π)}. If vRLP ≤ β, STOP.

Step 4: Update the current bundle, S, by adding solution zs := z∗ and update the
resulting restricted reformulation [R] according to Definition 1. Then, goto Step 1.

Remark 4 The procedure of Table 1 is a generalization of the standard “text-book” column
generation algorithm (see f.i. [4]). Applying this procedure to formulation [M] reproduces
exactly the standard column generation approach for solving the LP relaxation of [M].
Indeed, [M] is a special case of reformulation of type [R] where system H z ≥ h consists
of a single constraint,

∑
g∈G λg = 1. The latter needs to be incorporated in the restricted

reformulation along with the first included column, λg, from which point further extensions
consist only in including further columns.

Observation 2 Note that ν = σ h plays the role of the dual solution associated to the
convexity constraint (56). It defines a valid cut-off value for the pricing sub-problem, i.e.,
if ζ ≥ σ h the stopping condition in Step 3 is satisfied.

This observation derives from the proof of Proposition 2-(iv).

2.4 Extension to approximate extended formulations

The column-and-row generation procedure for [R] provided in Table 1 remains valid
under weaker conditions. Assumption 1 can be relaxed into:

Assumption 2 Using the notation of Assumption 1, assume:

(i) reformulation Q defines an improved formulation for X, although not an exact ex-
tended formulation: conv(X) ⊂ projxQ ⊂ P where projxQ{x = T z : H z ≥ h, z ∈
Re

+};

(ii) moreover, assume conditions (ii) of Assumption 1.

Assumption 2, relaxing Assumption 1-(i), is often more realistic in many applications
where the subproblem is NP-Hard. It also applies when one develops only an approxima-
tion of the extended formulation for X as in the proposal of [25] and in the bin-packing

16

example of Section 1.2.

Then, Observation 1 and Proposition 1 become respectively:

Observation 3 Under Assumption 2, vLP ≤ vRLP ≤ v∗ = vMLP = vDLP .

Proposition 3 Under Assumption 2, vRLP ≤ vMLP and v∗ ≤ vMLP ; but one might have
vRLP < v∗.

Proposition 2 still holds under Assumption 2 except for point (ii). However the stopping
condition of Step 3 remains valid.

Proposition 4 Under Assumption 2, the column-and-row generation procedure of Table 1
remains valid. In particular, the termination of the procedure remains guaranteed. On
termination, one may not have the solution vRLP to [RLP], but one has a valid dual bound
β that is at least as good, since

vRLP ≤ β ≤ v∗ = vMLP .

Proof: Observe that the proofs of points (i), (iii), and (iv) of Proposition 2 remain valid
under Assumption 2. Hence, as long as the stopping condition of Step 3 is not satisfied,
negative reduced cost columns are found for [RLP] (as stated in Proposition 2-(iii)) that
shall in turn lead to further decrease of vRLP . Once the stopping condition, vRLP ≤ β, is
satisfied however, we have vRLP ≤ vRLP ≤ β ≤ v∗, proving that the optimal LP value, vRLP ,
is then guaranteed to lead to a bound weaker than β.

Thus, once vRLP ≤ β, there is no real incentive to further consider columns z∗ with
negative reduced cost components in [RLP]; although this may decrease vRLP , there is
no more guarantee that β shall increase in further iterations. Note that our purpose is
to obtain the best possible dual bound for [F], and solving vRLP is not a goal in itself.
Nevertheless, sufficient conditions to prove that [RLP] has been solved to optimality can
be found in [7].

2.5 Extension to multiple subsystems

Consider the case where subsystem (46) is block diagonal. Then, original formulation
[F] can be written as:

min c1x1 + c2 x2 + . . . + cK xK

A1 x1 + A2 x2 + . . . + AK xK ≥ a
B1 x1 ≥ b1

B2 x2 ≥ b2

. . . ≥ ...
BK xK ≥ bK

x1 ∈ Zn1
+ , x2 ∈ Zn2

+ , . . . xK ∈ ZnK
+ ,

with K independent subproblems: Xk = P k ∩ Zn with P k = {x ∈ Rn
+ : Bk x ≥ bk},

that are assumed to admit an extended integer reformulation: Qk = {(x, z) ∈ Rn
+ × Z

p
+ :

17

x = T k z,Hkz ≥ hk} such that Xk = projx(Qk).

The above analysis carry over to this special case, even when all subsystem are iden-
tical. If Ak = A ,Bk = B, bk = b, T k = T, Hk = H, hk = h ∀k, and hence
Xk = X ,Qk = Q ∀k, then the original formulation can be casted in an aggregate form:

min c y (64)
[AF] A y ≥ a (65)

y =
∑
k

xk (66)

xk ∈ X ∀k (67)

where y variables defined in (66) represent the aggregate value of subproblem solutions.
The extended formulation can also be aggregated. It becomes

min c T w (68)
[AR] A T w ≥ a (69)

H w ≥ h (70)
w ∈ Ze

+ (71)

where
w =

∑
k

zk (72)

and constraints (70) are obtained by surrogate relaxation: summing over k constraints
H zk ≥ h ∀k. While the aggregate master program takes the form:

min
∑
g∈G

c xg λg (73)

[AM]
∑
g∈G

A xg λg ≥ a (74)∑
g∈G

λg = K (75)

λ ∈ Z|G|+ . (76)

where λg =
∑

k λ
k
g and constraint (75) is a surrogate relaxation of

∑
g λ

k
g = 1 ∀k.

In practice, it is advisable to use the aggregate formulations for their smaller size and
more importantly to avoid the symmetry that would arise from carrying different index
k. Observe that these surrogate relaxations do not lead to weaker dual bounds.

Proposition 5 Under Assumption 1, when all subsystem are identical, i.e. Xk = X ∀k,
the linear programming relaxation optimum value of [R], [AR], [M], and [AM] are equal
to the Lagrangian dual value obtained by dualizing constraints A x ≥ a, i.e.,

v∗ = vRLP = vARLP = vMLP = vAMLP ,

where v∗ := min{cx :
∑

k A
k xk ≥ a, xk ∈ conv(Xk) ∀k}.

18

Proof: Any solution w to [ARLP] can be casted into solution zk = w
K

for k = 1, . . . , K to
[RLP]; and any solution λ to [AMLP] can be casted into a solution λk = λ

K
for k = 1, . . . , K

to [MLP].

3. Interest of the approach
Here, we review the motivations to consider applying column-and-row generation to

[R] instead of standard column generation to [M] or a direct MIP-solver approach to
[R]. We summarize the comparative pros and cons of the hybrid approach. We identify
properties that are key for the method performance and we discuss two generic cases of
reformulations where the desired properties take a special form: reformulations based on
network flow models or on dynamic programming subproblem solver.

3.1 Pros and cons of a column-and-row generation approach

When compared to a direct solution of the extended formulation, the hybrid column-
and-row approach could be seen as a way to handle dynamically the large size of the
reformulation: the formulation is kept under control by way of managing its variables
and constraints dynamically at the expense of loosing the comfort of a direct MIP solver
handling. However, if the motivation was only to get around the issue of size, one would
be better off using a standard column generation approach for [M] that yields a smaller
restricted master program. Thus, the hybrid method is rather to be understood as an
alternative to applying standard column generation to the Dantzig-Wolfe reformulation.

The primary interest for implementing column generation for [R] rather than for [M]
is to exploit the second inequality of Proposition 1: a column generation approach to
reformulation [RLP] can converge faster than one for [MLP] when there exist possible
re-compositions of solutions in [RLP] that would not be feasible in [MLP]. In the lit-
erature (f.i. in [19]), another motivation is put forward for using the column-and-row
generation rather than standard column generation: [R] offers a richer model in which
to define cuts or branching restrictions. Note however that although [R] provides new
entities for branching or cutting decisions, one can implicitly branch or formulate cuts on
the variables of [R] while working with [M]: provided one do pricing in the z-space, any
additional constraint in the z-variables of the form α z ≥ α0 for [R] translates into a con-
straint

∑
g αz

g λg ≥ α0 for [M] (where zg’s denote generators) that can be accommodated
in standard column generation approach for [M].

The drawbacks of a column-and-row approach, compared to applying standard column
generation, are:

(i) having to handle a larger restricted linear program ([RLP] has more variables and
constraints than [MLP] for a given S);

(ii) having to manage dynamic row generation along side column generation;

(iii) having to face potential symmetries in the representation of solutions that might
arise in the extended formulation; and

19

(iv) having to use a subproblem oracle specific to the subproblem extended formulation.

Indeed, as noted in Remark 3, pricing must be done in the z-variable space which might
yield greater computing times than pricing in X.

3.2 Key properties characterizing the interest of the approach

From the above discussion, we gather that the applications of interest are those for
which the hybrid column-and-row approach can be expected to converge faster than stan-
dard column generation, to reach the same quality dual bound, to implicitly provide
entities for branching or defining cuts, while allowing the use of a pricing procedure in the
original variables if possible and trying to avoid symmetric representations of solutions.
These desirable properties are formalized below.

Faster convergence results can be expected only if the following property holds, that
we call a “recombination property”.

Property 1 (“Recombination”)
Given S ⊂ S, ∃z̃ ∈ RLP (S), such that z̃ 6∈ conv(Z(S)).

Property 1 implies that one might not need to generate further columns to achieve some
solutions in Q \ conv(Z(S)); hence, the column generation approach to [RLP] might need
fewer iterations to converge compared to column generation applied to [MLP].

The dual bound quality is guarantied by what we call a “convexification property”.

Property 2 (“Convexification”)
Given S ⊂ S, ∀z̃ ∈ RLP (S), one has (T z̃) ∈ conv(X);

Assumption 1-(i), with Definition 1, implies Property 2, that can be seen as form of re-
wording of Proposition 1. Note however that the “convexification property” does not hold
under Assumption 2.

Branching can be performed simply by enforcing integrality restriction on the z vari-
ables if the following property holds, that we call the “Integrality property”.

Property 3 (“Integrality”)
Given S ⊂ S, ∀z̃ ∈ R(S), one has (T z̃) ∈ X.

Assumption 1-(ii), together with Definition 1, implies Property 3. But Property 3 does
not generalize to the case of multiple identical subsystem giving rise to aggregate formu-
lation [AR] presented in Section 2.5. Indeed, there is no counterpart to Proposition 5 for
the relations between integer formulations and reformulations.

To alleviate the drawback of having to do pricing in the z-space, one must be able to lift
any subproblem x ∈ X into an equivalent solution z for the extended formulation of the
subproblem. According to Assumptions 1 or 2, any subproblem extended solution z ∈ Z
can be associated with a solution x ∈ X through the projection operation: x = p(z) = T z.

20

Inversely, given a subproblem solution x ∈ X, the system T z = x must admit a solution
z ∈ Z: one can define

p−1(x) := {z ∈ Ze
+ : T z = x; H z ≥ h} . (77)

However, in practice, one needs an explicit operator:

x ∈ X −→ z ∈ p−1(x)

or a procedure that returns z ∈ Z given x ∈ X. Thus, the desirable property is what we
call the “Lifting property”:

Property 4 (“Lifting”)
There exists a lifting procedure that transforms any subsystem solution x ∈ X into a
solution to the extended system z ∈ Z such that x = T z.

As noted in Remark 3, when this property holds a pricing oracle in the x-space can be
used in procedure of Table 1: in Step 2, compute x∗ := argmin{(c − πA) x : x ∈ X}; in
Step 4, define z∗ = p−1(x∗). Otherwise, a pricing oracle on Z is required.

Observation 4 A generic lifting procedure is to solve the integer feasibility program de-
fined in (77).

Note that solving (77) is typically much easier than solving the pricing subproblem, as
constraint T z = x already fix many z variables. However, in application specific context,
it might be more efficient to make use of a combinatorial procedure for lifting. When the
richer space of z-variables is exploited to derive cutting planes or branching constraints
for the master program, it might induce new bounds or a new cost structure in the sub-
problem in Z that cannot be modeled in the X space. In such case, an optimization in x
followed by a lifting procedure is ruled out.

Finally, let us discuss further the symmetry drawback. It is characterized by the fact
that the set p−1(xg) defined in (77) is often not limited to a singleton (as for instance
in the bin packing example of Section 1.2, when using the underlying network of the left
part of Figure 3). In the lack of uniqueness, the convergence of the solution procedure
for [RLP] can be slowed down by iterating between different alternative representations
of the same LP solution. Note that a branch-and-bound enumeration based on enforcing
integrability of the z variables would also suffer from such symmetry.

In summary, a column generation approach for the extended formulation has any in-
terest only when Property 1 holds; while Assumption 1 guarantees Properties 2 and 3.
Property 4 is optional but if it holds any pricing oracle on X will do, until cut or branch-
ing constraint expressed in the z variable might require to price in the z-space. The
combination of Property 4 and Property 1, leads to the desirable “disaggregation and re-
combination property”. We review below several important special cases where the desired
disaggregation and recombination property holds, along side Properties 2 and 3.

21

3.3 The case of network flow reformulation

Assume that the extended formulation stems from reformulating a subproblem as a
network flow problem: a subproblem solution x ∈ X can be associated with a feasible
arc flow in the network, z ∈ Z, that satisfies flow bounds on the arcs and flow balance
constraints at the nodes. Note that extreme solutions z ∈ Q are integer in this case; they
map onto integer solutions x by the linear transformation T . In an application specific
context, any subproblem solution x can typically easily be interpreted as a feasible flow
along paths and/or cycles although the association may not be unique. Then, the flow
decomposition theorem [1] yields a unique arc flow z and Property 4 is satisfied: trans-
forming x into path and/or cycle flows and applying flow decomposition define an explicit
lifting procedure.

Now, given a set of feasible flows z1, . . . , zk, and their combined support graph, let
the solution set Q = Q(z1, . . . , zk) = {z ∈ Re

+ : H z ≥ h, z ∈ Re
+} be the restriction of

the network flow formulation to the support graph of flows z1, . . . , zk. Observe that Q
holds any convex combinations of z1, . . . , zk, but also solutions that can be defined from
a convex combination plus a flow along a undirected cycle in the support graph. Indeed,
for any pair of feasible flows, z1 and z2, the difference w = z1 − z2 is a cycle flow. By
the flow decomposition theorem [1], w decomposes into elementary cycle flow wA, wB, . . .,
and z̃ = z1 +αwA ∈ (Q\conv(z1, z2)) for any elementary cycle wA and α ∈ (0, 1). Hence,
Property 1 holds.

This special class also encompasses extended formulations that are “equivalent” to
network flow problems; for instance, when H is a consecutive 1 matrix that can be trans-
formed into a node arc incidence matrix [1]. In particular, it encompasses time index
formulation for scheduling problems as developped in Section 1.1 (beyond the extension
to the case of parallel machines, one can also model in this way a machine with arbitrary
capacity where jobs have unit capacity consumption. More generally, flow recombinations
can be encountered in any extended formulation that include a network flow model as
a subsystem; in particular, in multi commodity flow reformulations of network design
problems.

It is interesting to observe that Property 3 remains valid even in the case of multiple
identical sub-systems (developed in Section 2.5) when {z ∈ Re

+ : H z ≥ h} models a
shortest path in an acyclic network. Then, the aggregate flow w can be decomposed into
path flow (by the flow decomposition theorem [1]), each of which corresponds to a solution
xg ∈ X and therefore an integer aggregate flow w solution to [AR] decomposes into an
integer solution for [R].

3.4 The case of dynamic programming based reformulations

Another important special case is when the extended formulation is stemming from
a dynamic programming solver for the subproblem [14]. Most discrete dynamic program
entails finding a shortest (or longest) path in a directed acyclic decision graph, where
nodes correspond to states (representing partial solutions) and arcs correspond to tran-

22

sitions (associated with partial decisions to extend solutions). This directly leads to a
reformulation as a unit flow going from origin (empty solution) to destination (complete
solution). Then, one is again in the special case of Section 3.3.

However, more complex dynamic programs may involve the composition of more than
one intermediate states (representing partial solutions) into a single state (next stage par-
tial solution). These can be modeled by hyper-arcs with a single head but multiple tails.
Then, the extended paradigm developed by [14] consists in seeing a dynamic program-
ming solution as a hyper-path (associated to a unit flow incoming to the final state) in a
hyper-graph that satisfy two properties:

(i) acyclic consistency – there exists a topological indexing of the nodes such as, for
each hyper-arc, the index of the head is larger than the index of the tail nodes;

(ii) disjointness – if a hyper-arc has several tails, they must have disjoint predecessor
sets.

This characterization avoids introducing an initial state, but instead consider “boundary”
arcs that have undefined tails: see Figure 4. The dynamic programs that can be modeled
as a shortest path problem are a special case where the hyper-graph only has simple arcs
with a single tail and hence the disjointness property does not have to be checked.

Figure 4: In these hyper-graphs, underlying the paradigm of [14], nodes are indexed in
acyclic order; node 21 represents the final state; hyper arcs may have multiple tail but
a single head; “boundary” arcs that represent initialization conditions have no tail; a
solution is defined by a unit flow reaching final node 21; when a unit flow exit an hyper-
arc, a corresponding unit flow must enter in each of the tail nodes. In these graphs are
depicted respectively solutions z1 and z2 that share a common intermediate node 19, and
their recombination, ẑ.

21

7

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

7

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

7

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

Following [14], consider a directed hyper-graph G = (V ,A), with hyper-arc set A =
{(J, l) : J ⊂ V \ {l}, l ∈ V} and associated arc costs c(J, l), a node indexing σ : V →

23

{1, . . . , |V|} such that σ(j) < σ(l) for all j ∈ J and (J, l) ∈ A (such topological indexing
exists since the hyper-graph is acyclic). The associated dynamic programming recursion
takes the form:

γ(l) = min
(J,l)∈A

{c(J, l) +
∑
j∈J

γ(j)}

that can be computed recursively following the order imposed by indices σ, i.e., for l =
σ−1(1), . . . , σ−1(|V|). Solving this dynamic program is equivalent to solving the linear
program:

max{uf : ul −
∑
j∈J

uj ≤ c(J, l) ∀(J, l) ∈ A} (78)

where f = σ−1(|V|) is the final state node. Its dual is

min{
∑

(J,l)∈A

c(J, l) z(J,l) (79)

∑
(J,f)∈A

z(J,f) = 1 (80)

∑
(J,l)∈A

z(J,l) =
∑

(J ′,l′)∈A:l∈J ′

z(J ′,l′) ∀l 6= f (81)

z(J,l) ≥ 0 ∀(J, l) ∈ A} (82)

that defines the reformulation Q for the subproblem.

In this generalized context, [14] gives an explicit procedure to obtain a solution z
defining the hyper-arcs that are in the subproblem solution from the solution of the dy-
namic programming recursion: the hyper-arc selection is a dual solution to the linear
program (78) that characterizes the dynamic program; given the specific assumption on
the hyper-graph (acyclic consistency and disjointness), a greedy procedure allows one to
obtain the dual complementary solution z. So if one uses the dynamic program as oracle,
one can recover a solution x and associated complementary solution z. Alternatively, if
subproblem solution x is obtained by another algorithm, one can easily compute distance
labels, ul, associated to nodes of the hyper-graph (ul = the cost of partial solution asso-
ciated to node l if this partial solution is part of x and ul =∞ otherwise) and apply the
procedure of [14] to recover the complementary solution z. So, Property 4 is satisfied.
The procedure is polynomial in the size of the hyper-graph.

Property 1 also holds. Indeed, given a hyper-path z, let χ(z, J, l) be the characteristic
vector of the set of hyper-arcs (J ′, l′) in the hyper-path defined by z that are such that
either (J ′, l′) = (J, l) or l′ ∈ J or l′ is a predecessor of a node j ∈ J . Now consider two
hyper-paths z1 and z2 such that z1

(J1,l) = 1 and z2
(J2,l) = 1 for a given intermediate node l,

with J1 6= J2. Then, consider z̃ = z1−χ(z1, J1, l) +χ(z2, J2, l). Note that we have z̃ ∈ Z
but z̃ 6∈ conv(z1, z2), as z1

(J1,l) = 1 and z̃(J1,l) = 0. See an illustration in Figure 4.

24

4. Numerical experimentation
Here we report on our numerical tests highlighting the comparative performance of

column-and-row generation for the LP relaxation [RLP] of an extended formulation [R],
versus a classic column generation approach applied to the LP relaxation [MLP] of a stan-
dard Dantzig-Wolfe reformulation [M], or a direct LP-solver approach applied to [RLP],
the LP relaxation extended formulation [R] (when the latter is too large, we compare
to solving [FLP], the LP relaxation of a compact formulation [F]). The approaches were
implemented generically within the software platform BaPCod [22] (a problem-specific
implementation is likely to produce better results). CPLEX 12 is used to solve both
the LP relaxation of the extended formulation [R] or the master linear programs, while
the MIP subproblems are solved using a specific oracle. Results are averages over ran-
domly generated instances. Field “cpu” denotes the computational time (in seconds); “sp”
denotes the number of calls to the pricing subproblem solver in the column(-and-row)
generation procedure; “%var” denotes the number of variables generated in the restricted
master (this number is expressed as a percentage of the number of variables in the full-
blown extended formulation [R]). Additionally, “%gap” is reported in some applications to
denote the difference between the dual bound obtained and the best known primal bound
(the optimum solution in most case), as a percentage of the latter. Bounds are rounded
to the next integer for integer objectives.

For applications where the subproblem is a knapsack problem, we used the solver of
[15]. Then ,when using column-and-row generation, the solution in the original x variables
is “lifted” to recover an associated solution z using a simple combinatorial procedure. For
a 0-1 knapsack, we sort the items i for which x∗i = 1 in non-increasing order of their
size, si, and let z∗uv = 1 for the arc (u, v) such that u =

∑
j<i sjx

∗
j and v =

∑
j≤i sjx

∗
j .

Note that this procedure automatically eliminate some symmetries in formulation [R].
It can be extended to integer knapsack. For the other applications considered here, the
subproblems are solved by dynamic programming and hence the z∗ solution is obtained
directly (z∗uv = 1 if the optimum label at v is obtained using state transition from u).

4.1 Parallel Machines Scheduling

For the machine scheduling problem of Section 1.1, our objective function is the to-
tal weighted tardiness (this problem is denoted as P ||

∑
wjTj). Instance size is de-

termined by a triple (n,m, pmax), where n is the number of jobs, m is the number of
machines, and pmax is the maximum processing time of jobs. Instances are generated us-
ing the procedure of Potts and van Wassenhove [17]: integer processing times pj are
uniformly distributed in interval [1, 100] and integer weights wj in [1, 10] for jobs j,
j = 1, . . . , n, while integer due dates have been generated from the uniform distribu-
tion [P (1 − TF − RDD/2)/m, P (1 − TF + RDD/2)/m], where P =

∑
j pj, TF is the

tardiness factor, RDD is the relative range of due dates, TF,RDD ∈ {0.2, 0.4, 0.6, 0.8, 1}.
For each instance size, 25 instances were generated, one for every couple of parameters
(TF,RDD). For the single machine case, trivial instances are discarded: it suffices to
schedule jobs in non-decreasing order of their due dates to observe if a solution of cost
zero exists.

25

The results are presented in Table 2. The column-and-row generation approach sig-
nificantly outperforms the other two. Moreover, its advantage increases with the increase
of the instance size. Compared to standard column generation, cpu times and number
of solved subproblems decrease by an order of magnitude for the larger instances. The
recombination effect has an important impact: the number of calls to the pricing subprob-
lem is up to two orders of magnitude smaller for column-and-row generation in comparison
with standard column generation. However, the difference in solution time is lower due
to a larger size of the master problem in the column-and-row generation approach. On
average, only 5% of variables are needed to solve [RLP] to optimality by column-and-row
generation.

Cplex 12.1 Col. gen. Col-and-row gen
for [RLP] for [MLP] for [RLP]

m n pmax cpu sp cpu sp %var cpu
1 25 50 2.9 352 1.7 54 8.9 0.8
1 50 50 34.8 1559 41.7 82 6.7 5.9
1 100 50 381.7 9723 2531.0 112 6.1 47.3
1 25 100 11.3 378 2.3 75 5.9 1.6
1 50 100 155.4 1418 44.3 114 4.6 18.4
1 100 100 2039.6 10375 3436.3 155 4.5 182.3
2 25 100 7.2 208 0.7 62 5.4 0.5
2 50 100 198.6 641 10.0 93 4.5 3.1
2 100 100 4038.4 2697 198.2 115 4.5 30.5
4 50 100 35.1 441 3.4 90 4.4 1.5
4 100 100 726.1 1353 47.0 113 4.3 10.7
4 200 100 22441.6 4306 684.7 151 3.1 80.2

Table 2: Computational results for Machine Scheduling

4.2 Bin Packing

For the bin packing problem of Section 1.2, we compared solving [FLP] using Cplex,
standard column generation for [MLP], and column-and-row generation for [RLP]. We do
not report statistics on solving [RLP] directly with Cplex, as solution times are prohibitive
due to the huge number of variables. Instance classes “a2”, “a3”, and “a4” (the number
refers to the average number of items per bin) contain instances with bin capacity equal to
4000 where item sizes are generated randomly in intervals [1000, 3000], [1000, 1500], and
[800, 1300], respectively. The results in Table 3 are averages over 5 instances. The “%gap”
is always zero for formulations [MLP] and [RLP]. For [FLP], “gap” is the absolute value
of the difference between dual bound and the optimum solution (which we computed
by branch-and-price). The column-and-row generation for [RLP] outperforms column
generation for [MLP] for classes “a3”, and “a4”. Moreover, the advantage of the former
increases with the size of test instances. For class “a2”, the column-and-row generation
does not lead to better cpu time than standard column generation because there are fewer
recombinations given the larger average item size. Note that, although the reformulation

26

is based on Assumption 2, the dual bound obtained solving [RLP] is the same as for [MLP]
on the tested instances.

Cplex 12.1 Col. gen. Col-and-row gen.
for [FLP] for [MLP] for [RLP]

class n gap %gap cpu sp cpu sp %var cpu
“a2” 200 5.6 5.2 0.1 944 0.6 736 0.4 1.1

400 8.6 4.0 0.8 2863 3.3 1726 0.4 4.8
800 6.6 1.6 10.4 10358 31.5 4918 0.4 34.6

“a3” 200 4.0 6.0 0.1 148 0.1 116 0.1 0.2
400 8.6 6.4 0.6 283 1.0 186 0.1 1.0
800 17.4 6.5 7.7 578 9.3 294 0.1 5.9

“a4” 200 0.8 1.5 0.1 501 1.0 279 0.2 1.0
400 1.8 1.7 0.6 1045 6.8 431 0.2 3.8
800 2.8 1.3 5.8 2070 54.3 656 0.1 17.4

Table 3: Computational results for Bin Packing

4.3 Generalized assignment problem

In the Generalized Assignment Problem (GAP), the objective is to find a maximum
profit assignment of a set J = {1, . . . , n} of jobs to a set I = {1, . . . ,m} of machines such
that each job is assigned to precisely one machine subject to capacity restrictions of the
machines. A compact formulation in terms of binary variable xij that indicate whether
job j is assigned to machine i, is:

[F] ≡ min{
∑
i,j

cijxij :
∑
i

xij = 1 ∀j,
∑
j

aijxij ≤ bi ∀i, xij ∈ {0, 1} ∀i, j}, (83)

where cij ∈ IN is the cost of assigning job j to machine i, aij ∈ IN is the claim on
the capacity of job j on machine i, and bi ∈ IN is the capacity of machine i. The
0− 1 knapsack subproblem consists in selecting a job assignment for a single machine i:
X i = {xi ∈ {0, 1}n :

∑
j aijxij ≤ bi

}
. It can be reformulated as a shortest path problem:

Zi =
{
zi ∈ {0, 1}bi×n :

n∑
j=0

zij0 = 1,
n∑
j=0

(zijt − zi,j,t−aij
) = 0 ∀t ∈ {1, . . . , bi − 1}

}
. (84)

where binary variable zijt indicates whether job j use capacity interval [t, t+ aij) on ma-
chine i.

We compared three approaches: solving [FLP] using Cplex; solving [MLP] by stan-
dard column generation; and solving [RLP] by column-and-row generation. The three
approaches were tested on instances from the OR-Library with 100 and 200 jobs and 5,
10, and 20 machines. The instances in classes C, D, and E were used, since the instances
in classes A and B are easy for modern MIP solvers. The results of Table 4 are averages
over 3 instances, one for each class. Missing entries correspond to test for which cpu time

27

exceeded 1 hour. On this application, we note that although row-and-column generation
can be much faster than standard column generation, it leads to dual bounds which are
much worse, in fact almost as bad as those obtained solving [FLP]. This is explained by
the fact that the reformulation is done under Assumption 2, relaxing the 0-1 knapsack
subproblem in a unbounded knapsack subproblem.

Cplex 12.1 Col. gen. Col-and-row gen
for [FLP] for [MLP] for [RLP]

m n %gap cpu sp %gap cpu sp %gap %z cpu
20 100 1.17 0.05 1533 0.09 0.8 640 0.49 2.26 1.4
10 100 0.55 0.03 1927 0.10 1.3 350 0.38 1.95 1.1
5 100 0.26 0.01 3545 0.05 6.2 168 0.23 1.63 1.1
20 200 0.28 0.10 4553 0.02 10.8 793 0.18 1.25 9.3
10 200 0.17 0.05 9453 0.04 68.9 407 0.15 1.06 8.7
5 200 0.07 0.02 31715 0.02 2401.9 190 0.07 0.88 8.7
40 400 0.15 0.51 11837 0.03 120.3 1693 0.12 0.78 88.5
20 400 0.09 0.23 20740 0.03 1077.9 920 0.08 0.63 79.2
10 400 0.04 0.11 457 0.04 0.56 71.4

Table 4: Computational results for Generalized Assignment

4.4 Multi-Item Multi-Echelon Lot-Sizing

The Multi-Item Lot-Sizing problem consists in planning production so as to satisfy
demands dkt for item k = 1, . . . , K over a discrete time horizon with period t = 1, . . . , T
either from stock or from production. The production of a product entails production
stages (echelons) e = 1, . . . , E, each of which takes place on a different machine that can
only process one product in each period (under the so-called small bucket assumption).
A compact formulation is:

[F] ≡ min{
∑
ket

(cket x
k
et + fket y

k
et) : (85)∑

k

yket ≤ 1 ∀e, t (86)

t∑
τ=1

xkeτ ≥
t∑

τ=1

xke+1,τ ∀k, e < E, t (87)

t∑
τ=1

xkEτ ≥ Dk
1t ∀k, t (88)

xket ≤ Dk
tT y

k
et ∀k, e, t (89)

xket ≥ 0 ∀k, e, t (90)
yket ∈ {0, 1} ∀k, e, t} (91)

where variables xket are the production of product k at echelon e in period t (at unit
cost cket) and yket take value 1 if the production of product k at echelon e is setup in

28

period t (at a fixed cost fket); Dk
1t =

∑t
τ=1 d

k
τ . The stock values can be computed as

sket =
∑t

τ=1 x
k
eτ −

∑t
τ=1 x

k
e+1,τ ; their costs have been eliminated (they are included in cket).

There exists an optimal solution where at each echelon and period either there is
an incoming stock or an incoming production but not both, i.e., such that xket sket =
0 ∀e, t. As a consequence, one can consider only production lot corresponding to an
interval of demands. This dominance rule can be exploited to solve single item subproblem
can by dynamic programming in polynomial time [16] and an associated network flow
reformulation. In the single echelon case, the single item subproblem can reformulated as
a shortest path problem:

Zk = {(z0k, zk) ∈ {0, 1}T+T (T−1)/2 : z0kt +
∑
a<t

zka,t−1 =
∑
b≥t

zktb ∀t = 1, . . . T,
T∑
t=1

zt,T = 1},

where zkab = 1 if, for item k, the demands for the interval of periods t = a, . . . , b are
covered by a lot production in period t = a; while z0kt = 1 if for item k no production
take place up to period t − 1. The projection to the compact formulation is defined by
relations: xkt =

∑T
b=t

∑b
τ=t d

k
τ z

k
tb and ykt =

∑T
b=t z

k
tb.

For the Multi-Echelon case, a backward dynamic program (DP) can be defined where
the states are associated with quadruplets (e, t, a, b) denoting the fact of having at echelon
e in period t accumulated a production that is covering exactly the demand Dk

ab for final
product with t ≤ a ≤ b ≤ T and e = 1, . . . , E. The backward recursion is

V (e, t, a, b) = min{V (e, t+1, a, b), min
l=a,...,b

{V (e+1, t, a, l)+cketD
k
al+f

k
et+V (e, t+1, l+1, b)}}

for all e = E, . . . , 1, t = T, . . . , 1, a = T, . . . , 1, and b = T, . . . , a. By convention
V (e, t, a, b) = 0 if a > b. The initialization is V (E + 1, t, a, b) = 0. The optimum is
given by V ∗ = V (1, 1, 1, T) [16].

From the the dynamic program, one can reformulate the single item subproblem as
selecting a decision tree in an hyper graph whose nodes are the states of the above DP.
The DP transition can be associated to flow on hyper-arcs: zke,t,a,l,b = 1 if at echelon
e ∈ {1, . . . , E} in period t ∈ {1, . . . , T} the production of item k is made to cover demands
from period a ∈ {t, . . . , T} to period l ∈ {a−1, . . . , T}, while the rest of demand interval,
i.e. demands from period l + 1 to period b ∈ {l, . . . , T}, will be covered by production in
future periods. If l = a − 1, there is no production; this can only happen when a > t.
While if l = b, the whole demand interval , Dk

ab, is produced in t. The associated cost is
cke,t,a,l,b is cketDk

al + fket if l ≥ a and zero if l = a− 1. For the initial echelon e = 1, variables
zk1,t,a,l,b are only defined for b = T . For the first period t = 1, they are only defined for

29

a = t = 1. This leads to reformulation:

[R] ≡ min{
∑

e,t,a,l,b,k

cke,t,a,l,b z
k
e,t,a,l,b (92)

E∑
e=1

∑
a,l,b,k:l≥a,Dk

al>0

zke,t,a,l,b ≤ 1 ∀e, t (93)

∑
l

zk1,1,1,l,T = 1 ∀k (94)∑
l

zke,t,a,l,b −
∑
τ≤a

zke,t−1,τ,a−1,b −
∑
τ≥b

zke−1,t,a,b,τ = 0 ∀k, e, t, a, b (95)

zke,t,a,l,b ∈ {0, 1} ∀k, e, t, a, l, b}, (96)

which results from subproblem reformulation Zk defined by constraints (94-96) for a fixed
k. Note that constraints (95) are only defined for t > 1 and b = T when e = 1; while
when e > 1, there are only defined for a = t when t = 1.

The three approaches were tested on randomly generated instances with number of
jobs K = 10, 20 and 40 and number of periods T = 50, 100, 200, and 400 periods.
Setup costs are uniformly distributed in interval [20, 100], while production costs are zero.
Storage cost hke for item k and echelon e is generated as hke−1 + γ, where γ is uniformly
distributed in interval [1, 5]. For each period, there is a positive demand for 3 items on
average. Demands are generated using a uniform distribution on interval [10, 20].

The results for the single echelon case are given in Table 5; they are averages over
10 generated instances. There, the column-and-row generation approach performs better
than the other two when the ratio between the number of periods and the number of
items is big. As a single item is produced in each period, this ratio is an indication of the
number of setups per item and hence the number of arcs in a path defining a production
planning. Thus, larger ratio means more possible recombinations between these paths.
However this advantage decreases with the increase of the dimension of instances. The
results for the multi-echelon case given in Table 6 are averages over 5 instances. Solving
formulation [RLP] with Cplex took more than one hour for all instances, so these are not
reported in the table. For the column generation approach to [MLP], instances get easier
with the increase in the number of items because there are fewer feasible production plans
due to the simgle mode constraints. The column-and-row generation appears clearly as
the only approach of the three that is tractable for the instances size considered therein.
This illustrates the benefit of recombinations of decision trees (as illustrated in Figure 4)
that take place in this application (this benefit increases with the number of echelons and
the ratio T

K
).

Conclusion
The “column-and-row generation” procedure is reviewed here in an effort to explain

exactly when it should be considered, how it works, why it can be comparatively more ef-
ficient, and what are its practical performance on a scope of applications. We showed that

30

Cplex 12.1 Col. gen. Col-and-row gen
for [RLP] for [MLP] for [RLP]

K T cpu sp cpu sp %var cpu
20 100 6.3 2170 2.5 764 2.9 2.3
40 200 161.9 6216 21.0 2192 1.1 32.0
10 100 2.2 2444 4.5 348 3.6 1.1
20 200 60.5 7024 43.5 1006 1.6 15.4
40 400 1847.9 18668 544.2 2672 0.6 232.5

Table 5: Computational results for single-echelon multi-item lot-sizing

Col. gen. Col-and-row gen
for [MLP] for [RLP]

K T sp cpu sp %var cpu
2 echelons

10 50 1612 2.3 286 0.59 1.6
20 50 1380 1.5 492 0.46 2.8
10 100 9468 254.1 368 0.15 7.1
20 100 7268 65.1 684 0.15 19.9

3 echelons
10 50 3044 20.8 386 0.18 5.2
20 50 2568 12.1 628 0.13 9.1
10 100 16810 3600.3 472 0.03 35.6
20 100 15868 1415.0 936 0.02 98.7

5 echelons
10 50 9890 774.0 490 0.12 19.1
20 50 11180 281.2 760 0.08 30.2
10 100 >30000 >9h 684 0.02 152.0
20 100 48760 32667.4 1124 0.01 428.9

Table 6: Computational results for multi-echelon multi-item lot-sizing

column-and-row generation is a generalization of the standard column generation proce-
dure. The latter applies to a Dantzig-Wolfe reformulation, while the former can be applied
more broadly to any reformulation based on the Dantzig-Wolfe decomposition paradigm:
the procedure is suitable for problems that admit an extended reformulation that stems
from a reformulation of sub-problems. We formalized the methodology and, in particular,
the termination criteria, in a generic procedure that also encompasses the case where one
only has a better formulation for subproblem although not an exact extended formulation.

The “column-and-row generation” methodology can be understood as a hybrid between
a direct handling of the extended reformulation and using a standard column generation
for the associated Dantzig-Wolfe reformulation exploiting the same subproblems. The
principal interest of this hybrid technique in comparison to standard column generation is
to possibly achieve faster convergence thanks to recombinations of previously generated
subproblem solutions into new points that are not in the convex hull of currently gener-

31

ated subproblem solutions. Examples where such recombination property (Property 1)
holds include special cases such as the example of Section 1.3, where subproblem solu-
tions that differ only by the value of the continuous variables are all implicitly defined
in the restricted reformulation. We considered two generic situation where the recombi-
nation property holds: when the reformulation stems from a network flow model, or a
dynamic programming subproblem solver. This analysis could be extended to generalized
flow reformulations, or to cases where the subproblem reformulation obeys the rules of a
branched polyhedral system [12].

The recombination property leads to a reduction in the number of iterations of the
column generation procedure as demonstrated in our numerical results. Therefore, the
disaggregation of columns inherent to the column-and-row generation approach can be
understood as a stabilization technique for column generation. “Disaggregation” helps
convergence as it is numerically demonstrated in many studies related to column genera-
tion. For instance, in the presence of block diagonal systems, good practice is to define
separate columns for each block, or even to artificially differentiate commodities to create
block diagonality as illustrated for origin-destination flow problems in [11]; another ex-
ample is the disaggregation of the time horizon used by [3] for a scheduling application.
When the subproblem reformulation is not actually an exact extended formulation for it
(i.e., when Assumption 1 is not satisfied), there are typically even more recombinations
in the relaxed subproblem solution space, but the relaxation can imply a weakening of
the dual bound, as illustrated on the generalized assignment application. Our numerical
comparative study of column-and-row generation illustrates the experimental trade-off
between the comparative acceleration of convergence, the potential lost of quality in dual
bounds, and the higher computing time required to solve the restricted master (due to its
larger size and potential symmetries).

The recombination property is closely related to the concept of “exchange vectors” in
standard column generation approach [23]; the latter are columns defining rays in the
lattice of subproblem solutions (for instance the elementary cycles of Section 3.3 define
rays). Using a convex combination of regular columns and exchange vectors allows one
to define new solutions that are outside the convex hull of already generated subproblem
solutions. Exchange vectors define so-called dual cuts (valid inequalities for dual prices)
in the dual master program [18]. The idea of relaxing the definition of the generator
set is related to “base-generators”, as developed in [23], that are extracted from regular
columns by keeping only the fixed values of the “important” variables in the subproblem
solution (in the examples of Section 1.3, the disaggregation amounts to defining “base-
generators” associated to the integer part of the subproblem solution). When relaxing
Assumption 1 into Assumption 2, the method is then related to the concept of the “state
space relaxation” for column generation as presented in [23]; or it can be interpreted as
the development of a column-and-row generation approach based on an approximated
extended formulation for the subproblem as underlined by the proposal of Van Vyve and
Wolsey [25].

32

Acknowledgments
We thank J. Desrosiers and L. A. Wolsey for constructive exchanges on this paper and

their suggestions for improvements.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms

and Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[3] Louis-Philippe Bigras, Michel Gamache, and Gilles Savard. Time-Indexed Formula-
tions and the Total Weighted Tardiness Problem. INFORMS Journal on Computing,
20(1):133–142, 2008.

[4] V. Chvatal. Linear programming. Freeman, 1983.

[5] K.L. Croxton, B. Gendron, and T.L. Magnanti. Variable disaggregation in network
flow problems with piecewise linear costs. Operations Research, 55:146–157, 2007.

[6] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. Vehicle
routing with time windows and split deliveries. Technical Paper 2006-851, Labora-
toire d’Informatique d’Avignon, 2006.

[7] Dominique Feillet, Michel Gendreau, Andrés L. Medaglia, and Jose L. Walteros.
A note on branch-and-cut-and-price. Operations Research Letters, 38(5):346 – 353,
2010.

[8] Antonio Frangioni and Bernard Gendron. 0-1 reformulations of the multicommodity
capacitated network design problem. Discrete Applied Mathematics, 157(6):1229 –
1241, 2009.

[9] Antonio Frangioni and Bernard Gendron. A stabilized structured Dantzig-Wolfe
decomposition method. Research report CIRRELT-2010-02, Interuniversity Research
Centre on Enterprise Networks, Logistics and Transportation, 2010.

[10] İbrahim Muter, İlker Birbil, and Kerem Bülbül. Simultaneous column-and-
row generation for large-scale linear programs with column-dependent-rows.
http://www.optimization-online.org/DB_FILE/2010/11/2815.pdf, 2010.

[11] Kim L. Jones, Irvin J. Lustig, Judith M. Farvolden, and Warren B. Powell. Multicom-
modity network flows: The impact of formulation on decomposition. Mathematical
Programming, 62:95–117, 1993.

[12] Volker Kaibel and Andreas Loos. Branched polyhedral systems. In Friedrich Eisen-
brand and F. Shepherd, editors, Integer Programming and Combinatorial Optimiza-
tion, volume 6080 of Lecture Notes in Computer Science, pages 177–190. Springer
Berlin / Heidelberg, 2010.

33

[13] John W. Mamer and Richard D. McBride. A decomposition-based pricing procedure
for large-scale linear programs: An application to the linear multicommodity flow
problem. Management Science, 46(5):693–709, 2000.

[14] R. Kipp Martin, Ronald L. Rardin, and Brian A. Campbell. Polyhedral Charac-
terization of Discrete Dynamic Programming. Operations Research, 38(1):127–138,
1990.

[15] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research,
45:758–767, 1997.

[16] Yves Pochet and Laurence Wolsey. Production planning by mixed integer program-
ming. Springer, 2006.

[17] Chris N. Potts and Luk N. Van Wassenhove. A Branch and Bound Algorithm for
the Total Weighted Tardiness Problem. Operations Research, 33(2):363–377, 1985.

[18] José Manuel Valério de Carvalho. Using Extra Dual Cuts to Accelerate Column
Generation. INFORMS Journal on Computing, 17(2):175–182, 2005.

[19] J.M. Valério de Carvalho. Exact solution of bin packing problems using column
generation and branch and bound. Annals of Operations Research, 86:629–659, 1999.

[20] J. M. van den Akker, J. A. Hoogeveen, and S. L. van de Velde. Parallel machine
scheduling by column generation. Operations Research, 47(6):862–872, 1999.

[21] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-Indexed Formu-
lations for Machine Scheduling Problems: Column Generation. INFORMS Journal
on Computing, 12(2):111–124, 2000.

[22] F. Vanderbeck. Bapcod – a branch-and-price generic code. University of Bordeaux,
INRIA Research team ReAlOpt.

[23] François Vanderbeck and Martin W. P. Savelsbergh. A generic view of Dantzig-
Wolfe decomposition in mixed integer programming. Operations Research Letters,
34(3):296–306, 2006.

[24] François Vanderbeck and Laurence A. Wolsey. Reformulation and decomposition of
integer programs. In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L.
Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Lau-
rence A. Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages 431–502.
Springer Berlin Heidelberg, 2010.

[25] Mathieu Van Vyve and Laurence A. Wolsey. Approximate extended formulations.
Mathematical Programming, 105:501–522, 2006.

34

