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1 Introduction

In the paper we consider the following Mixed Integer Nonlinear Programming
(MINLP) problem

min f(x)

g(x) ≤ 0

l ≤ x ≤ u

xi ∈ Z, i ∈ Iz,

(1)

where x, l, u ∈ R
n, Iz ⊂ {1, . . . , n}, f : Rn → R and gj : R

n → R, j = 1, . . . ,m.
Further, we define Ic = {1, . . . , n} \ Iz .
We assume the objective and general nonlinear constraint functions to be
continuously differentiable with respect to xi, i 6∈ Iz even though first order
derivatives will not be used. To simplify the mathematical analysis of the
proposed methods, we require −∞ < li < ui < +∞, for all i = 1, . . . , n. Then,
let us introduce

X := {x ∈ R
n : l ≤ x ≤ u}, F := {x ∈ R

n : g(x) ≤ 0} ∩ X ,

Z := {x ∈ R
n : xi ∈ Z, i ∈ Iz}.

For any vector v ∈ R
n we denote by vc ∈ R

|Ic| and vz ∈ R
|Iz | the subvectors

vc := [vi]i∈Ic
, vz := [vi]i∈Iz

.

Further, for every continuously differentiable function h : Rn → R, we use the
notation ∇ch(x) ∈ R

|Ic| to denote the gradient of the function with respect to
the continuous variables, namely:

∇ch(x) :=

[

∂h(x)

∂xi

]

i∈Ic

.

Many engineering applications that can be modeled as Problem (1) have a
twofold difficulty. On the one hand, the objective and nonlinear constraint
functions are of the black-box type, so that first order derivatives are not
available (see [8] for a recent survey on derivative-free methods). On the other
hand, the presence of discrete variables requires an ad-hoc treatment. To the
best of our knowledge, there exist only a few papers describing derivative-free
algorithms for MINLP problems. In [1] mesh adaptive direct search (MADS)
algorithms, originally proposed in [6], have been extended to handle categorical
variables. The extension to mixed variable programming for generalized pat-
tern search (GPS) algorithms, described and analyzed in [26,4,13], has been
proposed in [3] for bound constrained problems. Successively, in [2] the filter
GPS approach for nonlinear constrained problems [5] has been extended to
discrete variables. Further, we cite the paper [27] where a definition of implic-
itly and densely discrete problems is considered, namely, problems where the
variables lie implicitly in an unknown “discrete” closed set (i.e. a closed set of
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isolated points in Rn). In [27] a modification of a direct-search algorithm is
presented to tackle this kind of problems and a theoretical analysis is reported.
In [20] a linesearch strategy for linearly constrained problems [22] is adopted
for the solution of Problem (1). In [9] the derivative free algorithms proposed
in [10] are extended to the solution of mixed variable problems with bound
constraints only. In [24] a probabilistic method using surrogate models for the
optimization of computationally expensive mixed-integer black-box problems
is proposed. The method is proved to be convergent to the global optimum
with probability one. Finally, in the recent paper [14] a scatter search pro-
cedure is proposed to solve black-box optimization problems where all of the
variables can only assume integer values.

In this paper we extend the approach proposed in [17] for box constrained
mixed integer problems by using a sequential quadratic penalty approach de-
scribed and analyzed in [18]. The presence of both integer variables and non-
linear constraints makes the extension of the approaches proposed in [17] not
straightforward. In particular, the possible alternation of minimizations of con-
tinuous and discrete variables needs new theoretical analysis of the algorithms.
In our framework, continuous variables are managed by means of a linesearch
strategy with sufficient decrease acceptability criterion (see e.g. [21]). Discrete
variables are tackled by suitably developed local search procedures which ba-
sically hinge on exploring adaptively determined discrete neighborhoods of
points.

We notice that the use of a linesearch procedure needs the satisfaction of
a sufficient decrease in the new point generated along the search direction,
which is a stronger requirement with respect to the simple decrease accepted
by e.g. pattern search methods [26,4,13]. However, it should be noted that the
stronger requirement imposed by the sufficient decrease condition (over the
simple one) does not necessarily bring to the definition of less efficient algo-
rithms both in terms of number of function evaluations and of final function
value attained by the search routine. Further, as recently evidenced in [28],
the imposition of a sufficient decrease condition, like the one adopted in the
present paper, allows to derive a worst case complexity bound on the number
of iteration of a direct search algorithm to drive the norm of the objective gra-
dient below a prefixed accuracy like the one obtained for the steepest descent
method in [25] in the presence of first order derivatives. On the contrary, if a
simple decrease condition is imposed, the worst case complexity bound on the
number of iterations seems only provable under additional strong conditions
like the objective function satisfying an appropriate decrease rate.

The paper is organized as follows. In Section 2 some definitions and relevant
notations are introduced. Sections 3 and 4 are the main part of the paper and
are devoted to the definition and analysis of two different algorithms for the
solution of Problem (1). A computational experience of the methods proposed
and comparison with NOMAD is reported in Section 5 both on analytic test
problems and on a real optimal design problem. Finally, in Section 6 we draw
some conclusions and discuss future developments.



4 Giampaolo Liuzzi et al.

2 Definitions and Notations

We begin this section by defining a global minimum point for Problem (1).

Definition 1 (Global minimum point) A point x⋆ ∈ F ∩ Z is a global
minimum point of Problem (1) iff

f(x⋆) ≤ f(x), ∀ x ∈ F ∩ Z.

Since the characterization of local minimum points in mixed problems strongly
depends on the particular neighborhood we use, we need to give different
definitions of neighborhoods that correspond to variations of continuous and
discrete variables. Hence, we introduce, for any point x̄ ∈ R

n and ρ > 0, the
following:

Bc(x̄, ρ) := {x ∈ R
n : xz = x̄z , ‖xc − x̄c‖ ≤ ρ} ,

Bz(x̄) := {x ∈ Z : xc = x̄c, ‖xz − x̄z‖ ≤ 1} .

Now we can define a local minimum point for Problem (1).

Definition 2 (Local minimum point) A point x⋆ ∈ F ∩Z is a local mini-
mum of Problem (1) iff, for some ǫ > 0,

f(x⋆) ≤ f(x), ∀x ∈ Bc(x
⋆; ǫ) ∩ F ,

f(x⋆) ≤ f(x), ∀x ∈ Bz(x⋆) ∩ F .

It is possible to give a different definition of local minimum which has stronger
property with respect to discrete variables.

Definition 3 (Extended local minimum point) A point x⋆ ∈ F ∩ Z is
an extended local minimum of Problem (1) iff

(i) x⋆ is a local minimum;
(ii) every point x̄ ∈ Bz(x

⋆)∩F , with x̄ 6= x⋆, such that f(x̄) = f(x⋆) is a local
minimum as well.

Now, we introduce the following sets of directions that will be used to describe
the main theoretical results related to the MINLP algorithms proposed in the
paper.

D := {±e1, . . . ,±en}, Dc := {±ei : i ∈ Ic}, Dz := {±ei : i ∈ Iz}

where ei, i = 1, . . . , n, is the unit coordinate vector.

Given x ∈ X , we denote by

L(x) := {i ∈ {1, . . . , n} : xi = li} U(x) := {i ∈ {1, . . . , n} : xi = ui}.

Given x ∈ X , let

D(x) := {d ∈ R
n : di ≥ 0 ∀i ∈ L(x), di ≤ 0 ∀i ∈ U(x)}.

The following two technical propositions are reported from [18] and [16], to
which we refer the interested reader for their proofs.
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Proposition 1 For every x ∈ X , it results

cone{D ∩D(x)} = D(x).

Proposition 2 Let {xk} be a sequence of points such that xk ∈ X for all k,
and xk → x̄ for k → ∞. Then, for k sufficiently large,

D(x̄) ⊆ D(xk).

Throughout the paper we consider the following assumptions to hold true.

Assumption 1 For every x ∈ X there exists a vector d̂ ∈ D(x) such that

d̂i = 0, for all i ∈ Iz and

∇c gℓ(x)
T d̂c < 0, ∀ ℓ ∈ I+(x),

where I+(x) := {i : gi(x) ≥ 0}.

Assumption 2 One of the following conditions holds:

(i) for all j = 1, . . . ,m we have gj(x) = g̃j(xc) with g̃j : R
|Ic| → R;

(ii) For every sequence of points {wk} such that wk ∈ X ∩Z, for all k and
converging to the point w̄ ∈ F ∩ Z, for all the sequences w̃k ∈ X ∩ Z
such that for all k

(wk)c = (w̃k)c, ‖(wk − w̃k)z‖ = 1

there exist an index k̃ such that either w̃k ∈ F for all k ≥ k̃ or w̃k /∈ F
for all k ≥ k̃.

Assumption 1 is quite standard and it is needed to guarantee existence and
boundedness of the lagrange multipliers. We note that Assumption 1 is well-
posed thanks to the standing assumption that Ic 6= ∅. Finally, Assumption
2 is more technical and specific to MINLP problems. Part (i) states that the
constraints do not depend on the discrete variables. Part (ii) basically states
a regularity property of sequences obtained considering points belonging to
the discrete neighborhood of wk (where wk are the points of the sequence
considered in Assumption 2) and is needed to force feasibility of points in the
discrete neighborhood of the limit point.
In order to give stationarity conditions for Problem (1), we need to introduce
the Lagrangian function associated with it, that is

L(x, λ) = f(x) +

m
∑

i=1

λigi(x).

Repeating the proof of results reported in [7] we can prove the following nec-
essary optimality conditions.
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Proposition 3 Let x⋆ ∈ F ∩ Z be a local minimum of Problem (1). Then
there exists a vector λ⋆ ∈ R

m such that

∇cL(x
⋆, λ⋆)T (x− x⋆)c ≥ 0, ∀ x ∈ X , (2)

f(x⋆) ≤ f(x), ∀ x ∈ Bz(x
⋆) ∩ F , (3)

(λ⋆)T g(x⋆) = 0, λ⋆ ≥ 0. (4)

Proposition 4 Let x⋆ ∈ F∩Z be an extended local minimum of Problem (1).
Then there exists a vector λ⋆ ∈ R

m such that (2), (4) and (3) are satisfied.
Further, for every point x̄ ∈ Bz(x

⋆) ∩ F such that f(x̄) = f(x⋆) a λ̄ ∈ R
m

exists such that the pair (x̄, λ̄) satisfies (2), (4) and (3).

According to Proposition 4 an extended minimum point of Problem (1) has
to satisfy the following:

(i) it has to be stationary with respect to the continuous variables,
(ii) it must be a local minimum with respect to the discrete variables within

the discrete neighborhood Bz(x
⋆),

(iii) all the points x̄ ∈ Bz(x
⋆) ∩ F such that f(x̄) = f(x⋆) have to satisfy

requirements (i) and (ii).

Next, we define stationary points and extended stationary points for Problem
(1).

Definition 4 (Stationary point) A point x⋆ ∈ F ∩ Z is a stationary point
of Problem (1) iff a vector λ⋆ ∈ R

m exists such that the pair (x⋆, λ⋆) satisfies
(2), (4) and (3).

Definition 5 (Extended stationary point) A point x⋆ ∈ F ∩ Z is an
extended stationary point of Problem (1) iff a vector λ⋆ ∈ R

m exists such that
the pair (x⋆, λ⋆) satisfies (2), (4) and (3), and, for all x̄ ∈ Bz(x

⋆)∩F such that
f(x̄) = f(x⋆), it is possible to find a λ̄ ∈ R

m so that

∇cL(x̄, λ̄)
T (x− x̄)c ≥ 0, ∀ x ∈ X , (5)

f(x̄) ≤ f(x), ∀ x ∈ Bz(x̄) ∩ F , (6)

(λ̄)T g(x̄) = 0, λ̄ ≥ 0. (7)

In the paper we consider the following penalty function

P (x; ǫ) := f(x) +
1

ǫ

m
∑

i=1

max{0, gi(x)}
q,

where q > 1. We also introduce the following approximation of multiplier
functions.

λj(x; ǫ) :=
q

ǫ
max{0, gj(x)}

q−1, ∀ j = 1, . . . ,m. (8)

We are now ready to define different algorithms for the solution of Problem
(1) and to analyze their convergence properties. The first algorithm (i.e. DFL)
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is convergent towards stationary points of the problem. It explores the coordi-
nate directions and updates the iterate whenever a sufficient reduction of the
penalty function is found. Hence it performs a minimization of the penalty
function distributed along all the variables. The second algorithm (EDFL),
which is convergent to extended stationary points, is based on a local search
procedure that is devised to better investigate the discrete neighborhoods.

3 A Linesearch Algorithm Model

In this section, we define a first Derivative-Free Linesearch algorithm (DFL) for
MINLP problems. The proposed method combines two basic ingredients, that
are a derivative-free optimization for bound constrained mixed integer prob-
lems and a penalty function approach for handling of nonlinear constraints. In
particular, integer variables are tackled by a Discrete search procedure which
is similar to the one defined in [17]. The presence of nonlinear constraints is
accounted for by means of a derivative-free sequential penalty approach like
that described and analyzed in [18].
The main parts of the method are the Continuous search and Discrete search
procedures. The Continuous search and Discrete search procedures, which in-
vestigate the corresponding coordinate direction, are similar to those described
in [17], but they are applied to the penalty function P (x; ǫ). At the end of ev-
ery main iteration the algorithm computes the new values both for the penalty
parameter and the sufficient decrease parameter, which are fundamental in-
gredients in the MINLP case as they allow us to guarantee the convergence of
the proposed algorithm. The idea is that, when no discrete variable has been
updated during the iteration and the tentative steps for discrete variables are
all equal to one, the method updates the sufficient decrease parameter and
then checks if the penalty parameter has to be updated. Here we report the
scheme of the proposed algorithm.
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Derivative-Free Linesearch (DFL) Algorithm

Data. θ ∈ ]0, 1[, ǫ0 > 0, ξ0 > 0, η0, x0 ∈ X ∩ Z, α̃i
0 > 0, i ∈ Ic, α̃

i
0 := 1, i ∈ Iz , and set

di
−1 := ei, for i = 1, . . . , n.

1 For k = 0, 1, . . .
2 Set y1

k := xk.
3 For i = 1, . . . , n
4 If i ∈ Ic then
5 compute α by the Continuous Search(α̃i

k, y
i
k, d

i
k−1, ǫk;α, d

i
k)

6 If α = 0 then set αi
k := 0 and α̃i

k+1 := θα̃i
k.

7 else set αi
k := α and α̃i

k+1 := α.

8 else compute α by the Discrete Search(α̃i
k, y

i
k, d

i
k−1, ξk, ǫk;α, d

i
k)

9 If α = 0 then set αi
k := 0 and α̃i

k+1 := max{1, ⌊α̃i
k/2⌋}.

10 else set αi
k := α and α̃i

k+1 := α.

11 Set yi+1

k
= yi

k + αi
kd

i
k.

12 End For
13 If (yi

k)z = (xi
k)z and α̃i

k = 1, i ∈ Iz, then

14 If (maxi∈Ic{α
i
k, α̃

i
k} ≤ ǫq

k
) and (‖g+(xk)‖ > ηk), choose ǫk+1 := θǫk.

15 Else set ǫk+1 := ǫk.
16 set ξk+1 := θξk,
17 Else set ξk+1 := ξk and ǫk+1 := ǫk.
18 Set ηk+1 := θηk.

19 Find xk+1 ∈ X ∩ Z such that P (xk+1; ǫk) ≤ P (yn+1

k
; ǫk).

20 End For

Then we report the Continuous search and Discrete search procedures (see
[17]).

Continuous search (α̃, y, p, ǫ;α, p+).

Data. γ > 0, δ ∈ ]0, 1[.
1 Compute the largest ᾱ such that y + ᾱp ∈ X ∩ Z. Set α := min{ᾱ, α̃}.

2 If α > 0 and P (y + αp; ǫ) ≤ P (y; ǫ)− γα2 then set p+ := p and go to Step 6.
3 Compute the largest ᾱ such that y − ᾱp ∈ X ∩ Z. Set α := min{ᾱ, α̃}.

4 If α > 0 and P (y − αp; ǫ) ≤ P (y; ǫ)− γα2 then set p+ := −p and go to Step 6.
5 Set α := 0 and return.
6 Let β := min{ᾱ, (α/δ)}.
7 If α = ᾱ or P (y + βp; ǫ) > P (y; ǫ) − γβ2 return.
8 Set α := β and go to Step 6.

Discrete search (α̃, y, p, ξ, ǫ;α, p+).

1 Compute the largest ᾱ such that y + ᾱp ∈ X ∩ Z. Set α := min{ᾱ, α̃}.

2 If α > 0 and P (y + αp; ǫ) ≤ P (y; ǫ)− ξ then set p+ := p and go to Step 6.
3 Compute the largest ᾱ such that y − ᾱp ∈ X ∩ Z. Set α := min{ᾱ, α̃}.

4 If α > 0 and P (y − αp; ǫ) ≤ P (y; ǫ)− ξ then set p+ := −p and go to Step 6.
5 Set α := 0 and return.
6 Let β := min{ᾱ, 2α)}.
7 If α = ᾱ or P (y + βp; ǫ) > P (y; ǫ) − ξ return.
8 Set α := β and go to Step 6.
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As it can be seen, Algorithm DFL performs derivative-free searches along
the coordinate directions by means of two different procedures that depend
on the current coordinate type, namely the Continuous Search and Discrete
Search procedures. When the coordinate is continuous, that is i ∈ Ic, the
stepsize αi

k and the tentative stepsize α̃i
k are computed as described in [21].

On the other hand, when the coordinate is discrete, that is i ∈ Iz , a kind of
“discrete” linesearch is carried out by the method. This discrete linesearch is
characterized by a sufficient reduction controlled by the parameter ξk. When
all the coordinate directions have been explored (inner for loop, i.e. steps 3–
12), the algorithm computes (by steps 13–18) the new values ξk+1, ǫk+1, and
ηk+1 for the sufficient reduction, penalty and feasibility violation parameters,
respectively. In particular, provided that no discrete variable has been updated
and that the tentative steps along discrete coordinates are equal to one, the
sufficient reduction parameter is decreased. Further, the procedure checks if
the penalty parameter has to be updated. It is worth noting that in Algorithm
DFL the next iterate xk+1 is required to satisfy the condition f(xk+1) ≤ f(xk).
This enables to obtain xk+1 by minimizing suitable approximating models of
the objective function, thus possibly improving the efficiency of the overall
scheme.
In order to carry out the convergence analysis of Algorithm DFL, we introduce
the following two sets of iteration indices:

Kξ := {k : ξk+1 < ξk} ⊆ {0, 1, . . .}, and (9a)

Kǫ := {k : ξk+1 < ξk, ǫk+1 < ǫk} ⊆ Kξ. (9b)

Lemma 1 Algorithm DFL is well-defined (i.e. it produces an infinite se-
quence of iterates {xk}).

Proof To show that AlgorithmDFL is well-defined, we need to show that both
the Continuous and Discrete search procedures cannot cycle between Steps 6
and 8. If this is not the case, then a sequence {βl} should exist such that

lim
l→∞

P (y + βlp; ǫ) = −∞,

but this would contradict the assumption that set X is compact. ⊓⊔

In the following lemma we characterize the asymptotic behavior of the se-
quences {αi

k} and {α̃i
k}, i ∈ {1, . . . , n}, produced by DFL.

Lemma 2 Let {xk}, {ξk}, {ǫk}, {yik}, {α
i
k}, {α̃

i
k}, i ∈ {1, . . . , n} be the se-

quences produced by Algorithm DFL. Then:

(i) If the monotonically nonincreasing sequence of positive numbers {ǫk} is
such that

lim
k→∞

ǫk = ǭ > 0,

for all i ∈ Ic,

lim
k→∞

αi
k = 0,

lim
k→∞

α̃i
k = 0.
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(ii) If the monotonically nonincreasing sequence of positive numbers {ǫk} is
such that

lim
k→∞

ǫk = 0,

for all i ∈ Ic,

lim
k→∞,k∈Kǫ

αi
k = 0,

lim
k→∞,k∈Kǫ

α̃i
k = 0.

Proof For i ∈ Ic, the proof follows from Proposition 5 in [18]. ⊓⊔

Lemma 3 Let {ξk} and {ǫk} be the sequences produced by Algorithm DFL.
Then:

(i)

lim
k→∞

ξk = 0;

(ii) the set Kξ, defined in (9a), has infinitely many elements. Moreover, if
limk→∞ ǫk = 0, then also the set Kǫ, defined in (9b), has infinitely many
elements.

Proof First we prove point (i). As it can be seen, the sequence {ξk} generated
by Algorithm DFL is monotonically non-increasing, that is, 0 < ξk+1 ≤ ξk, for
all k. Therefore,

lim
k→∞

ξk = M ≥ 0.

By contradiction, we assume that M > 0. In this case we would have ξk+1 =
ξk = M , for all k ≥ k̄, with k̄ > 0 a sufficiently large index. Then, by step 17
of Algorithm DFL, we would also have ǫk+1 = ǫk = ǭ, for all k ≥ k̄. Then,
by definition of Algorithm DFL and by Step 2 and 4 of the Discrete search
procedure, for all k ≥ k̄, an index ı̄ ∈ Iz (depending on k) would exist such
that

P (xk+1; ǭ) ≤ P (yı̄k ± αı̄
kd

ı̄
k; ǭ) ≤ P (yı̄k; ǭ)−M ≤ P (xk; ǭ)−M, (10)

otherwise the algorithm would have performed the parameter updating (i.e.
ξk+1 = θξk). By (10), we have

lim
k→∞

P (xk; ǭ) = −∞

and this contradicts the assumption that P (·; ǭ) is continuous on the compact
set X .
Finally, we prove point (ii). Point (i) and the updating rule of parameter ξk in
Algorithm DFL imply that the set Kξ is infinite. Furthermore, if limk→∞ ǫk =
0, the updating rule of Algorithm DFL for ξk and ǫk implies that the set Kǫ

is infinite as well. ⊓⊔
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Lemma 4 Let {xk} and {yik}, i = 1, . . . , n + 1, be the sequences of points

produced by Algorithm DFL and let K̃ ⊆ Kξ, where Kξ is defined in (9a), be
such that

lim
k→∞,k∈K̃

xk = x∗. (11)

Then

lim
k→∞,k∈K̃

yik = x∗, i = 1, . . . , n+ 1.

Proof By considering limit (11), for k ∈ K̃ and sufficiently large,

(xk)z = (x⋆)z . (12)

Thus, we have a failure along all the search directions related to the discrete
variables and the trial steps related to those directions cannot be further re-
duced.
Recalling the definition of Kξ in (9a), by the instructions of the algorithm

DFL, for k ∈ K̃, we have

(yik)z = (xk)z , i = 1, . . . , n+ 1

α̃i
k = 1, i ∈ Iz .

Recalling (12), for k ∈ K̃ and sufficiently large, we further have that

(yik)z = (x⋆)z, i = 1, . . . , n+ 1. (13)

Lemma 2 guarantees

lim
k→∞,k∈K̃

αi
k = 0, i ∈ Ic, (14)

so that by (13) and (14), we can write

lim
k→∞,k∈K̃

yik = x⋆, i = 1, . . . , n+ 1,

which completes the proof. ⊓⊔

Now we show that accumulation points exist which are stationary in the sense
of Definition 4. For the sake of simplicity, we first show stationarity with
respect to the continuous variables and then with respect to the discrete ones.

Proposition 5 Let {xk} be the sequence of points produced by Algorithm DFL
and let Kξ and Kǫ defined in (9). Then,

(i) if limk→∞ ǫk = ǭ, every limit point of {xk}Kξ
is stationary for Problem (1)

with respect to the continuous variables;
(ii) if limk→∞ ǫk = 0, every limit point of {xk}Kǫ

is stationary for Problem (1)
with respect to the continuous variables.
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Proof Let us consider any limit point x̄ of the subsequence {xk}Kξ
(point (i))

or {xk}Kǫ
(point (ii)). Then for k sufficiently large

(xk)z = (x̄)z . (15)

Now, let us note that, by the instructions of Algorithm DFL, for all k ∈ Kξ,

(yn+1
k )z = (xk)z and α̃i

k = 1, i ∈ Iz .

Hence, by (15), for k sufficiently large and k ∈ Kξ (point (i)) or k ∈ Kǫ (point
(ii)), the discrete variables of xk are no longer updated.
The rest of the proof follows exactly the same reasoning as in the proof of
Theorem 1 in [18]. The only difference can be found in the definition of sub-
sequence {xk}K̄ . In [18]

K̄ := {0, 1, 2, . . .} if lim
k→∞

ǫk = ǭ > 0,

K̄ := {k : ǫk+1 < ǫk} if lim
k→∞

ǫk = 0.

Here, due to the presence of the discrete variables, we have to consider different
subsequences, namely,

K̄ := Kξ if lim
k→∞

ǫk = ǭ > 0,

K̄ := Kǫ if lim
k→∞

ǫk = 0,

where Kξ and Kǫ are defined as in Lemma 3. ⊓⊔

Now we prove that accumulation points exist which are local minima with
respect to the discrete variables.

Proposition 6 Let {xk} be the sequence of points produced by Algorithm
DFL. Let Kξ ⊆ {1, 2, . . .} and Kǫ ⊆ Kξ be defined in (9). Then,

(i) if limk→∞ ǫk = ǭ, every limit point x⋆ of {xk}Kξ
is a local minimum for

Problem (1) with respect to the discrete variables, namely f(x⋆) ≤ f(x̄),
for all x̄ ∈ Bz(x

⋆) ∩ F ;
(ii) if limk→∞ ǫk = 0, every limit point x⋆ of {xk}Kǫ

is a local minimum for
Problem (1) with respect to the discrete variables, namely f(x⋆) ≤ f(x̄),
for all x̄ ∈ Bz(x

⋆) ∩ F .

Proof Let us denote

K̃ :=

{

Kξ if limk→∞ ǫk = ǭ,
Kǫ if limk→∞ ǫk = 0,

where Kξ and Kǫ are defined in (9). Let x⋆ be any accumulation point of

{xk}K̃ and let K̄ ⊆ K̃ be an index set such that

lim
k→∞,k∈K̄

xk = x⋆.
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By Lemma 4, we have

lim
k→∞,k∈K̃

yik = x⋆, i = 1, . . . , n+ 1. (16)

Let us consider any point x̄ ∈ Bz(x
⋆) ∩ F . By the definition of the discrete

neighborhood Bz(x) and of the set Dz , a direction d̄ ∈ D(x⋆)∩Dz exists such
that

x̄ = x⋆ + d̄. (17)

Taking into account (13) and (17), for k ∈ K̄ and sufficiently large, we can
write

(x̄)z = (x⋆ + d̄)z = (yik + d̄)z, i = 1, . . . , n+ 1. (18)

Now, by Proposition 2 we have, for k ∈ K̄ and sufficiently large,

d̄ ∈ D(xk) ∩Dz .

Therefore there exists dikk such that dikk = d̄. As we have a finite set of search
directions, we can consider, without any loss of generality, a subsequence such
that ik = ı̄, and we can write

(x̄)z = (x⋆ + dı̄k)z = (yı̄k + dı̄k)z, (19)

for all k ∈ K̄ and sufficiently large. Thus, by (16) and (19), we can write

lim
k→∞,k∈K̄

yı̄k + dı̄k = x⋆ + d̄ = x̄

Hence, for all k ∈ K̄ and sufficiently large, by (18),

(yı̄k + dı̄k)j = (x̄)j , j ∈ Iz . (20)

Further, for all k ∈ K̄ and considering that ı̄ ∈ Iz ,

(yı̄k + dı̄k)j = (yı̄k)j j ∈ Ic. (21)

Then, for k ∈ K̄ and sufficiently large, by (20) and (21) and recalling that
x̄, yı̄k ∈ X ∩ Z, we have

yı̄k + dı̄k ∈ X ∩ Z.

Therefore, for k ∈ K̄ and sufficiently large, the algorithm evaluates the func-
tion P in the point yı̄k + dı̄k, and obtains

P (yı̄k + dı̄k; ǫk) > P (yı̄k; ǫk)− ξk. (22)

Recalling the expression of the penalty function P (x; ǫ) and of the functions
λl(x; ǫ) (defined in (8)), we can write

P (yı̄k; ǫk) = f(yı̄k) +
1

ǫk

m
∑

l=1

max{0, gl(y
ı̄
k)}

q

= f(yı̄k) +
1

q

m
∑

l=1

λl(y
ı̄
k; ǫk)max{0, gl(y

ı̄
k)}.
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Noting that points yik, i ∈ Ic, satisfy the assumptions of Proposition 9 in
Appendix and recalling that x⋆ ∈ F , we have (by Proposition 9)

lim
k→∞,k∈K̄

λl(y
ı̄
k; ǫk)max{0, gl(y

ı̄
k)} = 0.

Therefore we obtain:

lim
k→∞,k∈K̄

P (yı̄k; ǫk) = f(x⋆).

Now if part (i) of Assumption 2 holds we have

λl(y
ı̄
k + dı̄k; ǫk)max{0, gl(y

ı̄
k + dı̄k)} = λl(y

ı̄
k; ǫk)max{0, gl(y

ı̄
k)},

which yields

lim
k→∞,k∈K̄

P (yı̄k + dı̄k; ǫk) = f(x̄). (23)

If, on the other hand, part (ii) of Assumption 2 holds, for k ∈ K̄ and sufficiently
large, we have

λl(y
ı̄
k + dı̄k; ǫk)max{0, gl(y

ı̄
k + dı̄k)} = 0

and, hence, we obtain again

lim
k→∞,k∈K̄

P (yı̄k + dı̄k; ǫk) = f(x̄). (24)

Finally, by making the limit in (22) and by using (23) and (24) we obtain

f(x̄) ≥ f(x⋆).

which completes the proof. ⊓⊔

Finally, we can now derive the main theoretical result concerning the global
convergence properties of Algorithm DFL.

Theorem 1 Let {xk} and {ǫk} be the sequences generated by Algorithm DFL.
Let Kξ ⊆ {1, 2, . . .} and Kǫ ⊆ Kξ be defined in (9). Then, {xk} admits limit
points and

(i) if limk→∞ ǫk = ǭ, every limit point of {xk}Kξ
is stationary for Problem

(1);
(ii) if limk→∞ ǫk = 0, every limit point of {xk}Kǫ

is stationary for Problem
(1).

Proof By the instructions of Algorithm DFL, every iterate xk belongs to X
which is compact. Hence {xk} admits limit points. Then, points (i) and (ii)
follow by considering Propositions 5 and 6. ⊓⊔
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4 Convergence to Extended Stationary Points

In this section we suitably modify Algorithm DFL to ensure convergence to
extended stationary points. Convergence to such points can be enforced by
refining the searches along the directions related to the discrete variables.
Indeed, we replace the Discrete Search used in Algorithm DFL with a new one,
namely the Local search procedure, which explores more deeply the discrete
neighborhoods. Below we report the scheme of the Local search procedure.

Local search(α̃, y, p, ξ, ǫ;α, z̃).

Data. ν > 0.
Initialization. Compute the largest ᾱ such that y + ᾱp ∈ X ∩ Z. Set α := min{ᾱ, α̃} and

z := y + αp.
0 If α = 0 or P (z; ǫ) > P (y; ǫ) + ν then Set z̃ := y, α := 0 and return.
1 If α > 0 and P (z; ǫ) ≤ P (y; ǫ)− ξ then go to Step 2. Else go to Step 5.
2 Let β := min{ᾱ, 2α}.
3 If α = ᾱ or P (y + βp; ǫ) > P (y; ǫ) − ξ then z̃ := y + αp and return.
4 Set α := β and go to Step 2.
5 (Grid search) Set z := y + αp.
6 Set w1 := z.
7 For i = 1, . . . , n
8 If i ∈ Iz compute α̂ by the Discrete Search(α̃i, wi, ei, ξ, ǫ; α̂, qi)

9 If α̂ 6= 0 and P (wi + α̂qi; ǫ) ≤ P (y; ǫ) − ξ then

10 set z̃ := wi + α̂qi, α := 0 and return
11 If i ∈ Ic compute α̂ by the Continuous Search(α̃i, wi, ei, ǫ; α̂, qi)

12 If α̂ 6= 0 and P (wi + α̂qi; ǫ) ≤ P (y; ǫ) − ξ then

13 set z̃ := wi + α̂qi, α := 0 and return
14 Set wi+1 := wi + α̂qi.
15 End For
16 Set z̃ := y, α := 0 and return.

In this procedure we first verify if a point along the search direction guarantees
a sufficient decrease of the penalty function. If so, we accept the point simi-
larly to Algorithm DFL. Otherwise and differently from the Discrete Search
procedure, we consider two different cases:

i) the new point is significantly worse (in terms of penalty function value)
than the current one, then we discard the new point;

ii) the new point is not significantly worse than the current one, then we per-
form a “grid search” (i.e. a new search both along continuous and discrete
directions starting from the new point). If we find, by means of this “grid
search”, a new point that guarantees a sufficient decrease of the penalty
function, it becomes the current point.

Figure 1 illustrates how the Local Search procedure works in practice. We
assume d1 and d2 to be the directions related to the discrete variables and
d3 the direction related to the continuous variable. Let us suppose that along
the discrete direction d1 the Local Search finds a new point z that is not
significantly worse than the current one y (See Fig. 1 (a)). Then the Local
search procedure performs the Grid search starting from z (See Fig. 1 (b)).
Finally, Fig. 1 (c) depicts the situation in which the Grid Search finds a point
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z̃ that guarantees a sufficient decrease of the penalty function with respect to
the central point y.

Extended Derivative-Free Linesearch (EDFL) Algorithm

Data. θ ∈ ]0, 1[, ǫ0 > 0, ξ0 > 0, η0 ≥ 0, x0 ∈ X ∩ Z, α̃i
0 > 0, i ∈ Ic, α̃

i
0 = 1, i ∈ Iz , and set

di
−1 = ei, for i = 1, . . . , n.

1 For k = 0, 1, . . .
2 Set y1

k = xk.
3 For i = 1, . . . , n
4 If i ∈ Ic then
5 compute α by the Continuous Search(α̃i

k, y
i
k, d

i
k−1, ǫk;α, d

i
k)

6 If α = 0 then set αi
k = 0 and α̃i

k+1 = θα̃i
k.

7 else set αi
k = α, α̃i

k+1 = α.

8 else compute α by the Local Search(α̃i
k, y

i
k, d

i
k−1, ξk, ǫk;α, z̃)

9 Case L1
+ (α = 0 and z̃ 6= yi

k):

10 Set αi
k = 0, α̃i

k+1 = α̃i
k, y

n+1

k
= z̃, di

k = di
k−1 and Exit For

11 Case L2
+ (α = 0 and z̃ = yi

k):

12 compute α by the Local Search(α̃i
k, y

i
k,−di

k−1, ξk, ǫk;α, z̃)

13 Case L1
−

(α = 0 and z̃ 6= yi
k):

14 Set αi
k = 0, α̃i

k+1 = α̃i
k, y

n+1

k
= z̃, di

k = −di
k−1 and

15 Exit For
16 Case L2

−
(α = 0 and z̃ = yi

k):

17 Set αi
k = 0, α̃i

k+1 = max{1, ⌊α̃i
k/2⌋} and di

k = di
k−1.

18 Case L3
−

(α 6= 0):

19 Set αi
k = α, α̃i

k+1 = α and di
k = −di

k−1.

20 Case L3
+ (α 6= 0):

21 Set αi
k = α, α̃i

k+1 = α and di
k = di

k−1.
22 Endif
23 Set yi+1

k
= yi

k + αi
kd

i
k.

24 End For
25 If (yi

k)z = (xi
k)z and α̃i

k = 1, i ∈ Iz, then

26 If (maxi∈Ic{α
i
k, α̃

i
k} ≤ ǫq

k
) and (‖g+(xk)‖ > ηk), choose ǫk+1 = θǫk.

27 Else set ǫk+1 = ǫk.
28 set ξk+1 = θξk,
29 Else set ξk+1 = ξk, ǫk+1 = ǫk.
30 Set ηk+1 = θηk.

31 Find xk+1 ∈ X ∩ Z such that P (xk+1; ǫk) ≤ P (yn+1

k
; ǫk).

32 End For

Algorithm EDFL can be seen as an enrichment of algorithm DFL. Indeed,
along the continuous directions the Continuous Search is performed, whereas
the discrete directions are investigated by means of the Local search procedure.
Depending on the results of the Local Search, one case out of three is executed.
They are denoted L1

±, L
2
± and L3

±, where the subscript ± distinguishes if the
Local search is invoked along dik or −dik. More in particular:

i) Case L1
+ is executed when the Local Search returns α = 0 and z̃ 6= yik,

that is when a point yielding a sufficient decrease of the penalty function
is found by the Grid Search in the Local Search procedure. In this case the
algorithm sets αi

k = 0, α̃i
k+1 = α̃i

k, y
n+1
k = z̃, dik+1 = dik, exits the inner
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d2

d1y z

d3

(a) The Local Search finds a new point z that
is not significantly worse than the current
one.

z

d2

d1

d3

(b) The Grid Search starts from z.

z̃

d2

d1

d3

(c) The Grid Search finds a point z̃ that guar-
antees a sufficient decrease of the penalty
function.

Fig. 1 How the Local Search works in practice.

For loop (step 3–24) and jumps directly to step 25 where ξk+1, ǫk+1 and
ηk+1 are computed.

ii) Case L2
+ is executed when the Local Search returns α = 0 and z̃ = yik,

which means that the Local Search along direction dik failed. In this case,
the algorithm tries to compute α by means of the Local Search along the
opposite direction −dik.

iii) Case L3
+ is executed when the Local Search returns α 6= 0, that is when a

sufficient decrease of the penalty function is achieved along direction dik.

As regards cases L1
−, L

2
− and L3

−, we notice that L1
− and L3

− are similar,
respectively, to L1

+ and L3
+. While in case L2

−, that is when both the Local
Searches along dik and −dik fail, the trial stepsize α̃i

k is reduced, namely α̃i
k+1 =

max{1, ⌊α̃i
k/2⌋}.

Finally, once all directions have been investigated, or when case L1
+ or L1

− are
executed, the algorithm jumps directly to step 25 where ξk+1, ǫk+1 and ηk+1

are computed.

In the following, we carry out the convergence analysis of Algorithm EDFL.

Lemma 5 The Local search procedure is well-defined (i.e. it cannot indefi-
nitely cycle between Steps 2 and 4).

Proof In Lemma 1 we already proved that the Continuous and Discrete search
procedures are both well-defined. Hence, in order to prove that the Local search
procedure is well-defined we need to show that it could not indefinitely cycle
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between Steps 2 and 4. On the contrary, if this was the case, a sequence {βl}
would exist such that

lim
l→∞

P (y + βlp; ǫ) = −∞,

but this would contradict the assumption that set X is compact. ⊓⊔

Lemma 6 Algorithm EDFL is well-defined (i.e. it produces an infinite se-
quence of iterates {xk}).

Proof The result follows from the fact that the procedures used in Algorithm
EDFL (Continuous and Local search) are well-defined. ⊓⊔

Proposition 7 Let {xk} and {ǫk} be the sequences produced by Algorithm
EDFL. Let Kξ ⊆ {1, 2, . . .} and Kǫ ⊆ Kξ be defined in (9). Then, {xk}
admits limit points and

(i) if limk→∞ ǫk = ǭ, every limit point of {xk}Kξ
is stationary for Problem

(1);
(ii) if limk→∞ ǫk = 0, every limit point of {xk}Kǫ

is stationary for Problem
(1).

Proof Since the Local search procedure is an enrichment of the Discrete search
procedure used in the definition of Algorithm DFL, the proof follows easily
from Theorem 1. ⊓⊔

Proposition 8 Let {xk} and {ǫk} be the sequences produced by Algorithm
EDFL. Let Kξ ⊆ {1, 2, . . .} and Kǫ ⊆ Kξ be defined in (9). Then, {xk}
admits limit points and

(i) if limk→∞ ǫk = ǭ, every limit point of {xk}Kξ
is extended stationary for

Problem (1);
(ii) if limk→∞ ǫk = 0, every limit point of {xk}Kǫ

is extended stationary for
Problem (1).

Proof As in the proof of Proposition 6, let us denote

K̃ :=

{

Kξ if limk→∞ ǫk = ǭ,
Kǫ if limk→∞ ǫk = 0.

By the instructions of Algorithm EDFL, every iterate xk belongs to X which
is compact. Hence {xk} admits limit points.
Let x⋆ be a limit point of {xk}K̃ and K̄ ⊆ K̃ be an index set such that

lim
k→∞,k∈K̄

xk = x⋆.

By recalling the definition of extended Stationary Point, we have to show that
a λ⋆ ∈ R

m exists such that the pair (x⋆, λ⋆) satisfies (2), (4) and (3). Recalling
the fact that the Local search is an enrichment of the Discrete search defined
in subsection 3, the limit points produced by Algorithm EDFL surely satisfy
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(2), (4) and (3) which can be derived by using point (i) of Proposition 5 and
Proposition 6.
Now we show that, for all x̄ ∈ Bz(x

⋆)∩F such that f(x̄) = f(x⋆), it is possible
to find a λ̄ ∈ R

m such that the pair (x̄, λ̄) satisfies (5), (7) and (6).
First we notice that, by Lemmas 3 and 4, we have

lim
k→∞,k∈K̄

ξk = 0, (25a)

lim
k→∞,k∈K̄

yik = x⋆, i = 1, . . . , n+ 1. (25b)

Furthermore, for any choice of x̄ ∈ Bz(x
⋆) ∩ F such that f(x̄) = f(x⋆), and,

reasoning as in Proposition 6, there exists an index ı̄ and a subset of indices,
which we relabel again K̄, such that ik = ı̄ and recalling the definition of z in
the Local Search procedure:

lim
k→∞,k∈K̄

z ı̄k = lim
k→∞,k∈K̄

yı̄k + dı̄k = x⋆ + d̄ = x̄. (26)

Recalling the expression of the penalty function P and the functions λl (defined
in (8)), we can write

P (yı̄k; ǫk) = f(yı̄k) +
1

ǫk

m
∑

l=1

max{0, gl(y
ı̄
k)}

q

= f(yı̄k) +
1

q

m
∑

l=1

λl(y
ı̄
k; ǫk)max{0, gl(y

ı̄
k)}.

Now the proof continues by showing that:

(i) the following limits hold

lim
k→∞,k∈K̄

P (yı̄k; ǫk) = f(x⋆), (27)

lim
k→∞,k∈K̄

P (z ı̄k; ǫk) = f(x̄), (28)

lim
k→∞,k∈K̄

P (wi
k; ǫk) = f(x̄), ∀ i = 1, . . . , n+ 1; (29)

(ii) point x̄ is stationary w.r.t. the continuous variables;
(iii) point x̄ is a local minimum w.r.t. the discrete variables.

Point (i). By using Proposition 9 in Appendix and recalling that x⋆ ∈ F , we
have

lim
k→∞,k∈K̄

λl(y
ı̄
k; ǫk)max{0, gl(y

ı̄
k)} = 0. (30)

Therefore (27) follows.
Now we show that

lim
k→∞,k∈K̄

λl(z
ı̄
k; ǫk)max{0, gl(z

ı̄
k)} = 0, (31)
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for all l = 1, . . . ,m.
If part (ii) of Assumption 2 holds, by (26) and the fact that x̄ ∈ F , for
sufficiently large k ∈ K̄, we can write

λl(z
ı̄
k; ǫk)max{0, gl(z

ı̄
k)} = 0.

On the other hand, if part (i) of Assumption 2 holds, considering that z ı̄k =
yı̄k + dı̄k, ı̄ ∈ Iz , and recalling the expression (8) of λl(x; ǫ), we have

λl(z
ı̄
k; ǫk)max{0, gl(z

ı̄
k)} = λl(y

ı̄
k; ǫk)max{0, gl(y

ı̄
k)}.

Thus, relations (31) follows from the above relation and (30).
For every k ∈ K̄, it results that

P (z ı̄k; ǫk) = P (w1
k; ǫk) ≥ P (w2

k; ǫk) ≥ · · · ≥ P (wn
k ; ǫk) > P (yı̄k; ǫk)− ξk.

From (26) and (31) we obtain (28). Then, by (25), (27), (28) and by considering
that, by assumption, f(x̄) = f(x⋆), we get (29).

Point (ii). For every i ∈ Ic such that

P (wi
k + α̃i

kq
i
k; ǫk) > P (wi

k; ǫk)− γ(α̃i
k)

2,

we have that wi+1
k = wi

k and, by Lemma 2, α̃i
k → 0, for all i ∈ Ic.

On the other hand, for those indices i ∈ Ic such that

P (wi+1
k ; ǫk) = P (wi

k + α̂i
kq

i
k; ǫk) ≤ P (wi

k; ǫk)− γ(α̂i
k)

2, (32)

we have, by (29) and (32), that

lim
k→∞,k∈K̄

α̂i
k = 0, ∀ i ∈ Ic. (33)

Hence, recalling that w1
k = z ı̄k by definition of the Local search procedure, by

(26), and the fact that α̃i
k → 0 and α̂i

k → 0, we have that

lim
k→∞,k∈K̄

wi
k = x̄, ∀ i ∈ Ic (34)

Now, for k sufficiently large, by Proposition 2, D(x̄) ⊆ D(xk). Since the grid
search step in the Local search procedure explores, for every index i, both the
directions ei and −ei, for every i ∈ Ic and d̄i ∈ D(x̄), we can define ηik as
follows:

ηik :=







α̃i
k if P (wi

k + α̃i
kd̄

i; ǫk) > P (wi
k; ǫk)− γ(α̃i

k)
2,

α̂i
k

δ
if P

(

wi
k +

α̂i
k

δ
d̄i; ǫk

)

> P (wi
k; ǫk)− γ

(

α̂i
k

δ

)2

.

Then, we can write

P (wi
k + ηikd̄

i; ǫk) > P (wi
k; ǫk)− γ(ηik)

2. (35)
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By Lemma 2, we have, for all i ∈ Ic, that

lim
k→∞,k∈K̄

ηik = 0. (36)

From (26) and (34) it follows that

lim
k→∞,k∈K̄

‖z ı̄k − wi
k‖ = 0 (37)

for all i ∈ Ic. Then, (26) and the fact that x̄ ∈ F , we can write

lim
k→∞,k∈K̄

ǫk‖g
+(z ı̄k)‖ = 0. (38)

Thus, considering that for k sufficiently large wi
k + ηikd̄

i ∈ X ∩ Z, (35), (36),
(37) and (38) prove that the hypotheses of Proposition 9 in Appendix are
satisfied. Hence, x̄ is stationary with respect to the continuous variables.

Point (iii). Finally, again reasoning as in the proof of Proposition 6, considering

(33) and using wj
k = z ı̄k +

∑j
h=1 α̂

hqh and wj
k + qjk (omitting the dependence

of wk and qk from the index ı̄) in place of, respectively, yik and yik+dik, we can

find an index ̄ ∈ Iz and a subset of indices K̂, such that

lim
k→∞,k∈K̂

w̄
k = x̄, (39)

lim
k→∞,k∈K̂

w̄
k + q̄k = x̃, (40)

where x̃ is a point belonging to the discrete neighborhood of x̄. Hence, reason-
ing as in Proposition 6, for k sufficiently large and k ∈ K̂,

w̄
k + q̄k ∈ X ∩ Z.

Then, we have
P (w̄

k + q̄k; ǫk) > P (yı̄k; ǫk)− ξk. (41)

Now we show that

lim
k→∞,k∈K̄

λl(w
̄
k + q̄k; ǫk)max{0, gl(w

̄
k + q̄k)} = 0, (42)

for all l = 1, . . . ,m.
First, if part (ii) of Assumption 2 holds, by (26), (39), (40), and the fact that
x̃ ∈ F and x̄ ∈ F , for sufficiently large k ∈ K̄, we can write

λl(w
̄
k + q̄k; ǫk)max{0, gl(w

̄
k + q̄k)} = 0.

On the other hand, if part (i) of Assumption 2 holds, considering that, by (26),
(39) and (40),

lim
k→∞,k∈K̄

λl(w
̄
k + q̄k; ǫk)max{0, gl(w

̄
k + q̄k)} = (43)

lim
k→∞,k∈K̄

λl(z
ı̄
k + q̄k; ǫk)max{0, gl(z

ı̄
k + q̄k)},
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for all l = 1, . . . ,m, we show (42) by proving

lim
k→∞,k∈K̄

λl(z
ı̄
k + q̄k; ǫk)max{0, gl(z

ı̄
k + q̄k)} = 0,

for all l = 1, . . . ,m. Indeed, considering that z ı̄k = yı̄k+dı̄k, ı̄ ∈ Iz , and recalling
the expression (8) of λl(x; ǫ), we have

λl(z
ı̄
k + q̄k; ǫk)max{0, gl(z

ı̄
k + q̄k)} = λl(z

ı̄
k; ǫk)max{0, gl(z

ı̄
k)}

= λl(y
ı̄
k + dı̄k; ǫk)max{0, gl(y

ı̄
k + dı̄k)}

= λl(y
ı̄
k; ǫk)max{0, gl(y

ı̄
k)}.

Thus, (42) follows from the above relation and (30).
Hence, by (40) and (42), we can write

lim
k→∞,k∈K̄

P (w̄
k + q̄k; ǫk) = f(x̃).

Now, recalling (25) and (26), relation (6) follows by taking the limit for k →
∞, k ∈ K̄ in (41), and considering that, by assumption, f(x̄) = f(x⋆). ⊓⊔

5 Numerical Results

In this section we report the numerical performance of the proposed derivative-
free algorithms DFL1 and EDFL1 for MINLP problems both on a set of aca-
demic test problems and on a real application arising in the optimal design
of industrial electric motors. Moreover, a comparison with NOMAD v3.6.0,
which is a well-known software package for derivative-free optimization [15],
on the same set of test problems and on the real problem is carried out. It is
worth noting that the MADS algorithm implemented in NOMAD is designed
only for continuous and categorical variables but can be adapted to take into
account the presence of discrete variables. However, there is yet no theory
about MADS with discrete variables.
The proposed method has been implemented in double precision Fortran90
and all the experiments have been conducted by choosing the following values
for the parameters defining Algorithm DFL: γ = 10−6, θ = 0.5, p = 2,

α̃i
0 :=







max
{

10−3,min{1, |(x0)
i|}

}

, i ∈ Ic,

max
{

1,min{2, |(x0)
i|}

}

, i ∈ Iz.

As concerns the penalty parameter, in the implementation of Algorithm DFL
we use a vector of penalty parameters ǫ ∈ R

m and choose

(ǫ0)
j :=

{

10−3 if gj(x0)
+ < 1,

10−1 otherwise.
j = 1, . . . ,m. (44)

1 available for download at: http://www.dis.uniroma1.it/∼lucidi/DFL
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In order to preserve all the theoretical results, the test at step 14 of Algorithm
DFL and at step 26 of Algorithm EDFL maxi=1,...,n{α̃i

k, α
i
k} ≤ ǫpk has been

substituted by

max
i=1,...,n

{α̃i
k, α

i
k} ≤ max

i=1,...,m
{(ǫk)

i}p.

The parameters defining Algorithm EDFL have been set to the same values
used in DFL except for the new parameter ν of the Local search procedure
which is set equal to 1.

5.1 Results on Test Problems

We selected a set of 50 test problems from the well-known collections [11,12]
which have been suitably modified by letting some variables assume only a
finite number of values. In particular, for every even index i, variable xi ∈ X i

with

X i :=

{

li + h
(ui − li)

20

}

for h = 0, . . . , 20.

Problem n m f0 viol0

HS 14 2 3 1.00E+00 3.000E+00

HS 15 2 2 1.61E+03 3.000E+00

HS 16 2 2 5.85E+01 0.000E+00

HS 18 2 2 6.25E+02 0.000E+00

HS 19 2 2 2.80E+04 2.141E+03

HS 20 2 3 8.50E+00 1.250E+00

HS 21 2 1 -1.00E+02 0.000E+00

HS 22 2 2 1.00E+00 4.000E+00

HS 23 2 5 9.00E+00 3.000E+00

HS 30 3 1 2.00E+00 0.000E+00

HS 31 3 1 4.82E+01 0.000E+00

HS 39 4 4 -2.00E+00 1.600E+01

HS 40 4 6 -0.00E+00 1.288E+00

HS 42 4 4 2.40E+01 2.000E+00

HS 43 4 3 0.00E+00 0.000E+00

HS 60 3 2 2.10E+01 9.757E+00

HS 64 3 1 7.20E+09 3.200E+06

HS 65 3 1 6.74E+01 0.000E+00

HS 72 4 2 2.00E+05 5.750E+00

HS 74 4 8 1.34E+03 1.400E+03

HS 75 4 8 1.34E+03 1.400E+03

HS 78 5 6 0.00E+00 8.000E+00

HS 79 5 6 4.10E+01 1.059E+01

HS 80 5 6 1.00E+00 8.000E+00

HS 83 5 6 -3.22E+04 2.773E+00

HS 95 6 4 1.09E+00 9.495E+01

Problem n m f0 viol0

HS 96 6 4 1.09E+00 1.749E+02

HS 97 6 4 1.09E+00 9.495E+01

HS 98 6 4 1.09E+00 2.849E+02

HS 100 7 4 1.16E+03 0.000E+00

HS 101 7 6 2.21E+03 3.703E+02

HS 102 7 6 2.21E+03 3.703E+02

HS 103 7 6 2.21E+03 3.703E+02

HS 104 8 6 6.79E-01 5.187E+00

HS 106 8 6 1.55E+04 1.346E+06

HS 107 9 6 2.91E+03 1.349E+00

HS 108 9 13 -0.00E+00 3.000E+00

HS 113 10 8 1.32E+03 9.300E+01

HS 114 10 14 2.19E+03 1.178E+03

HS 116 13 15 2.25E+02 7.902E+02

HS 223 2 2 -1.00E-01 0.000E+00

HS 225 2 5 9.00E+00 3.000E+00

HS 228 2 2 0.00E+00 0.000E+00

HS 230 2 2 0.00E+00 1.000E+00

HS 263 4 6 -1.00E+01 2.200E+03

HS 315 2 3 -0.00E+00 0.000E+00

HS 323 2 2 4.00E+00 1.000E+00

HS 343 3 2 -1.94E+01 5.686E+02

HS 365∗ 7 5 6.00E+00 7.341E+00

HS 369∗ 8 6 6.60E+03 5.449E+01

HS 372∗ 9 12 3.59E+05 5.610E+02

HS 373 9 12 3.82E+05 1.014E+03

HS 374 10 35 0.00E+00 9.612E+00

Table 1 Test problems characteristics

In Table 1 we report the details of the selected test problems. Namely, for each
problem we indicate by n the number of variables and by m the number of
nonlinear plus general linear constraints; f0 denotes the value of the objective
function on the initial point, that is f0 = f(x0); finally, viol0 is a measure of
the infeasibility on the initial point, that is viol0 =

∑m
j=1 max{0, gj(x0)}. In

the table we evidenced (by a ‘∗’ symbol after the name) the problems whose
initial points are infeasible with respect to the bound constraints. In those
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cases we obtained an initial point by projecting the provided point onto the
set defined by the bound constraints.
As concerns NOMAD, we first run the package by using default values for
all of the parameters. Then, we run a modified version of NOMAD, namely
NOMAD∗, in which we set the MODEL SEARCH parameter to NO, thus disabling
the NOMAD search strategy using quadratic models.
We give all the solvers a maximum of 1300 function evaluations (i.e. the equiv-
alent of 100 simplex gradient evaluations for a problem with n = 13 variables,
like our biggest test problem).
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Fig. 2 Data and Performance profiles for the number of function evaluations required by
NOMAD, NOMAD∗, DFL and EDFL respectively

In Figure 2 we report the comparison between NOMAD, NOMAD∗, DFL and
EDFL in terms of performance and data profiles.
In order to adapt the procedure for constructing performance and data profiles,
as proposed in [23], to the nonlinearly constrained case, we considered the
convergence test

f̃0 − f(x) ≥ (1− τ)(f̃0 − fL),

where f̃0 is the objective function value of the worst feasible point determined
by all the solvers, τ > 0 is a tolerance, and fL is computed for each problem as
the smallest value of f (at a feasible point) obtained by any solver within the
allowed 1300 function evaluations. We notice that when a point is not feasible
(i.e. viol(x) =

∑m
j=1 max{0, gj(x)} > 10−6) we set f(x) = +∞.
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The results reported in Figure 2 show that NOMAD and EDFL are slightly the
best solvers for τ = 10−3 whereas, for τ = 10−1 DFL outperforms NOMAD.
We believe the the performances of both DFL and EDFL could be further
improved by introducing in the latter algorithms the use of quadratic models
to (possibly) improve the current iterate.

5.2 Results on an Optimal Design Problem

In this section we report the results obtained by the three codes (DFL, EDFL,
and NOMAD) on a real optimal design problem. In DFL and EDFL we use as
stopping condition maxi∈Ic{α̃

i
k, α

i
k} ≤ 10−6. We note that, as a consequence

of this stopping condition and of the initialization (44), the final values of
the penalty parameters are greater than 10−6. As for NOMAD, we set the
parameter MIN MESH SIZE = 10−6.
We consider the optimal design of Interior Permanent Magnet (IPM) syn-
chronous motors [19] which are built with magnets placed inside the rotor
body and are attracting great attention in several variable speed applications,
such as electric vehicles, industrial and domestic appliances. The most chal-
lenging requirements are, among others, high torque at base and maximum
speed, limited gross weight and extended speed range.

Continuous variables
meaning l.b. u.b.

x3 Inner stator diameter [mm] 72 80
x4 Stator tooth width [mm] 2.5 3.5
x5 Stator yoke thickness [mm] 4.0 8.0
x6 Slot opening width [mm] 1.2 1.6
x7 Slot opening depth [mm] 1.0 2.0
x8 Bottom loop radius [mm] 0.3 0.8
x9 Upper loop radius [mm] 0.3 0.8
x10 PM thickness [mm] 2.0 4.0
x11 Ratio of PM width to barrier width 0.80 0.95
x12 Magnet position [mm] 4.0 8.0
x13 Rotor tooth width [mm] 4.0 6.0

Table 2 Lower and upper bounds of continuous design variables

In Tables 3 and 2 we report the meaning of the optimization variables along
with their upper (u.b.) and lower (l.b.) bounds. For discrete variables, in Table
3 we also specify the allowed step. Figure 3 depicts a cross section of one pole
of the considered motor and the related design variables. Table 4 reports the
nonlinear constraints considered during the optimization and their imposed
bounds. Finally, we mention that the objective function employed is given by
the following expression:

f(x) = f1(x) − f2(x)− f3(x),
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Discrete variables
meaning l.b. u.b. step

x1 Stack length [mm] 60 90 1
x2 Outer stator diameter [mm] 105 130 1
x14 Angle of flux barrier [deg.] -10 10 1
x15 Angle of flux barrier [deg.] -10 10 1
x16 Number of wires per slot 4 14 1
x17 Wire size [mm] 1.0 3.0 0.01

Table 3 Lower and upper bounds of discrete design variables

Nonlinear constraints
meaning bound

g1 stator slot fill factor [%] ≤ 40
g2 max flux density in the stator tooth [T] ≤ 1.83
g3 max flux density in the stator yoke [T] ≤ 1.80
g4 linear current density [A/cm] ≤ 400
g5 maximum speed [rpm] ≥ 40000
g6 back EMF at maximum speed [V] ≤ 210
g7 phase resistance at 90◦ [Ω] ≤ 0.31
g8 torque at base speed [Nm] ≥ 9.5
g9 torque at maximum speed [Nm] ≥ 1.8
g10 gross weight [Kg] ≤ 7.5

Table 4 Bounds on the nonlinear constraints

where f1(x) is the gross weight of the motor (to be minimized), f2(x) is the
torque at base speed (to be maximized) and f3(x) is the torque at maximum
speed (to be maximized).

We remark that all of the constraints and objective function nonlinearly de-
pend on the design variables. Furthermore, since their values are computed by
means of a finite element simulation program (which takes about three min-
utes for each evaluation), they are black-box-type functions whose expressions
and first-order derivatives are not known.

We preliminary tried to solve the design problem by using a naive approach.
More in particular, we run our derivative-free algorithm relaxing the integral-
ity constraint on the design variables. This produces solution x̄ with f(x̄) =
−11.006, which is infeasible because of the non-integrality of variables x14 and
x15. Then, we rounded x̄14 and x̄15 to the nearest integer thus obtaining a
point x̃ which violates a nonlinear constraint, namely g7(x). Hence, in order
to recover feasibility, we run our method by holding fixed the discrete variables
to their rounded values. This indeed allows to recover feasibility and produces
a point x∗ with f(x∗) = −11.2524.

In Table 5 and 6 we summarize the results obtained in terms of black-box
evaluation (nf), objective functions values, and computed solution points.

As concerns the performance of the codes on this real problem, DFL requires
585 function evaluations to locate a feasible point x⋆ with f(x⋆) = −12.1631
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Fig. 3 Cross section of the considered IPM motor (one pole) and design variables, except
for the wire size (x17).

nf f1(x) f2(x) f3(x) f(x)

naive 833 5.93 13.8175 3.3649 -11.2524
DFL 585 6.6713 15.0377 3.7967 -12.1631
EDFL 2483 6.9161 15.6321 3.7769 -12.4929
NOMAD 3267 7.0857 12.9526 2.9023 -8.7692

Table 5 Summary of the results obtained for the IPM motor design

whereas EDFL requires 2483 function evaluations to find a feasible point x⋆

with f(x⋆) = −12.4929.
Finally, we ran NOMAD on the optimal design problem by using the same
parameter settings as those used for test problems experimentation. NOMAD
stopped after 3267 black-box function evaluations reporting a feasible point
x⋆ with f(x⋆) = −8.7692.

6 Conclusions

In this paper we have addressed MINLP problems. First, we have introduced
the definition of stationary and extended stationary points and then we have
proposed two algorithms and proved their global convergence. The first algo-
rithm, namely DFL, converges toward stationary points whereas the second
algorithm, EDFL, converges toward extended stationary points. The proposed
algorithms are of the linesearch-type, in the sense that along the continu-
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naive DFL EDFL NOMAD

x1 80 90 90 89
x2 110 110 112 114
x3 80 80 80 79.988
x4 2.0 2.0 2.016 2.0
x5 5.0 5.0 5.0 5.0
x6 1.6 1.6 1.6 1.256
x7 1.004 1.111 2.0 2.0
x8 0.8 0.8 0.8 0.3
x9 0.8 0.8 0.3 0.8
x10 2.712 2.611 2.643 3.5
x11 0.95 0.9 0.9 0.93
x12 4.25 4.02 4.414 4.004
x13 4.937 4.0 4.5 4.801
x14 -2 2 0 -4
x15 2 0 1 10
x16 10 10 10 8
x17 1.8 1.8 1.8 2.17

Table 6 Solution points obtained by the naive approach, DFL, EDFL, and NOMAD

ous variables we adopt a well-studied linesearch with sufficient decrease strat-
egy. The two algorithms differ in the way the discrete variables are updated.
DFL manages the discrete variables by means of a Discrete search procedure
whereas EDFL performs a deeper investigation of the discrete neighborhood
by using a Local search procedure which is a Discrete search enriched by a so-
called Grid search phase. All the methods proposed use a sequential penalty
approach to tackle general nonlinear constraints thus forcing feasibility of the
iterates in the limit as the penalty parameter goes to zero.
The two algorithms have been tested both on a modified set of known test prob-
lems and on a real optimal design problem and their performances have been
compared with those of the well-known derivative-free optimization package
NOMAD. The numerical experimentation proves the efficiency of the proposed
methods and shows that EDFL is able to find better solutions than DFL at
the cost of a higher number of function evaluations.

Appendix

A Technical Result

In this section we report a technical result which is needed to prove convergence of DFL
and EDFL. It is a slight modification of an analogous result reported in [18] that takes into
account the presence of discrete variables.

Proposition 9 Let {ǫk} be a bounded sequence of positive penalty parameters. Let {xk}
be a sequence of points such that xk ∈ X ∩ Z for all k, and let x̄ ∈ X ∩ Z be a limit point
of a subsequence {xk}K for some infinite set K ⊆ {0, 1, . . . }. Suppose that for each k ∈ K

sufficiently large,

(i) for all di ∈ Dc ∩D(x̄), there exist vectors yi
k
and scalars ηi

k
> 0 such that

yik + ηikd
i ∈ X ∩ Z,
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P (yik + ηikd
i; ǫk) ≥ P (yik; ǫk) − o(ηik),

lim
k→∞,k∈K

maxdi∈Dc∩D(x̄){η
i
k
, ‖xk − yi

k
‖}

ǫk
= 0;

(ii)
lim

k→∞,k∈K
ǫk‖g

+(xk)‖ = 0;

(iii)
(yik)z = (xk)z , for all i ∈ Ic.

Then x̄ is a stationary point for Problem (1) with respect to the continuous variables, that
is x̄ satisfies (2) and (4) with λ̄ ∈ R

m given by

lim
k→∞,k∈K

λj(xk; ǫk) = lim
k→∞,k∈K

λj(y
i
k ; ǫk) = λ̄j , ∀ i ∈ Ic and j = 1, . . . ,m,

where λj(x; ǫ), j = 1, . . . ,m, are defined in (8).

Proof Considering point (iii), namely that the discrete variables are held fixed in the con-
sidered subsequence, the proof is the same as that of Proposition 3.1 in [18]. ⊓⊔
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14. Laguna, M., Gortázar, F., Gallego, M., Duarte, A., Mart́ı, R.: A black-box scatter search
for optimization problems with integer variables. Journal of Global Optimization (2013).
DOI 10.1007/s10898-013-0061-2

15. Le Digabel, S.: Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm.
ACM Transactions on Mathematical Software 37(4), 44:1–15 (2011)

16. Lin, C.J., Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A decomposition algorithm
model for singly linearly constrained problems subject to lower and upper bounds.
Journal of Optimization Theory and Applications 141, 107–126 (2009)

17. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-
integer optimization. Computational Optimization and Applications 53, 505–526 (2012)

18. Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free methods for
nonlinear constrained optimization. SIAM Journal on Optimization 20, 2814–2835
(2010)

19. Lucidi, S., Parasiliti, F., Rinaldi, F., Villani, M.: Finite element based multi-objective de-
sign optimization procedure of interior permanent magnet synchronous motors for wide
constant-power region operation. IEEE Transaction on Industrial Electronics 59(6),
2503–2514 (2012)

20. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable pro-
gramming. SIAM Journal on Optimization 14, 1057–1084 (2005)

21. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimiza-
tion. Computational Optimization and Applications 21(2), 119–142 (2002)

22. Lucidi, S., Sciandrone, M., Tseng, P.: Objective-derivative-free methods for constrained
optimization. Mathematical Programming 92(1), 37–59 (2002)
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