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Abstract. Recently, Nemirovski’s analysis indicates that the extragradient method has the O(1/t)
convergence rate for variational inequalities with Lipschitz continuous monotone operators. For the
same problems, in the last decades, we have developed a class of Fejér monotone projection and con-
traction methods. Until now, only convergence results are available to these projection and contraction
methods, though the numerical experiments indicate that they always outperform the extragradient
method. The reason is that the former benefits from the ‘optimal’ step size in the contraction sense.
In this paper, we prove the convergence rate under a unified conceptual framework, which includes
the projection and contraction methods as special cases and thus perfects the theory of the existing
projection and contraction methods. Preliminary numerical results demonstrate that the projection
and contraction methods converge two times faster than the extragradient method.
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1 Introduction

Let Ω be a nonempty closed convex subset of <n, F be a continuous mapping from <n to itself. The variational
inequality problem, denoted by VI(Ω, F ), is to find a vector u∗ ∈ Ω such that

VI(Ω, F ) (u− u∗)T F (u∗) ≥ 0, ∀u ∈ Ω. (1.1)

Notice that VI(Ω, F ) is invariant when F is multiplied by some positive scalar β > 0. It is well known ([1],
pp. 267) that, for any β > 0,

u∗ is a solution of VI(Ω, F ) ⇐⇒ u∗ = PΩ[u∗ − βF (u∗)], (1.2)

where PΩ(·) denotes the projection onto Ω with respect to the Euclidean norm, i.e.,

PΩ(v) = argmin{‖u− v‖ |u ∈ Ω}.

Throughout this paper we assume that the mapping F is monotone and Lipschitz continuous, i.e.,

(u− v)T (F (u)− F (v)) ≥ 0, ∀u, v ∈ <n,

and there is a constant L > 0 (not necessary known), such that

‖F (u)− F (v)‖ ≤ L‖u− v‖, ∀u, v ∈ <n.

Moreover, we assume that the solution set of VI(Ω, F ), denoted by Ω∗, is nonempty. The nonempty assumption
of the solution set, together with the monotonicity assumption of F , implies that Ω∗ is closed and convex (see
pp. 158 in [3]).

Among the algorithms for monotone variational inequalities, the extragradient (EG) method proposed by
Korpelevich [11] is one of the attractive methods. In fact, each iteration of the extragradient method can be
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divided into two steps. The k-th iteration of EG method begins with a given uk ∈ Ω, the first step produces
a vector ũk via a projection

ũk = PΩ[uk − βkF (uk)], (1.3a)

where βk > 0 is selected to satisfy

βk‖F (uk)− F (ũk)‖ ≤ ν‖uk − ũk‖, ν ∈ (0, 1). (1.3b)

Since ũk is not accepted as the new iterate, for designation convenience, we call it as a predictor and βk is
named the prediction step size. The second step (correction step) of the k-th iteration updates the new iterate
uk+1 by

uk+1 = PΩ[uk − βkF (ũk)], (1.4)

where βk is called the correction step size. The sequence {uk} generated by the extragradient method is Fejér
monotone with respect to the solution set, namely,

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − (1− ν2)‖uk − ũk‖2. (1.5)

For a proof of the above contraction property, the readers may consult [3] (see pp. 1115-1118 therein). Notice
that, in the extragradient method, the step size of the prediction (1.3a) and that of the correction (1.4) are
equal. Thus the two steps seem like ‘symmetric’.

Because of its simple iterative forms, recently, the extragradient method has been applied to solve some
large optimization problems in the area of information science, such as in machine learning [12, 13, 20, 21],
optical network [15, 16] and speech recognition [17], etc. In addition, Nemirovski [14] and Tseng [22] proved
the O(1/t) convergence rate of the extragradient method. Both in the theoretical and practical aspects, the
interest in the extragradient method becomes more active.

In the last decades, we devoted our effort to develop a class of projection and contraction (PC) methods
for monotone variational inequalities [5, 6, 10, 18]. Similarly as in the extragradient method, each iteration of
the PC methods consists of two steps. The prediction step of PC methods produces the predictor ũk via (1.3)
just as in the extragradient method. The PC methods exploit a pair of geminate directions [9, 10] offered by
the predictor, namely, they are

d(uk, ũk) = (uk − ũk)− βk(F (uk)− F (ũk)) and βkF (ũk). (1.6)

Here, both the directions are ascent directions of the unknown distance function 1
2‖u− u∗‖2 at the point uk.

Based on such directions, the goal of the correction step is to generate a new iterate which is more closed to
the solution set. It leads to choosing the ‘optimal’ step length

%k =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
, (1.7)

and a relaxation factor γ ∈ (0, 2), the second step (correction step) of the PC methods updates the new iterate
uk+1 by

uk+1 = uk − γ%kd(uk, ũk), (1.8)

or
uk+1 = PΩ[uk − γ%kβkF (ũk)]. (1.9)

The PC methods (without line search) make one (or two) projection(s) on Ω at each iteration, and the distance
of the iterates to the solution set monotonically converges to zero. According to the terminology in [2], these
methods belong to the class of Fejér contraction methods. In fact, the only difference between the extragradient
method and one of the PC methods is that they use different step sizes in the correction step (see (1.4) and
(1.9)). According to our numerical experiments [6, 10], the PC methods always outperform the extragradient
methods.
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Stimulated by the complexity statement of the extragradient method, this paper shows the O(1/t) conver-
gence rate of the projection and contraction methods for monotone VIs. Recall that Ω∗ can be characterized
as (see (2.3.2) in pp. 159 of [3])

Ω∗ =
⋂

u∈Ω

{
ũ ∈ Ω : (u− ũ)T F (u) ≥ 0

}
.

This implies that ũ ∈ Ω is an approximate solution of VI(Ω, F ) with the accuracy ε if it satisfies

ũ ∈ Ω and inf
u∈Ω

{
(u− ũ)T F (u)

}
≥ −ε.

In this paper, we show that, for given ε > 0 and D ⊂ Ω, in O(L/ε) iterations the projection and contraction
methods can find a ũ such that

ũ ∈ Ω and sup
u∈D

{
(ũ− u)T F (u)

}
≤ ε. (1.10)

As a byproduct of the complexity analysis, we find why taking a suitable relaxation factor γ ∈ (1, 2) in the
correction steps (1.8) and (1.9) of the PC methods can achieve the faster convergence.

The outline of this paper is as follows. Section 2 recalls some basic concepts in the projection and contrac-
tion methods. In Section 3, we investigate the geminate descent directions of the distance function. Section
4 shows the contraction property of the PC methods. In Section 5, we carry out the complexity analysis,
which results in an O(1/t) convergence rate and suggests using the large relaxation factor in the correction
step of the PC methods. In Section 6, we present some numerical results to indicate the efficiency of the PC
methods in comparison with the extragradient method. Finally, some conclusion remarks are addressed in the
last section.

Throughout the paper, the following notational conventions are used. We use u∗ to denote a fixed but
arbitrary point in the solution set Ω∗. A superscript such as in uk refers to a specific vector and usually
denotes an iteration index. For any real matrix M and vector v, we denote the transpose by MT and vT ,
respectively. The Euclidean norm will be denoted by ‖ · ‖.

2 Preliminaries

In this section, we summarize the basic concepts of the projection mapping and three fundamental inequalities
for constructing the PC methods. Throughout this paper, we assume that the projection on Ω in the Euclidean-
norm has a closed form and it is easy to be carried out. Since

PΩ(v) = argmin{1
2
‖u− v‖2 | u ∈ Ω},

according to the optimal solution of the convex minimization problem, we have

(v − PΩ(v))T (u− PΩ(v)) ≤ 0, ∀ v ∈ <n,∀ u ∈ Ω. (2.1)

Consequently, for any u ∈ Ω, it follows from (2.1) that

‖u− v‖2 = ‖(u− PΩ(v))− (v − PΩ(v))‖2

= ‖u− PΩ(v)‖2 − 2(v − PΩ(v))T (u− PΩ(v)) + ‖v − PΩ(v)‖2

≥ ‖u− PΩ(v)‖2 + ‖v − PΩ(v)‖2.

Therefore, we have

‖u− PΩ(v)‖2 ≤ ‖u− v‖2 − ‖v − PΩ(v)‖2, ∀ v ∈ <n,∀ u ∈ Ω. (2.2)

For given u and β > 0, let ũ = PΩ[u− βF (u)] be given via a projection. We say that ũ is a test-vector of
VI(Ω, F ) because

u = ũ ⇔ u ∈ Ω∗.
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Since ũ ∈ Ω, it follows from (1.1) that

(FI-1) (ũ− u∗)T βF (u∗) ≥ 0, ∀u∗ ∈ Ω∗. (2.3)

Setting v = u− βF (u) and u = u∗ in the inequality (2.1), we obtain

(FI-2) (ũ− u∗)T
(
(u− ũ)− βF (u)

)
≥ 0, ∀u∗ ∈ Ω∗. (2.4)

Under the assumption that F is monotone we have

(FI-3) (ũ− u∗)T β
(
F (ũ)− F (u∗)

)
≥ 0, ∀u∗ ∈ Ω∗. (2.5)

The inequalities (2.3), (2.4) and (2.5) play an important role in the projection and contraction methods. They
were emphasized in [5] as three fundamental inequalities in the projection and contraction methods.

3 Predictor and the ascent directions

For given uk, the predictor ũk in the projection and contraction methods [5, 6, 10, 18] is produced by (1.3).
Because the mapping F is Lipschitz continuous (even if the constant L > 0 is unknown), without loss of
generality, we can assume that infk≥0{βk} ≥ β

L
> 0 and β

L
= O(1/L). In practical computation, we can

make an initial guesses of β = ν/L and decrease β by a constant factor and repeat the procedure whenever
(1.3b) is violated.

For any but fixed u∗ ∈ Ω∗, (u − u∗) is the gradient of the unknown distance function 1
2‖u − u∗‖2 in the

Euclidean-norm2 at the point u. A direction d is called an ascent direction of 1
2‖u − u∗‖2 at u if and only if

the inner-product (u− u∗)T d > 0.

3.1 Ascent directions by adding the fundamental inequalities

Setting u = uk, ũ = ũk and β = βk in the fundamental inequalities (2.3), (2.4) and (2.5), and adding them,
we get

(ũk − u∗)T d(uk, ũk) ≥ 0, ∀u∗ ∈ Ω∗, (3.1)

where
d(uk, ũk) = (uk − ũk)− βk

(
F (uk)− F (ũk)

)
, (3.2)

which is the same d(uk, ũk) defined in (1.6). It follows from (3.1) that

(uk − u∗)T d(uk, ũk) ≥ (uk − ũk)T d(uk, ũk). (3.3)

Note that, under the condition (1.3b), we have

2(uk − ũk)d(uk, ũk)− ‖d(uk, ũk)‖2

= d(uk, ũk)T {2(uk − ũk)− d(uk, ũk)}
= {(uk − ũk)− βk(F (uk)− F (ũk))}T {(uk − ũk) + βk(F (uk)− F (ũk))}
= ‖uk − ũk‖2 − β2

k‖F (uk)− F (ũk)‖2

≥ (1− ν2)‖uk − ũk‖2. (3.4)

Consequently, from (3.3) and (3.4) we have

(uk − u∗)T d(uk, ũk) ≥ 1
2
(
‖d(uk, ũk)‖2 + (1− ν2)‖uk − ũk‖2

)
.

This means that d(uk, ũk) is an ascent direction of the unknown distance function 1
2‖u−u∗‖2 at the point uk.

2For convenience, we only consider the distance function in the Euclidean-norm. All the results in this paper are easy to

extended to the contraction of the distance function in G-norm where G is a positive definite matrix.
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3.2 Geminate ascent directions

To the direction d(uk, ũk) defined in (3.2), there is a correlative ascent direction βkF (ũk). Use the notation
of d(uk, ũk), the projection equation (1.3a) can be written as

ũk = PΩ{ũk − [βkF (ũk)− d(uk, ũk)]}. (3.5a)

It follows that ũk is a solution of VI(Ω, F ) if and only if d(uk, ũk) = 0. Assume that there is a constant c > 0
such that

%k =
(uk − ũk)T d(uk, ũk)

‖d(uk, ũk)‖2
≥ c, ∀k ≥ 0. (3.5b)

In this paper, we call (3.5) with c > 0 the general conditions and the forthcoming analysis is based of these
conditions. For given uk, there are different ways to construct ũk and d(uk, ũk) which satisfy the conditions
(3.5) (see [10] for an example). If βk satisfies (1.3b) and d(uk, ũk) is given by (3.2), the general conditions
(3.5) are satisfied with c ≥ 1

2 (see (3.4)). Note that an equivalent expression of (3.5a) is

ũk ∈ Ω, (u− ũk)T {βkF (ũk)− d(uk, ũk)} ≥ 0, ∀u ∈ Ω, (3.6a)

and from (3.5b) we have
(uk − ũk)T d(uk, ũk) = %k‖d(uk, ũk)‖2. (3.6b)

In [7, 8], d(uk, ũk) and βkF (ũk) in (3.5a) are called a pair of geminate directions and denoted by d1(uk, ũk)
and d2(uk, ũk), respectively. In this paper, we restrict d2(uk, ũk) to be F (ũk) times a positive scalar βk. If
d(uk, ũk) = uk − ũk, then ũk in (3.6a) is the solution of the subproblem in the k-th iteration when PPA
applied to solve VI(Ω, F ). Hence, the projection and contraction methods considered in this paper belong to
the prox-like contraction methods [7, 8].

The following lemmas tell us that both the direction d(uk, ũk) (for uk ∈ <n) and F (ũk) (for uk ∈ Ω) are
ascent directions of the function 1

2‖u−u∗‖2 whenever uk is not a solution point. The proof is similar to those
in [9], for completeness sake of this paper, we restate the short proofs.

Lemma 3.1 Let the general conditions (3.5) be satisfied. Then we have

(uk − u∗)T d(uk, ũk) ≥ %k‖d(uk, ũk)‖2, ∀uk ∈ <n, u∗ ∈ Ω∗. (3.7)

Proof. Note that u∗ ∈ Ω. By setting u = u∗ in (3.6a) (the equivalent expression of (3.5a)), we get

(ũk − u∗)T d(uk, ũk) ≥ (ũk − u∗)T βkF (ũk) ≥ 0, ∀u∗ ∈ Ω∗.

The last inequality follows from the monotonicity of F and (ũk − u∗)T F (u∗) ≥ 0. Therefore,

(uk − u∗)T d(uk, ũk) ≥ (uk − ũk)T d(uk, ũk), ∀u∗ ∈ Ω∗.

The assertion (3.7) is followed from the above inequality and (3.6b) directly. 2

Lemma 3.2 Let the general conditions (3.5) be satisfied. If uk ∈ Ω, then we have

(uk − u∗)T βkF (ũk) ≥ %k‖d(uk, ũk)‖2, ∀u∗ ∈ Ω∗. (3.8)

Proof. Since (ũk − u∗)T βkF (ũk) ≥ 0, we have

(uk − u∗)T βkF (ũk) ≥ (uk − ũk)T βkF (ũk), ∀u∗ ∈ Ω∗.

Note that because uk ∈ Ω, by setting u = uk in (3.6a), we get

(uk − ũk)T βkF (ũk) ≥ (uk − ũk)T d(uk, ũk).

From the above two inequalities follows that

(uk − u∗)T βkF (ũk) ≥ (uk − ũk)T d(uk, ũk), ∀u∗ ∈ Ω∗.

The assertion (3.8) is followed from the above inequality and (3.6b) directly. 2

Note that (3.7) holds for uk ∈ <n while (3.8) is hold only for uk ∈ Ω.
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4 Corrector and the convergence in the contraction sense

Based on the pair of geminate ascent directions in (3.5), namely, d(uk, ũk) and βkF (ũk), we use the one of the
following corrector forms to update the new iterate uk+1:

(Correction of PC Method-I) uk+1
I = uk − γ%kd(uk, ũk), (4.1a)

or
(Correction of PC Method-II) uk+1

II = PΩ[uk − γ%kβkF (ũk)], (4.1b)

where γ ∈ (0, 2) and %k is defined in (3.5b). Note that the same step size length is used in (4.1a) and (4.1b)
even if the search directions are different. Recall that ũk is obtained via a projection, by using the correction
form (4.1b), we have to make an additional projection on Ω in the PC methods. Replacing γ%k in (4.1b) by
1, it reduces to the update form of the extragradient method (see (1.4)).

For any solution point u∗ ∈ Ω∗, we define

ϑI(γ) = ‖uk − u∗‖2 − ‖uk+1
I − u∗‖2 (4.2a)

and
ϑII(γ) = ‖uk − u∗‖2 − ‖uk+1

II − u∗‖2, (4.2b)

which measure the profit in the k-th iteration. The following theorem gives a lower bound of the profit
function, the similar results were established in [6, 9, 10].

Theorem 4.1 For given uk, let the general conditions (3.5) be satisfied. If the corrector is updated by (4.1a)
or (4.1b), then for any u∗ ∈ Ω∗ and γ > 0, we have

ϑI(γ) ≥ q(γ), (4.3)

and
ϑII(γ) ≥ q(γ) + ‖uk+1

I − uk+1
II ‖2, (4.4)

respectively, where
q(γ) = γ(2− γ)%2

k‖d(uk, ũk)‖2. (4.5)

Proof. Using the definition of ϑI(γ) and uk+1
I (see (4.1a)), we have

ϑI(γ) = ‖uk − u∗‖2 − ‖uk − u∗ − γ%kd(uk, ũk)‖2

= 2γ%k(uk − u∗)T d(uk, ũk)− γ2%2
k‖d(uk, ũk)‖2. (4.6)

Recalling (3.7), we obtain
2γ%k(uk − u∗)T d(uk, ũk) ≥ 2γ%2

k‖d(uk, ũk)‖2.

Substituting it in (4.6) and using the definition of q(γ), we get ϑI(γ) ≥ q(γ) and the first assertion is proved.
Now, we turn to show the second assertion. Because

uk+1
II = PΩ[uk − γ%kβkF (ũk)],

and u∗ ∈ Ω, by setting u = u∗ and v = uk − γ%kβkF (ũk) in (2.2), we have

‖u∗ − uk+1
II ‖2 ≤ ‖u∗ − (uk − γ%kβkF (ũk))‖2 − ‖uk − γ%kβkF (ũk)− uk+1

II ‖2. (4.7)

Thus,

ϑII(γ) = ‖uk − u∗‖2 − ‖uk+1
II − u∗‖2

≥ ‖uk − u∗‖2 − ‖(uk − u∗)− γ%kβkF (ũk)‖2 + ‖(uk − uk+1
II )− γ%kβkF (ũk)‖2

= ‖uk − uk+1
II ‖2 + 2γ%kβk(uk+1

II − u∗)T F (ũk)

≥ ‖uk − uk+1
II ‖2 + 2γ%kβk(uk+1

II − ũk)T F (ũk). (4.8)
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The last inequality in (4.8) follows from (ũk − u∗)T F (ũk) ≥ 0. Since uk+1
II ∈ Ω, by setting u = uk+1

II in (3.6a),
we get

(uk+1
II − ũk)T {βkF (ũk)− d(uk, ũk)} ≥ 0,

and consequently, substituting it in the right hand side of (4.8), we obtain

ϑII(γ) ≥ ‖uk − uk+1
II ‖2 + 2γ%k(uk+1

II − ũk)T d(uk, ũk)

= ‖uk − uk+1
II ‖2 + 2γ%k(uk − ũk)T d(uk, ũk)− 2γ%k(uk − uk+1

II )T d(uk, ũk). (4.9)

To the two crossed term in the right hand side of (4.9), we have (by using (3.6b))

2γ%k(uk − ũk)T d(uk, ũk) = 2γ%2
k‖d(uk, ũk)‖2,

and

−2γ%k(uk − uk+1
II )T d(uk, ũk) = ‖(uk − uk+1

II )− γ%kd(uk, ũk)‖2 − ‖uk − uk+1
II ‖2 − γ2%2

k‖d(uk, ũk)‖2,

respectively. Substituting them in the right hand side of (4.9) and using uk − γ%kd(uk, ũk) = uk+1
I , we obtain

ϑII(γ) ≥ γ(2− γ)%2
k‖d(uk, ũk)‖2 + ‖uk+1

I − uk+1
II ‖2 = q(γ) + ‖uk+1

I − uk+1
II ‖2, (4.10)

and the proof is complete. 2

Note that q(γ) is a quadratic function of γ, it reaches its maximum at γ∗ = 1. In practice, %k is the
‘optimal’ step size in (4.1) and γ is a relaxation factor. Because q(γ) is a lower bound of ϑI(γ) (resp. ϑII(γ)),
the desirable new iterate is updated by (4.1) with γ ∈ [1, 2) and the reason is interpreted in the following
figure.

2  1.51  0.50  

q(γ)

ϑ(γ)

γ

The interpreting of γ ∈ [1, 2) for more profit in each iteration

From Theorem 4.1 we obtain

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)%2
k‖d(uk, ũk)‖2. (4.11)

Convergence result follows from (4.11) directly. Due to the property (4.11) we call the methods which use
different update forms in (4.1) PC Method-I and PC Method II, respectively. Note that the assertion (4.11) is
derived from the general conditions (3.5). For the PC methods using correction form (1.8) or (1.9), because
%k > 1

2 , by using (3.6b) and (1.3b), it follows from (4.11) that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − 1
2
γ(2− γ)(1− ν)‖uk − ũk‖2. (4.12)
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5 Convergence rate of the PC methods

This section proves the convergence rate of the projection and contraction methods. Recall that the base of
the complexity proof is (see (2.3.2) in pp. 159 of [3])

Ω∗ =
⋂

u∈Ω

{
ũ ∈ Ω : (u− ũ)T F (u) ≥ 0

}
. (5.1)

In the sequel, for given ε > 0 and D ⊂ Ω, we focus our attention to find a ũ such that

ũ ∈ Ω and sup
u∈D

(ũ− u)T F (u) ≤ ε. (5.2)

Although the PC Method I uses the update form (4.1a) and it does not guarantee that {uk} belongs to Ω,
the sequence {ũk} ⊂ Ω in the PC methods with different corrector forms. Now, we prove the key inequality
of the PC Method I for the complexity analysis.

Lemma 5.1 For given uk ∈ <n, let the general conditions (3.5) be satisfied. If the new iterate uk+1 is updated
by (4.1a) with any γ > 0, then we have

(u− ũk)T γ%kβkF (ũk) +
1
2
(
‖u− uk‖2 − ‖u− uk+1‖2

)
≥ 1

2
q(γ), ∀u ∈ Ω, (5.3)

where q(γ) is defined in (4.5).

Proof. Because (due to (3.6a))

(u− ũk)T βkF (ũk) ≥ (u− ũk)T d(uk, ũk), ∀u ∈ Ω,

and (see (4.1a))
γ%kd(uk, ũk) = uk − uk+1,

we need only to show that

(u− ũk)T (uk − uk+1) +
1
2
(
‖u− uk‖2 − ‖u− uk+1‖2

)
≥ 1

2
q(γ), ∀u ∈ Ω. (5.4)

To the crossed term in the left hand side of (5.4), namely (u− ũk)T (uk − uk+1), using an identity

(a− b)T (c− d) =
1
2
(
‖a− d‖2 − ‖a− c‖2

)
+

1
2
(
‖c− b‖2 − ‖d− b‖2

)
,

we obtain

(u− ũk)T (uk − uk+1) =
1
2
(
‖u− uk+1‖2 − ‖u− uk‖2

)
+

1
2
(
‖uk − ũk‖2 − ‖uk+1 − ũk‖2

)
. (5.5)

By using uk+1 = uk − γ%kd(uk, ũk) and (3.6b), we get

‖uk − ũk‖2 − ‖uk+1 − ũk‖2 = ‖uk − ũk‖2 − ‖(uk − ũk)− γ%kd(uk, ũk)‖2

= 2γ%k(uk − ũk)T d(uk, ũk)− γ2%2
k‖d(uk, ũk)‖2

= γ(2− γ)%2
k‖d(uk, ũk)‖2.

Substituting it in the right hand side of (5.5) and using the definition of q(γ), we obtain (5.4) and the lemma
is proved. 2

The both sequences {ũk} and {uk} in the PC method II belong to Ω. In the following lemma we prove the
same assertion for PC method II as in Lemma 5.1.
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Lemma 5.2 For given uk ∈ Ω, let the general conditions (3.5) be satisfied. If the new iterate uk+1 is updated
by (4.1b) with any γ > 0, then we have

(u− ũk)T γ%kβkF (ũk) +
1
2
(
‖u− uk‖2 − ‖u− uk+1‖2

)
≥ 1

2
q(γ), ∀u ∈ Ω, (5.6)

where q(γ) is defined in (4.5).

Proof. For investigating (u− ũk)T βkF (ũk), we divide it in the terms

(uk+1 − ũk)T γ%kβkF (ũk) and (u− uk+1)T γ%kβkF (ũk).

First, we deal with the term (uk+1 − ũk)T γ%kβkF (ũk). Since uk+1 ∈ Ω, substituting u = uk+1 in (3.6a) we
get

(uk+1 − ũk)T γ%kβkF (ũk) ≥ γ%k(uk+1 − ũk)T d(uk, ũk)

= γ%k(uk − ũk)T d(uk, ũk)− γ%k(uk − uk+1)T d(uk, ũk). (5.7)

To the first crossed term of the right hand side of (5.7), using (3.6b), we have

γ%k(uk − ũk)T d(uk, ũk) = γ%2
k‖d(uk, ũk)‖2.

To the second crossed term of the right hand side of (5.7), using the Cauchy-Schwarz Inequality, we get

−γ%k(uk − uk+1)T d(uk, ũk) ≥ −1
2
‖uk − uk+1‖2 − 1

2
γ2%2

k‖d(uk, ũk)‖2.

Substituting them in the right hand side of (5.7), we obtain

(uk+1 − ũk)T γ%kβkF (ũk) ≥ 1
2
γ(2− γ)%2

k‖d(uk, ũk)‖2 − 1
2
‖uk − uk+1‖2. (5.8)

Now, we turn to treat of the term (u − uk+1)T γ%kβkF (ũk). Since uk+1 is updated by (4.1b), uk+1 is the
projection of

(
uk − γ%kβkF (ũk)

)
on Ω, it follows from (2.1) that{(

uk − γ%kβkF (ũk)
)
− uk+1

}T (
u− uk+1

)
≤ 0, ∀u ∈ Ω,

and consequently (
u− uk+1

)T
γ%kβkF (ũk) ≥

(
u− uk+1

)T (
uk − uk+1

)
, ∀u ∈ Ω.

Using the identity aT b = 1
2{‖a‖

2 − ‖a− b‖2 + ‖b‖2} to the right hand side of the last inequality, we obtain(
u− uk+1

)T
γ%kβkF (ũk) ≥ 1

2
(
‖u− uk+1‖2 − ‖u− uk‖2

)
+

1
2
‖uk − uk+1‖2. (5.9)

Adding (5.8) and (5.9) and using the definition of q(γ), we get (5.6) and the proof is complete. 2

For the different projection and contraction methods, we have the same key inequality which is shown in
Lemma 5.1 and Lemma 5.2, respectively. By setting u = u∗ in (5.3) and (5.6), we get

‖uk − u∗‖2 − ‖uk+1 − u∗‖2 ≥ 2γ%kβk(ũk − u∗)T F (ũk) + q(γ).

Because (ũk − u∗)T F (ũk) ≥ (ũk − u∗)T F (u∗) ≥ 0 and q(γ) = γ(2− γ)%2
k‖d(uk, ũk)‖2, it follows from the last

inequality that
‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2− γ)%2

k‖d(uk, ũk)‖2.

This is just the form (4.11) in Section 4. In other words, the contraction property (4.11) of PC methods is
the consequent result of Lemma 5.1 and Lemma 5.2, respectively.

For the convergence rate proof, we allow γ ∈ (0, 2]. In this case, we still have q(γ) ≥ 0. By using the
monotonicity of F , from (5.3) and (5.6) we get

(u− ũk)T %kβkF (u) +
1
2γ
‖u− uk‖2 ≥ 1

2γ
‖u− uk+1‖2, ∀u ∈ Ω. (5.10)

This inequality is essential for the convergence rate proofs.
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Theorem 5.1 For any integer t > 0, we have a ũt ∈ Ω which satisfies

(ũt − u)T F (u) ≤ 1
2γΥt

‖u− u0‖2, ∀u ∈ Ω, (5.11)

where

ũt =
1
Υt

t∑
k=0

%kβkũk and Υt =
t∑

k=0

%kβk. (5.12)

Proof. Summing the inequality (5.10) over k = 0, . . . , t, we obtain

(( t∑
k=0

%kβk

)
u−

t∑
k=0

%kβkũk
)T

F (u) +
1
2γ
‖u− u0‖2 ≥ 0, ∀u ∈ Ω.

Using the notations of Υt and ũt in the above inequality, we derive

(ũt − u)T F (u) ≤ ‖u− u0‖2

2γΥt
, ∀u ∈ Ω.

Indeed, ũt ∈ Ω because it is a convex combination of ũ0, ũ1, . . . , ũt. The proof is complete. 2

For given uk, the predictor ũk is given by (1.3a) and the prediction step size βk satisfies the condition
(1.3b). Thus, the general conditions (3.5) are satisfied with %k ≥ c = 1

2 . We choose (4.1a) (for the case that uk

is not necessary in Ω) or (4.1b) (for the case that uk ∈ Ω) to generate the new iterate uk+1. Because %k ≥ 1
2 ,

infk≥0{βk} ≥ β
L

and β
L

= O(1/L), it follows from (5.12) that

Υt ≥
t + 1

2
β

L
,

and thus the PC methods have O(1/t) convergence rate. For any substantial set D ⊂ Ω, the PC methods
reach

(ũt − u)T F (u) ≤ ε, ∀u ∈ D, in at most t =
⌈ D2

γβ
L
ε

⌉
iterations, where ũt is defined in (5.12) and D = sup {‖u−u0‖ |u ∈ D}. This convergence rate is in the ergodic
sense, the statement (5.11) suggests us to take a larger parameter γ ∈ (0, 2] in the correction steps of the PC
methods.

6 Numerical experiments

This section is devoted to test the efficiency of the PC methods in comparison with the extragradient method
[11]. Under the condition (1.3b), we have %k > 1/2. If we dynamically take γk = 1/%k in (4.1b), then it
becomes

uk+1 = PΩ[uk − βkF (ũk)], (6.1)

which is the update form of the extragradient method [11]. Because γk%k ≡ 1, it follows from (5.10) that

(u− ũk)T βkF (u) +
1
2
‖u− uk‖2 ≥ 1

2
‖u− uk+1‖2, ∀u ∈ Ω. (6.2)

The results in Theorem 5.1 becomes

ũt =
1∑t

k=0 βk

t∑
k=0

βkũk ∈ Ω, (ũt − u)T F (u) ≤ ‖u− u0‖2

2
(∑t

k=0 βk

) , ∀u ∈ Ω. (6.3)

The O(1/t) convergence rate follows from the above inequality directly. It should be mentioned that the
projection-type method for VI(Ω, F ) in [18] is a contraction method in the sense of P -norm, where P is a
positive definite matrix. In the Euclidean-norm, its update form is (4.1a).
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Test examples of nonlinear complementarity problems.
We take nonlinear complementarity problems (NCP) as the test examples. The mapping F (u) in the tested

NCP is given by
F (u) = D(u) + Mu + q, (6.4)

where D(u) : <n → <n is the nonlinear part, M is an n× n matrix, and q ∈ <n is a vector.

• In D(u), the nonlinear part of F (u), the components are

Dj(u) = dj · arctan(aj · uj),

where a and d are random vectors3 whose elements are in (0, 1).

• The matrix M in the linear part is given by M = AT A + B. A is an n × n matrix whose entries
are randomly generated in the interval (−5,+5), and B is an n × n skew-symmetric random matrix
(BT = −B) whose entries4 are in the interval (−5,+5).

It is clear that the mapping composed in this way is monotone. We construct the following 3 sets of test
examples by choosing different vector q in (6.4).

1. In the first set of test examples, the elements of vector q is generated from a uniform distribution in the
interval (−500, 500).

2. The second set5 of test examples is similar to the first set. Instead of q ∈ (−500, 500), the vector q is
generated from a uniform distribution in the interval (−500, 0).

3. The third set of test examples has a known solution u∗ ∈ <n
+. Let vector p be generated from a uniform

distribution in the interval (−10, 10) and

u∗ = max(p, 0). (6.5)

By setting
w = max(−p, 0) and q = w − (D(u∗) + Mu∗),

we have F (u∗) = D(u∗) + Mu∗ + q = w = max(−p, 0). Thus,

(u∗)T F (u∗) =
(
max(p, 0)

)T (
max(−p, 0)

)
= 0.

In this way we constructed a test NCP with a known solution u∗ described in (6.5).

Implementation details.
For given uk, we use (1.3) to produce ũk with ν = 0.9 in (1.3b). If rk := βk‖F (uk) − F (ũk)‖/‖uk − ũk‖

is too small, it will lead slow convergence. Therefore, if rk ≤ µ = 0.3, the trial parameter βk will be enlarged
for the next iteration. These ‘refined’ strategies are necessary for fast convergence. The following is the
implementation details.

Step 0. Set β0 = 1, u0 ∈ Ω and k = 0.
Step 1. ũk = PΩ[uk − βkF (uk)],

rk :=
βk‖F (uk)− F (ũk)‖

‖uk − ũk‖
,

while rk > ν

βk := 0.7 ∗ βk ∗min{1, 1
rk
}, ũk = PΩ[uk − βkF (uk)]

end(while)
Use different forms ((6.1), (4.1a) or (4.1b)) to update uk+1.
If rk ≤ µ then βk := βk ∗ ν ∗ 0.9/rk, end(if)

Step 2. βk+1 = βk and k = k + 1, go to Step 1.

3A similar type of (small) problems was tested in [19] where the components of the nonlinear mapping D(u) are Dj(u) =

c · arctan(uj).
4In the paper by Harker and Pang [4], the matrix M = AT A + B + D, where A and B are the same matrices as what we use

here, and D is a diagonal matrix with uniformly distributed random entries djj ∈ (0.0, 0.3).
5In [4], the similar problems in the first set are called easy problems while the 2-nd set problems are called hard problems.
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The iterations begin with u0 = 0, β0 = 1 and stop as soon as

‖uk − PΩ[uk − F (uk)]‖∞
‖u0 − PΩ[u0 − F (u0)]‖∞

≤ 10−6. (6.6)

Since both F (uk) and F (ũk) are involved in those methods recursions, each iteration of the test methods
needs at least 2 times of evaluations of the mapping F . We use No. It and No. F to denote the numbers of
iterations and the evaluations of the mapping F , respectively. The size of the tested problems is from 500 to
2000. All codes are written in Matlab and run on a Lenovo X200 Computer with 2.53 GHz.

Comparison beteeen the extragradient method and the PC method II.
As mentioned in Section 4, replacing γ%k in (4.1b) by 1, the PC method II becomes the extragradient

method. According to the assertion in Theorem 4.1 and Theorem 5.1, we take the relaxation factor γ = 2 in
the PC method II. The test results for the 3 sets of NCP are given in Tables 1-3, respectively.

Table 1. Numerical results of the first set examples
Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[uk − βkF (ũk)] uk+1 = PΩ[uk − 2%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 496 1032 0.1626 224 490 0.0792

1000 439 917 1.5416 196 430 0.7285

2000 592 1236 7.8440 262 574 3.7305

Table 2. Numerical results of the second set examples
Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[uk − βkF (ũk)] uk+1 = PΩ[uk − 2%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 1157 2412 0.3921 510 1113 0.1938

1000 1197 2475 4.1946 533 1162 1.9350

2000 1487 3099 19.6591 669 1452 9.3591

Table 3. Numerical results of the third set examples
Extra-Gradient Method PC Method II (γ = 2)

Problem uk+1 = PΩ[uk − βkF (ũk)] uk+1 = PΩ[uk − 2%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 633 1318 0.2109 279 610 0.0988

1000 700 1458 2.4544 308 673 1.1272

2000 789 1643 10.4436 346 756 4.8455

In the third test examples, as the stop criterium is satisfied, we have ‖uk − u∗‖∞ ≈ 2 × 10−4 by using
the both test methods. The PC Method II and the extragradient method use the same direction but different
step size in the correction step. The numerical results show that the PC method II is much efficient than
the extragradient method. Even if the PC methods need to calculate the step size %k in each iteration, while
the computational load required by the additional effort is significantly less than the dominating task (the
evaluations of F (uk) and F (ũk)). It is observed that

Computational load of PC Method II
Computational load of the extragradient method

< 50%.

Comparison between PC method I and PC method II.
The different PC methods use the one of the geminate directions but the same step size in their correction

forms. In order to ensure ϑI(γ) > 0, we take γ = 1.9 in (4.1) for the both update forms. The test results for
the 3 sets of NCP are given in Tables 4-6, respectively.
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Table 4. Numerical results of the first set examples
PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γ%kd(uk, ũk) uk+1 = PΩ[uk − γ%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 294 625 0.1060 233 507 0.0885

1000 253 546 0.9451 204 445 0.7714

2000 334 704 4.5035 271 591 3.7896

Table 5. Numerical results of the second set examples
PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γ%kd(uk, ũk) uk+1 = PΩ[uk − γ%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 594 1273 0.2192 539 1170 0.2014

1000 635 1345 2.3151 559 1213 2.0908

2000 772 1641 10.4909 701 1518 9.7359

Table 6. Numerical results of the third set examples
PC Method I (γ = 1.9) PC Method II (γ = 1.9)

Problem uk+1 = uk − γ%kd(uk, ũk) uk+1 = PΩ[uk − γ%kβkF (ũk)]

size n No. It No. F CPU Sec No. It No. F CPU Sec

500 348 741 0.1328 295 642 0.1162

1000 368 782 1.3584 328 713 1.2441

2000 423 900 5.7394 370 803 5.1350

Between the PC methods, PC method II needs fewer iterations than PC method I, this evidence coincides
with the assertions in Theorem 4.1 (see (4.3) and (4.4)). Thus, we suggest to use PC method II when the
projection on Ω is easy to be carried out. Otherwise (when the projection is the dominating task in the
iteration), we use PC method I because its update form (4.1a) does not contain the projection.

7 Conclusions

In a unified framework, we proved the O(1/t) convergence rate of the projection and contraction methods for
monotone variational inequalities. The convergence rate is the same as that for the extragradient method. In
fact, our convergence rate include the extragradient method as a special case. The complexity analysis in this
paper is based on the general conditions (3.5) and thus can be extended to a broaden class of similar contrac-
tion methods. Preliminary numerical results indicate that the PC methods do outperform the extragradient
method.

Acknowledgement. The author thanks X.-J. Cai, X.-L. Fu, G.-Y. Gu, M. Li, M. Tao and X.-M. Yuan for
the discussion and valuable suggestions.
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Unternehmensforschung. Berlin-Heidelberg-New York, Springer-Verlag, 1975.

[3] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,
Vol. I and II. Springer Series in Operations Research. Springer Verlag, New York, 2003.

[4] P.T. Harker and J.S. Pang, A damped-Newton method for the linear complementarity problem, Lectures
in Applied Mathematics 26, pp. 265–284, 1990.

13



[5] B.S. He, A class of projection and contraction methods for monotone variational inequalities, Applied
Mathematics and optimization 35, pp. 69–76, 1997.

[6] B.S. He and L.-Z Liao, Improvements of some projection methods for monotone nonlinear variational
inequalities, Journal of Optimization Theory and Applications 112, pp. 111-128, 2002.

[7] B.S. He, L.-Z. Liao and X. Wang, Proximal-like contraction methods for monotone variational inequalities
in a unified framework I: effective quadruplet and primary methods, Computational Optimization and
Applications, 2011.

[8] B.S. He, L.-Z. Liao and X. Wang, Proximal-like contraction methods for monotone variational inequalities
in a unified framework II: General methods and numerical experiments, Computational Optimization and
Applications, 2011

[9] B.S. He and M.-H. Xu, A general framework of contraction methods for monotone variational inequalities,
Pacific J. Optimization 4, pp. 195-212, 2008.

[10] B.S. He, X.M. Yuan and J.J.Z. Zhang, Comparison of two kinds of prediction-correction methods for
monotone variational inequalities, Computational Optimization and Applications 27, pp. 247-267, 2004

[11] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika i
Matematicheskie Metody 12, pp. 747-756, 1976.

[12] A.G. Howard, Large Margin, Transformation Learning, PhD Thesis, Graduate School of Arts and Science.
Columbia University, 2009.

[13] S. Lacoste-Julien, Discriminative Machine Learning with Structure, PhD Thesis, Computer Science. Uni-
versity of California, Berkeley, 2009.

[14] A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequality with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. Optimization
15, pp. 229-251, 2005.

[15] Y. Pan, A game theoretical approach to constrained OSNR optimization problems in optical network,
PhD Thesis, Electrical and Computer Engineering. University of Toronto, 2009.

[16] Y. Pan and L. Pavel, Games with coupled propagated constraints in optical networks with multi-link
topologies, Automatica 45, pp. 871-880, 2009.

[17] F. Sha, Large Margin Training of Acoustic Models for Speech Recognition, PhD Thesis, Computer and
Information Science, University of Pennsylvania, 2007.

[18] M.V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities,
SIAM J. Control and Optimization 34, pp. 1814–1830, 1996.

[19] K. Taji, M. Fukushima and I. Ibaraki, A globally convergent Newton mmethod for solving strongly
monotone variational inequalities. Mathematical Programming 58, pp. 369-383, 1993.

[20] B. Taskar, S. Lacoste-Julien and M. I. Jordan, Structured prediction, dual extragradient and Bregman
projections, Journal of Machine Learning Research 7, pp. 1627-1653, 2006.

[21] B. Taskar, S. Lacoste-Julien and M. I. Jordan. Structured prediction via Extragradient method, In Y.
Weiss and B. Schoelkopf and J. Platt (Eds.), Advances in Neural Information Processing Systems (NIPS)
18, 2006.

[22] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, Department of
Mathematics, University of Washington, Seattle, WA 98195, USA, 2008.

14


	Introduction
	Preliminaries
	Predictor and the ascent directions
	Ascent directions by adding the fundamental inequalities
	Geminate ascent directions

	Corrector and the convergence in the contraction sense
	Convergence rate of the PC methods
	Numerical experiments
	Conclusions

