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Abstract

In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free
sets associated with these inequalities and the multi-branch split cuts introduced by Li and Richard
(2008). By analyzing n-dimensional lattice-free sets, we prove that for every integer n there exists a
positive integer t such that every facet-defining inequality of the convex hull of a mixed-integer polyhe-
dral set with n integer variables is a t-branch split cut. We use this result to give a finite cutting-plane
algorithm to solve mixed-integer programs. We also show that the minimum value t, for which all facets
of polyhedral mixed-integer sets with n integer variables can be generated as t-branch split cuts, grows
exponentially with n. In particular, when n = 3, we observe that not all facet-defining inequalities are
6-branch split cuts.

1 Introduction

Starting with the work of Andersen, Louveaux, Weismantel and Wolsey [2], there has been renewed interest
in lattice-free sets as a way to generate cutting planes for mixed-integer programs (MIPs). In [2], the authors
study lattice-free sets in ℝ2 and show that all facet-defining inequalities for the so-called two-row continuous
group relaxation (defined by two equations, two integer variables and an arbitrary number of non-negative
continuous variables) can be generated by these sets. Later, Dash, Dey and Günlük [11] showed that facets
of the convex hull of any mixed-integer set with two integer variables can be obtained by crooked-cross cuts,
a family of disjunctive cuts related to the multi-branch split cuts studied earlier by Li and Richard [26].

Currently, an area of active research is the classification of all maximal lattice-free sets in ℝ3 (see
Averkov, Wagner and Weismantel [4]) and in higher dimensions. This project is motivated by the fact that
any valid inequality for a polyhedral mixed-integer set in ℤn × ℝl can be obtained using a lattice-free set
in ℝn and therefore classifying all lattice-free sets in ℝn leads to a characterization of all facet-defining
inequalities of the convex hull of mixed-integer sets in ℤn ×ℝl. This classification project, however, seems
difficult even in ℝ3 and there has been very limited progress in higher dimensions.

In this paper we study the connection between valid inequalities for mixed-integer sets in ℤn × ℝl and
multi-branch split cuts. We show that any lattice-free set in ℝn is contained in a t-branch split set for some
finite integer t, or equivalently, in the union of t split sets. Furthermore, using ideas from Lenstra’s algorithm
[25] for integer programming in fixed dimension, we obtain t as a function of n alone and not of the data
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defining the mixed-integer set. This result leads to a characterization of all facet-defining inequalities of the
convex hull of mixed-integer sets in ℤn ×ℝl without using an explicit classification of maximal lattice-free
sets in ℝn. In addition, this result also leads to a finite cutting-plane algorithm for solving mixed-integer
programs that only generates multi-branch split cuts.

The question of finite termination of pure cutting-plane algorithms has received some attention recently.
Gomory [17] presented the first finite cutting-plane algorithm to solve pure integer programs. He later
presented a cutting-plane algorithm for MIPs which uses the Gomory mixed-integer (GMI) cut [18], but
proved finite termination only when the optimal objective value is known to be integral a priori (and an
integer variable representing the objective function value is explicitly added to the constraint system). Later,
Cook, Kannan and Schrijver [10] presented a very simple MIP which cannot be solved with split cuts alone.
As GMI cuts are split cuts, their results imply that Gomory’s algorithm will not terminate on this example.
This result was recently extended by Dash and Günlük [13] to show that for a certain MIP with n integer
variables and one continuous variable, no cutting-plane algorithm generating only (n− 1)-branch split cuts
will terminate in finite time (more precisely, the case when n = 3 was shown by Li and Richard [26] and
Dash and Günlük extend this to arbitrary n). Cook, Kannan and Schrijver also note that if the data is rational
it is possible to discretize continuous variables in an MIP (by treating such variables as integer variables after
scaling by an appropriate constant) and solve the resulting pure integer program by Gomory’s cutting-plane
algorithm.

For MIPs with a bounded LP relaxation, Adams and Sherali [1] presented a hierarchy of relaxations
which yield the convex hull of integer solutions in finitely many steps. Jörg [20, 21] gave an algorithm
which generates disjunctive cuts and solves any such MIP in finite time. Subsequently, Chen, Küçükyavuz,
and Sen [9] also gave a disjunctive cutting-plane algorithm to solve such MIPs in finite time. The case when
the LP relaxation is not necessarily bounded was addressed recently by Del Pia and Weismantel [15] who
show that the integral lattice-free closure of a polyhedron is again a polyhedron and the integer hull can be
obtained by applying the closure operator finitely many times (though they do not show how to obtain this
closure algorithmically). Our result in this paper gives the first finite cutting-plane algorithm for general
MIPs which does not explicitly use the encoding complexity of the input data nor discretizes the continuous
variables.

In this paper we also construct a family of lattice-free sets in ℝn which cannot be covered by multi-
branch split sets unless one uses at least 3 ⋅2n−2 split sets. Using this construction, we present mixed-integer
sets in ℤn × ℝ which have facet-defining inequalities that are not t-branch split cuts unless t ≥ 3 ⋅ 2n−2.
For example, when n = 3, we show that 6-branch split cuts are not sufficient to obtain the integer hull, but
21-branch split cuts are. In order to obtain this result, we show that the lattice-width of a lattice-free, convex
set in ℝ3 is at most 4.2439; in ℝ4 we show a corresponding bound of 6.8481.

2 Preliminaries

In this paper we work with polyhedral mixed-integer sets of the form

P = PLP ∩ (ℤn × ℝl) where PLP = {(x, y) ∈ ℝn+l : Ax+Gy ≤ b}, (1)

and A,G and b have m rows and rational components. We call PLP the continuous relaxation of P .

2.1 Disjunctive and lattice-free cuts

Disjunctive programming was introduced by Balas [5] and has proved to be a very important tool for gen-
erating valid inequalities for mixed-integer sets. We next review the main ideas that are relevant for this
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paper. Let Dk = {(x, y) ∈ ℝn+l : Akx ≤ bk} be finitely many polyhedral sets indexed by k ∈ K and let
D = ∪k∈KDk. We call D a disjunction for the mixed-integer lattice ℤn × ℝl if

ℤn × ℝl ⊂ D

and we call each Dk an atom of the disjunction D (when the mixed-integer lattice is clear from the context,
we omit it). By definition D = Dx × ℝl where Dx ⊆ ℝn is the projection of D in the space of the integer
components, and consequently, the condition above is same as requiring ℤn ⊂ Dx. Notice that verifying
ℤn ⊂ Dx is the same as checking if ℤn ∖Dx = ∅, which, in general, is not an easy task. In the next section,
we will discuss simple disjunctions for which validity of the disjunction can be verified trivially.

A linear inequality is called a disjunctive cut for P derived from the disjunction D if it is valid for
PLP ∩Dk for all k ∈ K. A disjunctive cut for P is valid for all points in P : given a disjunction D,

P ⊆ conv
(
PLP ∩D

)
= conv

(∪
k∈K

(PLP ∩Dk)

)
,

where conv
(
PLP ∩D

)
is the set of points in PLP that satisfy all disjunctive cuts derived from D.

Disjunctive cuts can also be seen as lattice-free cuts. Given a set B ⊂ ℝn, we call B strictly lattice-free
if B ∩ ℤn = ∅, and we say that B is lattice-free if int(B) ∩ ℤn = ∅, where int(B) stands for the points in
the interior of B. Thus a lattice-free set may have integral points on its boundary. If B is strictly lattice-free,
we define P (B) as

P (B) = conv
(
PLP ∖ (B × ℝl)

)
⇒ P ⊆ P (B),

and any inequality valid for P (B) is called a lattice-free cut derived from the set B. Note that the definition
of a lattice-free cut above is different from that in most recent papers starting with [2] where convex sets
which have strictly lattice-free interior are called lattice-free sets and cuts derived from these sets are called
lattice-free cuts. We will later see that there is no distinction between these two definitions of lattice-free
cuts.

A disjunctive cut derived from the disjunctionDx×ℝl is a lattice-free cut derived from the set ℝn ∖Dx.
Consequently, all disjunctive cuts are lattice-free cuts. As we discuss below, it is also possible to show that
valid inequalities obtainable as lattice-free cuts from strictly lattice-free, convex sets are disjunctive cuts.
Therefore all lattice-free cuts are disjunctive cuts. Before establishing the equivalence between lattice-free
and disjunctive cuts we first make an important observation which we use throughout the paper.

Observation 2.1. Let D = Dx × ℝl ⊂ ℝn+l be a disjunction and let B ⊂ ℝn be a strictly lattice-free set.
If Dx ∩B = ∅, then conv

(
PLP ∩D

)
⊆ P (B). In other words, when Dx ∩B = ∅, any lattice-free cut for

P derived from B can be obtained as a disjunctive cut derived from D.

Let cTx+ dT y ≥ 
 be a given rational valid inequality for P and let ∅ ∕= V ⊂ ℝn be the points in PLP

that violate this inequality. In other words,

V = {(x, y) ∈ PLP : cTx+ dT y < 
}. (2)

Furthermore, let V x ⊂ ℝn denote the projection of the set V in the space of the integer variables and note
that V x ∩ ℤn = ∅. It is known that V x is defined by a finite collection of strict and non-strict rational
inequalities, see [12]. Jörg [21] observes that the set V x is contained in the interior of a polyhedral lattice-
free set. In other words, there is a rational polyhedral set B = {x ∈ ℝn : �Ti x ≤ 
i, i ∈ K}, where
�i ∈ ℤn and 
i ∈ ℤ for all i ∈ K, such that int(B) ∩ ℤn = ∅ and

V x ⊆ int(B) = {x ∈ ℝn : �Ti x < 
i, i ∈ K}. (3)
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Therefore cTx + dT y ≥ 
 is valid for P (int(B)) ⊆ P (V x). Based on this observation, Jörg then argues
that

D =
∪
i∈K
{(x, y) ∈ ℝn+l : �Ti x ≥ 
i} (4)

is a disjunction for ℤn × ℝl and the cut cTx + dT y ≥ 
 is a disjunctive cut derived from D. Therefore,
any valid inequality for P , and in particular, any facet-defining inequality for P is a disjunctive cut derived
from some disjunction D and a lattice-free cut derived from some lattice-free, convex set. We emphasize
that this approach is not prescriptive in the sense that the disjunction D is defined using the valid inequality
cTx+ dT y ≥ 
 and not the other way around.

The discussion above also establishes the equivalence between lattice-free cuts obtained from convex
sets as described in [2] and the seemingly more general lattice-free cuts obtained from sets that are not
necessarily convex. When cTx+ dT y ≥ 
 is a lattice-free cut obtained from a possibly non-convex set B′,
the inclusion in (3) leads to the following observation.

Observation 2.2. Let B′ ⊂ ℝn be a strictly lattice-free set (which is possibly non-convex). Any rational cut
for P derived from B′ can be obtained as cut derived from a strictly lattice-free convex set B.

We would like to emphasize that the observation above does not claim the existence of a single convex
set B that can produce all the cuts that B′ can produce. For example, ℝn ∖ℤn is a strictly lattice-free set that
can yield all valid inequalities for P , and clearly there does not exist a convex set B′ that can do the same.

2.2 Multi-branch split disjunctions

We next discuss simple disjunctions D for which it is easy to verify that ℤn × ℝl ⊂ D. The building block
of these disjunctions is a split disjunction (see Cook, Kannan, and Schrijver [10]) which is a disjunction that
can be defined with two atoms D1, D2, where

D1 = {(x, y) ∈ ℝn+l : �Tx ≤ 
} and D2 = {(x, y) ∈ ℝn+l : �Tx ≥ 
 + 1}

for some � ∈ ℤn, 
 ∈ ℤ. We denote this disjunction as D(�, 
), and define the associated split set as

S(�, 
) = ℝn ∖D(�, 
) = {(x, y) ∈ ℝn+l : 
 < �Tx < 
 + 1}.

We will denote the topological closure of S(�, 
) by S̄(�, 
) and call it a closed split set. If x ∈ ℤn then
�Tx ∈ ℤ implying that �Tx either satisfies �Tx ≤ 
 or �Tx ≥ 
 + 1 and therefore D(�, 
) is a valid
disjunction for ℤn × ℝl.

Li and Richard [26] define a generalization of split disjunctions they call t-branch split disjunctions. Let
�i ∈ ℤn and 
i ∈ ℤ for i = 1, . . . , t. Then,

D(�1, . . . , �t, 
1, . . . , 
t) =
∪

S⊆{1,...,t}

{(x, y) ∈ ℝn+l : �Ti x ≤ 
i if i ∈ S, �Ti x ≥ 
i + 1 if i ∕∈ S} (5)

is called a t-branch split disjunction. A split disjunction is simply a 1-branch split disjunction. Further,

D(�1, . . . , �t, 
1, . . . , 
t) = ℝn+l ∖
∪

i=1,...,t

S(�i, 
i).

In other words, the complement of D(�1, . . . , �t, 
1, . . . , 
t) can be expressed as the union of t split sets
and is thus lattice-free. Therefore D(�1, . . . , �t, 
1, . . . , 
t) defines a valid disjunction. On the other hand,
verifying that a set of the form in (4) is a valid disjunction requires solving an integer program.

A t-branch split disjunction can be specified using 2t atoms of the form (5). We refer to disjunctive cuts
derived from t-branch split disjunctions as t-branch split cuts.
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3 Valid inequalities as t-branch split cuts

In this section we show that any valid inequality for P is a t-branch split cut for some t. Recently Chen,
Küçükyavuz, and Sen [9] showed this result for bounded P using t-branch split disjunctions defined by unit
vectors. In addition the number t in their result depends on the data defining P . Next, we show that it is
not necessary to require P to be bounded and, further, we also derive a bound on t that depends only on the
number of integer variables defining P .

To show that a given valid inequality is a t-branch split cut for some t, we will consider the strictly
lattice-free set V x, defined after equation (2), on the space of integer variables, and cover it by t split sets:
we say that a set B is covered by a collection of split sets if B is contained in their union.

Given a closed, bounded, convex set B ⊂ ℝn and a vector c ∈ ℤn, let the width of B along the direction
c, denoted by w(B, c), be defined as

w(B, c) = max{cTx : x ∈ B} −min{cTx : x ∈ B}. (6)

The lattice width of B, denoted here as w(B), is defined as

w(B) = min
c∈ℤn∖{0}

w(B, c).

If the set is not closed, we define its lattice width to be the lattice width of its topological closure. We call a
closed, full-dimensional, bounded convex set a convex body. Any strictly lattice-free, bounded, convex set
B is contained in a strictly lattice-free, convex body B′ and the lattice width of B is bounded from above by
the lattice width of B′.

Lenstra [25] gave a polynomial-time algorithm to solve the feasibility version of integer programs in
fixed dimension. Given a polyhedron, Lenstra’s algorithm either finds an integral point contained in the
polyhedron or certifies that no such point exists. A central component of this algorithm is the use of algo-
rithmic versions of Khinchine’s flatness theorem [23]. The flatness theorem states that there exists a function
f : ℤ+ → ℝ+ such that for any strictly lattice-free, bounded, convex set B ⊂ ℝn,

w(B) ≤ f(n). (7)

Notice that the function f only depends on the dimension of B and not on the encoding complexity of the
data defining B. In [25], Lenstra uses this result to construct a finite enumeration tree to solve the integer
feasibility problem. The number of nodes in the tree is bounded from above by a function of n which again
is independent of the encoding complexity of the data defining B. Modifying Lenstra’s idea slightly, we
later show that every strictly lattice-free, convex body in ℝn can be covered by the union of t split sets,
where t is bounded from above by the maximum number of enumeration nodes used in Lenstra’s algorithm.

Lenstra showed that (7) holds with f(n) = 2n
2
, which was later improved to f(n) = c0(n + 1)n/2

by Kannan and Lovász [22] for some constant c0. This bound was subsequently improved by Banaszczyk,
Litvak, Pajor, and Szarek to O(n3/2) and by Rudelson [29] to O(n4/3 logc n) for some constant c. The
constant c0 used by Kannan and Lovász [22] is c0 = max{1, 4/c1} where c1 is another constant defined
by Bourgain and Milman [8]. Independent of the value of c1, the constant c0 ≥ 1 and therefore the upper
bound defined by Kannan and Lovász on the lattice width is at least 3 for ℝ2 and at least 6 for ℝ3. When
B ⊂ ℝ2, Hurkens [19] proved that (7) holds with f(2) = 1 + 2/

√
3 ≈ 2.1547, and showed that this bound

is tight. More precisely he showed the following result:
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Theorem 3.1. [19] If B ⊂ ℝ2 is lattice-free, then w(B) ≤ 1 + 2√
3
. Furthermore, there exists lattice-free

B ⊂ ℝ2 with w(B) = 1 + 2√
3

and any such B is a triangle with vertices q1, q2, q3 such that (let q4 := q1)

1√
3
qi + (1− 1√

3
) qi+1 ∈ ℤ2, for i = 1, 2, 3.

x1

x2

q1

q2

q3

Figure 1: The lattice-free triangle T

Letting bi = 1√
3
qi + (1 − 1√

3
) qi+1 in the theorem above and taking b1 = (0, 0)T , b2 = (0, 1)T , and

b3 = (1, 0)T , one obtains a triangle T ⊂ ℝ2 with w(T ) = 1 + 2√
3
. The three vertices q1, q2, q3 of this

triangle are given by the columns of the following matrix:

1

3

(
2 −1−

√
3 2 +

√
3

−1−
√

3 2 +
√

3 2

)
.

Furthermore, T is a so-called type 3 maximal lattice-free triangle [2] that contains the lattice points b1, b2
and b3 in the relative interior of its sides. As shown in Figure 1, T does not contain any other lattice points.

3.1 Width of lattice-free sets in ℝ3

Recently, Averkov, Wagner and Weismantel [4] obtained a complete list (up to unimodular transformations)
of maximal lattice-free polytopes in ℝ3 with integer vertices. One can verify that the lattice width of such
bodies does not exceed three in ℝ3. However, in ℝ3, one can construct lattice-free bodies with lattice
width slightly greater than 3. Recall the vectors q1, q2, q3 ∈ ℝ2 which define the vertices of the triangle
T . Consider the tetrahedron H with vertices s1, . . . , s4, where s4 = (0, 0, 2 + 2/

√
3), and s1, s2, s3 are

points on the plane {x : x3 = 0} such that the points (qi, 1) ∈ ℝ3 lie on the line segment from si to s4. By
definition, H ∩ {x : x3 = 1} is congruent to T . See Figure 2. H has lattice width 2 + 2/

√
3 ≈ 3.1547.

To see this note that if c ∈ ℤ3 ∖ {0} such that c1 = c2 = 0, then c3 ∕= 0 and w(H, c) ≥ max{x3 : x ∈
H} −min{x3 : x ∈ H} = 2 + 2/

√
3. On the other hand, if (c1, c2) ∕= (0, 0), then w(H, c) ≥ w(H ∩ {x :

x3 = 0}, c) ≥ 2 + 2/
√

3. This is because the triangles H ∩ {x : x3 = 0} and H ∩ {x : x3 = 1} are
homothetic triangles, and the ratio of their respective lattice widths (when treated as convex bodies in ℝ2)
is (2 + 2/

√
3)/(1 + 2/

√
3), which is the ratio of their distance from s4. We do not know of any result

analogous to Hurkens’ result which gives the best possible upper bound on the lattice width in ℝ3.
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s4

s1

s2

s3

q1

q2

q3

Figure 2: A lattice-free tetrahedron in ℝ3 with lattice width 2 + 2/
√

3

Using the best known value for c1, and refining the result of Kannan and Lovász slightly, we next give
an upper bound in ℝ3 on the lattice width of strictly lattice-free, convex bodies. We need a few definitions to
give the result and its proof. In [8], Bourgain and Milman show that if K ⊂ ℝn is a convex body symmetric
about the origin and K∗ is its polar body, i.e., K∗ = {y ∈ ℝn : yTx ≤ 1 ∀x ∈ K}, then

vol(K)vol(K∗) ≥
(c1

n

)n
(8)

where vol(K) denotes the n-dimensional volume (Lebesgue measure) of K and c1 > 0 is a universal
constant that does not depend on n.

If S and T are subsets of ℝn, and � is a positive real number, then let S + T = {s+ t : s ∈ S, t ∈ T},
and let �S = {�s : s ∈ S}. S − T is similarly defined. For a convex body B in ℝn, let �j(B) be defined as

�j(B) = inf{t ∈ ℝ+ : tB + ℤn intersects every (n− j)-dimensional affine subspace of ℝn},

where inf is short for infimum. Then �n(B) is the infimum of all t such that tB + ℤn = ℝn, and is called
the covering radius of B. Therefore �n(B) ≥ 1 if B is lattice-free and convex and �n(B) > 1 if B is a
strictly lattice-free, convex body. Let

�1(B) = inf{t ∈ ℝ : t(B −B) contains a nonzero integer vector}.

Theorem 3.2. If B ⊂ ℝ3 is lattice-free, then w(B) ≤ 1 + 2/
√

3 + (90/�2)
1
3 ≈ 4.2439.

Proof. We first define functions �0, �1 : ℤ+ → ℝ+ that we will use instead of the universal constants c0

and c1. Let Bn stand for the unit ball in ℝn and define

�1(n) = n
(2n(n!)2

(2n)!
vol(Bn)2

) 1
n

and let �0(n) = 4/�1(n). Subsequently, we will refer to c0 as the least upper bound on �0(n) for all n, and
c1 as the largest lower bound on �1(n) for all n.

In [24], Kuperberg gave the best-known value for c1 and showed that if K is a convex body symmetric
about the origin, then

vol(K)vol(K∗) ≥ 2n(n!)2

(2n)!
vol(Bn)2.
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Using our notation, this can be rewritten as

vol(K)vol(K∗) ≥
(
�1(n)

n

)n

(9)

which is identical to (8) except the universal constant c1 is now replaced with the function �1(n).
In [22], Kannan and Lovász show that �1(B)w(B) ≤ 4/(vol(B −B)vol((B −B)∗)1/n which implies

that

w(B) ≤ 4n

�1(B)�1(n)
=
n�0(n)

�1(B)

by (9). In addition (in Lemma 2.3) they also show that �1(B) = 1/w(B) and therefore, substituting out
w(B) from the inequality above, we obtain �1(B) ≤ n�0(n)�1(B).

Now combining �n(B) ≤ �n−1(B) + �1(B) [22, Lemma 2.5] with the fact that �2(B) ≤ (1 +
2/
√

3)�1(B) (see [22, p 587]) we obtain

�3(B) ≤ �2(B) + �1(B) ≤ (1 + 2/
√

3)�1(B) + �1(B) ≤ (1 + 2/
√

3 + 3�0(3))�1(B).

As 1 ≤ �3(B) for a lattice-free body in ℝ3, we have

1

�1(B)
= w(B) ≤ 1 + 2/

√
3 + 3�0(3).

Substituting �0(3) = (10/3�2)
1
3 ≈ 0.6964 we obtain the desired value.

We can similarly refine the lattice-width bound in [22] in higher dimensions. Lemma 2.6 in [22] asserts
that �j+1(B) ≤ �j(B) + (j + 1)c0�1(B) for j = 1, . . . , n − 1. Adding up these inequalities, one obtains
that if B ⊂ ℝn, then �n(B) ≤ (1 + c0

∑n
i=2 i)�1(B). Therefore [22, Theorem 2.7],

if c0 ≥ 1, �n(B) ≤ c0n(n+ 1)/(2w(B)) as �1(B) = 1/w(B).

(We noted before that c0 is chosen to be max{1, 4/c1} in [22, p. 581].) Looking at the proofs of Lemma
2.6 and Lemma 2.5 in [22], and the fact that �1(B) ≤ �0(n)n�1(B), one can replace [22, Lemma 2.6] by

�j+1(B) ≤ �j(B) + (j + 1)�0(j + 1)�1(B) for j = 1, . . . , n− 1⇒

�n(B) ≤ (1 + 2/
√

3 +
n∑

i=3

i�0(i))/w(B),

and therefore w(B) ≤ 1 + 2/
√

3 +
∑n

i=3 i�0(i) for lattice-free bodies in ℝn. As �0(4) ≈ 0.6510, we can
conclude that if B ⊂ ℝ4 and B is convex and lattice-free, then w(B) ≤ 6.8481.

3.2 Lattice-free sets and integer programming

We next review some basic properties of unimodular matrices, i.e., integral, square matrices with determi-
nant ±1. If U is an n × n unimodular matrix, and v ∈ ℝn, the affine transformation �(x) = Ux + v is a
one-to-one, invertible, mapping of ℝn to ℝn with �−1(x) = U−1(x− v) and this transformation preserves
volumes (see [3, Thm 15.13]). If U is an unimodular matrix, then so is U−1; if in addition v ∈ ℤn, then
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the function �(x) is a one-to-one, invertible, mapping of ℤn to ℤn. Further, if a ∈ ℤn, b ∈ ℤ, the set
{x ∈ ℝn : aTx = b} is mapped to the set

{x′ ∈ ℝn : aTU−1(x′ − v) = b} ≡ {x′ ∈ ℝn : aTU−1x′ = b+ aTU−1v}

and aTU−1 ∈ ℤn. Therefore, given a split set S(a, b), �(S(a, b)) and �−1(S(a, b)) are both split sets.
If a ∈ ℤn and the g.c.d. of the coefficients of a is one, then there is a unimodular matrix U such that
aTU = (0, . . . , 0, 1) and aTx = b has an integral solution for any integer b (see [30, Corollary 4.1c]). Note
that the previous statement implies that aT is the last row of U−1.

In the remainder of the section, we do not use any specific bound on the lattice width, but just use f(n)
to stand for a function which gives an upper bound on the lattice width of strictly lattice-free bodies in ℝn.
For any positive integer n, we define the functions

f̄n = 1 + ⌈f(n)⌉ and ℎ(n) = f̄n + f̄nf̄n−1 + f̄nf̄n−1f̄n−2 + . . .+ Πn
i=1f̄i.

Lemma 3.3. Any strictly lattice-free, bounded, convex set B ⊂ ℝn is contained in the union of some ℎ(n)
split sets.

Proof. The result is trivially true when n = 1 as w(B) ≤ 1 in that case and ℎ(1) can be assumed to be
2. Assume it is true for all dimensions up to n − 1 and consider a strictly lattice-free, bounded, convex set
B ⊂ ℝn. By Khinchine’s flatness result, there is a nonzero vector a ∈ ℤn such that u − l ≤ f(n) where
u = max{aTx : x ∈ B} and l = min{aTx : x ∈ B}. Therefore B ⊆ {x ∈ ℝn : ⌊l⌋ ≤ aTx ≤ ⌈u⌉}.
We can assume the g.c.d. of the coefficients of a is one, otherwise a = kā for some positive integer k and
ā ∈ ℤn, and max{āTx : x ∈ B} −min{āTx : x ∈ B} = (u− l)/k ≤ f(n)/k.

Let ℒ be the collection of the split sets S(a, b) for b ∈ V = {⌊l⌋, . . . , ⌈u⌉ − 1} and notice that

B ∖
∪
b∈V

S(a, b) =
∪
b∈V̄

{x ∈ B : aTx = b}

where V̄ = {⌈l⌉, . . . , ⌊u⌋}. Each one of the ∣V̄ ∣ sets in the right hand side of this expression is strictly
lattice-free, and has dimension at most n − 1. As the g.c.d. of the coefficients of a is one, aTx = b has
an integral solution (say vb) for any b ∈ ℤ, and there is a unimodular matrix U with aT as its last row.
Then, under the affine transformation x→ Ux− Uvb (with inverse transformation x→ U−1x+ vb), there
is a one-to-one mapping of {x ∈ ℝn : aTx = b} to the set ℝn−1 × {0}, and of the integer points in the
respective sets. Therefore, for any b ∈ ℤ, the set {x ∈ B : aTx = b} is mapped to a strictly lattice-free set
B′ × {0} with B′ ⊂ ℝn−1. By the induction hypothesis, B′ can be covered by ℎ(n − 1) split sets, and so
can B′ × {0} (by split sets S(ai, bi) where ain = 0). Applying the affine transformation x→ U−1x+ vb to
the split sets S(ai, bi), we get ℎ(n− 1) split sets covering {x ∈ B : aTx = b}. Add each of these split sets
to ℒ.

Then ℒ has size at most ∣V ∣+ ∣V̄ ∣ℎ(n− 1). Notice that

u− l ≤ f(n) =⇒ ⌈u⌉ − ⌈l⌉ ≤ ⌈f(n)⌉,

and ∣V ∣, ∣V̄ ∣ ≤ ⌈u⌉−⌈l⌉+1. Consequently, ∣V ∣, ∣V̄ ∣ ≤ f̄n and the set ℒ has size at most f̄n(1+ℎ(n−1)) =
ℎ(n) and the desired bound follows.

The previous result obviously also holds for the interior of any (maximal) lattice-free, bounded, con-
vex set in ℝn. If the strictly lattice-free, convex set is unbounded, additional conditions are needed for
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Lemma 3.3 to hold; the conditions we choose may not be the least restrictive but suffice for our purpose.
Lovász [27] showed that any maximal lattice-free, convex set is a polyhedron. Furthermore, if such a set
is unbounded, then it is either an irrational hyperplane or it is full-dimensional and it can be expressed as
Q+L where Q is a polytope and L a rational linear space. In the latter case, Q+L is called a cylinder over
the polytope Q. Also see Basu et. al. [7] for a more recent and complete proof of Lovász’s result.

Lemma 3.4. Let B ⊂ ℝn be a strictly lattice-free, unbounded, convex set. If B is contained in the interior
of a maximal lattice-free, convex set in ℝn, then it is contained in the union of some ℎ(n) split sets.

Proof. Let B′ be a maximal lattice-free, convex set containing B in its interior; then B′ is full-dimensional.
ThereforeB′ is not an irrational hyperplane. By Lovász’s result,B′ = Q+L, whereL is rational, dim(L) =
r for some 0 < r < n, and Q is a lattice-free polytope contained in L⊥, the orthogonal complement of L,
and has dimension n − r. Furthermore, B is contained in int(Q) + L. As L and L⊥ are rational, we can
define an n × n unimodular matrix U such that UL⊥ = ℝn−r × {0}r. Therefore, every point in the set
UQ = {Ux : x ∈ Q} has its last r components zero. Further UQ is lattice-free, and Lemma 3.3 theorem
gives ℎ(n−r) split sets in ℝn−r whose union covers the projection of int(UQ) on the first n−r components.
Let S(�i, 
i) be the ith split set in the above union. Let S(�′i, 
i) be the corresponding split set in ℝn which
is defined as follows: �′i is obtained by appending r zeros to �i and then multiplying by U−1. It is easy to
see that int(Q)+L and thereforeB is covered by ∪ℎ(n−r)

i=1 S(�′i, 
i). As ℎ(n−r) ≤ ℎ(n), the result follows.

Applying Lemma 3.4 with the bound of Rudelson [29] on f(n), it is easy to obtain an exponential upper
bound of O(n!4/3) on the number of split sets needed to cover a strictly lattice-free, convex set. We will
give a smaller exponential lower bound in the next section.

Recall the mixed-integer set P defined in (1). Let cTx+dT y ≥ 
 be a non-trivial rational valid inequality
for conv (P ), i.e., cTx+ dT y ≥ 
 is not valid for PLP , but is valid for conv (P ). Let V ⊂ ℝn+l be defined
as in (2), and let V x be defined as the projection of V on the space of the integer variables. V x is strictly
lattice-free, and is non-empty as cTx + dT y ≥ 
 is not valid for PLP . As we discussed earlier, Jörg [21]
showed that V x is contained in the interior of a rational, lattice-free polyhedron B ⊂ ℝn, and thus in the
interior of a maximal lattice-free, convex set. Depending on whether V x is bounded or unbounded, we can
use either of the previous two lemmas to obtain the following result.

Theorem 3.5. Any facet-defining inequality for conv (P ) is a ℎ(n)-branch split cut.

We observed earlier that Jörg’s results already express every facet-defining inequality as a disjunctive
cut. The previous theorem gives an alternative expression of every facet-defining inequality as a disjunc-
tive cut. verified. We next obtain a finite disjunctive cutting-plane algorithm for arbitrary MIPs based on
Theorem 3.5. This algorithm is however of purely theoretical interest, and is highly impractical.

Theorem 3.6. The mixed-integer program max{cTx+ dT y : (x, y) ∈ P} can be solved in finite time via
a pure cutting-plane algorithm which generates only ℎ(n)-branch split cuts.

Proof. Let t = ℎ(n). We will represent any t-branch split disjunction D(�1, . . . , �t, 
1, . . . , 
t) by a vector
v in ℤ(n+1)t; the components of �1, . . . , �t are arranged as the first nt components of v, and 
1, . . . , 
t
form the last t components. Let Ω = ℤ(n+1)t. As Ω is a countable set, by definition the vectors in Ω can
be arranged in a sequence {Ωi}, say by increasing norm. Further let Di be the t-branch split disjunction
defined by Ωi. For any facet-defining inequality of conv (P ), there exists a (finite) integer k such that the
inequality is a t-branch split cut defined by the disjunction Dk. Let k∗ be the largest index of a disjunction
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associated with facet-defining inequalities. Now consider the following algorithm which does not compute
or use the value of k∗. Let P0 denote the continuous relaxation of P .

Repeat the following two steps for i = 1, 2, . . .

1. Compute Pi = Pi−1 ∩ conv (P0 ∩Di) .

2. If the basic optimal solution of max{cTx+ dT y : (x, y) ∈ Pi} is integral, terminate.

As Pi is a relaxation of P , an integral optimal solution over Pi is also an optimal solution over P . Further,
as Pk∗ = conv (P ), the algorithm must terminate for some i ≤ k∗.

If one wants to check validity of a given inequality, the termination criterion in the above algorithm can
be modified to check it. Finally, if one wants to compute conv (P ), then the termination criterion can be
changed to verifying that all vertices of Pi are integral.

One drawback of the proof of finiteness in Theorem 3.6 is that it gives no information on how long the
algorithm will run for any given P . We next prove that the number of generated disjunctions is bounded by
a function of the encoding size of PLP = {(x, y) ∈ ℝn+l : Ax+Gy ≤ b}. The encoding size of an integer
is the number of bits in its binary encoding plus one. The encoding size of a rational number is the sum of
the encoding sizes of its numerator and denominator, and the encoding size of a rational vector is the sum
of encoding sizes of its components. The encoding size of a hyperplane is the sum of encoding sizes of its
coefficients (including the zero coefficients). A polyhedron is said to have facet-complexity � if it can be
described by a list of inequalities such that the corresponding hyperplanes have encoding size at most � (the
inequalities are then said to have encoding size at most �).

Theorem 3.7. If P in Theorem 3.6 is defined by m linear constraints, each with encoding size �, then there
exists a function g : ℤ2 → ℤ such that the maximum number of ℎ(n)-branch split disjunctions enumerated
by the algorithm in Theorem 3.6 is at most g(m,�).

Proof. We say that an expression or a set “has bounded complexity” to mean that its encoding size is
bounded from above by a function of m and �, and note that n + l ≤ � by definition. As PLP has facet-
complexity at most �, the facet-complexity of conv (P ) is at most �1 = 24(n + l)5� (see [30, Corollary
17.1a]). In other words, for every facet of conv (P ), there is an inequality cTx + dT y ≥ 
 defining the
facet with encoding size at most �1. Consider the set V in (2) defined as the points of PLP cut off by
cTx + dT y ≥ 
, and remember that V x denotes the projection of V onto the space of integer variables. It
is shown in [12, 21] that V x = {x ∈ ℝn : A1x ≤ b1, A2 < b2} for some rational matrices A1, A2 and
rational vectors b. Further, for any inequality that appears in the description of this set, if a is the vector of
coefficients of the x variables and � is the right hand side, then

aT = �̄A+ �̄c, � = �̄b+ �̄
, (10)

where (�̄, �̄) is an extreme direction of the cone

C = {(�, �) ∈ ℝm × ℝ : �G+ �d = 0, � ≥ 0, � ≥ 0}.

Notice that the facet complexity of C is bounded by the encoding size of a column of
[
G
d

]
. Therefore,

the facet complexity of C is at most �2 = m� + �1 and consequently, the extreme points and directions
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of C have encoding size at most 4(m + 1)2�2 ([30, Theorem 10.2]). As each extreme direction (�̄, �̄)
that appears in (10) has bounded complexity we conclude that every inequality defining V x has bounded
complexity. It is shown in [12] that V x is contained in the interior of the rational, full-dimensional, lattice-
free polyhedron B = {x ∈ ℝn : A1x ≤ b1 + 1, A2x ≤ b2} which again has bounded facet complexity
(say at most �3). Therefore, it is possible to write B = QB + CB for some QB = conv (v1, . . . , vq)
and CB = cone (r1, . . . , rs) where q and s are finite and q ≥ 1. Furthermore the vectors v1, . . . , vq and
r1, . . . , rs are rational and have encoding size at most 4n2�3 (see [30, Theorem 10.2]).

We next show that there exists an integral vector z ∈ ℝn with bounded complexity such that the width
of B along the direction z equals the lattice width of B. For k = 1, . . . , n, consider the integer program IPk

which, as we show below, gives the minimum w(B, z) along all vectors z with zk ≥ 1:

min t

s.t. t ≥ zT (vi − vj) ∀i, j ∈ {1, . . . , q},
rTj z = 0, ∀j ∈ {1, . . . , s},
zk ≥ 1, z ∈ ℤn

t ≥ 0.

First consider a feasible integral solution (t̄, z̄) for IPk. Then, as rTj z̄ = 0 for all j ∈ {1, . . . , s}, we
have max{z̄Tx : x ∈ B} = max{z̄T vi : i ∈ {1, . . . , q}} and min{z̄Tx : x ∈ B} = min{z̄T vi : i ∈
{1, . . . , q}}. Consequently, t̄ ≥ w(B, z̄) = max{z̄T (vi − vj) : i, j ∈ {1, . . . , q}}. Therefore, if (tk, zk) is
an optimal solution of IPk, we have w(B, zk) = tk.

As B is a full-dimensional lattice-free polyhedron w(B) is bounded; in other words, there exists a
non-zero integral vector z∗ such that w(B) = w(B, z∗) ≤ f(n). As w(B) is bounded, rTj z

∗ = 0 for all
j ∈ {1, . . . , s}. In addition, if z∗k ∕= 0, then either (w(B), z∗) or (w(B),−z∗) is feasible for IPk. Therefore,
if p is such that tp ≤ tk for all k = 1, . . . , n for which IPk is feasible, then w(B) = tp = w(B, zp).

Finally, note that IPp has an optimal solution with bounded complexity as the encoding sizes of v1, . . . , vq
and r1, . . . , rs are all bounded by 4n2�3, and the numbers q and s also have bounded complexity. There-
fore there exists a vector z with bounded complexity such that w(B, z) = w(B). This implies that B can
be covered by split sets of the form {x ∈ ℝn : � < zTx < � + 1} and split sets which cover the sets
{x ∈ B : zTx = �} for � ∈ [⌊minj{zT vj}⌋, ⌈maxj{zT vj}⌉]. The numbers � in the sets above have
bounded complexity. We can assume, via induction, that {x ∈ B : zTx = �} can be covered by ℎ(n − 1)
split sets with encoding size bounded by a function of the facet complexity of {x ∈ B : zTx = �} and the
number of constraints defining it. As these two numbers in turn have bounded complexity, we can conclude
that there is a ℎ(n)-branch disjunction of bounded complexity which implies the inequality cTx+dT y ≥ 
.

4 Covering lattice-free sets with split sets

In this section, we construct a lattice-free, bounded, convex set in ℝn such that its interior cannot be covered
by fewer than Ω(2n) split sets. Note that the upper bound ℎ(n) on the number of split sets needed to cover
such a set is significantly larger.

Recall that S(a, b) = {x ∈ ℝn : b < aTx < b+ 1} is an open set. Given an integer vector a ∈ ℤn, we
refer to the collection of split sets {S(a, b) : b ∈ ℤ} as the collection of split sets defined by a. We refer to a
as the defining vector of these split sets, and denote this fact using a function d.v.(⋅) where d.v.(S(a, b)) = a.
We denote the Euclidean norm of a by ∣∣a∣∣.
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Definition 4.1. Let K ⊂ ℝn be a compact set and let " > 0 be given. We define

ℒ(K, ") = {a ∈ ℤn : vol(K ∩ S(a, b)) > " for some b ∈ ℤ}.

Note that ℒ(K, ") can be empty, for example if " is greater than the volume of K.

Lemma 4.2. For any compact set K ⊂ ℝn and any number " > 0, the set ℒ(K, ") is finite.

Proof. Let l ∈ ℝ be an upper bound on the (n− 1)-dimensional volume of the intersection of a hyperplane
with K. For any vector a ∈ ℤn, the distance between two parallel hyperplanes of the form {x : aTx = b}
and {x : aTx = b+1} is 1/∣∣a∣∣. Therefore, if ∣∣a∣∣ > l/", the volume of the intersection of a split set S(a, b)
(for some b ∈ ℤ) with K is at most l/∣∣a∣∣ < ". Therefore ℒ(K, ") is a subset of {a ∈ ℤn : ∣∣a∣∣ ≤ l/"} and
is a finite set.

For example, if K is the set of points in ℝ2 that lie inside a given triangle, then the length of the longest
side of this triangle can be used as the number l in the proof of the previous lemma.

Lemma 4.3. There exists a rational, lattice-free triangle T0 ⊂ ℝ2 and an " > 0 such that T0 ∖ (S1 ∪ S2)
has area at least " for any pair of split sets S1, S2 ⊂ ℝ2.

Proof. Let T be the lattice-free triangle defined in the previous section with lattice width 1+2/
√

3 ≈ 2.1547.
Remember that vertices of T are irrational points. By slightly rotating each side of T about the integer point
in its relative interior, we can obtain a rational, maximal, lattice-free triangle T0 with lattice width arbitrarily
close to 1 + 2/

√
3, say equal to 2.15. Therefore, the interior of T0 is not contained in the union of two split

sets defined by linearly independent vectors [11, 19], or by linearly dependent vectors (as w(T0) > 2). (One
can combine this observation with results in [19] to complete the proof, however we give a self-contained
proof below.)

The intersection of the split set {x ∈ ℝn : 0 < x1 < 1} with T0 has area at least 1/2, and therefore
(1, 0) ∈ ℒ(T0, 1/2) ∕= ∅. As ℒ(T0, 1/2) is finite and T0 is bounded, there are finitely many split sets defined
by vectors in ℒ(T0, 1/2) such that their intersection with T0 has an area of 1/2 or more; find the one with
maximum area of intersection with T0. Let 0 < "1 ≤ area(T0) − 1/2 be the area left uncovered by this
split set. Split sets defined by vectors not contained in ℒ(T0, 1/2) cover an area of T0 less than 1/2 and
consequently, the minimum area of T0 left uncovered by any split set is at least "1.

Now consider ℒ(T0, "1/2). Let "2 > 0 be the area of T0 left uncovered by any two split sets with
defining vectors from ℒ(T0, "1/2). As the number of pairs of such split sets is finite, "2 exists. Let S1 and
S2 be two arbitrary split sets. If their defining vectors belong to ℒ(T0, "1/2), then the area of T0 not covered
by these split sets is at least "2. If d.v.(S2) ∕∈ ℒ(T0, "1/2), notice that S1 does not cover a portion of T0 with
area of at least "1, and S2 covers a portion of T0 with area at most "1/2. Consequently, S1 and S2 leave an
area of min{"1/2, "2} > 0 of T0 uncovered.

The triangle T0 in the previous lemma contains lattice points on its boundary; the phrase “lattice-free”
in the previous lemma can be replaced by “strictly lattice-free” if we shrink the triangle T0 slightly so that
the lattice-width remains strictly greater than two, but no integer points lie on the boundary. We denote the
collection of all split sets in ℝn by Sn.

Definition 4.4. The set A ⊂ ℝn is weakly covered by the split sets S1, . . . , Sj ∈ Sn if the volume of
A ∖ (S1 ∪ . . . ∪ Sj) is zero.

Recall that any convex, bounded, lattice-free set in ℝ2 can be weakly covered by three split sets, but the
triangle in the previous lemma cannot be weakly covered by two split sets.
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Lemma 4.5. Let l,m with l ≥ m be given positive integers and K ⊂ ℝn be a compact set that cannot be
weakly covered by any m− 1 split sets in Sn. Then there exists a finite set Σ ⊂ ℤn such that whenever K is
weakly covered by S1, . . . , Sl ∈ Sn, then the defining vectors of at least m of these split sets are contained
in Σ.

Proof. We use induction with respect to m and construct a family of sets Σ(K, l,m) satisfying the desired
property.

If m = 1 then at least one split set in a weak covering of K by l split sets must cover a volume of volK
l

of K and therefore we choose
Σ(K, l, 1) = ℒ(K,

volK

l
),

which is finite by Lemma 4.2.
For some m ≥ 1, assume the result has been proved for all compact sets that cannot be weakly covered

by m − 1 split sets. Let K be a compact set that cannot be weakly covered by m split sets. Let � be a
collection of l ≥ m+1 split sets weakly coveringK. Let S0 ∈ � be a split set whose intersection withK has
the greatest volume of all split sets in �. Then vol(K∩S0) ≥ volK

l and therefore d.v.(S0) ∈ ℒ(K, volK/l).
The set K ∖ S0 is a compact set which is weakly covered by � ∖ {S0}.

Further, K ∖ S0 cannot be weakly covered by m − 1 split sets, otherwise K can be weakly covered by
m split sets. By induction, there exists a finite set Σ(K ∖ S0, l − 1,m) such that at least m of the split sets
in � ∖ {S0} have their defining vectors in Σ(K ∖ S0, l − 1,m). We take

Σ(K, l,m+ 1) = ℒ(K,
volK

l
) ∪

∪
S∈Sn:vol(K∩S)≥ volK

l

Σ(K ∖ S, l − 1,m)

which is a finite union of finite families of sets.

We next make an important observation on how the set Σ(K, l,m) changes under unimodular transfor-
mations. Given an n×nmatrixM and a set S ⊆ ℝn, we defineMS = {Ms : s ∈ S}. Recall from Section
3.2 that a linear transformation defined by a unimodular matrix maps any split set to a split set and does not
alter the volume of a bounded set. In particular, given a bounded set A and a split set S ∈ Sn, the volume
of A ∩ S is the same as that of MA ∩MS if M is an n× n unimodular matrix.

Remark 4.6. From the proof of Lemma 4.5 it also follows that Σ(K, l,m) is equal to the union of finitely
many sets of the form ℒ(K ′, "′), where K ′ is obtained by subtracting up to m− 1 split sets in Sn from K.

Furthermore, given any n×n unimodular matrixN and " > 0, as ℒ(NK, ") = Nℒ(K, "), it can easily
be shown (by induction on m) that Σ(NK, l,m) = NΣ(K, l,m) for any integer l > 0.

Lemma 4.7. Given any two finite sets of vectors V,W ⊂ ℤ2 ∖ {0}, there exists a unimodular matrix M
such that MV ∩W = ∅.

Proof. Let q = maxv∈V ∪W ∣∣v∣∣∞ and let

M =

(
1 �
� �2 + 1

)
where � = 3q.

Observe that M is integral and has determinant 1. Let v = (v1, v2)T ∈ V . To prove that Mv ∕∈W , we first
show that the first component of Mv, denoted by �, is nonzero. Note that � = v1 + �v2. If ∣v2∣ ≥ 1, then
� is a nonzero integer as ∣v1∣ < �. If v2 = 0, then � equals v1 which is nonzero as every vector in V is
nonzero.
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The second row of Mv equals �(v1 + �v2) + v2 = ��+ v2. As ∣�∣ ≥ 1, ∣v2∣ ≤ q and � = 3q, we have
∣��+ v2∣ ≥ 3q − q > q. Thus ∣∣Mv∣∣∞ > q and therefore Mv cannot belong to W .

Lemma 4.8. Let l ≥ 3, k ≥ 1 be integers. There exist rational, lattice-free triangles T0, . . . , Tk−1 ⊂ ℝ2

with the following properties: (i) Ti cannot be weakly covered by fewer than three split sets for any i =
0, . . . , k − 1, (ii) the sets Σ(T0, l, 3), . . . ,Σ(Tk−1, l, 3) are pairwise-disjoint.

Proof. Let T0 be the lattice-free triangle constructed in Lemma 4.3. For any 2 × 2 unimodular matrix
N , clearly NT0 is lattice-free. We will now construct unimodular matrices N0, . . . , Nk−1, where N0 is
the identity matrix, such that the triangles Ti = NiT0 for i = 0, . . . , k − 1, have the desired property.
Consider any k > 0, and assume we have constructed N0, . . . , Nk−1. Let V = Σ(T0, l, 3), and let
W = ∪k−1

i=0 Σ(NiT0, l, 3). By Lemma 4.7, we can construct a unimodular matrix Nk such that NkV has
no elements in common with W . By Remark 4.6, NkV = Σ(NkT0, l, 3). The result follows by induction
on k.

For any n ≥ 3, applying Lemma 4.8 with l = 3 × 2n−2 − 1 and k = 2n−2 we obtain triangles Ti for
i ∈ {0, . . . , 2n−2 − 1} such that no triangle Ti can be weakly covered by fewer than three split sets and for
any pair of indices i ∕= j the intersection Σ(Ti, 3× 2n−2 − 1, 3) ∩ Σ(Tj , 3× 2n−2 − 1, 3) is empty.

For an integer Δ ∈ {0, . . . , 2n−2 − 1}, let �l stand for the lth bit in the binary expansion of Δ in n− 2
bits. In other words, Δ =

∑n−2
l=1 �l2

l−1 with each �l ∈ {0, 1}. For each Δ ∈ {0, . . . , 2n−2 − 1}, we define
the corresponding 2-dimensional affine subspace

VΔ := {(�1, . . . , �n−2, x, y)∣x, y ∈ ℝ}

and a triangle in this two-dimensional affine subspace

TΔ := {(�1, . . . , �n−2, x, y)∣(x, y) ∈ TΔ}.

Let cent(TΔ) stand for the centroid of the triangle TΔ, i.e., if the vertices of TΔ are u, v, w ∈ ℝ2, then
cent(TΔ) = (u + v + w)/3. For any positive number ", and any Δ ∈ {0, . . . , 2n−2 − 1}, we define the
point

p",Δ := (�1, . . . , �n−2, cent(TΔ)) + ((2�1 − 1)", . . . , (2�n−2 − 1)", 0, 0).

For example, when �i = 0 for i = 1, . . . , n − 2 (i.e., Δ = 0) then p",Δ = (−", . . . ,−", x̄, ȳ) where (x̄, ȳ)
is the centroid of T0, and similarly, when �i = 1 for i = 1, . . . , n − 2, then p = (1 + ", . . . , 1 + ", x′, y′)
where (x′, y′) is the centroid of T2n−2−1. Finally, we define the polytope T" as

T" := conv

⎛⎝2n−2−1∪
Δ=0

(TΔ ∪ {p",Δ})

⎞⎠ .

In Figure 3, we depict T" when n = 3; here V0 = {(0, x, y)∣x, y ∈ ℝ} and V1 = {(1, x, y)∣x, y ∈ ℝ}. The
filled circles represent integer points on the boundaries of the triangles T0 ⊂ V0 and T1 ⊂ V1.

Let ei stand for the unit vector in ℝn with a one in the ith component and a 0 in all other components,
and let 0 (respectively, 1) stand for the all-zero (resp., all-ones) vector in ℝn.

Lemma 4.9. For any rational " > 0, T" is a rational polytope and its integer hull is full-dimensional.
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Figure 3: T" when n = 3

Proof. Let " be a positive rational number. The triangles TΔ are rational polytopes for Δ ∈ {0, . . . , 2n−2−
1}, and the points p",Δ are also rational for all Δ. Therefore T" is a rational polytope.

For the second part, recall that the triangle T0 contains the integer points (0, 0), (1, 0) and (0, 1). Fur-
thermore, the point (0, 0) ∈ Ti for all i = 0, . . . , 2n−2 − 1, as Ti = NiT0 for some unimodular matrix Ni.
Therefore, T" contains the integer points 0, e1, . . . , en as en−1, en and 0 belong to T0 and ei ∈ T2i−1 for
i = 1, . . . , n− 2. The set of points {0, e1, . . . , en} has affine dimension n and therefore the integer hull of
T" is full-dimensional.

Theorem 4.10. There exists a rational " > 0 such that
(i) the relative interior of TΔ is contained in the interior of T", for 0 ≤ Δ < 2n−2,
(ii) T" ∩ VΔ = TΔ for 0 ≤ Δ < 2n−2, and
(iii) T" is lattice-free.

Proof.
(i) Let p be a point in the relative interior of TΔ for some Δ ∈ {0, . . . , 2n−2−1}; then p = (�1, . . . , �n−2, xp, yp)

where (xp, yp) ∈ int(TΔ). We will show that p strictly satisfies every facet-defining inequality of T", and
as T" is full-dimensional by Lemma 4.9, this will imply that p is contained in the interior of T". Let
aTx ≤ b be an inequality defining a facet of T"; it is uniquely defined up to multiplication by a scalar. Let
a = (a1, . . . , an).

Assume that aT p = b. Clearly, there exists some � > 0 such that the points (xp, yp) ± �(1, 0) and
(xp, yp)± �(0, 1) are all contained in T0. Therefore p± �en−1 ∈ T" and p± �en ∈ T" which implies that
an−1 = an = 0. For i = 1, . . . , n− 2, the point

qi = (�1, . . . , �i−1, 1− �i, �i+1, �n−2, 0, 0) ∈ T" ⇒ aT qi ≤ b,

and therefore ai ≥ 0 if �i = 1 and ai ≤ 0 if �i = 0 for i = 1, . . . , n − 2. But this sign pattern of the
coefficients of a implies that aT p",Δ > b unless a = 0, but then aTx ≤ b is not a facet-defining inequality,
a contradiction. Therefore, aT p < b.

(ii) As T" contains the convex hull of sets of the form TΔ, for any Δ ∈ {0, . . . , 2n−2 − 1} we have
T" ∩ VΔ ⊇ TΔ. We need to show the reverse inclusion. Once again, for convenience, we only prove the
result for Δ = 0; the proof for Δ ∕= 0 is similar. Let d > 0 be such that for all Δ ∈ {0, . . . , 2n−2 − 1}
the distance of cent(TΔ) to the boundary of TΔ is at least d. In addition, let B be the maximum distance
between any two vertices of T". Clearly these numbers exist.
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Now consider an arbitrary point v ∈ T" ∩ V0. Clearly v can be expressed as a convex combination of
the vertices of T" and note that these vertices come from the set of vertices of TΔ and from the points p",Δ
for varying Δ. Thus, for some index set U we have v =

∑
j∈U �jv

j with
∑

j∈U �j = 1, �j > 0 and vj is a
vertex of T" for all j ∈ U .

Note that T" has at most four vertices which have all first n − 2 components less than or equal to 0,
namely, the three vertices of T0 which all have their first n − 2 components equal to 0 and p",0 which has
all of the first n − 2 components equal to −". Let U ′ ⊆ U be the indices of the remaining vertices. Let vi
stand for the ith component of v, and let vji stand for the ith component of vj . For j ∈ U ′ we have

n−2∑
i=1

vji ≥ 1− n",

as among the first n− 2 components of such a vj at least one component is at least 1 and the rest are at least
−". When " > 0 is chosen to be less than 1/n, we have 1− n" > 0 and therefore the only vertex of T" that
has the sum of the first n− 2 components strictly negative is p",0. We now consider two cases:

Case 1: Assume p",0 ∕∈ {vj : j ∈ U}. As v =
∑

j∈U �jv
j , we have,

n−2∑
i=1

vi = 0 =
∑
j∈U

�j(
n−2∑
i=1

vji ). (11)

Using the fact that � > 0 and
∑n−2

i=1 v
j
i > 0 for all j ∈ U ′ we conclude that U ′ = ∅, which in turn implies

that v ∈ T0.
Case 2: Now assume that p",0 ∈ {vj : j ∈ U} and let v0 = p",0 with the associated coefficient �0.

Also let w =
∑

j∈U ′ �j . Note that the sum of the first n− 2 components of p",0 is greater than −n". Once
again, from (11) we get

0 ≥ −�0n"+ (1− n")w ⇒ �0 ≥ (1/(n")− 1)w.

When " is small enough, we have 1/(n") − 1 > B/d, and therefore �0/w > B/d. We now rewrite
v =

∑
j∈U �jv

j as

v =
∑

j ∕=0,j ∕∈U ′
�jv

j + (�0 + w)

⎛⎝ �0

�0 + w
v0 +

w

�0 + w

⎡⎣∑
j∈U ′

�j
w
vj

⎤⎦⎞⎠ . (12)

Consider the point p′ =
∑

j∈U ′(�j/w)vj given by the sum inside the square brackets in (12) and note
that it is a convex combination of the vertices of T". All of these vertices are at a distance of at most B
from any other point in T", and therefore so is p′. Let the last two coordinates of p′ be (x′, y′), and note that
the last two coordinates of v0 equal cent(T0) and the last two coordinates of vj define a vertex of T0 for all
j ∕= 0, j ∕∈ U ′. The vector (vn−1, vn) consisting of the last two coordinates of v is a convex combination of
(x′, y′), cent(T0) and vertices of T0.

The expression inside the curved brackets in (12) gives a convex combination of v0 and p′ and the last
two coordinates of this point equals

�0

�0 + w
cent(T0) +

w

�0 + w
(x′, y′).
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Let p̄ ∈ ℝ2 stand for the point above. As �0/w > B/d, the ratio of the distance between p̄ and cent(T0) to
the distance between p̄ and (x′, y′) is less than d/B. As the distance of cent(T0) to the boundary of T0 is
at least d and the distance of (x′, y′) to the boundary of T0 is at most B, p̄ is contained in the interior of T0.
Consequently, the vector consisting of the last two coordinates of v is a convex combination of points in T0

and is thus contained in T0. Therefore v ∈ T0 and T" ∩ V0 ⊆ T0.
(iii) If v ∈ ℤn is an integer point in T", the first n−2 components of v must be 0-1, and thus v ∈ VΔ for

some 0 ≤ Δ < 2n−2. But, by construction, T" ∩ VΔ = TΔ. Therefore v ∈ TΔ for some 0 ≤ Δ < 2n−2.
Further, if v is contained in the interior of T", then it must be contained in the relative interior of T ∩H for
any affine subspace H of dimension one or more. But v is not contained in the relative interior of T" ∩ VΔ.
Thus T" is lattice-free.

Let Π : ℝn → ℝ2 denote projection to the last two coordinates and consider a split set S = S(a, b) in
ℝn where a = (�1, . . . �n) ∈ ℤn and b ∈ ℤ. For any Δ ∈ {0, . . . , 2n−2 − 1} we have

S ∩ VΔ = {(�1, . . . , �n−2, x, y) : b−
n−2∑
l=1

�l�l < �n−1x+ �ny < b+ 1−
n−2∑
l=1

�l�l}.

Notice that if �n−1 = �n = 0, then �n−1x + �ny = 0, which implies that S ∩ VΔ = ∅ as 0 cannot be
strictly contained between two consecutive integers. On the other hand, if (�n−1, �n) ∕= (0, 0), then S ∩VΔ

is a nonempty split set and its defining vector is (�n−1, �n)T . Therefore Π(S ∩ VΔ) is either a split set in
ℝ2 with defining vector (�n−1, �n)T , or it is an empty set.

We are now ready to show an exponential lower bound on the number of split sets that can cover a
lattice-free set.

Theorem 4.11 (Lower bound result). Let " > 0 be such that T" satisfies the properties in Theorem 4.10.
The interior of T" is not contained in the union of any 3× 2n−2 − 1 split sets.

Proof. By contradiction. Suppose that int(T") is contained in the union of t split sets S1, . . . , St in Sn,
where t < 3 × 2n−2. Then, Theorem 4.10(i) implies that the relative interiors of the triangles TΔ for
0 ≤ Δ < 2n−2 are also contained in ∪ti=1St; therefore the triangles TΔ are weakly covered by ∪ti=1St.

Let Δ ∈ {0, . . . , 2n−2−1}. Let SΔ
i = Π(Si∩VΔ). By the previous lemma, SΔ

i is either a split set in ℝ2

if the last two components of d.v.(Si) are nonzero, or the empty set otherwise. In the latter case, we define
d.v.(SΔ

i ) = (0, 0) for convenience; then d.v.(SΔ
i ) = Π(d.v.(Si)) for any i, and therefore, d.v.(SΔ

i ) does
not depend on Δ. As int(T") ⊆ S1 ∪ ⋅ ⋅ ⋅ ∪ St, it follows that Π(int(T") ∩ VΔ) = Π(int(TΔ)) = int(TΔ)
is contained in SΔ

1 ∪ ⋅ ⋅ ⋅ ∪ SΔ
t . Therefore, there exist three sets, say SΔ

1 , S
Δ
2 , S

Δ
3 , such that d.v.(SΔ

i ) ∈
Σ(TΔ, 3× 2n−2 − 1, 3) for i = 1, 2, 3.

For any Δ′ ∕= Δ, there are indices p, q, r such that d.v.(SΔ′
i ) ∈ Σ(TΔ′ , 3× 2n−2 − 1, 3) for i = p, q, r.

But as the sets Σ(TΔ, 3× 2n−2− 1, 3) and Σ(TΔ′ , 3× 2n−2− 1, 3) are disjoint, and d.v.(SΔ
i ) = d.v.(SΔ′

i )
for i = 1, . . . , t, it follows that {p, q, r} is disjoint from {1, 2, 3}. Arguing similarly for indices not equal to
Δ and Δ′, we can conclude that t ≥ 3× 2n−2, a contradiction.

Note that the first coordinate of any point in T" is contained in the interval [−", 1 + "] and consequently
T" has lattice-width at most 1+2" < 2. Therefore T" can be covered by three closed split sets, even though
its interior can only be covered by an exponential number (in n) of split sets.

In ℝ3, Theorem 4.11 yields a rational, lattice-free polytope which needs 6 split sets to cover its interior.
We can improve this number by one (in general, we can improve the bound in Theorem 4.11 by one too).
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Theorem 4.12. In ℝ3, there is a rational, lattice-free polytope such that its interior is not contained in the
union of any 6 split sets.

Proof. Let T0 and T1 be triangles in ℝ2, constructed using Lemma 4.8, such that each triangle cannot be
weakly covered by fewer than three split sets and Σ(T0, 6, 3) ∩ Σ(T1, 6, 3) = ∅. Let

Vi = {(x, y, i)∣x, y ∈ ℝ} and Ti = {(x, y, i)∣(x, y) ∈ Ti} for i = 0, 1.

Let p",0 = (cent(T0),−") and p",1 = (cent(T1), 1 + "). We define Π : ℝ3 → ℝ2 to be the projection to
the first two coordinates. In addition let Q = {(x, y) : 0 ≤ x, y ≤ 7}. Q has an area of 49, but the area
of Q covered by any (translated) split set in ℝ2 is at most 7, and hence at least 7 such (translated) split sets
are needed to cover Q. Finally, let T′ = conv

(
T0,T1, {p",0, p",1}, Q1/2

)
, where Q1/2 = {(x, y, z) : 0 ≤

x, y ≤ 7, z = 1/2}. We will show that T′ has the desired property.
One can choose " so that T′ is a rational, lattice-free polytope, and the relative interiors of T0 and T1

are contained in the interior of T′, as in the proof of Theorem 4.10, and we assume " is chosen in such a
manner. Assume that there exist t ≤ 6 split sets S1, . . . , St in ℝ3 such that their union contains int(T′).
Let d.v.(Si) = (�i

1, �
i
2, �

i
3) ∈ ℤ3. It is clear from the proof of Theorem 4.11 that there must be three split

sets, say S1, S2, S3, such that the defining vectors of the split sets Π(Si∩V0), i.e., (�i
1, �

i
2), are contained in

Σ(T0, 6, 3) for i = 1, 2, 3. Similarly, there must be three split sets Sp, Sq, Sr such that (�i
1, �

i
1) ∈ Σ(T1, 6, 3)

for i = p, q, r. As Σ(T0, 6, 3) ∩ Σ(T1, 6, 3) = ∅, it follows that {1, 2, 3} ∩ {p, q, r} = ∅, which implies
that {p, q, r} = {4, 5, 6} and t = 6. Further, the split sets Si for i = 1, . . . , 6 have the property that their
defining vectors (�i

1, �
i
2, �

i
3) satisfy (�i

1, �
i
2) ∕= (0, 0), and therefore the intersection of these split sets with

{(x, y, z) : z = 1/2} are nonempty, two-dimensional translated split sets which cover Q. But Q cannot be
covered by any six translated split sets in ℝ2, a contradiction.

Note that the integer hull of T′ in the previous theorem has dimension 3. The next theorem connects the
previous results with the inexpressibility of facet-defining inequalities of polyhedral sets as t-branch split
cuts. (See [14, Lemma 2] for similar proof techniques for lattice-free cuts.)

Theorem 4.13. Let t be a positive integer andB ⊂ ℝn be a rational, full-dimensional, lattice-free polytope.
Assume that the integer hull of B has dimension n and the interior of B cannot be covered by t split sets.
Then there exists a mixed-integer set in ℤn × ℝ, defined by rational linear inequalities, that has a facet-
defining inequality which cannot be expressed as a t-branch split cut.

Proof. Let B and t satisfy the conditions of the theorem. Let x̄ be a point in the interior of B. Let B′ be the
polyhedron in ℝn+1 defined as

B′ = conv ((B × {−1}) ∪ (B × {0}) ∪ (x̄× {1/2})) .

We define a mixed-integer polyhedral set PB as follows:

PB = {(x, y) ∈ ℤn × ℝ : (x, y) ∈ B′}.

Let ihull (⋅) stand for the integer hull of its argument; then B′ and ihull (B′) have dimension n+ 1, and so
does conv (PB). All mixed-integer solutions of PB satisfy y ≤ 0; this is in fact a facet-defining inequality
for conv (PB) as conv (PB) ∩ {(x, y) : y = 0} equals ihull (B)× {0} which has dimension n.

Let S1, . . . , St be t arbitrary split sets in ℝn+1 defined on the x variables, i.e., they are of the form
Ŝi × ℝ, where Ŝi are split sets in ℝn. Recall that y ≤ 0 is a t-branch split cut for PB derived from the
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disjunction associated with the split sets S1, . . . , St if and only if it is valid for B′ ∖ ∪ti=1Si. The split sets
Ŝi do not cover the interior of B. Let x̂ ∈ int(B) ∖ ∪ti=1Ŝi. Then B′ ∖ ∪ti=1Si contains a point of the form
(x̂, "′) for some "′ > 0. This point violates the inequality y ≤ 0, and thus y ≤ 0 cannot be expressed as a
t-branch split cut.

This result when combined with Theorem 4.11 implies the existence of mixed-integer polyhedral sets
with n integer variables with the property that their convex hull has a facet-defining inequality which cannot
be expressed as a (3× 2n−2 − 1)-branch split cut.

Corollary 4.14. For any n ≥ 3 there exists a nonempty rational mixed-integer polyhedral set in ℤn × ℝ
with a facet-defining inequality that cannot be expressed as a (3× 2n−2 − 1)-branch split cut.

5 Concluding Remarks

As mentioned in the introduction, every cut based on a maximal lattice-free convex set in ℝ2 is implied by a
crooked cross cut and therefore by a 3-branch split cut [11]. This result is derived using the classification of
maximal lattice-free sets in ℝ2 by Dey and Wolsey [16]. An analogous classification result is not yet known
in ℝ3, and seems unattainable in ℝn for larger n using current tools.

Combining the fact that any lattice-free convex set in ℝ2 is contained in a 3-branch split set with Theo-
rem 3.2 that bounds the lattice width of lattice-free, convex sets in ℝ3, it is possible to show that cuts based
on lattice-free convex sets in ℝ3 are implied by 21-branch split cuts.

Theorem 5.1. Any strictly lattice-free, convex set B in ℝ3 is contained in the union of 21 split sets. Further,
there is a disjunction not intersecting B that can be constructed using at most 22 atoms.

Proof. Let a stand for the direction of minimum lattice width and remember that w(B) < 4.25. Therefore,
B is strictly contained in a set of the form {x ∈ ℝ3 : q < aTx < q + 4.25} ⊂ {x ∈ ℝ3 : ⌊q⌋ < aTx <
⌈q + 4.25⌉ for some number q. Consider split sets of the form {x ∈ ℝ3 : b < aTx < b + 1} for up to
6 consecutive values of b = ⌊q⌋, . . . , ⌈q + 4.25⌉ − 1. Then B minus the union of these sets consists of
two-dimensional, strictly lattice-free sets of the form {x ∈ B : aTx = b} for at most 5 consecutive values
of b. Each such lattice-free set needs 3 split sets for a total of 21 split sets.

It is possible to construct a disjunction which does not intersect B using at most 22 atoms as follows:
the first two atoms are {x ∈ ℝ3 : aTx ≤ ⌊q⌋} and {x ∈ ℝ3 : aTx ≥ ⌈q + 4.25⌉}. In addition, there are at
most 4 atoms for each nonempty set of the form {x ∈ B : aTx = b} where b = ⌊q⌋+1, . . . , ⌈q+4.25⌉−1.

The above upper bound of 21 split sets is quite a bit higher than the lower bound of 7 split sets we
obtained earlier. It would be interesting to obtain the smallest number of split sets needed to cover every
lattice-free set in ℝ3.

Acknowledgments

We would like to thank the two anonymous referees for their careful and detailed reports.

20



References

[1] W. P. Adams, and H. D. Sherali, A Hierarchy of Relaxations Leading to the Convex Hull Representa-
tion for General Discrete Optimization Problems, Annals of Operations Research 140 (2005) 21–47.

[2] K. Andersen, Q. Louveaux, R. Weismantel, and L. Wolsey, Cutting planes from two rows of a sim-
plex tableau, Proceedings 12th Conference on Integer Programming and Combinatorial Optimization
(LNCS 4513) (M. Fischetti and D. P. Williamson, eds.), Springer-Verlag, 2007, pp. 1–15.

[3] T. M. Apostol, Mathematical Analysis, Addison-Wesley, 1974.

[4] G. Averkov, C. Wagner, and Robert Weismantel, Maximal lattice-free polyhedra: finiteness and an
explicit description in dimension three, Mathematics of Operations Research 36 (2011) 721–742.

[5] E. Balas, Disjunctive programming. Annals of Discrete Mathematics 5 (1979) 3–51.

[6] W. Banaszczyk, A. E. Litvak, A. Pajor, S. J. Szarek, The flatness theorem for nonsymmetric convex
bodies via the local theory of banach spaces, Mathematics of Operations Research 24 (1999) 728–750.

[7] A. Basu, M. Conforti, G. Cornuejols, G. Zambelli, Maximal lattice-free convex sets in linear subspaces,
Mathematics of Operations Research 35 (2010) 704–720.

[8] J. Bourgain, and V. D. Milman, New volume ratio properties for convex symmetric bodies in Rn,
Inventiones Mathematicae 88 (1987) 319-340.
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