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Abstract

The problem of optimizing a real function over the efficient set of
a multiple objective programming problem arises in a variety of ap-
plications. In this article, we propose an outer approximation algo-
rithm for maximizing a function h(x) = ϕ(f(x)) over the efficient
set XE of the bi-criteria convex programming problem Vmin{f(x) =
(f1(x), f2(x))T |x ∈ X}, where ϕ is an increasing function on f(X).
The convergence of the algorithm is established. To illustrate the new
algorithm, we apply it to the solution of the sample problem. Prelimi-
nary computational results with the proposed algorithm are reported.
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1 Introduction

We consider the bicriteria convex programming problem

Vmin f(x) s.t. x ∈ X, (V P )
∗This paper is supported by the National Foundation for Science and Technology De-

velopment, Vietnam
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where X ⊂ Rn is a nonempty compact convex set, f(x) = (f1(x), f2(x))T

and for each j = 1, 2, the function fj : Rn → R is finite, positive and convex
on X.

A point x∗ is said to be an efficient solution for Problem (V P ) if there
exists no point x ∈ X such that f(x∗) ≥ f(x) and f(x∗) 6= f(x). Here for
any two vectors a, b ∈ R2, the notation a ≥ b mean a − b ∈ R2

+ = {y =
(y1, y2)T |y1 ≥ 0, y2 ≥ 0}. Let XE denote the set of all efficient solutions for
Problem (V P ). Since X is a compact set, the efficient set XE is not empty
[10].

The central problem of interest in this paper is the problem of maximiz-
ing a real function over the efficient set XE of Problem (V P ). This problem,
which we shall denote as Problem (P), is given by

maxh(x) s.t. x ∈ XE , (P )

where h(x) = ϕ(f(x)) with ϕ is an increasing function defined on f(X) =
{y ∈ R2 |y = f(x) for some x ∈ X}. As usual, the set Y = f(X) is called
the outcome set (or image) of X under f . By the definition, a function
ϕ is increasing on f(X) if for y′, y ∈ f(X), y′ ≥ y and y′ 6= y, we have
ϕ(y′) > ϕ(y).

It is well known that XE is, in general, a non-convex set, even in special
case when X is a polyhedron and f1, f2 are linear function on Rn for each
i = 1, 2. Hence, the problem of optimizing over the efficient set can be clas-
sified as a hard global optimization problem [13]. Because of its interesting
mathematical aspects as well as its wide range of applications, this problem
has attracted the attention of many authors (cf. [1], [2], [3], [5] [7] [8], [9],
[11], [13] [14], [15] and references therein).

The outcome-space reformulation of Problem (P ) is given by

maxϕ(y) s.t. y ∈ f(XE), (OP )

where f(XE) = {y ∈ R2|y = f(x) for some x ∈ XE}.
Recall that for a given nonempty set Q ⊂ R2, a point q∗ is said to be

an efficient point of Q if there is no q ∈ Q satisfying q∗ ≥ q and q∗ 6= q, i.e.
Q ∩ (q∗ − R2

+) = {q∗}. Let QE be the set of all efficient points of Q. By
definition, it can be verified that

YE = f(XE) = {y ∈ R2|y = f(x) for some x ∈ XE}. (1)

Therefore, the set YE is also known as the efficient outcome set for Problem
(V P ). From definition, it is easily observed that if y∗ ∈ YE then any x∗ ∈ X
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such that f(x∗) ≤ y∗ is an efficient solution to Problem (P ), i.e. x∗ ∈ XE .
Furthermore, if y∗ ∈ YE is a global optimal solution to Problem (OP ) then
any x∗ ∈ X such that f(x∗) ≤ y∗ is a global optimal solution to Problem (P ).
For the sake of convenience, x∗ is said to be an efficient solution associated
with the outcome efficient point y∗.

In this paper, instead of solving Problem (OP ), we construct an outcome-
space outer approximation algorithm for solving globally a problem (OPG)
that is equivalent to Problem (OP ). The algorithm is established based on
the branch-and-reduce scheme that proposed in [4]. It is worth pointing
out that when the algorithm terminates, we simultaneously get an optimal
solution to Problem (OP ) and an optimal solution to Problem (P ). Since
the number of variables n, in practice, is often much larger than 2, we expect
potentially that considerable computational savings could be obtained.

The paper is organized as follows. In Section 2, theoretical prerequi-
sites for the algorithm are given. The algorithm is presented in Section 3.
Computational experiments are reported in Section 4.

2 Theoretical Prerequisites

We will assume henceforth that in Problem (V P ), X is a nonempty compact,
convex set given by

X := {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, . . . , m},
where gi : Rn → R, i = 1, 2, . . . , m, are the convex function. Now, define
the set G by

G := Y + R2
+ = {y ∈ R2|y ≥ f(x) À 0 for some x ∈ X}.

It is easy to show that G ⊂ intR2
+ is a nonempty, full-dimension closed

convex set. The following fact is very useful in the sequel.

Proposition 2.1. (Theorem 3.2 in Yu (pg. 22 in [16]) The efficient outcome
set for Problem (V P ) is equal to the set of all efficient points of G, i.e.
YE = GE .

We invoke (1) and Proposition 2.1 to deduce that Problem (OP ) is equiv-
alent to the following problem

maxϕ(y) s.t. y ∈ GE . (OPG)

Therefore, to globally solve Problem (OP ), we instead globally solve Prob-
lem (OPG).
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In the next section, based on the structure of the efficient set GE of
the convex G ⊂ intR2

+, the outer approximation algorithm is developed for
solving the problem (OPG).

Now we present some more particular results that will be needed to
develop the outer approximation algorithm. For each i = 1, 2, let

αi = min{yi : y ∈ G}. (SPi)

Note that αi is also the optimal value of the convex programming problem
min{fi(x) : x ∈ X}, i = 1, 2. Since G ⊂ R2, the problem

min{y2 : y ∈ G, y1 = α1}

has an unique optimal solution ŷ1 and the problem

min{y1 : y ∈ G, y2 = α2}

has an unique optimal solution ŷ2. These solutions ŷ1, ŷ2 belong to GE .
By definition, for each i = 1, 2, if (x̃i, ỹi) ∈ Rn+p is an optimal solution

for the problem (Pi) given by

min yk (Pi)
s.t. fj(x)− yj ≤ 0, j = 1, 2

gi(x) ≤ 0, i = 1, . . . , m
yi = αi i ∈ {1, 2} \ {k}

then we have ŷi = ỹi and the efficient solutions x̂i = x̃i associated with the
outcome efficient points ŷi.

Since G ⊂ R2 is a closed convex set, it is well known (see [10], [12]) that
the efficient set GE is homeomorphic to a nonempty closed interval of R1.
If ŷ1 ≡ ŷ2, we have GE = {ŷ1} and ŷ1 is an unique optimal solution to
problem (OPG). Therefore, we assume henceforth that ŷ1 6= ŷ2. Then, the
efficient set GE ⊂ ∂G is a curve with starting point ŷ1 and end point ŷ2,
where ∂G is the boundary of the set G (see Figure 1).
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Figure 1

Let yL and yR be arbitrary points in GE such that

yL
1 < yR

1 and yR
2 < yL

2 . (2)

Denote by Γ the unique curve lying in GE and connecting yL and yR. Let
yO = (yO

1 , yO
2 ) where

yO
1 = yL

1 > 0, yO
2 = yR

2 > 0. (3)

The points yL, yO, yR can not belong to the same line. Therefore, the convex
hull conv{yL, yO, yR} is a 2-simplex contained in the cone (yO + R2

+). We
denote this simplex by S. Obviously, S contains the above efficient curve Γ,

Γ ⊂ S.

By definition, it can easily be seen that the ray starting at the origin 0 of
the outcome space R2 and passing through the vertex yO of the simplex
intersects the boundary ∂G of the set G at an unique point yω ∈ Γ ⊆ GE

(see an illustration in Figure 2). Namely,

Proposition 2.2. Let yL, yR ∈ GE which satisfy (2). Consider the 2-
simplex S = conv{yL, yO, yR}, where yO determined by (3). Then, the ray
starting at the origin O of the outcome space R2 and passing through the
vertex yO of the simplex intersects the boundary ∂G of the set G at an
unique point yω ∈ GE. Furthermore,

yL
1 < yω

1 < yR
1 and yR

2 < yω
2 < yL

2 . (4)
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Figure 2

Remark 2.1. To determine this efficient outcome point yω described in
Proposition 2.2, we have to find the unique value λ∗ of λ ≥ 1, such that

yω = λ∗yO (5)

belongs to the boundary of G. It means that λ∗ is the optimal value for the
problem

min λ
s.t. λyO ∈ G,

λ ≥ 1,

i.e., λ∗ is the optimal value for the following convex programming problem
with linear objective function

min λ (T (yO))
s.t. f(x)− λyO ≤ 0,

gi(x) ≤ 0, i = 1, · · · , m,
λ ≥ 1.

Let (x∗, λ∗) be an optimal solution to Problem (T (yO)). Then we get x∗ is
an efficient solution associated with the outcome efficient point yω.

Definition. A 2-simplex S is said to be a simplex generated by two points
yL and yR if S = conv{yL, yO, yR}, where yL, yR satisfy (2) and yO is
determined by (3).
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Remark 2.2. Assume that two points yL, yR ∈ GE satisfy (2) and Γ ⊆ GE

is the efficient curve connecting yL with yR. Consider the 2-simplex S
generated by yL and yR. Let yω be a point determined as Proposition 2.2.
From (4), let S1 be a simplex generated by yL and yR = yω and S2 be a
simplex generated by yL = yω and yR (see Figure 3). It is easy to see that

Γ ⊂ (S1 ∪ S2) ⊂ S.

We refer to yω as reduced bisection point for the simplex S. It means that
the branch-and-reduce scheme is applied to S. This interesting property will
be used to construct the algorithm solving Problem (OPG).

Figure 3

It is clearly that (2) is satisfied with the two point yL = ŷ1 and yR = ŷ2.
Let S0 be the 2-simplex generated by two points ŷ1 and ŷ2. We have

GE ⊂ S0.

3 The Outer Approximation Algorithm

Starting with the 2-simplex S0, the algorithm will iteratively generate a two
sequence

{
T k = {Sk,1, Sk,2, . . . , Sk,ηk}} of the 2− simplices, where ηk is the

number of elements of T k, and
{
Uk =

⋃
S∈T k S

}
satisfies

U0 ⊃ U1 ⊃ · · · ⊃ Uk ⊃ Uk+1 ⊃ · · · ⊃ GE .
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Let S0,1 = S0. At Step 0 of the algorithm for solving Problem (OPG), set
T 0 := {S0,1} and U0 := S0,1. Since ŷ1, ŷ2 ∈ GE , let α0 = max{ϕ(ŷ1), ϕ(ŷ2)}.
Then α0 is the currently best lower bound of Problem (OPG) and the point
ybest ∈ {ŷ1, ŷ2} such that ϕ(ybest) = α0 is the currently best feasible point.

Let ε be a given sufficient small real number. A point y∗ ∈ GE is said
to be an ε−optimal solution to problem (OPG) if there is a upper bound β∗
for this problem such that β∗ − h(y∗) < ε. Then, the efficient solution x∗

associated with y∗ is an approximation optimal solution to Problem (P ).

At the beginning of a typical iteration k ≥ 0, we have available from the
previous iteration the lower bound αk, the feasible point ybest, the efficient
solution xbest associated with ybest, the set T k of the 2− simplices, and Uk

satisfies GE ⊂ Uk. For each η ∈ {1, 2, . . . , ηk}, the simplex Sk,η is generated
by two known points. In iteration k, the algorithm carries out:

i) Find the optimal value βk of the problem max{ϕ(y)|y ∈ Uk}; Since
GE ⊂ Uk, the optimal value βk is an upper bound of Problem (OPG);

ii) If βk − αk ≤ ε then the algorithm terminates. As a result, ybest is
an ε− optimal solution to problem (OPG) and xbest is an approximation
optimal solution to Problem (P ). Otherwise, the algorithm yields a new set
T k+1 of 2−simplices whose union Uk+1 satisfies Uk ⊃ Uk+1 ⊃ GE .

For each S ∈ T k, denote by β(S) the optimal value of problem max{ϕ(y)|y ∈
S}. Since Uk =

⋃
S∈T k S, we have βk = max{β(S)|S ∈ T k}.

In the step k, if the algorithm is not terminated, we choose the simplex
S = Sk,η̄ ∈ T k satisfying βk = β(Sk,η̄) and S generated by two known points
yL and yR. Let yω be the point that is determined in Proposition 2.2. Then
the branch-and-reduce scheme is applied to S with reduced bisection point
yω to obtain two simplices S1 and S2 as Remark 2.2. Let

T k+1 =
(
T k \ {S}) ∪ {S1, S2} and Uk+1 =

⋃

S∈T k+1

S.

Then, from Remark 2.2 we have GE ⊂ Uk+1 ⊂ Uk.

Now, consider the following problem

maxϕ(y) s.t. y ∈ S, (P (S))

where ϕ(y) is an increasing monotone on R2
+ and S is 2−simplex generated

by two points yL, yR.
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Proposition 3.1. Any global optimal solution to Problem (P (S)) must be-
long to the edge [yL, yR] of the simplex S.

Proof. Let y∗ be a a global optimal solution to Problem (P (S)). Assume
the contrary that y∗ 6∈ [yL, yR]. By the definition of the simplex S, there
is ŷ ∈ [yL, yR] such that y∗ ≤ ŷ and y∗ 6= ŷ. Since ϕ(y) is an increasing
monotone, we have ϕ(y∗) < ϕ(ŷ). This contradicts the hypothesis that
y∗ ∈ Argmax{ϕ(y)|y ∈ S} and the proof is complete.

Now, direct computation shows that the equation of the line through yL

and yR is 〈d, y〉 = α, where

α =
yL
1

yR
1 − yL

1

+
yL
2

yL
2 − yR

2

.

and the normal vector d defined by

d =
( 1

yR
1 − yL

1

,
1

yL
2 − yR

2

)
.

It is clear that the simplex S generated by two point yL and yR is also given
by the solution set of the system

{
〈d, y〉 ≤ α

y1 ≥ yL
1 , y2 ≥ yR

2 .

By Proposition 3.1, Problem (P (S) has an optimal solution lying on the
edge [yL, yR] of the simplex S. This edge is the solution set of the linear
system {

〈d, y〉 = α (a)
y1 ≥ yL

1 , y2 ≥ yR
2 . (b)

(6)

From (6.a), we have

y2 =
α

d2
− d1

d2
y1.

Therefore, Problem (P (S)) can be reformulated as a problem for maximizing
of single-variable function on a closed line segment (P 1(S))

max{θ(y1)|yL
1 ≤ y1 ≤ yR

1 }, (P 1(S))

where

θ(y1) = ϕ

(
y1,

α

d2
− d1

d2
y1

)
.
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Remark 3.1. By above argument, to solve Problem (P (S)), we instead
solve the problem for maximizing of single-variable function (P 1(S)). Then,
if yopt

1 is an optimal solution of Problem (P 1(S)) then yopt = (yopt
1 , yopt

2 ) is
an optimal solution of Problem (P (S)), where

yopt
2 =

α

d2
− d1

d2
yopt
1 .

The algorithm for solving Problem (OPG) can be described as follows.

Outer Approximation Algorithm

Initialization Step.

Determine the optimal value αi of Problem (SPi), i = 1, 2.

Solve two problems (P1) and (P2) to obtain two efficient outcome
points ŷ1, ŷ2 ∈ GE and two efficient solutions x̂1, x̂2 associated with
ŷ1, ŷ2, respectively.

If ŷ1 ≡ ŷ2 Then STOP: ŷ1 is the optimal solution of Problem (OPG)
and x̂1 is the optimal solution of Problem (P ).

If ϕ(ŷ1) < ϕ(ŷ2) Then α0 = ϕ(ŷ1) and ybest = ŷ1, xbest = x̂1;

Else α0 = ϕ(ŷ2) and ybest = ŷ2, xbest = x̂2;

(α0 is the best currently lower bound, ybest is the best currently feasible
solution, xbest is an efficient solution associated with ybest.)

Let yL = ŷ1 and yR = ŷ2. Let S0,1 = S0, where S0 be the 2- simplex
generated by two points yL and yR. Let T 0 := {S0,1} and U0 := S0,1.

Find the optimal value β(S0) of Problem P (S0);

Iteration Step k, k = 0, 1, 2, ... See Step k1 through k3 below.
Step k1.

Find Sk,η̄ ∈ T k, where S = Sk,η̄ is the simplex generated by two known
points yL and yR, such that

β(Sk,η̄) := max{β(S′) | S′ ∈ T k}.

Let βk := β(Sk,η̄) (the best currently upper bound)
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If βk−αk ≤ ε Then STOP (ybest is the ε-optimal solution to Problem
(OPG) and xbest is approximation optimal solution of Problem (P )).

Else Let Sk = Sk,η̄ and go to Step k2.

Step k2.

Determine the vertex yO of the simplex Sk by (3), where yL and yR

are two points that generate Sk.

Solve Problem (T (yO)) to find the optimal solution (λ∗, x∗)T .

Let yωk = λ∗yO ∈ GE (the reduced bisection point for the simplex Sk)
and we have x∗ is an efficient solution associated with yωk .

If ϕ(yωk) > αk Then

αk+1 = ϕ(yωk) (the best currently lower bound)

ybest = yωk (the best currently feasible solution)

xbest = x∗; (the efficient solution associated with ybest)

Else go to Step k3.

Step k3. (Branching)

Let Sk
1 be the 2-simplex generated by two points yL and yR = yωk ,

and Sk
2 be the 2-simplex generated by two points yL = yωk and yR.

For each i, i = 1, 2, find the optimal value β(Sk
i ) of Problem (P (Sk

i ))

Let T k+1 =
(
T k \ {Sk}) ∪ {Sk

1 , Sk
2}.

Set k := k + 1 and go to Iteration Step k.

To prove the convergence of the algorithm we need the following lemma
that can be considered as a special case of Lemma 4.2 in [4].

Lemma 3.1. Assume that the algorithm is infinite and that {Sk} is a
sequence of 2−simplices generated by the algorithm where, for each k the
branch-and-reduce scheme is applied to Sk. Then {Sk} has a subsequence
{Skq} such that limq Skq = y∗ ∈ GE.

Theorem 3.1. If the algorithm does not terminate, then the sequence {yωk}
has a cluster point that solves Problem (OPG) globally.
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Proof. Let f∗ denote the optimal value for Problem (OPG). If the algo-
rithm does not terminate, then it generates two infinite sequence {Sk} of
2−simplices, and {yoptk ∈ Sk} of the optimal solutions to Problem P (Sk),
where for each k the branch-and-reduce scheme is applied to Sk. Further-
more, by Lemma 3.1, by taking subsequences if necessary we may assume
that limk Sk = y∗ ∈ GE . It implies that yoptk → y∗. Since the sequence of
upper bound {βk} is monotone and βk = β(Sk) = ϕ(yoptk), we obtain in the
limit that

lim
k

βk = lim
k

ϕ(yoptk) = ϕ(y∗) ≥ f∗.

Since y∗ ∈ GE is feasible for Problem (OPG)), we deduce that y∗ is a global
optimal solution to Problem (OPG).

4 Computational Experiments

Consider Problem (P ) with

h(x) = (x1 + x2 − 0.4)(x1 + 4x2 + 0.2),

and XE is the efficient solution set for the Problem (V P ), where

f1(x) = x1 + x2,

f2(x) = x1 + 4x2 + 1,

g1(x) = (x1 − 1)2 + 4x2
2 − 0.2,

g2(x) = 3x1 − 8x2 − 6.

It is easily to see that ϕ(y) = (y1 − 0.4)(y2 − 0.8). Now we solve Problem
(OP ) to find an ε−optimal solution with ε = 0.0001.

Initalization. Solving two convex problem (SP1) and (SP2) we obtain two
optimal values α1 = 0.500000, α2 = 1.000000.
Solve Problem (P1) and (P2) obtaining the optimal solutions

(x̂1, ŷ1) = (0.599782,−0.099782, 0.500000, 1.998910),

(x̂2, ŷ2) = (0.799562, 0.199890, 0.999452, 1.000000),

where

x̂1 = (0.599782,−0.099782), x̂2 = (0.799562, 0.199890),
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are two efficient solutions associated with two efficient outcome points,
respectively,

ŷ1 = (0.500000, 1.998910), ŷ2 = (0.999452, 1.000000).

Since ϕ(ŷ1) = 0.119891 > ϕ(ŷ2) = 0.119890, we take α0 = ϕ(ŷ2) =
0.119890 and ybest = ŷ2, xbest = x̂2.
Let yL = ŷ1, yR = ŷ2 and S0,1 := S0 where S0 generated by yL and
yR. Let T 0 := {S0,1} and U0 := S0,1.
Solve Problem P (S0), we have the optimal value β(S0) = 0.244618.

Iteration k = 0

Step 0.1. Since T 0 = {S0,1}, β0 := β(S0,1) = 0.244618.
Since β0 − α0 = 0.124728 > ε = 0.0001, set S0 = S0,1 and go to Step
0.2.

Step 0.2. From (3), determine the vertex yO = (yL
1 , yR

2 ) = (0.500000, 1.000000).
Solving Problem (T (yO)), we obtain the optimal solution

(λ∗, x∗) = (1.292892, 0.575735, 0.070711).

Let yω0 = λ∗yO = (0.646446, 1.292892).
Since ϕ(yω0) = 0.121471 > α0 = 0.119890 then α1 = 0.121471 and
ybest = yω0 = (0.646446, 1.292892), xbest = x∗ = (0.575735, 0.070711).

Step 0.3. Let S0
1 be the 2-simplex generated by two points yL and yR = yω0 ,

and S0
2 be the 2-simplex generated by two points yL = yω0 and yR.

Solve P (S0
1) and P (S0

2) recieving the optimal values respectively

β(S0
1) = 0.146536 and β(S0

2) = 0.146536.

Let T 1 = {S0
1 , S0

2} = {S1,1, S1,2}, where S1,1 = S0
1 and S1,2 = S0

2 .

Interation k = 1

Step 1.1. Since β(S1,1) = max{β(S′) | S′ ∈ T 1}, set β1 = β(S1,1) =
0.146536, where S1,1 is generated by two points

yL = (0.500000, 1.998910) and yR = (0.646446, 1.292892).

Since β0 − α0 = 0.025065 > ε = 0.0001, set S1 = S1,1 and go to Step
1.2.
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Step 1.2. From (3), determine the vertex yO = (yL
1 , yR

2 ) = (0.500000, 1.292892).
Solving Problem (T (yO)), we obtain the optimal solution

(λ∗, x∗) = (1.145344, 0.554299, 0.018373).

Let yω1 = λ∗yO = (0.572672, 1.480806).
Since ϕ(yω1) = 0.117556 < α1 = 0.121471 then the lower bound is not
updated.

Step 1.3. Let S1
1 be the 2-simplex generated by two points yL and yR = yω1 ,

and S1
2 be the 2-simplex generated by two points yL = yω1 and yR.

Solve P (S1
1) and P (S1

2) recieving the optimal values respectively

β(S1
1) = 0.128172 and β(S1

2) = 0.123256.

Let T 2 =
(
T 1 \ {S1,1})∪{S1

1 , S1
2} = {S1,2, S1

1 , S1
2} = {S2,1, S2,2, S2,3}.

After 7 iterations, since β7 − α7 = 0.000089 < ε = 0.0001, the al-
gorithm terminates in step 7 with global ε−optimal solutions given by
ybest = (0.646446, 1.292892) and corresponding xbest = (0.575735, 0.070711).
We also obtain the optimal value of Problem (P ) ϕ(ybest) = 0.1214710.

A set of randomly generated problems was used to test the above algo-
rithm. The test was perform on a laptop HP Pavilion 1.8GHz, RAM 2G,
using codes written in Matlab. We will test Problem (P ) are given as the
following type

max ϕ(f(x)) = (f1(x)− β1)(f2(x)− β2)
s.t.x ∈ XE ,

with βi = min{fi(x) | x ∈ X}, i = 1, 2 and XE is the efficient solution set of
the problem (V P ), where

fi(x) = αix + xT Dix, i = 1, 2,

X = {x ∈ Rn |

−2 +

n∑

j=1

xj

j




2

≤ 100, Ax ≤ b, x ≥ 0}

and the parameters was defined as follows (as in [6])

• α1, α2 ∈ Rn are randomly generated vectors with all components be-
longing to [0, 1].
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• A = (aij) ∈ Rm×n is a randomly generated matrix with elements
belonging to [−1, 1].

• b = (b1, b2, ..., bm)T is randomly generated vector such that

bi =
n∑

j=1

aij + 2b0,

with b0 being a randomly generated real in [0, 1]

• Di ∈ Rn×n are diagonal matrices with diagonal elements di
j randomly

generated in [0, 1].

In all problems we find an ε-solution where ε = 0.005. The following table
present the results of computational experiment. In the table, UB is upper
bound, LB is lower bound, gap is defined as UB−LB

UB .

n m ]Inter UB LB Gap
60 40 7 4.103116 4.096561 0.001598
70 50 8 1.865636 1.860822 0.002580
80 80 8 1.137924 1.136717 0.001061
100 60 8 5.153709 5.138920 0.002870
100 80 7 4.169557 4.166498 0.000731
120 120 5 15.94133 15.94088 0.000029
150 100 8 55.40159 55.29604 0.001905
150 120 6 7.587685 7.559456 0.003720

Table 1

From Table 1 we can see that, even in large scale setting, our algorithm
works well. The computation time is small since the algorithm terminates
after few iterations. Moreover, the quality of final solution obtained is much
smaller than 0.005.

5 Conclusion

In the paper, we present an outcome space outer approximation algorithm
for globally solving the problem max{h(x) | x ∈ XE}, where XE is the
efficient solution set to the bicriteria convex problem (V P ) and h(x) =
ϕ(f(x)) with ϕ is an increasing function on the outcome set Y = f(X). In
every step of the algorithm, the branch-and-reduce scheme [4] is used. We
hope that the algorithm helps to reduce considerably the size of the problem
when the number of decision variables n much larger than 2.
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