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Abstract. The old alternating direction method (ADM) has found many new applications

recently, and its empirical efficiency has been well illustrated in various fields. However,

the estimate of ADM’s convergence rate remains a theoretical challenge for a few decades.

In this note, we provide a unified proof to show the O(1/t) convergence rate for both the

original ADM and its linearized variant (known as the split inexact Uzawa method in image

processing literature). The proof is based on a variational inequality approach which is novel

in the literature, and it is very simple.
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1 Introduction

The alternating direction method (ADM) was proposed in [11], and it was immediately promoted

in the community of partial differential equations, see. e.g. [3, 10, 12, 14] for earlier literature.

The last two decades have witnessed impressive development on ADM in the areas of variational

inequalities and convex programming, see [5, 9, 16, 18, 27] to mention just a few. Very recently,

the ADM has received explosively increasing interests again because of its efficient applications in

a broad spectrum of areas such as imaging processing, statistical learning and engineering, see e.g.

[1, 2, 4, 6, 17, 23, 25, 26, 29, 30]. In particular, we refer to [6, 7, 24] for the relationship between ADM

and the split Bregman iteration scheme which was developed in [15] and is very influential in the

area of image processing. As mentioned in [1], the ADM is “at least comparable to very specialized

algorithms (even in the serial setting), and in most cases, the simple ADM algorithm will be efficient

enough to be useful”.

We concentrate our discussion on the context of linearly constrained convex programming with

separable structure

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}, (1.1)

where A ∈ ℜm×n1 , B ∈ ℜm×n2 , b ∈ ℜm, X ⊂ ℜn1 and Y ⊂ ℜn2 are closed convex sets, θ1 : ℜn1 → ℜ
and θ2 : ℜn2 → ℜ are convex functions (not necessarily smooth). We assume the solution set of (1.1)
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to be nonempty. The iterative scheme of ADM for (1.1) is

xk+1 = argmin
{
θ1(x) +

β

2
∥(Ax+Byk − b)− 1

β
λk∥2

∣∣ x ∈ X
}
, (1.2a)

yk+1 = argmin
{
θ2(y) +

β

2
∥(Axk+1 +By − b)− 1

β
λk∥2

∣∣ y ∈ Y
}
, (1.2b)

λk+1 = λk − β(Axk+1 +Byk+1 − b), (1.2c)

where λk ∈ ℜm is the Lagrange multiplier and β > 0 is a penalty parameter. According to (1.2),

ADM blends the ideas of decomposition and Gauss-Seidel iterations, and makes it possible to exploit

the properties of θ1 and θ2 individually. This is the main reason inspiring recent burst of ADM’s

wide applications in various areas.

The exciting literature is vastly devoted to the numerical and application perspectives of ADM,

while the research on ADM’s theoretical aspects is still in infancy. We refer to the elegant convergence

analysis in earlier literature (e.g. [11, 14]), some extensions to inexact versions of ADM (e.g. [16])

and some results for other relevant methods (e.g. [13]). Recently, under some additional assumptions

(e.g. the full rank assumption on A), and under the restriction that both the subproblems (1.2a)

and (1.2b) must be solved exactly, the O(1/t) convergence rate of ADM was shown in [19] in the

more general context of finding roots of the sum of a continuous monotone map and a point-to-set

maximal monotone operator with a separable two-block structure. These additional assumptions for

deriving the O(1/t) convergence rate of ADM, however, exclude many interesting applications where

the efficiency of ADM has been shown in the literature. In particular, the requirement on obtaining

exact solutions of (1.2a) and (1.2b) is somehow too restricted to realize, even when the resolvent

operators of θ1 and θ2 have closed-form representations. Here, the resolvent operator of a convex

function, say θ1, is given by(
I +

1

r
∂θ1
)−1

(a) = argmin{θ1(x) +
r

2
∥x− a∥2 |x ∈ X}, (1.3)

where a ∈ ℜn1 and r > 0. A simple instance is that when θ1(x) = ∥x∥1 (thus its resolvent operator

has a closed-form representation) but A is not the identity matrix. Then, it is not possible to obtain

the exact solution of (1.2a). For these reasons, the convergence rate result in [19] is not valid for

some aforementioned ADM’s novel applications, including those in the area of total variation image

restoration problems (e.g. [1, 2, 6, 23]).

The original ADM scheme (1.2) is the basis of many efficient algorithms developed recently. For

a general case where the subproblems (1.2a) and (1.2b) do not have closed-form solutions or it is not

easy to solve them to a high precision, inner iterative procedures are required to pursuit approximate

solutions of these subproblems. Thus, customized strategies with respect to particular properties of

θ1 and θ2 are critical to ensure the efficiency of ADM for these cases. A success in this regard is the

split inexact Uzawa method proposed in [31, 32]. Under the assumption that the resolvent operator

of θ1 has a closed-form representation, authors of [31, 32] suggested to linearize the quadratic term

in (1.2a) and solve the following approximate problem

xk+1 = argmin
{
θ1(x) + β(x− xk)T (AT (Axk +Byk − b− 1

β
λk)) +

r

2
∥x− xk∥2

∣∣ x ∈ X
}
, (1.4)

where the requirement on r is r > β∥ATA∥. Obviously, under the mentioned assumption on the

resolvent operator of θ1, the linearized subproblem (1.4) is easy enough to have a closed-form solution.
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This linearization strategy was shown in [31, 32] to be very efficient for some image restoration

problems. Note that the linearization on (1.2b) was not discussed in [31, 32], as B is usually an

identity matrix and θ2 is usually a simple function such as the least-squares function for applications

therein. For convenience, we also focus on the linearization merely on (1.2a). To the best of our

knowledge, the convergence rate of the split inexact Uzawa method [31, 32] is not yet established in

the literature.

Our purpose is to provide a simple unified proof on the O(1/t) convergence rate for both the

original ADM (1.2) (in the general context) and its linearized variant (i.e., the split inexact Uzawa

method proposed in [31, 32]). This result thus fills the gap of ADM between the witness of empirical

efficiency and the lack of matched theoretical results. The conjecture in [19] whether the subproblems

(or one of them) in (1.2) can be solved approximately is also answered affirmatively. Our investi-

gation on the convergence rate of ADM is motivated by the encouraging achievement in estimating

convergence rate or iteration complexity for various first-order algorithms in the literature (see, e.g.

[20, 21, 22, 28] for a few). But, our analysis is based on a variational inequality (VI) approach, and

it differs significantly from existing approaches in the literature. A key tool for our analysis is a

solution-set characterization of variational inequalities introduced in [8], and this result enables us

to find a very simple proof for the O(1/t) convergence rate of ADM and its linearized variant.

Note that both (1.2a) and (1.4) can be treated uniformly by

xk+1 = argmin
{
θ1(x) +

β

2
∥(Ax+Byk − b)− 1

β
λk∥2 + 1

2
∥x− xk∥2G;

∣∣ x ∈ X
}
, (1.5)

where G ∈ ℜn1×n1 is a symmetric and positive semi-definite matrix (we denote ∥x∥G :=
√
xTGx).

In fact, (1.2a) and (1.4) are recovered when G = 0 and G = (rIn1 − βATA), respectively. Therefore,

our analysis is for ADM in the following uniform context

xk+1 = argmin
{
θ1(x) +

β

2
∥(Ax+Byk − b)− 1

β
λk∥2 + 1

2
∥x− xk∥2G

∣∣ x ∈ X
}
, (1.6a)

yk+1 = argmin
{
θ2(y) +

β

2
∥(Axk+1 +By − b)− 1

β
λk∥2

∣∣ y ∈ Y
}
, (1.6b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.6c)

2 Preliminaries

In this section, we first reformulate (1.1) into a VI reformulation, and then characterize its solution

set by extending Theorem 2.3.5 in [8]. This characterization makes it possible to analyze ADM’s

convergence rate via the VI approach.

It is easy to see that the VI reformulation of (1.1) is: Find w∗ = (x∗, y∗, λ∗) ∈ Ω := X ×Y ×ℜm

such that

VI(Ω, F, θ) : θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.1a)

where

u =

(
x

y

)
, w =

 x

y

λ

 , F (w) =

 −ATλ

−BTλ

Ax+By − b

 and θ(u) = θ1(x) + θ2(y). (2.1b)
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Obviously, the mapping F (w) is affine with a skew-symmetric matrix, and it is thus monotone. Fur-

thermore, the solution set of VI(Ω, F, θ), denoted by Ω∗, is nonempty under the nonempty assumption

on the solution set of (1.1).

Next, we specify Theorem 2.3.5 in [8] for VI(Ω, F, θ), and this characterization is the basis of

our analysis for the convergence rate of ADM via the VI approach. The proof of next lemma is an

incremental extension of Theorem 2.3.5 in [8]. But, we include all the details for completeness.

Theorem 2.1 The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
∩
w∈Ω

{
w̃ ∈ Ω : θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ 0

}
. (2.2)

Proof. Indeed, if w̃ ∈ Ω∗, we have

θ(u)− θ(ũ) + (w − w̃)TF (w̃) ≥ 0, ∀w ∈ Ω.

By using the monotonicity of F on Ω, this implies

θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ 0, ∀w ∈ Ω.

Thus, w̃ belongs to the right-hand set in (2.2). Conversely, suppose w̃ belongs to the latter set. Let

w ∈ Ω be arbitrary. The vector

w̄ = αw̃ + (1− α)w

belongs to Ω for all α ∈ (0, 1). Thus we have

θ(ū)− θ(ũ) + (w̄ − w̃)TF (w̄) ≥ 0. (2.3)

Because θ(·) is convex, we have

θ(ū) ≤ αθ(ũ) + (1− α)θ(u).

Substituting it in (2.3), we get

θ(u)− θ(ũ) + (w − w̃)TF (αw̃ + (1− α)w) ≥ 0

for all α ∈ (0, 1). Letting α → 1 yields

θ(u)− θ(ũ) + (w − w̃)TF (w̃) ≥ 0.

Thus w̃ ∈ Ω∗. Now, we turn to prove the convexity of Ω∗. For each fixed but arbitrary w ∈ Ω, the

set

{w̃ ∈ Ω : θ(ũ) + w̃TF (w) ≤ θ(u) + wTF (w)}

and its equivalent expression

{w̃ ∈ Ω : θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ 0}

is convex. Since the intersection of any number of convex sets is convex, it follows that the solution

set of VI(Ω, F, θ) is convex. 2

Theorem 2.1 thus implies that w̃ ∈ Ω is an approximate solution of VI(Ω, F, θ) with the accuracy

ϵ > 0 if it satisfies

θ(ũ)− θ(u) + (w̃ − w)TF (w) ≤ ϵ, ∀w ∈ Ω. (2.4)

In the rest, we show that after t iterations of the ADM (1.6), we can find w̃ ∈ Ω such that (2.4) is

satisfied with ϵ = O(1/t). The convergence rate O(1/t) of the ADM (1.6) is thus established.
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3 Some properties

In this section, we prove several properties which are useful for establishing the main result.

First of all, to make the notation of proof more succinct, we introduce some matrices

H =

 G 0 0

0 βBTB 0

0 0 1
β Im

 , M =

 In1 0 0

0 In2 0

0 −βB Im

 , Q =

 G 0 0

0 βBTB 0

0 −B 1
β Im

 . (3.1)

Obviously, we have Q = HM .

Then, with the sequence {wk} generated by the ADM scheme (1.6), we define a new sequence by

w̃k =

 x̃k

ỹk

λ̃k

 =

 xk+1

yk+1

λk − β(Axk+1 +Byk − b)

 . (3.2)

As we shall show later (see (4.1)), our analysis of convergence rate is based on the sequence {w̃k}.
Note that (3.2) implies the relationship

wk+1 = wk −M(wk − w̃k), (3.3)

which is useful later.

Now, we start to prove some properties of the sequence {w̃k}. The first lemma quantifies the

discrepancy between the point w̃k and a solution point of VI(Ω, F, θ).

Lemma 3.1 Let {w̃k} be defined by (3.2) and the matrix Q be given in (3.1). Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)T {F (w̃k)−Q(wk − w̃k)} ≥ 0, ∀w ∈ Ω. (3.4)

Proof. First, by deriving the optimality conditions of the minimization problems in (1.6), we have

θ1(x)− θ1(x
k+1) + (x− xk+1)T {AT [β(Axk+1 +Byk − b)− λk] +G(xk+1 − xk)} ≥ 0, ∀x ∈ X , (3.5)

and

θ2(y)− θ2(y
k+1) + (y − yk+1)T {BT [β(Axk+1 +Byk+1 − b)− λk]} ≥ 0, ∀ y ∈ Y, (3.6)

Then, by using the notation w̃k in (3.2), the inequalities (3.5) and (3.6) can be respectively written

as

θ1(x)− θ1(x̃
k) + (x− x̃k)T {−AT λ̃k +G(x̃k − xk)} ≥ 0, ∀x ∈ X , (3.7)

and

θ2(y)− θ2(ỹ
k) + (y − ỹk)T {−BT λ̃k + βBTB(ỹk − yk)} ≥ 0, ∀ y ∈ Y. (3.8)

In addition, it follows from (1.6) and (3.2) that

(Ax̃k +Bỹk − b)−B(ỹk − yk) +
1

β
(λ̃k − λk) = 0. (3.9)

Combining (3.7), (3.8) and (3.9) together, we get w̃k = (x̃k, ỹk, λ̃k) ∈ Ω. For any w = (x, y, λ) ∈ Ω,

it holds

θ(u)− θ(ũk) +

 x− x̃k

y − ỹk

λ− λ̃k


T 

 −AT λ̃k

−Bλ̃k

Ax̃k +Bỹk − b

−

 G(xk − x̃k)

βBTB(yk − ỹk)

−B(yk − ỹk) + 1
β (λ

k − λ̃k)


 ≥ 0,
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for any w = (x, y, λ) ∈ Ω. Recall the definition of Q in (3.1). The assertion (3.4) is thus derived.

2

Hence, the discrepancy between the point w̃k and a solution point of (2.1) is measured by the

term (w − w̃k)TQ(wk − w̃k). In other words, if Q(wk − w̃k) = 0, then w̃k is a solution of (2.1).

According to its definition in (3.1), H is symmetric and positive semi-definite. Thus, we use the

notation

∥w − w̃∥H :=
(
(w − w̃)TH(w − w̃)

)1/2
.

In addition, since Q = HM and F is monotone, (3.4) can be rewritten as

θ(u)− θ(ũk) + (w − w̃k)TF (w) ≥ (w − w̃k)THM(wk − w̃k), ∀w ∈ Ω. (3.10)

Now, we deal with the right-hand side of (3.10), and we want to find a uniform lower bound in

terms of ∥w − wk∥2H and ∥w − wk+1∥2H for all w ∈ Ω. This is realized in the following lemma.

Lemma 3.2 Let {w̃k} be defined by (3.2), the matrices M and H be given in (3.1). Then we have

(w − w̃k)THM(wk − w̃k) +
1

2

(
∥w − wk∥2H − ∥w − wk+1∥2H

)
≥ 0, ∀w ∈ Ω. (3.11)

Proof. First, by using M(wk − w̃k) = (wk − wk+1) (see (3.3)), it follows that

(w − w̃k)THM(wk − w̃k) = (w − w̃k)TH(wk − wk+1).

Therefore, in order to obtain (3.11) we need only to prove that

(w − w̃k)TH(wk − wk+1) +
1

2

(
∥w − wk∥2H − ∥w − wk+1∥2H

)
≥ 0, ∀w ∈ Ω. (3.12)

Applying the identity

(a− b)TH(c− d) =
1

2

(
∥a− d∥2H − ∥a− c∥2H

)
+

1

2

(
∥c− b∥2H − ∥d− b∥2H

)
to the term (w − w̃k)TH(wk − wk+1), we thus obtain

(w− w̃k)TH(wk−wk+1) =
1

2
(∥w−wk+1∥2H −∥w−wk∥2H)+

1

2
(∥wk− w̃k∥2H −∥wk+1− w̃k∥2H). (3.13)

On the other hand, it follows from (3.3) that

∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H
= ∥wk − w̃k∥2H − ∥(wk − w̃k)− (wk − wk+1)∥2H
= ∥wk − w̃k∥2H − ∥(wk − w̃k)−M(wk − w̃k)∥2H
= (wk − w̃k)T (2HM −MTHM)(wk − w̃k). (3.14)

In fact, using the notation of H, M and Q and recall Q = HM (see (3.1)), we have

2HM −MTHM = 2Q−MTQ =

 G 0 0

0 0 BT

0 −B 1
β Im

 .

Therefore, it holds

(wk − w̃k)T (2HM −MTHM)(wk − w̃k) = (xk − x̃k)TG(xk − x̃k) +
1

β
∥λk − λ̃k∥2 ≥ 0.

With this fact, the identity (3.14) shows

∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H ≥ 0.

Substituting it into (3.13), we get (3.12) and the lemma is proved. 2
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4 The main result

Now, we are ready to present the O(1/t) convergence rate for the ADM (1.6).

Theorem 4.1 Let {wk} be the sequence generated by the ADM (1.6) and H be given in (3.1). For

any integer number t > 0, let w̃t be defined by

w̃t =
1

t+ 1

t∑
k=0

w̃k, (4.1)

where w̃k is defined in (3.2). Then, w̃t ∈ Ω and

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
∥w − w0∥2H , ∀w ∈ Ω. (4.2)

Proof. First, because of (3.2) and wk ∈ Ω, it holds that w̃k ∈ Ω for all k ≥ 0. Thus, together with

convexity of X and Y, (4.1) implies that w̃t ∈ Ω. Second, the inequalities (3.10) and (3.11) imply

that

θ(u)− θ(ũk) + (w − w̃k)TF (w) +
1

2
∥w − wk∥2H ≥ 1

2
∥w − wk+1∥2H , ∀w ∈ Ω. (4.3)

Summing the inequality (4.3) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(u)−
t∑

k=0

θ(ũk) +
(
(t+ 1)w −

t∑
k=0

w̃k
)T

F (w) +
1

2
∥w − w0∥2H ≥ 0, ∀w ∈ Ω.

Recall w̃t is given in (4.1). We thus have

1

t+ 1

t∑
k=0

θ(ũk)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
∥w − w0∥2H , ∀w ∈ Ω. (4.4)

Since θ(u) is convex and

ũt =
1

t+ 1

t∑
k=0

ũk,

we have that

θ(ũt) ≤
1

t+ 1

t∑
k=0

θ(ũk).

Substituting it in (4.4), the assertion (4.2) follows directly. 2

For a given compact set D ⊂ Ω, let d = sup{∥w − w0∥H |w ∈ D}, where w0 = (x0, y0, λ0) is the

initial iterate. Then, after t iterations of the ADM (1.6), the point w̃t ∈ Ω defined in (4.1) satisfies

sup
w∈D

{
θ(ũt)− θ(u) + (w̃t − w)TF (w)

}
≤ d2

2(t+ 1)
,

which means w̃t is an approximate solution of VI(Ω, F, θ) with the accuracy O(1/t) (recall (2.4)).

That is, the convergence rate O(1/t) of the ADM (1.6) is established in an ergodic sense.
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