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Abstract

In this paper, we propose a new robust cycle-based control policy for single installation

inventory models with non-stationary uncertain demand. The policy is simple, flexible, easily

implementable and preliminary numerical experiments suggest that the policy has very promis-

ing empirical performance. The policy can be used both when the excess demand is backlogged

as well as when it is lost; with non-zero fixed ordering cost, and also when lead time is non-zero.

The policy decisions are computed by solving a collection of linear programs even when there is

a positive fixed ordering cost. The policy extends in a very simple manner to the joint pricing

and inventory control problem.

1 Introduction

Single installation inventory management is a classical research topic which has received persistent

attention from various research communities. The standard approach to compute the optimal

inventory control policy uses dynamic programming (DP). For simple inventory control problems,

DP-based methods are able to theoretically characterize the structure of the optimal policies, e.g.,

Scarf [36] showed that the optimal policy for an inventory control problem with fixed ordering cost

is a so-called (s, S)-policy. Many other researchers have also used DP to derive structural results

of the optimal policies under various model assumptions [26, 41]. Recently, Song and Zipkin [39]

and Sethi and Cheng [37] have extended the structural results to inventory control problems with a

more general Markovian demand. In practice, however, computing the optimal parameters is often

challenging. Since DP-based methods compute a value function for each possible state in each

period, the computational complexity of DP is prohibitive when state space is large. This curse of

dimensionality has severely limited the application of DP in practice.

The DP methodology demands that the demand distribution be perfectly known. In practice, the

available historical data on demand distribution is limited, and moreover, the demand distribution
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is very often non-stationary. Thus, the perfect information assumption almost never holds in

practice. The performance of DP-based policies is often very sensitive to errors in the demand

distribution [24, 32]. See Bertsimas and Thiele [14] for an empirical investigation. Consequently,

practitioners prefer simple policies that can be computed using limited information about the

demand distribution [43]. Scarf [35] formulated a min-max single-period inventory problem where

only the mean and the variance of the demand are known. Moon and Gallego extended this

approach to single-period news-vendor problems [20] and to single-stage periodic review inventory

models with a fixed reorder quantity [29]. Gallego et al. [21] later extended the Scarf model to a

finite horizon model under the assumption that the demand is a discrete random variable. However,

the complexity of computing the optimal policy is exponential in the time horizon.

Recent research efforts have focused on developing computationally tractable robust solutions

for the dynamic program. One such approach is to use the robust optimization (RO) methodology

to solve inventory control problems. RO is a relatively new methodology for tractably computing

good solutions for optimization problems with uncertain parameters in which the parameters are

assumed to belong to a known bounded uncertainty set and decisions are chosen assuming worst

case behavior of these uncertain parameters [3, 5, 6, 7, 12, 13]. Bertsimas and Thiele [14] intro-

duced a robust inventory control model where the uncertain parameters are the realized demand,

and showed that for a family of polyhedral uncertainty sets introduced in [13] the open-loop control

policy can be computed by solving a linear program (LP) (resp. mixed integer program (MIP))

when fixed ordering cost is zero (resp. positive). Bienstock and Ozbay [15] showed that the optimal

base-stock policy for a closely related model can be computed efficiently using a Benders’ decom-

position approach. Ben-Tal et al. [4] showed that the optimal affine policy for a robust inventory

model can be efficiently computed for a large class of uncertainty sets. Recently, Bertsimas, Iancu

and Parrilo [11] showed that affine policies are optimal for hypercube-like uncertainty sets. They

also showed how to compute the optimal affine policies, and more generally optimal polynomial

polices [10].

The RO-based policies in the literature treat the inventory control problem as a special case

of the more general problem of controlling a linear system. These policies typically do not exploit
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the special structure of inventory control problems. Since RO-based policies work only for linear

dynamics, these policies are only applicable when the excess demand is fully backlogged, and not

when the excess demand is lost. Moreover, the ordering decisions in the RO-based policies for

inventory control problems with a positive fixed ordering cost have to be computed by solving an

MIP. Since these policies are typically implemented in a rolling horizon fashion, one needs to solve

several, typically large, MIPs. MIP solvers are neither as ubiquitous nor as stable as LP solvers;

consequently, MIP-based control polices are less likely to be widely adopted.

In this paper, we propose a new RO-based control policy that is inspired in part by the

Economic-Order-Quantity (EOQ) model [43] and the periodic review (R,T ) or (S, T )-type poli-

cies [2, 33, 38, 43]. The EOQ model is an infinite horizon, continuous review inventory model with

constant deterministic demand. In order to balance the inventory ordering cost, which includes

a fixed cost, and the inventory holding cost and backlogging cost, EOQ optimal policy splits the

planning horizon into fixed length cycles and chooses the cycle length and the order quantity jointly

to minimize the average cost over a cycle. The periodic review (R,T )-type policies generalize the

EOQ model to the case where the demand is a stationary stochastic process, specifically Poisson

process. Under an (R,T ) policy, the inventory position is reviewed every T periods, i.e., the plan-

ning horizon is split into length T cycles, and, if required, the policy raises the inventory position

up to R. As in the EOQ model, in the (R,T ) policy the cycle length T is an explicit decision vari-

able. Although the (R,T ) policy is generally sub-optimal, it is very attractive in practice because

it specifies the reorder epochs upfront and is, thus, easy to implement. In particular, the (R,T )

policy can substantially simplify the coordination within a more complex inventory system [33, 43].

Rao [33] showed that the long-run average cost function for the (R,T ) policy is jointly convex in R

and T , and provided performance guarantee for the (R,T ) policy. See [2, 38] for a detailed study

of the empirical performance of the (R,T ) policy and further applications of the policy.

The EOQ model and the (R,T ) policy are simple, yet powerful, control policies for a single in-

stallation inventory system. However, these policies have so far been restricted to models where the

goal is to minimize the long-run average cost and the demand process is either stationary, determin-

istic, i.e., constant, or stationary, stochastic. Our RO-based approach extends the “cycle-based”
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perspective to a single installation, finite horizon inventory model with non-stationary uncertain

demand. Specifically, the contributions of this paper are as follows.

(a) We propose a new robust cycle-based control policy for a single installation, finite horizon

inventory model with non-stationary uncertain demand. Our policy dynamically breaks the

planning horizon into ordering cycles and chooses an appropriate order quantity and cycle

length at the beginning of each ordering cycle assuming the worst case behavior of the uncertain

demand. Thus, our policy can be viewed as an adaptive version of the (R,T ) policy for an

inventory model with more general demand process. The policy has a simple intuitive economic

interpretation and is very easy to implement. Consequently, we believe that our proposed policy

has a higher likelihood of being adopted in practice.

(b) We show that our policy provides a unified and efficient approach for solving inventory control

problems under various model assumptions. In particular, the decisions in our proposed robust

cycle-based policy can be efficiently computed both when the excess demand is backlogged or

lost. To the best of our knowledge, this is the first RO-based inventory control policy for the

lost-sales model. The decisions are also efficiently computable when there is a non-zero fixed

ordering cost and also when lead time is non-zero. More specifically, we show that for all these

cases the decisions in our policy can be computed by solving a collection of LPs of modest

size even when the fixed ordering cost is non-zero, i.e., we do not have to solve any MIPs.

Consequently, the computation of our policy is extremely efficient (see Section 6). On the

other hand, since LP solvers are significantly more easily accessible and stable when compared

to MIP solvers, our policy should be an attractive candidate for practical implementation.

Our policy also extends to the joint pricing and inventory control problem. In this case we

need to solve a small collection of convex problems to compute the optimal decisions. These

problems reduce to QPs in special cases.

(c) The robust cycle-based policy has very promising empirical performance. We conducted an

extensive numerical experiment to test the performance of our proposed simple policy. We

compared the performance of our policy with the rolling-horizon version of the robust policy
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in [14] when the excess demand is backlogged. For the lost-sales model, we compared the

performance of our policy with a DP-based policy, the best base-stock policy in hindsight, and

the set of heuristic policies considered in Zipkin [44]. In the joint pricing and inventory control

model, we compared the performance of the simple extension of our policy with a DP-based

policy. For the backlogging model, the lost-sales model without lead time and the joint pricing

and inventory control model, the cost of the robust cycle-based policy is typically within ±3%

of the cost of benchmark methods. For the lost-sales model with positive lead times, our

policy incurs no more than 7% of the cost of the optimal policy in most scenarios and is very

competitive with other heuristics. In most cases, the computational time required to compute

the decisions in our policy is at least 5–10 times smaller than that required for the competing

methods.

The rest of the paper is organized as follows. In Section 2, we introduce our basic inventory

model with zero lead time. In Section 3, we propose our robust cycle-based inventory control

policy, and generalize it to the case with non-zero lead time in Section 4. We briefly discuss the

extension to a joint pricing and inventory control model in Section 5. In Section 6, we report the

preliminary numerical results. In Section 7 we include some concluding remarks and avenues for

further extensions.

2 Inventory model with zero lead time

We consider a single product single installation stochastic inventory problem over a finite discrete

horizon of T periods. Let xk denote the inventory available at the beginning of period k, uk denote

the quantity ordered at the beginning of period k, and dk denote the realized demand in period k,

for k = 1, 2, . . . , T . We assume that the lead time is zero, i.e., the quantity ordered at the beginning

of any period is delivered immediately. In particular, we assume that the quantity uk is delivered

before the demand dk is realized. We discuss constant positive lead time in Section 4.

Dynamics We consider the following two most prevalent system dynamics [9, 43]:
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(a) Backlogging: The demand in excess of the inventory in any period is backlogged and carried

over into next period, i.e., xk+1 = xk + uk − dk, for all 1 ≤ k ≤ T − 1. Note that xk denotes

the net inventory and can take negative values.

(b) Lost-sales: The demand in excess of the inventory in any period is permanently lost, i.e.,

xk+1 = max{xk + uk − dk, 0}, for all 1 ≤ k ≤ T − 1. Here, xk denotes the actual inventory at

hand and must be nonnegative.

We assume that the installation has a positive capacity M (possibly +∞). Since uk arrives before

the demand, dk, is realized, we require that xk + uk ≤M , for all 1 ≤ k ≤ T .

Cost function The ordering cost in period k is given by K1(uk > 0) + c ⋅ uk, where K denotes

the fixed ordering cost, c denotes the per unit variable ordering cost, and 1(⋅) denotes an indicator

function that takes value 1 when argument is true, and zero otherwise. The inventory holding cost

at the end of period k is given by ℎ ⋅max{xk + uk − dk, 0}, where ℎ denotes the per unit holding

cost, and the shortage cost at the end of period k is given by b ⋅max{−(xk + uk − dk), 0}, where b

denotes the per unit shortage cost; i.e., the total inventory holding and shortage cost in period k

is given by max
{

ℎ ⋅ (xk + uk − dk),−b ⋅ (xk + uk − dk)
}

. Thus, the total cost incurred in period k

is given by Ck = K1(uk > 0) + c ⋅ uk +max
{

ℎ ⋅ (xk + uk − dk),−b ⋅ (xk + uk − dk)
}

.

Demand distribution We assume that the demand processD = (D1,D2, . . . ,DT ) is a stochastic

process that satisfies the following assumptions.

Assumption 1. The random variables {Dk}Tk=1 are mutually independent, but not necessarily

identically distributed.

Assumption 2. Only the first two moments of the distribution are known, i.e., only E(Dk) = d̄k

and var(Dk) = �2
k are known for all k; all other moments and the distribution are unknown.

Assumption 1 is common in inventory literature. It allows demand sequence to be non-stationary,

e.g., seasonally cyclic. Assumption 2 is a departure from the classical inventory literature where

one assumes perfect information about the demand distributions. The perfect information assump-

tion leads to a tractable inventory control problem; however, it rarely holds in practice. In most
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practical settings, the inventory manager may have sufficient data to accurately estimate the first

two moments of the demand distribution; however, higher moments or the shape of the distribution

cannot be estimated accurately [21].

We denote the set of all distributions for the demand process D which are consistent with

Assumption 1-2 by the set ℱ . We denote a realization of D by the lower case vector as d =

(d1, d2, . . . , dT ). For 1 ≤ k ≤ T , d[k] denotes the sub-sequence (dk, dk+1, . . . , dT ), and for 1 ≤ j ≤

T − k + 1, d[k, j] denotes the sub-sequence (dk, dk+1, . . . , dk+j−1).

Optimality criterion An inventory control policy � =
{

�k : k ∈ {1, 2, . . . , T}
}

consists of

ordering functions �k that prescribe the order quantity uk for period k. We will call a policy �

admissible if �k is non-anticipatory, i.e., the function �k is measurable with the respect to the

filtration generated by the demand up to (and including) period k − 1. Let Π denote the set of all

admissible policies. The cost J(�) of an admissible policy � is defined as

J(�) = sup
D∈ℱ

ED

[

T
∑

k=1

(

K1(�k > 0) + c ⋅ �k +max
{

ℎ ⋅ (xk + �k − dk),−b ⋅ (xk + �k − dk)
}

)]

, (1)

where the expectation is taken with respect to the distribution of d. We want to characterize

J∗ = inf�∈Π J(�), and identify an optimal policy �∗ that achieves J∗.

The optimality criterion (1) and the associated optimization problem J∗ is not new. Scarf [35]

considers a single period version of J∗. Gallego et al. [21] consider J∗ for the setting with discrete

demand distribution and backlogging of excess demand. They show that the optimal policy is

of the (s, S)-type, and provide a dynamic programming (DP) recursion to compute the optimal

parameters; the solution algorithm is, however, exponential in T .

Robust inventory control Robust inventory control was introduced in Bertsimas and Thiele [14]

(see also [4, 15] and references therein). We briefly review the RO-based approach proposed in [14].

Instead of using (1), Bertsimas and Thiele define the robust cost Jr(�) for policy � as

Jr(�) = sup
d∈D

[

T
∑

k=1

(

K1(�k > 0) + c ⋅ �k +max
{

ℎ ⋅ (xk + �k − dk),−b ⋅ (xk + �k − dk)
}

)]

, (2)
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where D is an uncertainty set of demand realizations, i.e., in the robust approach the uncertainty

set ℱ of demand distributions is replaced by an uncertainty set D of demand realizations. The

uncertainty set D is constructed using the available moment information and the optimal control

policy is computed by solving min-max problem J∗
r = inf�∈Π Jr(�). The min-max problem J∗

r is

still a hard problem. By restricting attention to open-loop control policies, Bertsimas and Thiele

are able to reformulate an appropriate relaxation of J∗
r as a mathematical program and solve it

efficiently. They show that the empirical performance of the robust policy is close to optimal for

the original min-max optimality criterion J∗.

3 A robust cycle-based inventory control policy

In this section, we propose a simple robust cycle-based inventory control policy that provides a good

solution for J∗. Intuitively, we expect our policy to show good ex post average cost across different

demand distributions. We first motivate the main conceptual insight underlying our policy; next,

we show how to compute the policy decisions in detail. We also show that the policy presented

here can be applied to both backlogging dynamics and lost-sales dynamics.

Cycle-based policies in inventory management Consider an infinite horizon inventory con-

trol problem where the goal is to minimize the long-run average cost for flat deterministic demand,

i.e., Dk = d for all k. A good inventory control policy has to “balance” the ordering cost with other

costs. On one extreme is the policy that orders the quantity d in each period; thereby, incurring

no inventory holding and shortage cost but a large fixed ordering cost. A policy that places larger

but less frequent orders incurs a smaller fixed ordering cost; but the policy either incurs inventory

holding cost, or shortage cost, or both. The optimal policy breaks the horizon into fixed length

cycles where an order is placed in the first period of each cycle. For any given cycle, the cycle

length and the order quantity is chosen to minimize the average cost over the cycle. This type of

analysis underlies the well known Economic-Order-Quantity (EOQ) model [43] and extends to the

(R,T )-type policies with stationary stochastic demand processes [2, 33, 38, 43].

Drawing insights from the EOQ model and the (R,T )-type policies, we propose a robust cycle-
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based policy that is tailored for the finite horizon inventory model with non-stationary uncertain

demand. Without loss of generality, assume the initial inventory x1 = 0. At the beginning of

period �1 = 1, we make the following two decisions: order quantity u�1 and the cycle length �1.

The order quantity u�1 and the cycle length �1 is chosen to minimize an appropriately defined

worst-case average cost over the ordering cycle (�1, . . . , �1 + �1 − 1). We do not order until period

�2 = �1 + �1. At the beginning of period �2, we choose order quantity u�2 and the next cycle length

�2 that minimizes the worst-case average cost over the next ordering cycle (�2, . . . , �2 + �2 − 1).

We proceed in this manner until the end of the planning horizon. In the rest of this section, we

precisely define the worst-case average cost that defines our policy and show that the decisions

(u� , �) can be computed efficiently in an online fashion.

Note that our proposed policy is different from the (r, q)-type policies [43]. In the (r, q) policy

the decision maker chooses the reorder point r and order quantity q, and a new cycle is triggered

when the inventory position hit the reorder point; thus, the cycle length is a function of r, q and

the demand dynamics. Consequently, the cycle length of an (r, q) policy cannot be easily computed

when the demand distribution is uncertain. In our cycle-based policy, the cycle length is an explicit

decision variable, and once the cycle length is determined at the beginning of cycle, it is held

constant. This alternative formulation leads to tractable approximation for both backlogging and

lost-sales dynamics, even in the presence of positive lead time and uncertain demand. Moreover,

the (r, q) policy was proposed for a continuous review inventory model with stationary demand,

and the decision maker computes the optimal stationary pair (r∗, q∗) offline. In contrast, our policy

computes (u� , �) in an online fashion and the (u� , �) are adapted to the sample path of demands,

and are generally different across cycles. Thus, our cycle-based policy is capable of handling non-

stationary demand.

Convexity of inventory holding and shortage costs Consider an ordering cycle (�, � +

1, . . . , � + � − 1) that starts from period � and has cycle length �. Let x denote available inventory

at the beginning of the ordering cycle, u denote the order placed at the beginning of the cycle, and

let H(�, x, �, u,d[�, �]) denote the inventory holding and shortage cost incurred over the ordering

cycle as a function of � , x, �, u and the realized demand sequence d[�, �].
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Lemma 1. For fixed
(

�, x, �,d[�, �]
)

, H(�, x, �, u,d[�, �]) is a piecewise linear convex function of u

with � + 1 linear pieces.

Proof. First consider backlogging dynamics. Since ut = 0, for all � + 1 ≤ t ≤ � + � − 1, xt =

x+ u−∑t−1
ℓ=� dℓ, for � + 1 ≤ t ≤ � + � − 1; thus, the inventory holding and shortage cost incurred

over the cycle is given by

H
(

�, x, �, u,d[�, �]
)

=

�+�−1
∑

t=�

max
{

ℎ
(

x+ u−
t

∑

ℓ=�

dℓ
)

,−b
(

x+ u−
t

∑

ℓ=�

dℓ
)

}

. (3)

Since x+ u−∑t
ℓ=� dℓ is affine function of u, max

{

ℎ(x+ u−∑t
ℓ=� dℓ),−b(x+ u−∑t

ℓ=� dℓ)
}

, and

consequently, H is a piecewise linear convex function of u. From (3) it follows that

(i) u ∈ (−∞, d� − x]: H(�, x, �, u,d[�, �]) = f0(u) ≜ −∑�+�−1
t=� b(x+ u−∑t

ℓ=� dℓ).

(ii) u ∈
[

∑�+r−1
ℓ=� dℓ − x,

∑�+r
ℓ=� dℓ − x

]

, for 1 ≤ r ≤ � − 1:

H(�, x, �, u,d[�, �]) = f r(u) ≜
∑�+r−1

t=� ℎ(x+ u−
∑t

ℓ=� dℓ)−
∑�+�−1

t=�+r b(x+ u−
∑t

ℓ=� dℓ).

(iii) u ∈
[

∑�+�−1
ℓ=� dℓ − x,+∞

)

: H(�, x, �, u,d[�, �]) = f �(u) ≜
∑�+�−1

t=� ℎ(x+ u−∑t
ℓ=� dℓ).

From this partition, it follows that for all u ≥ 0,

H(�, x, �, u,d[�, �]) = max
{

f0(u), f1(u), . . . , f �(u)
}

. (4)

Next, we consider the case with lost-sales dynamics. Since ut = 0, for all � +1 ≤ t ≤ � + � − 1,

xt = max{x+ u−∑t−1
ℓ=� dℓ, 0}, for � + 1 ≤ t ≤ � + � − 1. Therefore,

H(�, x, �, u,d[�, �]) = max
{

ℎ(x+ u− d� ),−b(x+ u− d� )
}

+

�+�−1
∑

t=�+1

max

{

ℎ
(

max{x+ u−
t−1
∑

ℓ=�

dℓ, 0} − dt

)

,−b
(

max{x+ u−
t−1
∑

ℓ=�

dℓ, 0} − dt

)

}

. (5)

From (5), it follows that

(i) u ∈ (−∞, d� − x]: H(�, x, �, u,d[�, �]) = g0(u) ≜ −b(x+ u−∑�+�−1
t=� dt).
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(ii) u ∈
[

∑�+r−1
ℓ=� dℓ − x,

∑�+r
ℓ=� dℓ − x

]

, for 1 ≤ r ≤ � − 1:

H(�, x, �, u,d[�, �]) = gr(u) ≜
∑�+r−1

t=� ℎ
(

x+ u−∑t
ℓ=� dℓ

)

− b
(

x+ u−∑�+�−1
t=� dt

)

.

(iii) u ∈
[

∑�+�−1
ℓ=� dℓ − x,+∞

)

: H(�, x, �, u,d[�, �]) = g�(u) ≜
∑�+�−1

t=� ℎ(x+ u−
∑t

ℓ=� dℓ).

The continuity of H is easy to verify. Since dgj

du
= jℎ− b, for 0 ≤ j ≤ �− 1, dg�

du
= �ℎ, i.e., the slope

of gj is non-decreasing in the index j, it follows that H is convex in u. In particular, we have the

following representation for H on ℝ+: for all u ≥ 0,

H(�, x, �, u,d[�, �]) = max
{

g0(u), g1(u), . . . , g�(u)
}

. (6)

Robust optimization approach for computing (u� , �) Let � denote the first period of a

new ordering cycle. Let x� denote the available inventory and d[1, � − 1] denote the past demand

realization. By Assumption 1, d[1, � − 1] does not provide any new information about the future

demand (D� ,D�+1, . . . ,DT ). Following [14], we introduce the uncertainty set

D[� ] =
{

d[� ]
∣

∣

∣
!̄t − !̂t ≤ dt ≤ !̄t + !̂t,

t
∑

ℓ=�

∣dℓ − !̄ℓ∣
!̂ℓ

≤ Γ�
t−�+1, ∀ � ≤ t ≤ T

}

, (7)

where !̄t and !̂t are, respectively, the nominal value and deviation of dt, and are computed from

{(d̄t, �2
t ) : � ≤ t ≤ T}. In [14], !̄t = d̄t, !̂t = min{2�t, !̄t}. The budget of uncertainty constraint

∑t
ℓ=�

∣dℓ−!̄ℓ∣
!̂ℓ

≤ Γ�
t−�+1 was introduced in [12, 13]. It rules out large deviations in the cumulative

demand; and, therefore, controls conservativeness of the robust constraints. Note that the un-

certainty set D[� ] defined in (7) is symmetric about the nominal demand !̄t. When the demand

distribution is asymmetric about the mean, an asymmetric uncertainty set may be more appropri-

ate. We consider such extensions in Section 6.2.2 and show that asymmetric uncertainty sets lead

to significantly improved performance when the demand distribution is heavy tailed.

11



The worst-case average cost F (u� , �) over the cycle (�, � +1, . . . , � + �− 1) is defined as follows:

F (u� , �) = max
d[� ]∈D[� ]

⎧

⎨

⎩

K1(u� > 0) + cu� +H
(

�, x� , �, u� ,d[�, �]
)

�

⎫

⎬

⎭

, (8)

whereH denotes the total inventory holding and shortage costs over the cycle. The optimal decision

(u∗� , �
∗) is chosen by solving the optimization problem

min
�∈
{

1,2,...,min{T−�+1,U}
}

min
0≤u�≤M−x�

{

F (u� , �)
}

, (9)

where U is a user-defined parameter. Setting U = ∞ allows the cycle length � to be set to any

positive integer less than or equal to the number of remaining periods in the planning horizon. In

our numerical experiments, we found that U = 12 was sufficient for very good performance. Note

that in (8) and (9), � and x� are known constants, i.e., part of the inputs.

It is clear that the traditional myopic policy is a special case of our policy with � = 1. The

following example highlights the benefits of the flexibility of allowing longer cycle lengths. Consider

a lost-sales inventory model with deterministic demand dt = d̄ = 100, T = 10, K = 1000, c = ℎ = 0,

b = 5 and x1 = 0. Since K > bd̄, the myopic policy never places an order, and incurs a total cost

of 5000. In contrast, our policy selects � = 10, u1 = 1000, and incurs a total cost of 1000.

Solution algorithm To solve (9), we fix �, solve the inner minimization problem

�(�) = min0≤u�≤M−x� F (u� , �), and then enumerate all feasible value of �. Since the number of

feasible � is at most U , and we show below that �(�) can be solved efficiently, an optimal solution

to (9) can be computed efficiently. The optimization problem �(�) is equivalent to

min
0≤u�≤M−x�

max
d[� ]∈D[� ]

{

K1(u� > 0) + cu� +H
(

�, x� , �, u� ,d[�, �]
)

}

. (10)

Since
(

�, x� , �
)

are known constants in (10), we abbreviate H
(

�, x� , �, u� ,d[�, �]
)

as H
(

u� ,d[�, �]
)

.

Lemma 2 reformulates (10) into a more tractable form.
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Lemma 2. The optimization problem (10) is equivalent to the following optimization problem:

min

⎧



⎨



⎩

min0≤u�≤M−x� maxd[�,�]∈D[�,�]

{

K + cu� +H
(

u� ,d[�, �]
)

}

,

maxd[�,�]∈D[�,�]H
(

0,d[�, �]
)

⎫



⎬



⎭

, (11)

where D[�, �] denotes the projection of the set D[� ] to the space spanned by d[�, �] and is given by

D[�, �] =
{

d[�, �]
∣

∣

∣
!̄t − !̂t ≤ dt ≤ !̄t + !̂t,

t
∑

ℓ=�

∣dℓ − !̄ℓ∣
!̂ℓ

≤ Γ�
t−�+1, ∀ � ≤ t ≤ � + � − 1

}

. (12)

Proof. Since d[�, �] is a sub-vector of d[� ], it follows that

max
d[� ]∈D[� ]

{

K1(u� > 0) + cu� +H
(

u� ,d[�, �]
)

}

= max
d[�,�]∈D[�,�]

{

K1(u� > 0) + cu� +H
(

u� ,d[�, �]
)

}

.

Thus, (10) is equivalent to

min
0≤u�≤M−x�

max
d[�,�]∈D[�,�]

{

K1(u� > 0) + cu� +H
(

u� ,d[�, �]
)

}

. (13)

To account for the discontinuity of the cost function at u� = 0, we split (13) into two terms and

take the minimum:

min

⎧



⎨



⎩

min0<u�≤M−x� maxd[�,�]∈D[�,�]

{

K + cu� +H
(

u� ,d[�, �]
)

}

,

maxd[�,�]∈D[�,�]H
(

0,d[�, �]
)

⎫



⎬



⎭

.

(11) follows from observing that maxd[�,�]∈D[�,�]K+H
(

0,d[�, �]
)

≥ maxd[�,�]∈D[�,�]H
(

0,d[�, �]
)

.

Next, we show how to efficiently solve (11). We focus on the first program and show that the

solution to the second program is a byproduct of solving the first. For notational simplicity, we

drop all the subscripts appear in (11), and let u = u� , x = x� , d = d[�, �], and D = D[�, �]. Then

the first program in (11) can be written as

min
0≤u≤M−x

max
d∈D

{

K + cu+H(u,d)
}

. (14)
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1. Initialize: D̃ =
{

d̃ = (!̄� , !̄�+1, . . . , !̄�+�−1)
}

, LB = 0 and UB = +∞.

2. Inventory manager’s problem: Solve the inventory manager’s problem with d ∈ D̃, i.e., the
adversary is restricted to the set of demands in the working list D̃. Let

ũ ∈ argmin
0≤u≤M−x

max
d∈D̃

K + cu+H(u,d). (15)

Set LB ← max
d∈D̃ K + cũ+H(ũ,d).

3. Adversary’s problem: Solve the worst case demand sequence d̃ corresponding to the policy
ũ computed in Step 2, i.e., compute

d̃ ∈ argmax
d∈D

K + cũ+H(ũ,d). (16)

Note that d̃ is selected from the full set D and not the current working list D̃. Set UB ←
min

(

UB,K + cũ+H(ũ, d̃)
)

.

4. Termination test and update: If UB − LB is small enough, then EXIT. Otherwise, set
D̃ ← D̃ ∪ {d̃} and return to Step 2.

Figure 1: Benders’ decomposition

Since Lemma 1 shows that cu+H(u,d) is convex in u, (14) is a convex optimization problem. We

solve (14) using the Benders’ decomposition approach [8, 15] displayed in Figure 1. In this proce-

dure, one iteratively solves the inventory manager’s problem that selects a candidate order quantity

ũ and the adversary’s problem that computes the worst-case demand sequence d̃ ∈ D corresponding

to ũ that is added to the working set D̃ of candidate demand sequences for the inventory man-

ager’s problem. For this procedure to converge quickly, the inventory manager’s problem and the

adversary’s problem should be efficiently solvable, and, in addition, the total number of iterations

should be small. Since (14) is a one-dimensional convex optimization problem in u, and Benders’

decomposition is a sub-gradient algorithm for solving (14), we expect the algorithm to converge

quickly, and, indeed in our numerical experiments, we find that in nearly all cases the Benders’

decomposition requires at most 5 iterations to guarantee that UB−LB
LB

< 10−5. In the rest of this

section we show that both the inventory manager’s problem and the adversary’s problem can be

solved efficiently.

Lemma 3. The inventory manager’s problem (15) in Figure 1 can be reformulated as an LP with

14



2 decision variables and (� + 1)∣D̃∣+ 2 constraints, where ∣D̃∣ denotes the cardinality of the set D̃.

Proof. Let D̃ =
{

d1,d2, . . . ,d∣D̃∣
}

, where dj = (dj� , d
j
�+1, . . . , d

j
�+�−1). It is clear that (15) is

equivalent to min
{

t
∣

∣u ∈ [0,M − x], t ≥ K + cu+H(u,dj), ∀ j = 1, 2, . . . , ∣D̃∣
}

, where (u, t)

are the decision variables. Recall that Lemma 1 implies that H(u,dj) is the maximum of � + 1

linear functions of u; therefore, it follows that for each 1 ≤ j ≤ ∣D̃∣, constraint t ≥ K+cu+H(u,dj)

can be reformulated as � + 1 linear constraints in (u, t).

The inventory manager’s problem (15) can be reduced to an LP with no assumption on the uncer-

tainty set D. Next, we show that the adversary’s problem (16) can be solved efficiently. The key

insight in establishing the result is that the inventory level is non-increasing over a cycle.

Lemma 4. The adversary’s problem (16) can be reduced to solving at most � + 1 LPs.

Proof. Since the termK+cũ is fixed constant, the adversary’s problem is equivalent to maxd∈D H(ũ,d).

We first consider the case with backlogging dynamics. Consider the following two cases:

(i) x + ũ ≤ 0: Since d ≥ 0, x + ũ ≤ 0 implies x + ũ −∑t
ℓ=� dℓ ≤ 0, for all � ≤ t ≤ � + � − 1.

Thus, H(ũ,d) =
∑�+�−1

t=� max
{

ℎ(x+ ũ−
∑t

ℓ=� dℓ),−b(x+ ũ−
∑t

ℓ=� dℓ)
}

= −
∑�+�−1

t=� b(x+

ũ−∑t
ℓ=� dℓ). Thus

max
d∈D

H(ũ,d) = max
d∈D

{

−
�+�−1
∑

t=�

b
(

x+ ũ−
t

∑

ℓ=�

dℓ
)

}

. (17)

Since D is a polyhedron, (17) is LP. In this case, we only have to solve a single LP.

(ii) x+ ũ > 0: It is clear that

max
d∈D

H(ũ,d) = max
r∈{0,1,...,�}

{

max
d∈Dr

H(ũ,d)
}

, (18)

where

Dr =

⎧









⎨









⎩

{

d ∈ D
∣

∣ x+ ũ− d� ≤ 0
}

, r = 0,
{

d ∈ D
∣

∣ x+ ũ−
∑�+r−1

ℓ=� dℓ ≥ 0, x+ ũ−
∑�+r

ℓ=� dℓ ≤ 0
}

, 1 ≤ r ≤ � − 1,
{

d ∈ D
∣

∣ x+ ũ−
∑�+�−1

ℓ=� dℓ ≥ 0
}

, r = �.

(19)
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Fix r. Then

max
d∈Dr

H(ũ,d) = max
d∈Dr

{ �+�−1
∑

t=�

max
{

ℎ(x+ ũ−
t

∑

ℓ=�

dℓ),−b(x+ ũ−
t

∑

ℓ=�

dℓ)
}

}

= max
d∈Dr

{ �+r−1
∑

t=�

ℎ(x+ ũ−
t

∑

ℓ=�

dℓ)−
�+�−1
∑

t=�+r

b(x+ ũ−
t

∑

ℓ=�

dℓ)

}

, (20)

where the last equality follows from the structure of Dr. Since Dr is polyhedron for all r, it

follows that (20) is an LP, and the adversary’s problem (16) reduces to solving � + 1 LPs.

We now consider the case with lost-sales dynamics. In this case, x+ ũ is always non-negative.

From Lemma 1, it follows that

max
d∈Dr

H(ũ,d) =
⎧





⎨





⎩

maxd∈Dr

{

∑�+r−1
t=� ℎ

(

x+ ũ−∑t
ℓ=� dℓ

)

− b
(

x+ ũ−∑�+�−1
t=� dt

)

}

, 0 ≤ r ≤ � − 1,

maxd∈Dr

{

∑�+�−1
t=� ℎ

(

x+ ũ−∑t
ℓ=� dℓ

)

}

, r = �,

where Dr is given by (19). Since each Dr is a polyhedron, it follows that maxd∈Dr H(ũ,d) is an

LP for all r; thus, the adversary’s problem (16) reduces to solving � + 1 LPs.

Unlike results in Lemma 3, the results in Lemma 4 exploit the special structure of the uncertainty

set D. That said, the piecewise linear structure of the inventory holding and shortage cost function

H implies that the adversary’s problem is efficiently solvable provided linear separation over the

set D is efficient [22].

Lemma 3 and 4 imply that the Benders’ decomposition approach should be efficient for solv-

ing (14), i.e., the first program in (11). Since the second program in (11) is simply the adversary’s

problem with ũ = 0, we now have an efficient algorithm for solving (11).

4 Inventory model with non-zero lead time

In this section, we consider an inventory model which is identical to our basic model in all other

respects except that the lead time is a positive constant L, i.e., the quantity ordered at the beginning
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of period k arrives at the installation at the beginning of period k+L. Thus, the inventory dynamics

are as follows:

(a) When the excess demand is backlogged, xk+1 = xk + uk−L − dk for k ∈ {1, 2, . . . , T − 1}.

(b) When the excess demand is lost, xk+1 = max{xk + uk−L − dk, 0} for k ∈ {1, 2, . . . , T − 1}.

Note that ut, for t ≤ 0, denotes orders placed before period 1, and are known constants at the

beginning of the planning horizon. The cost Ck incurred during period k is given by

Ck = K1(uk > 0) + c ⋅ uk +max
{

ℎ ⋅ (xk + uk−L − dk),−b ⋅ (xk + uk−L − dk)
}

. (21)

In (21) we do not include the pipeline inventory costs; however, since the lead time is a constant

L, this cost can be readily incorporated into the model by redefining the variable ordering cost as

c′ = c + Lℎ′, where ℎ′ denotes the per unit per period pipeline inventory cost. For simplicity, we

assume that the installation capacity M = +∞.

Positive lead times lead to a larger state space which makes computing the optimal policy for

the inventory model much harder, especially when the excess demand is lost. Our understanding

of the lost-sales inventory model with positive lead time is still very limited [44], and this model

is still a very active area of research. See Karlin and Scarf [27], Morton [30, 31], Janakiraman

and Roundy [25], Zipkin [44], Huh et al. [23] and references therein for the progression of our

understanding of this model.

In order to generalize the basic policy in Section 3 to the inventory model with positive lead

time L, we associate the inventory cycle (� + L, � + L + 1, . . . , � + L + � − 1) with the ordering

cycle (�, � + 1, . . . , � + � − 1), i.e., the inventory cycle is obtained by shifting the corresponding

ordering cycle forward by L periods. Our modified policy is defined as follows. As before orders

are only placed at the beginning of each ordering cycle. However, unlike in the basic policy, (u� , �)

are chosen to minimize the cost associated with placing the order u� and the inventory holding

cost and shortage cost incurred over the corresponding inventory cycle averaged over cycle length

�. The cost function is formally defined in (22). The motivation here is that the order decision

u� , and the implicit decision ut = 0 for � + 1 ≤ t ≤ � + � − 1, are matched with the inventory
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holding and shortage cost incurred over the corresponding inventory cycle. Note that when L = 0,

the modified policy reduces to the basic policy.

Robust optimization approach for computing (u� , �) Let x� denote the available inventory

and ū = (ū�−L, ū�−L+1, . . . , ū�−1) the vector of outstanding orders at the beginning of the first

period � of a new ordering cycle. The inventory cycle corresponding to this ordering cycle is

(� + L, � + L+ 1, . . . , � + L+ � − 1). Since ut = 0 for all t ∈ {� + 1, . . . , � + � − 1}, the order u�

arrives at the beginning of the inventory cycle and the realized demand over the inventory cycle

is d[� + L, �], the inventory holding cost and shortage cost incurred over the inventory cycle is

given by H
(

� + L, x�+L(d[�, L]), �, u� ,d[� + L, �]
)

, where the functional form of H is given by (3)

(resp. (5)) when the unmet demand is backlogged (resp. lost), and we emphasize the fact that the

inventory level x�+L is a function of d[�, L]. The cost G(u� , �) associated with the decision (u� , �)

is given by

G(u� , �) = max
d[� ]∈D[� ]

{K1(u� > 0) + cu� +H
(

� + L, x�+L

(

d[�, L]
)

, �, u� ,d[� + L, �]
)

�

}

. (22)

The order quantity u� and cycle length � are computed by solving

min
�∈
{

1,2,...,min{T−�−L+1,U}
}

min
u�≥0

{

G(u� , �)
}

. (23)

Solution algorithm We use the solution algorithm proposed in Section 3 to solve program (23).

Specifically, we first fix �, solve the inner minimization problem, and then enumerate all feasible

value of �. In (22) the adversary chooses a demand sequence d[� ] that belongs to the uncertainty

set D[� ] which is defined in (7). A simple modification of the argument in Lemma 2 establishes

that the adversary can be restricted to the set D[�, L + �] which is defined analogous to the set

in (12). To simplify notation, let u = u� , d
O = d[�, L], x(dO) = x�+L(d[�, L]), d

I = d[� + L, �],

d = (dO,dI) = d[�, L+ �], and D = D[�, L+ �].

Since (�+L, �) are constants in the inner minimization problem, we writeH
(

�+L, x(dO), �, u,dI
)
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as H
(

x(dO), u,dI
)

. The inner minimization problem in u is equivalent to

min
u≥0

max
d∈D

{

K1(u > 0) + cu+H
(

x(dO), u,dI
)

}

. (24)

Using results in Lemma 2, it is easy to show that (24) can be reformulated as

min

⎧



⎨



⎩

minu≥0 maxd∈D

{

K + cu+H
(

x(dO), u,dI
)

}

,

maxd∈D

{

H
(

x(dO), 0,dI
)

}

⎫



⎬



⎭

. (25)

We use Benders’ decomposition to solve the first program in (25); the solution to the second

program will be obtained as a special case.

Lemma 5. The inventory manager’s problem in the Benders’ decomposition approach to solve the

first problem in (25) is given by minu≥0 max
d∈D̃ K + cu + H

(

x
(

dO
)

, u, dI
)

,where D̃ is a given

finite working list of demand sequences. This problem can be reformulated as an LP with 2 decision

variables and (� + 1)∣D̃∣+ 1 constraints, where ∣D̃∣ denotes the cardinality of the set D̃.

The proof of this result is identical to that of Lemma 3. Next, we address the adversary’s problem.

Lemma 6. The adversary’s problem in the Benders’ decomposition applied to the first problem

in (25) is given by

max
d=(dO ,dI)∈D

K + cũ+H
(

x
(

dO
)

, ũ, dI
)

, (26)

where ũ denotes the current working decision of the inventory manager. For backlogging dynamics,

(26) is equivalent to solving at most � + 1 LPs, and for lost-sales dynamics, (26) is equivalent to

solving at most (� + 1)(L + 1) LPs.

Proof. Since K + cũ is a constant, we can simply omit it and rewrite the adversary’s problem as

max
d=(dO ,dI)∈D

H
(

x
(

dO
)

, ũ, dI
)

. (27)

19



In the backlogging case x(dO) = x� +
∑�+L−1

t=� (ūt−L − dt). Therefore, (27) is equivalent to

max
d∈D

�+L+�−1
∑

t=�+L

max

{

ℎ
(

x� +

�−1
∑

ℓ=�−L

ūℓ + ũ−
t

∑

ℓ=�

dℓ

)

,−b
(

x� +

�−1
∑

ℓ=�−L

ūℓ + ũ−
t

∑

ℓ=�

dℓ

)

}

. (28)

Let q = x� +
∑�−1

ℓ=�−L ūℓ + ũ. We consider the following two cases.

(i) q ≤ 0: Since q −∑t
ℓ=� dℓ ≤ 0, for all � + L ≤ t ≤ � + L+ � − 1, it follows that (28) reduces

to the single LP, maxd∈D

{

−∑�+L+�−1
t=�+L b

(

q −∑t
ℓ=� dℓ

)

}

.

(ii) q > 0: As in Lemma 4, (27) is equivalent to maxr∈{0,...,�}maxd∈Dr

{

H
(

x
(

dO
)

, ũ, dI
)}

,

where

Dr =

⎧









⎨









⎩

{

d ∈ D ∣ q −∑�+L
ℓ=� dℓ ≤ 0

}

, r = 0,
{

d ∈ D ∣ q −∑�+L+r−1
ℓ=� dℓ ≥ 0, q −∑�+L+r

ℓ=� dℓ ≤ 0
}

, 1 ≤ r ≤ � − 1,
{

d ∈ D ∣ q −∑�+L+�−1
ℓ=� dℓ ≥ 0

}

, r = �.

(29)

Since the definition of Dr implies that

max
d∈Dr

{

H
(

x
(

dO
)

, ũ, dI
)}

= max
d∈Dr

{ �+L+r−1
∑

t=�+L

ℎ
(

q −
t

∑

ℓ=�

dℓ
)

−
�+L+�−1

∑

t=�+L+r

b
(

q −
t

∑

ℓ=�

dℓ
)

}

,

and each Dr is polyhedron, maxd∈Dr

{

H
(

x
(

dO
)

, ũ, dI
)}

is an LP, and the adversary’s

problem (28) reduces to solving � + 1 LPs.

Next, we consider the case with lost-sales dynamics. Define

�j(dO) =

⎧









⎨









⎩

x� +
∑�+L−1

t=� (ūt−L − dt), j = 0,

∑�+L−1
t=j+� (ūt−L − dt), 1 ≤ j ≤ L− 1,

0, j = L.

(30)

Then the inventory level x(dO) = max
{

�0(dO), �1(dO), . . . , �L(dO)
}

. Using this respresentation
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for x(dO) we partition D = ∪Lj=0ℰj , where

ℰj ≜
{

d ∈ D ∣ x(dO) = �j(dO)
}

=
{

d ∈ D ∣ �j(dO) ≥ �ℓ(dO),∀ ℓ ∕= j
}

. (31)

We further partition ℰj = ∪�
r=0 ℰj,r, where

ℰj,r =

⎧









⎨









⎩

{

d ∈ ℰj ∣ �j(dO) + ũ− d�+L ≤ 0
}

, r = 0,
{

d ∈ ℰj ∣ �j(dO) + ũ−∑�+L+r−1
ℓ=�+L dℓ ≥ 0, �j(dO) + ũ−∑�+L+r

ℓ=�+L dℓ ≤ 0
}

, 1 ≤ r ≤ � − 1,
{

d ∈ ℰj ∣ �j(dO) + ũ−∑�+L+�−1
ℓ=�+L dℓ ≥ 0

}

, r = �.

Then maxd=(dO ,dI)∈D H
(

x
(

dO
)

, ũ, dI
)

= maxj∈{0,...,L} maxr∈{0,...,�}maxd∈ℰj,r H
(

x
(

dO
)

, ũ, dI
)

,

and from the definition of ℰj,r it follows that

max
d∈ℰj,r

H
(

x
(

dO
)

, ũ, dI
)

=

⎧









⎨









⎩

maxd∈ℰj,r

{

∑�+L+r−1
t=�+L ℎ

(

�j(dO) + ũ−∑t
ℓ=�+L dℓ

)

− b
(

�j(dO) + ũ−∑�+L+�−1
t=�+L dt

)}

, 0 ≤ r ≤ � − 1,

maxd∈ℰj,r

{

∑�+L+�−1
t=�+L ℎ

(

�j(dO) + ũ−∑t
ℓ=�+L dℓ

)}

, r = �.

Since each �j(dO) is linear function of dO, and therefore of d, ℰj,r is polyhedron andH
(

x
(

dO
)

, ũ, dI
)

,

when restricted to ℰj,r, is a linear function of d, it follows that maxd∈ℰj,r H
(

x
(

dO
)

, ũ, dI
)

is an

LP. Thus, the adversary’s problem (26) reduces to solving (� + 1)(L+ 1) LPs.

5 Extension to joint pricing and inventory control

In this section, we consider a single installation joint pricing and inventory control model which

is similar to that proposed in Federgruen and Heching [19] and Chen and Simchi-Levi [16]. See,

also, Chen and Simchi-Levi [17] and Song et al. [40], for similar models. We show that a simple

extension of our cycle-based control policy can efficiently compute a good solution for this model.
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Dynamics We consider a single product single installation joint pricing and inventory control

model over a finite discrete horizon of T periods. As in Section 2, we let xk, uk and dk denote the

inventory at the beginning of period k, the order quantity in period k, and the demand in period k,

respectively. We denote by pk the unit price of the product in period k. At the beginning of period k,

the inventory manager chooses the order quantity uk ∈ [0, M−xk] and the price pk ∈
[

pkmin, p
k
max

]

,

where M denotes the capacity of the installation, and
[

pkmin, pkmax

]

denotes the feasible pricing

interval. Following [19, 16], we assume that the excess demand in each period is backlogged, and

the lead time is zero. Therefore, the system dynamics is given by xk+1 = xk + uk − dk, for all

1 ≤ k ≤ T − 1.

Cost function The ordering cost and the inventory holding and shortage cost are assumed to

be the same as in Section 2. In addition, the inventory manager receives revenue pkdk in period k.

Thus, the total cost incurred during period k is given by

Ck = K1(uk > 0) + c ⋅ uk +max
{

ℎ ⋅ (xk + uk − dk),−b ⋅ (xk + uk − dk)
}

− pkdk. (32)

Note that we assume that we receive full revenue even for the units that are backlogged. This

assumption is common in the joint pricing and inventory control literature [19, 16].

Demand distribution In the joint pricing and inventory control model, the demand process

D = (D1,D2, . . . ,DT ) is no longer exogenous; the inventory manager can control the stochastic

demand Dk by choosing the pricing decision pk. We assume that the demand Dk is given by a

multiplicative stochastic demand function Q
(m)
k

(

pk, zk
)

defined as follows.

Assumption 3. The multiplicative stochastic demand function Q
(m)
k

(

pk, zk
)

= 
k(pk) ⋅ zk, where

the functions {
k(⋅)} and the random variables {zk} satisfy the following two conditions.

(a) The function 
k(⋅) is continuous and strictly decreasing on
[

p
(k)
min, p

(k)
max

]

. Let �k(⋅) denote the

inverse of 
k(⋅). We assume �k(!) ⋅ ! is concave in ! on
[


k(p
k
max), 
k(p

k
min)

]

.

(b) The random variables {zk}Tk=1 are nonnegative and mutually independent, and only the mean

and variance of zk are known.
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Assumption 3(a) is a common assumption on stochastic demand function (see [16]). Assump-

tion 3(b) is similar to Assumption 1 and 2. We focus on the multiplicative demand function

because it includes linear demand curve 
(p) = � − �p (� > 0, � > 0), log-linear demand curve


(p) = e�−�p (� > 0, � > 0) and iso-elastic demand curve 
(p) = �p−� (� > 0, � > 1) as special

cases. Another motivation for studying multiplicative demand function is that the existing liter-

ature on mathematical programming based approaches to the joint pricing and inventory control

problem is limited to the case with additive stochastic demand function with linear demand curve,

see e.g., [1]. We show that our cycle-based policy is able to work with multiplicative demand func-

tions in a mathematical programming framework. We will briefly discuss a broad family of “linear”

stochastic demand functions at the end of this section.

Extension of the cycle-based policy Our cycle-based control policy extends to this setting as

follows. Assumption 3(a) implies that, instead of selecting the price pk, the inventory manager can

equivalently select the nominal demand !k = 
k(pk) ∈
[


k(p
k
max), 
k(p

k
min)

]

. As in Section 3, we

break the planning horizon into ordering cycles. At the first period � of a new ordering cycle, after

observing the inventory level x� , the inventory manager chooses order quantity u� , cycle length

� and nominal demand sequence ![�, �] to minimize the worst-case average cost over the cycle

(�, � + 1, . . . , � + � − 1), F (u� , �, ![�, �]), which is defined as

F (u� , �, ![�, �]) = max
z[� ]∈Z[� ]

{

K1(u� > 0) + cu� +W (u� , ![�, �], z[�, �])

�

}

, (33)

where z[� ] denotes (z� , z�+1, . . . , zT ), z[�, �] denotes (z� , z�+1, . . . , z�+�−1), Z[� ] is defined similarly

as D[� ] in (7), i.e.,

Z[� ] =
{

z[� ]
∣

∣

∣
�̄t − �̂t ≤ zt ≤ �̄t + �̂t,

t
∑

ℓ=�

∣zℓ − �̄ℓ∣
�̂ℓ

≤ Γ�
t−�+1, ∀ � ≤ t ≤ T

}

, (34)
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where �̄t and �̂t are, respectively, the nominal value and deviation of zt, and

W (u� , ![�, �], z[�, �]) =

�+�−1
∑

t=�

max
{

ℎ(x� + u� −
t

∑

ℓ=�

!ℓzℓ),−b(x� + u� −
t

∑

ℓ=�

!ℓzℓ)
}

−
�+�−1
∑

t=�

�t(!t)!tzt.

The optimal decision (u∗� , �
∗, !∗[�, �]) is chosen by solving the optimization problem

min
�∈
{

1,2,...,min{T−�+1,U}
}

min
{

0≤u�≤M−x� ,![�,�]∈Ω[�,�]
}

F (u� , �, ![�, �]), (35)

where

Ω[�, �] =
{

![�, �]
∣

∣ !t ∈ [
t(p
t
max), 
t(p

t
min)], for � ≤ t ≤ � + � − 1

}

. (36)

Solution algorithm To solve (35), we fix �, solve the inner minimization problem, and then

enumerate all feasible value of �. A simple modification of Lemma 2 establishes that the adversary

can be restricted to the set Z[�, �] which is defined analogously to the set in (12). To simplify

notation, let u = u� , x = x� , ! = ![�, �], z = z[�, �], Ω = Ω[�, �] and Z = Z[�, �]. Following the

arguments in Lemma 2, it is clear that solving the inner minimization problem of (35) is equivalent

to solving the following optimization problem:

min

⎧





⎨





⎩

min{
0≤u≤M−x,!∈Ω

}maxz∈Z

{

K + cu+W (u, !, z)
}

,

min!∈Ω maxz∈Z

{

W (0, !, z)
}

⎫





⎬





⎭

. (37)

We use Benders’ decomposition to solve each of the optimization problems in (37). We focus on

the first program without loss of generality, i.e., we show how to apply Benders’ decomposition to

efficiently solve

min
{

0≤u≤M−x,!∈Ω
}

max
z∈Z

{

K + cu+W (u, !, z)
}

. (38)

Assumption 3(a) and the fact that z ≥ 0 ensure that W (u, !, z) is convex in (u, !); therefore, (38)

is a convex optimization problem. Next, we show that the inventory manager’s problem and the
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adversary’s problem of (38) can be solved efficiently.

Lemma 7. The inventory manager’s problem of (38) is min{
0≤u≤M−x,!∈Ω

}maxz∈Z̃

{

K + cu +

W (u, !, z)
}

, where Z̃ is a given finite working list of random terms. The inventory manager’s

problem is a convex optimization problem.

By noting that W (u, !, z) is convex in (u, !), the proof of Lemma 7 follows immediately. Next, we

consider the adversary’s problem.

Lemma 8. The adversary’s problem of (38) is maxz∈Z

{

K+cũ+W (ũ, !̃, z)
}

, where (ũ, !̃) denotes

the current working decision of the inventory manager. The adversary’s problem can be reduced

to solving at most � + 1 LPs.

The proof of this lemma is similar to that of Lemma 4. Thus we have completed our algorithm.

Linear stochastic demand function Our cycle-based policy extends to the “linear” stochastic

demand functions Q
(l)
k (pk, zk) defined as follows.

Assumption 4. The linear stochastic demand functions {Q(l)
k (pk, zk)} satisfy the following three

conditions.

(a) Q
(l)
k (pk, zk) is separately linear in pk and zk, i.e., linear in pk for fixed zk, and vice versa.

(b) Q
(l)
k (pk, zk) is non-increasing in pk for fixed zk.

(c) {zk}Tk=1 are mutually independent, and only the mean and variance of zk are known.

Assumption 4(c) is essentially identical to Assumption 3(b) except that we do not require zk to be

nonnegative. This class of demand functions includes the widely-used additive demand function

with linear demand curve Q(p, z) = � − �p + z (� > 0, � ≥ 0) as a special case. Although the

demand functions in [19] are allowed to be more general, the convexity related regularity conditions

essentially restrict the demand functions to the class of “linear” demand functions defined here.

Our policy can be extended to this case by making the following simple modification. Since

Q
(l)
k is linear in pk, we directly work with the prices {pk} as decision variables. In particular,
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at the first period � of a new ordering cycle, the inventory manager chooses order quantity u� ,

cycle length � and price sequence p[�, �] to minimize the worst-case average cost over the cycle

(�, � + 1, . . . , � + � − 1), F (u� , �, p[�, �]),

F (u� , �, p[�, �]) = max
z[� ]∈Z[� ]

{

K1(u� > 0) + cu� +W (u� , p[�, �], z[�, �])

�

}

, (39)

where Z[� ] is defined in (34), and

W (u� , p[�, �], z[�, �]) =

�+�−1
∑

t=�

max
{

ℎ(x� + u� −
t

∑

ℓ=�

Q
(l)
ℓ (pℓ, zℓ)),−b(x� + u� −

t
∑

ℓ=�

Q
(l)
ℓ (pℓ, zℓ))

}

−
�+�−1
∑

t=�

ptQ
(l)
t (pt, zt).

Note that for fixed z-sequence z[�, �], W (u� , p[�, �], z[�, �]) is a convex piecewise quadratic function

in (u� , p[�, �]). The optimal decision (u∗� , �
∗, p∗[�, �]) is chosen by solving the optimization problem

min
�∈
{

1,2,...,min{T−�+1,U}
}

min
{

0≤u�≤M−x� ,p[�,�]∈P[�,�]
}

F (u� , �, p[�, �]), (40)

where

P[�, �] =
{

p[�, �]
∣

∣ ptmin ≤ pt ≤ ptmax, for � ≤ t ≤ � + � − 1
}

. (41)

We use solution algorithm which is identical to that of (35) to solve (40). In particular, we apply

Benders’ decomposition to solve the counterpart of program (38).

Lemma 9. The inventory manager’s problem min{
0≤u≤M−x,p∈P

}maxz∈Z̃

{

K+cu+W (u, p, z)
}

is

a convex quadratically constrained quadratic program (QCQP). When the linear demand function

Q
(l)
k (p, z) is additive, i.e., Q

(l)
k (p, z) = �k − �kp + z (�k > 0, �k ≥ 0), the inventory manager’s

problem reduces to a convex quadratic program (QP).
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Proof. The inventory manager’s problem can be reformulated as

min K + cu+ t,

s.t. W (u, p, zj) ≤ t, ∀zj ∈ Z̃,

0 ≤ u ≤M − x, p ∈ P.

Recall that W (u, p, z) is a convex piecewise quadratic function of (u, p) for a fixed z. Therefore,

the constraint W (u, p, zj) ≤ t can be reformulated as a collection of convex quadratic constraints.

When the linear demand function is additive, the quadratic term in p in

�+�−1
∑

t=�

ptQ
(l)
t (pt, zt) =

�+�−1
∑

t=�

pt
(

�t − �tpt + zt
)

=

�+�−1
∑

t=�

ptzt +

�+�−1
∑

t=�

pt
(

�t − �tpt
)

is independent of z. Consequently, the inventory manager’s problem can be reformulated as a

convex quadratic program, i.e., with a convex quadratic objective but only linear constraints.

At the same time, we can still compute the optimal solution to the adversary’s problem by

solving at most � + 1 LPs.

6 Numerical experiments

In this section, we report the results of a set of numerical experiments that investigate the empirical

performance of our cycle-based inventory control policy (CI).

6.1 Backlogging dynamics

We compared CI with the rolling horizon version of the open-loop policy (RHBT) proposed in [14].

RHBT efficiently computes the ordering decisions for a backlogging inventory control problem by

solving LPs or MIPs. In [14] it was shown that the performance of RHBT is comparable or superior

to that of the DP-based policies, and in [15] it was shown that the performance of RHBT is superior

to that of the robust base-stock policy.

We set the parameters !̄t, !̂t and Γt
j defining the uncertainty sets (7) to !̄t = d̄t, !̂t =
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Parameter Value Parameter Value

Time horizon T 48 Fixed ordering cost K 500

Initial inventory x1 0 Variable ordering cost/unit c 1

Demand distribution Dt N(d̄t, �
2
t ) Inventory holding cost/unit ℎ 4

Mean of demand d̄t 100 + 40 sin(2�12 t) Shortage cost/unit b 6

Std. dev. of demand �t 0.25d̄t Lead time L 0

Table 1: Parameters for base backlogging model

min{2�t, !̄t}, Γt
j =

√
j, for 1 ≤ t ≤ T and 1 ≤ j ≤ T − t + 1 (see Section 5 in [14]). To en-

sure a fair comparison, we use the same uncertainty sets for both CI and RHBT. We set U = 12

for CI. All the LPs and MIPs in the implementation of CI and RHBT are solved using Gurobi

Optimizer v4.5. We call Gurobi Optimizer from MATLAB using Gurobi Mex [42].

Our goal in the numerical experiments was to understand the impact of problem parameters on

the performance of CI and RHBT. In particular, we investigated the impact of different choices of

the realized demand distribution, the mean demand trajectory, the standard deviation of demand,

the cost parameters (K, c, ℎ, b) and the lead time L. The parameters for the base model are

displayed in Table 1, where the choice of c, ℎ and b is suggested in [14]. To study the impact of

the parameters, we change one parameter at a time while keeping all other parameters at their

respective base values. For each configuration, we randomly generated N = 100 demand sequences

and tested the performance of CI and RHBT on the same demand realizations. In these numerical

experiments, we set c = 0 when computing the CI policy decisions. This is motivated by the fact

that variable ordering costs incurred over a fixed finite horizon can be viewed as a sunk cost when

c is smaller than backlogging cost b. We found this modification lead to better performance for

the CI policy. Note we still used the true value of c when evaluating the performance of the CI

policy. We report the mean and standard deviation of the total cost incurred by CI and RHBT on

the N = 100 sample paths. At the end of this section, we also report the running time of CI and

RHBT.

Impact of the realized demand distribution. We considered the following 5 different families

of realized demand distributions: normal, Student’s-t(4), gamma, uniform and lognormal. In each
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RHBT CI

Distribution Mean: std dev Mean(%): std dev

Normal 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

T(4) 28, 990.6 : 654.4 28, 562.1(−1.48%) : 693.1

Gamma 29, 422.5 : 561.1 28, 782.3(−2.17%) : 727.8

Uniform 29, 649.1 : 573.8 28, 996.7(−2.20%) : 674.9

Lognormal 29, 446.3 : 704.1 28, 823.5(−2.11%) : 723.1

Table 2: Impact of realized demand distribution

RHBT CI

� Mean: std dev Mean(%): std dev

0 29, 919.9 : 516.7 28, 684.7(−4.13%) : 648.7

20 29, 546.2 : 574.4 28, 867.0(−2.30%) : 654.2

40 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

60 28, 596.9 : 632.2 28, 984.6(+1.36%) : 788.2

80 27, 844.3 : 654.6 29, 609.1(+6.34%) : 1, 087.9

Table 3: Impact of �

configuration, {Dt}Tt=1 were drawn from the same family, and with pre-specified mean {d̄t}Tt=1

and variance {�2
t }Tt=1 in the base model. Table 2 summaries the performance measures. Since

CI and RHBT both only use the first two moments of demand distributions, their performance is

fairly robust across various realized demand distributions. The performance of the two policies is

comparable – the cost of the CI policy is 1.5% to 2.2% less on average, but volatility of the cost is

higher.

Impact of the mean demand trajectory. We considered mean demand trajectory d̄t = 100+

� sin(2�12 t), with � = 0, 20, 40, 60, 80. In the base model, � = 40. Note that a larger � implies

greater variability in {d̄t}Tt=1. Table 3 summarizes the performance measures. When � = 0, i.e.,

{Dt}Tt=1 is an IID demand, the CI cost is approximately 4% lower than RHBT. As � increases, the

cost of RHBT decreases while the cost of CI increases. When � = 80, i.e., the demand trajectory

is highly variable, CI costs 6% more on average and incurs a higher standard deviation. Thus,

CI outperforms RHBT when the demand is changing smoothly, and the reverse is true when the

demand is changing sharply.
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RHBT CI


 Mean: std dev Mean(%): std dev

0.15 28, 303.1 : 351.8 28, 236.7(−0.23%) : 439.8

0.20 28, 830.5 : 489.7 28, 714.6(−0.40%) : 596.9

0.25 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

0.30 29, 709.3 : 728.6 29, 203.1(−1.70%) : 790.1

0.35 30, 195.1 : 937.6 29, 629.2(−1.87%) : 888.5

Table 4: Impact of 


RHBT CI

K Mean: std dev Mean(%): std dev

0 9, 492.5 : 536.6 9, 492.5(−0.00%) : 536.6

250 21, 277.1 : 479.6 21, 378.1(+0.47%) : 575.7

500 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

750 34, 101.2 : 813.3 34, 301.4(+0.59%) : 876.1

1000 38, 070.8 : 847.4 38, 619.8(+1.44%) : 871.1

Table 5: Impact of K

Impact of the standard deviation of demand. We fixed 
 = �t

d̄t
for 1 ≤ t ≤ T , therefore

the ratio 
 determines the relative magnitude of standard deviation. In the base model, 
 = 0.25.

Table 4 summarizes the performance measures. As 
 increases, the performance of CI improves

relative to RHBT. When 
 = 0.35, i.e., the standard deviation of demand is high, both the average

cost and volatility of the cost of the CI policy are lower than those of the RHBT policy.

Impact of the fixed ordering cost. Table 5 summarizes the performance measures. CI has a

slightly higher average cost in 3 cases (K = 250, 750, 1000). When K = 0, we found that CI and

RHBT incurred the same cost on every sample path.

Impact of the variable ordering cost. Table 6 summarizes the performance measures. CI has

a lower average cost across all the 5 configurations, but the magnitudes of savings are decreasing

as c increases. When c increases to 3, there are jumps in the volatility of the cost of both CI and

RHBT.
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RHBT CI

c Mean: std dev Mean(%): std dev

0 24, 545.7 : 519.1 23, 994.9(−2.24%) : 615.4

1 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

2 33, 923.3 : 658.5 33, 537.2(−1.14%) : 678.5

3 38, 702.7 : 947.1 38, 323.1(−0.98%) : 1, 085.1

4 43, 556.1 : 849.5 43, 339.9(−0.50%) : 1, 075.6

Table 6: Impact of c

RHBT CI

ℎ Mean: std dev Mean(%): std dev

2 24, 254.5 : 489.5 23, 883.2(−1.53%) : 555.3

4 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

6 31, 637.7 : 755.9 31, 530.0(−0.34%) : 900.9

8 33, 106.6 : 875.7 33, 100.8(−0.02%) : 838.7

10 34, 162.2 : 952.8 34, 299.6(+0.40%) : 1, 024.7

Table 7: Impact of ℎ

Impact of the inventory holding cost. Table 7 summarizes the performance measures. CI

has a lower average cost in 4 out of the 5 cases, but the relative performance of CI over RHBT

deteriorates as ℎ increases.

Impact of the shortage cost. Table 8 summarizes the performance measures. CI has a lower

average cost across all the 5 cases, but also incurs significantly higher volatility of cost when b = 6, 8.

Impact of the lead time. When lead time is L, we assumed that the outstanding orders at

the beginning of the planning horizon, (u1−L, . . . , u0) = (d̄1, d̄2, . . . , d̄L). Table 9 summarizes the

performance measures. It is clear from the table, that the average CI cost is significantly lower

when compared to the RHBT cost across all 5 configurations. The volatility of the cost of the

two policies is comparable; it is also clear that the volatility of the cost of both policies increases

relatively quickly as lead time L increases.

Next, we compared the running time of CI and RHBT. In particular, we investigated how the
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RHBT CI

b Mean: std dev Mean(%): std dev

2 22, 430.9 : 664.4 21, 917.1(−2.29%) : 539.8

4 26, 639.4 : 625.1 26, 273.5(−1.37%) : 623.4

6 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

8 30, 870.1 : 612.9 30, 813.5(−0.18%) : 799.6

10 31, 881.5 : 685.4 31, 492.1(−1.22%) : 664.6

Table 8: Impact of b

RHBT CI

L Mean: std dev Mean(%): std dev

0 29, 330.6 : 646.1 28, 894.3(−1.49%) : 754.3

1 29, 951.6 : 638.5 28, 899.3(−3.51%) : 773.4

2 30, 519.4 : 1, 154.7 29, 214.4(−4.28%) : 1, 231.2

4 31, 255.0 : 1, 788.9 29, 957.6(−4.15%) : 1, 747.9

6 31, 812.8 : 2, 227.6 31, 057.7(−2.37%) : 2, 142.3

Table 9: Impact of L

time horizon, T , and the fixed ordering cost, K, impact the running time of the two policies. For

each configuration below, we randomly generated N = 10 demand sequences, and implemented CI

and RHBT on the same demand realizations. We report the mean and standard deviation of the

running time of CI and RHBT on the N = 10 sample paths.

Impact of the time horizon on running time. We considered T = 24, 36, 48, 60, 72, with all

other parameters were chosen from the base model in Table 1. Table 10 reports the running time.

We found that the running time of CI grows linearly with T , whereas the running time of RHBT

RHBT CI

T Mean: std dev (in seconds) Mean: std dev (in seconds)

24 0.72 : 0.02 4.74 : 0.21

36 5.16 : 0.24 7.77 : 0.38

48 28.25 : 0.88 10.38 : 0.25

60 72.99 : 1.04 13.16 : 0.34

72 141.77 : 1.87 16.24 : 0.26

Table 10: Running time: Impact of T
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increases exponentially as T increases. This result is not surprising – CI only relies on solving LPs,

whereas RHBT solves MIPs with increasing size as T increases.

Impact of the fixed ordering cost on running time. We fixed T = 48 and let K = 0,

250, 500, 750, 1000 in each of the 5 scenarios. Table 11 reports the running time. Table 11 shows

RHBT CI

K Mean: std dev (in seconds) Mean: std dev (in seconds)

0 1.24 : 0.01 26.73 : 1.76

250 1.65 : 0.02 21.49 : 0.50

500 28.25 : 0.88 10.38 : 0.25

750 48.68 : 0.89 10.26 : 0.41

1000 46.05 : 1.08 9.12 : 0.55

Table 11: Running time: Impact of K

some interesting results. When K = 0 or 250, RHBT costs less than 2 seconds – approximately 5%

of that of CI. However, as K increases, the running time of RHBT increases significantly, indicating

that the MIPs in RHBT are becoming harder to solve as K increases. When K = 750 or 1000, it

takes RHBT almost 50 seconds to solve the problem. On the other hand, the running time of CI

in fact decreases as K increases, since a larger K implies a lower ordering frequency, and therefore

fewer decisions to make. It is clear that, when K = 1000, the running time of RHBT is more than

5 times of that of CI.

6.2 Lost-sales dynamics

6.2.1 Inventory control when lead time is zero

In the lost-sales model with zero lead time, we compared CI with the DP solution and the optimal

base-stock policy [43] in hindsight (BH). Following [14], we compute the DP policy assuming Dt ∼

N(d̄t, �
2
t ) for 1 ≤ t ≤ T , and approximate N(d̄t, �

2
t ) by a probability mass function supported on

the five points {d̄t − 2�t, d̄t − �t, d̄t, d̄t + �t, d̄t + 2�t}. The BH policy is base-stock policy but the

order-up-to level S is computed in hindsight, i.e., after observing the entire demand realization d.

We compute the optimal base-stock level for a particular d by an exhaustive search. It is clear
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Parameter Value Parameter Value

Time horizon T 48 Fixed ordering cost K 0

Initial inventory x1 0 Variable ordering cost/unit c 1

Demand distribution Dt N(d̄t, �
2
t ) Inventory holding cost/unit ℎ 4

Mean of demand d̄t 100 Shortage cost/unit b 12

Std. dev. of demand �t 0.25d̄t Lead time L 0

Table 12: Parameters for base lost-sales model

that the cost of BH is a lower bound for the cost of any non-anticipatory base-stock policy. The

choice of BH as a comparison policy is motivated by the fact that base-stock policies with constant

order-up-to level, are commonly used in practice in lost-sales setting [25].

We set the parameters !̄t, !̂t, Γ
t
j and U in the CI policy to those used in Section 6.1. In the

DP policy, the state at each time instance is the inventory at hand. We restricted the state to

the interval [0, 500], i.e., set M = 500, and further restricted both the state and action values to

multiples of 0.1.

We investigated the impact of the same set of parameters as in Section 6.1 on the performance

of CI, DP and BH, except that we did not consider positive lead time since DP does not scale with

lead time L. The parameters for the base model are displayed in Table 12. To study the impact

of the parameters, we vary one parameter at a time while keeping all other parameters at their

respective base values. For each configuration, we randomly generated N = 100 demand sequences

and tested the performance of CI, DP and BH on the same demand realizations. In this section, we

still set c = 0 when computing the CI policy decisions and used the true value of c when evaluating

the performance of the CI policy. We report the mean and standard deviation of the total cost

incurred by CI, DP and BH on the N = 100 sample paths. We report the running time for CI and

DP at the end of this section.

Impact of the realized demand distribution. As in Section 6.1, we considered the following

5 different families of realized demand distributions: normal, Student’s-t(4), gamma, uniform and

lognormal. Table 13 summaries the performance measures. DP and CI have comparable perfor-

mance across the 5 scenarios; they are both robust with respect to the changes in realized demand
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DP CI BH

Distribution Mean: std dev Mean(%): std dev Mean(%): std dev

Normal 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(−4.32%) : 619.2

T(4) 10, 845.0 : 774.7 10, 871.7(+0.25%) : 750.2 9, 954.9(−8.21%) : 925.9

Gamma 11, 414.9 : 717.9 11, 408.8(−0.05%) : 668.3 10, 812.9(−5.27%) : 834.0

Uniform 11, 009.3 : 421.6 10, 998.1(−0.10%) : 407.8 10, 780.0(−2.08%) : 452.3

Lognormal 11, 418.7 : 670.9 11, 405.9(−0.11%) : 673.6 10, 691.6(−6.37%) : 953.2

Table 13: Impact of realized demand distribution

DP CI BH

� Mean: std dev Mean(%): std dev Mean(%): std dev

0 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(− 4.32%) : 619.2

20 11, 229.2 : 532.5 11, 215.6(−0.12%) : 517.7 11, 763.6(+ 4.76%) : 799.7

40 11, 247.0 : 555.7 11, 209.8(−0.33%) : 529.9 14, 641.3(+30.18%) : 989.3

60 11, 144.8 : 603.9 11, 145.8(+0.01%) : 587.7 17, 674.9(+58.59%) : 1, 345.3

80 11, 206.2 : 609.4 11, 218.7(+0.11%) : 643.5 21, 180.5(+89.01%) : 1, 415.5

Table 14: Impact of �

distributions. BH incurs significantly less cost, since the mean demand trajectory is flat and there

is no fixed ordering cost in the base model.

Impact of the mean demand trajectory. We considered mean demand trajectory d̄t = 100+

� sin(2�12 t), with � = 0, 20, 40, 60, 80. In the base model, � = 0, i.e., demands are IID random

variables. Table 14 summarizes the performance measures. The costs of DP and CI are almost

equal; however, the cost of BH increases significantly as � increases. This result is not surprising

– the performance of base-stock policies with constant base-stock level is very sensitive to the

variability of the mean demand trajectory. In cases where the mean demands vary relatively

sharply, base-stock policies deteriorate quickly.

Impact of the standard deviation of demand. We fixed 
 = �t

d̄t
for 1 ≤ t ≤ T . In the base

model, 
 = 0.25. Table 15 summarizes the performance measures. It is clear from the table, that

the costs of DP and CI are still very close.
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DP CI BH


 Mean: std dev Mean(%): std dev Mean(%): std dev

0.15 8, 568.6 : 307.9 8, 576.3(+0.09%) : 297.0 8, 293.9(−3.21%) : 338.2

0.20 9, 800.2 : 493.2 9, 790.2(−0.10%) : 470.9 9, 342.9(−4.67%) : 601.1

0.25 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(−4.32%) : 619.2

0.30 12, 326.4 : 752.1 12, 337.4(+0.09%) : 732.2 11, 728.2(−4.85%) : 881.5

0.35 13, 699.2 : 854.7 13, 707.5(+0.06%) : 836.4 13, 064.4(−4.63%) : 1, 036.1

Table 15: Impact of 


DP CI BH

K Mean: std dev Mean(%): std dev Mean(%): std dev

0 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(− 4.32%) : 619.2

250 22, 935.7 : 574.0 23, 138.0(+0.88%) : 522.6 22, 613.9(− 1.40%) : 668.4

500 31, 234.3 : 913.5 32, 170.9(+3.00%) : 792.4 34, 630.4(+10.87%) : 733.8

750 37, 061.8 : 951.0 37, 754.4(+1.87%) : 711.0 46, 562.9(+25.64%) : 737.5

1000 42, 124.8 : 1, 043.6 43, 339.0(+2.88%) : 953.7 58, 557.4(+39.01%) : 735.6

Table 16: Impact of K

Impact of the fixed ordering cost. Table 16 summarizes the performance measures. CI

incurs 1% to 3% higher average cost compared to DP when K ∕= 0, but saves approximately 10%

to 20% in standard deviation. On the other hand, the performance of BH deteriorates significantly

as K grows, since base-stock policies place positive orders in every period as long as demand is

positive, regardless of the value of K. This suggests that base-stock policies are in general not good

candidates when there are non-zero fixed ordering costs.

Impact of the variable ordering cost. Table 17 summarizes the performance measures. The

performance of DP and CI is comparable when c = 0, 1, 2, 3 – DP incurs a slightly lower average

cost while CI incurs a slightly lower standard deviation. When c = 4, CI costs 1.5% more on

average but is more stable in that the standard deviation of CI is only half of that of DP.

Impact of the holding cost. Table 18 summarizes the performance measures. CI incurs 3%

more in average when ℎ = 2 and 2.5% less when ℎ = 6 compared to DP; in other scenarios the

differences are small. On the other hand, CI has a smaller standard deviation across all 5 cases. In
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DP CI BH

c Mean: std dev Mean(%): std dev Mean(%): std dev

0 6, 411.9 : 681.1 6, 408.7(−0.05%) : 681.3 5, 950.7(−7.19%) : 732.4

1 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(−4.32%) : 619.2

2 15, 785.7 : 549.7 15, 829.4(+0.28%) : 539.0 15, 238.5(−3.47%) : 715.9

3 20, 421.0 : 470.9 20, 468.4(+0.23%) : 445.1 19, 710.3(−3.48%) : 840.0

4 24, 886.2 : 1, 171.6 25, 268.1(+1.53%) : 553.0 24, 330.1(−2.23%) : 927.8

Table 17: Impact of c

DP CI BH

ℎ Mean: std dev Mean(%): std dev Mean(%): std dev

2 8, 508.8 : 507.5 8, 778.9(+3.17%) : 325.6 8, 411.0(−1.15%) : 501.2

4 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(−4.32%) : 619.2

6 13, 059.5 : 1, 110.3 12, 732.3(−2.51%) : 665.2 12, 329.4(−5.59%) : 763.5

8 14, 154.8 : 1, 023.1 14, 095.3(−0.42%) : 854.7 13, 780.5(−2.64%) : 877.8

10 14, 918.8 : 1, 079.7 14, 920.1(+0.01%) : 1, 007.9 14, 681.5(−1.59%) : 1, 004.0

Table 18: Impact of ℎ

particular, when ℎ = 6, the standard deviation of CI cost is approximately 40% less than that of

DP cost.

Impact of the shortage cost. Table 19 summarizes the performance measures. In all cases

DP CI BH

b Mean: std dev Mean(%): std dev Mean(%): std dev

8 9, 943.5 : 682.4 9, 987.1(+0.44%) : 483.2 9, 610.7(−3.35%) : 575.9

10 10, 951.5 : 485.9 10, 652.9(−2.73%) : 519.1 10, 234.4(−6.55%) : 650.7

12 11, 090.3 : 545.5 11, 105.8(+0.14%) : 520.1 10, 611.4(−4.32%) : 619.2

14 11, 236.6 : 610.4 11, 428.5(+1.71%) : 581.3 10, 917.3(−2.84%) : 701.4

16 11, 520.0 : 684.2 11, 863.4(+2.98%) : 591.4 11, 233.5(−2.49%) : 818.2

Table 19: Impact of b

except when b = 10, CI incurs a higher average cost and a lower standard deviation compared to

DP. When b = 10, CI costs 2.7% less but incurs a higher standard deviation of cost.
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Impact of the fixed ordering cost on running time. Next, we report the running time for

CI and DP. In this set of experiments we were interested in investigating the impact of the fixed

ordering cost K on the running time of these two policies. We set K = 0, 250, 500, 750, 1000, and

set all other parameters to the values in the base model displayed in Table 12. Table 20 reports

the running time. As in the backlogging case, the running time for CI typically decreases as K

increases, and CI goes from being approximately 10 times faster to approximately 20 times faster

as we increase K from 0 to 1000.

DP CI

K (in seconds) Mean: std dev (in seconds)

0 154.32 16.88 : 1.03

250 155.94 15.76 : 0.28

500 156.39 7.85 : 0.13

750 156.09 7.96 : 0.21

1000 157.13 8.34 : 0.20

Table 20: Running time: Impact of K

6.2.2 Inventory control with positive lead time

In this section, we consider the lost-sales model with positive lead time L. In this case, the DP

optimal policy is very hard to compute because of the “curse of dimensionality”. Consequently,

comparing CI with DP is impractical. Zipkin [44] compared the performance of the optimal policy

and eight plausible heuristics – two different myopic policies, the dual-balancing policy of Levi et

al. [28], four different base-stock policies and the constant-order policy in Reiman [34] – for an

infinite horizon lost-sales inventory model with stationary demand and the long-run average cost

criterion. The parameters for this model were as follows: fixed cost K = 0, variable ordering

cost c = 0, inventory holding cost ℎ = 1, lost-sales penalty cost b ∈ {4, 9, 19, 39}, lead time

L ∈ {1, 2, 3, 4}, and demand distribution Dt was either Poisson with mean 5 or geometric with

mean 5. For details, see Section 6 of [44].

In this section, we adopt the simulation design in [44]. Since [44] considered the long-run average

cost criterion, and our cycle-based policy CI is designed for finite horizon inventory problems, we
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used the batch means method to approximate the long-run average cost. The specific simulation

strategy was as follows: for each combination of parameter values, we simulated one sample path

under the CI policy for a total time horizon of T = 50, 000 periods. We discarded the first

Tb = 10, 000 periods as the “burn-in” periods. We equally divided the rest Ts = 40, 000 periods

into N = 10 batches, each consists of Ts/N = 4, 000 consecutive periods. We computed the average

cost over each batch and then the mean and standard deviation across the N = 10 batches. We

report the mean as an estimator for the long-run average cost of CI.

Since in all the cases we considered, the mean demand was 5, we set !̄t = 5. We set Γt
j =
√
j,

for 1 ≤ t ≤ T and 1 ≤ j ≤ T − t+ 1, and set U = 5. The deviation !̂t was selected as a function

of the penalty cost b and the demand distribution. The specific choice for !̂t are displayed in

Table 21. Note that the choice of !̂t is independent of the lead time – this was done for simplicity

Demand Distribution

b Poisson geometric

4 2 3

9 2 5

19 3 5

39 4 5

Table 21: Choice of !̂t

and one can further improve performance by choosing a lead time dependent !̂t. Our choice of !̂t

is non-decreasing in b, and for a given b, we chose a larger !̂t for the geometric case. This choice is

motivated by the fact that as the lost-sales penalty b increases the decision maker should prefer a

“fatter” uncertainty set to protect against the very expensive stock-out events more aggressively.

And since the geometric distribution has heavier tails, the uncertainty set is chosen to be larger in

this case.

Poisson demand. We summarize the performance of CI when demand is Poisson in Table 22.

We report the optimal average cost taken from [44], the long-run average cost for CI, and the

amount by which the CI cost exceeds the optimal cost as a percentage of the optimal cost. We

also report the standard deviation of the batch averages in parenthesis. For the sake of brevity, we
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only report the rank of CI among the nine heuristics, i.e., the original eight heuristics in [44] and

CI, for each set of parameter values. We refer the interested readers to [44] for the cost for each of

the other eight heuristics.

Lead time

1 2 3 4

(a) b = 4

Optimal 4.04 4.40 4.60 4.73

CI 4.07 +0.74% 4.49 +2.00% 4.86 +5.66% 5.13 +8.42%

(0.05) 2nd (0.07) 4th (0.06) 5th (0.12) 5th

(b) b = 9

Optimal 5.44 6.09 6.53 6.84

CI 5.83 +7.12% 6.23 +2.25% 6.70 +2.62% 7.00 +2.37%

(0.10) 8th (0.11) 4th (0.14) 3rd (0.10) 4th

(c) b = 19

Optimal 6.68 7.66 8.36 8.89

CI 7.19 +7.62% 7.75 +1.22% 8.61 +2.93% 9.08 +2.14%

(0.17) 7th (0.25) 2nd (0.25) 5th (0.18) 3rd

(d) b = 39

Optimal 7.84 9.11 10.04 10.79

CI 8.21 +4.66% 9.42 +3.39% 10.37 +3.24% 10.93 +1.27%

(0.16) 7th (0.29) 7th (0.30) 5th (0.25) 2nd

Table 22: Poisson case

Recall that the optimal policy and the eight heuristics in [44] utilize the full distribution in-

formation of demand and specifically optimize the long-run average cost. In contrast, CI only

uses partial demand information and adopts a min-max approach to compute the order decisions.

Consequently, the simulations favor of the polices in [44] over CI. The results in Table 22 indicate

that the performance of CI is still quite good. In 12 out of the 16 parameter combinations, the

CI cost exceeds the optimal cost by no more than 5%. Note that when b = 4, i.e., the lost-sales

penalty is small, the relative performance of CI deteriorates as lead time L increases; whereas for

b ∈ {9, 19, 39}, the opposite is true, i.e., the relative performance improves with lead time. This

behavior can be explained by considering the dynamics of the CI policy for positive lead times.

Recall that the CI policy selects u� to balance the ordering cost with the holding cost and lost-sales
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penalty over the inventory cycle (� +L, . . . , � +L+ �− 1). In order to counteract the possibility of

stock-out due to the uncertain demand over the intervening interval (�, . . . , �+L−1), the CI policy

tends to choose a larger value of u� when the lead time L is large. When the lost-sales penalty b is

small, this higher inventory position becomes a “liability” because it forces the inventory manager

to pay more inventory holding cost; however, when b is large, higher inventory position becomes

an “asset” since it helps the inventory manager to avoid or alleviate the expensive stock out.

Geometric demand. Table 23 summarizes the performance of CI when demand is geometric.

CI performs quite well when b ∈ {4, 9}, i.e., when the lost-sales penalty is modest. However, as b

becomes large, the performance of CI deteriorates quickly. When b = 39, CI cost is significantly

larger than the optimal cost and is beaten by most other heuristics.

Lead time

1 2 3 4

(a) b = 4

Optimal 9.82 10.24 10.47 10.61

CI 9.95 +1.28% 10.57 +3.26% 11.19 +6.84% 11.75 +10.74%

(0.19) 3rd (0.25) 4th (0.23) 6th (0.23) 6th

(b) b = 9

Optimal 14.51 15.50 16.14 16.58

CI 14.82 +2.13% 15.56 +0.37% 16.63 +3.06% 17.38 +4.85%

(0.32) 5th (0.38) 1st (0.26) 3rd (0.39) 3rd

(c) b = 19

Optimal 19.22 20.89 22.06 22.95

CI 22.70 +18.13% 22.36 +7.02% 23.25 +5.39% 23.95 +4.34%

(1.16) 7th (0.99) 6th (0.68) 5th (0.61) 4th

(d) b = 39

Optimal 23.87 26.21 27.96 29.36

CI 37.57 +57.37% 35.57 +35.69% 36.25 +29.64% 35.32 +20.31%

(1.36) 9th (1.00) 8th (1.70) 7th (1.49) 7th

Table 23: Geometric case

The poor performance of CI for large b is because we use a symmetric uncertainty set while the

true demand distribution is highly asymmetric and has a considerable probability mass outside of
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the uncertainty set which, in turn results, in a high lost-sales penalty. When b = 39, we found that

the relatively infrequent stock-out events, which occur on average once every 7–9 periods, account

for 70–80% of the total cost. In order to correct this we considered the following asymmetric

uncertainty set:

D[� ] =
{

d[� ]
∣

∣

∣
!̄t − !̂l

tzt ≤ dt ≤ !̄t + !̂r
t zt, 0 ≤ zt ≤ 1,

t
∑

ℓ=�

zℓ ≤ Γ�
t−�+1, ∀ � ≤ t ≤ T

}

, (42)

where !̂l
t (resp. !̂

r
t ) denotes the left (resp. right) deviation. It is clear that we recover the symmetric

uncertainty set (7) by setting !̂l
t = !̂r

t = !̂t. We re-did the cases with b = 19 and 39, where CI

with symmetric uncertainty sets performs poorly. To ensure a fair comparison, we tested CI with

asymmetric uncertainty sets on the same sample paths that we tested CI with symmetric uncertainty

sets. In our numerical experiments, we set !̂l
t = 5 and !̂r

t = 10. We report the results in Table 24.

The new results are quite encouraging. When b = 39, the cost of CI with asymmetric uncertainty

sets exceeds the optimal cost by no more than 5%.

Lead time

1 2 3 4

(c) b = 19

Optimal 19.22 20.89 22.06 22.95

CI(Asy) 19.43 +1.08% 21.41 +2.47% 23.58 +6.87% 25.58 +11.44%

(0.63) 5th (0.55) 5th (0.25) 5th (0.48) 5th

(d) b = 39

Optimal 23.87 26.21 27.96 29.36

CI(Asy) 25.00 +4.75% 26.43 +0.82% 28.77 +2.90% 30.20 +2.87%

(0.75) 7th (0.67) 3rd (1.03) 5th (0.94) 4th

Table 24: Geometric case continued

These experiments indicate that tailoring the uncertainty sets by using additional information

of the demand distribution, e.g., whether the demand is asymmetric about the mean, the tail decays

slowly, etc., and problem parameters, e.g., lost-sales penalty cost b, results in a close-to-optimal

performance for a very large set of scenarios.
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6.3 Joint pricing and inventory control

In this section, we report the empirical performance of the cycle-based joint pricing and inventory

control policy in Section 5. We continue to refer to our proposed cycle-based policy as CI.

We considered two scenarios which are adapted from the two scenarios considered in [19]. In

both scenarios, we assumed that the stochastic demand functions are of the form Qk(pk, zk) =

�k − �kpk + zk, i.e., additive demand functions with linear demand curve. Thus, Lemma 9 implies

that the inventory manager’s problem can be reformulated as a convex quadratic program. We use

Gurobi Optimizer v4.5 to solve the QPs in the implementation of CI. We set the parameters �̄t,

�̂t and Γt
j defining the uncertainty sets (34) to �̄t = z̄t, �̂t = 2�t, Γ

t
j = 1

4

√
j, for 1 ≤ t ≤ T and

1 ≤ j ≤ T − t+ 1. We also set U = 15.

We compared the performance of CI with the stochastic DP solution computed by assuming

that the random term zt was distributed according to a 5-point approximation to the N(z̄t, �
2
t )

distribution supported on the set {z̄t − 2�t, z̄t − �t, z̄t, z̄t + �t, z̄t + 2�t}. The state at each time

instance is, as before, the inventory at hand. We restricted the state x ∈ [−200, 500] and discretized

the state to take values in the set of integers. The action space in the DP was two dimensional –

u and p – and we restricted each of the two dimensions to take values in the set of integers.

Table 25 displays the parameters of the first scenario – the “Dress Scenario” in [19]. We con-

sidered the following 5 different families of realized random term distributions: normal, Student’s-

t(4), gamma, uniform and lognormal. In each configuration, {zt}Tt=1 were drawn from the same

family, and with pre-specified mean {z̄t}Tt=1 and variance {�2
t }Tt=1. For each configuration, we ran-

domly generated N = 100 random term sequences and tested the performance of CI and DP on

the same random term realizations. Since in the two scenarios of this section the variable or-

dering cost c is close to or larger than the backlogging cost b and the CI policy is myopic, the

optimal decision of the policy tends to order less over a given cycle and “transfers” the variable

ordering cost to the subsequent cycle. In order to correctly account for the externality of the or-

dering decision over a given cycle, in the numerical experiments we added another penalty term

c ⋅max{−(x� + u� −
∑�+�−1

ℓ=� Q
(l)
ℓ (pℓ, zℓ)), 0} to W (u� , p[�, �], z[�, �]), i.e., we penalized the end of

the cycle backlogged demand by b + c per unit. It is easy to see that after the modification our
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Parameter Value Parameter Value

Time horizon T 48 Std. dev. of random term �t 15

Fixed ordering cost K 500 Intercept of demand curve �t 174

Variable ordering cost/unit c 22.15 Slope of demand curve �t 3

Inventory holding cost/unit ℎ 0.22 ptmax 44

Shortage cost/unit b 21.78 ptmin 25

Mean of random term z̄t 0 Capacity M 500

Table 25: Parameters of Scenario 1 – “Dress Scenario”

DP CI

Distribution Mean: std dev Mean(%): std dev

Normal 40, 668.4 : 2, 100.3 39, 652.3(−2.50%) : 2, 236.9

T(4) 41, 123.2 : 1, 646.4 40, 224.8(−2.18%) : 1, 746.6

Gamma 41, 003.5 : 1, 615.3 40, 028.7(−2.38%) : 1, 681.2

Uniform 40, 782.6 : 1, 878.0 39, 792.9(−2.43%) : 1, 930.2

Lognormal 40, 937.1 : 1, 804.9 40, 013.7(−2.26%) : 1, 838.7

Table 26: Performance summary of Scenario 1

algorithm can be implemented in an identical fashion. We report the mean and standard deviation

of the total profit generated by CI and DP on the N = 100 sample paths. Table 26 summarizes

the performance measures. Table 27 displays the parameters of the second scenario – the “Skirt

Scenario” in [19]. We repeated the procedures as in the first scenario. Table 28 summarizes the

performance measures. In all cases considered, the average profit of CI policy is approximately

2-2.5% below that of the DP-based policy, and the difference in the average profit of CI policy and

the DP-based policy is around half of the confidence interval for the average profit of the DP-based

policy.

The main difference between the two policies is the running time. We display the running time

of both policies in Table 29. From the table, it is clear that for the two scenarios we considered, CI

is approximately 10 times faster than DP. Moreover, DP costs around 50% more time in Scenario

2 than in Scenario 1 because the price range [15, 44] contains 50% more grid points than the price

range [25, 44], whereas the running times of CI in both scenarios are almost identical. Thus, the

running time of the DP-based policy is very sensitive to the size of the parameter ranges, but that
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Parameter Value Parameter Value

Time horizon T 48 Std. dev. of random term �t 6.5

Fixed ordering cost K 500 Intercept of demand curve �t 57

Variable ordering cost/unit c 14.05 Slope of demand curve �t 1

Inventory holding cost/unit ℎ 0.17 ptmax 44

Shortage cost/unit b 16.83 ptmin 15

Mean of random term z̄t 0 Capacity M 500

Table 27: Parameters of Scenario 2 – “Skirt Scenario”

DP CI

Distribution Mean: std dev Mean(%): std dev

Normal 19, 307.4 : 874.1 18, 852.5(−2.36%) : 834.2

T(4) 19, 382.3 : 1, 038.2 18, 930.1(−2.33%) : 1, 041.8

Gamma 19, 200.2 : 941.2 18, 765.2(−2.27%) : 936.8

Uniform 19, 086.8 : 997.7 18, 652.2(−2.28%) : 966.1

Lognormal 19, 179.8 : 847.1 18, 746.4(−2.26%) : 850.3

Table 28: Performance summary of Scenario 2

the running time of CI is completely insensitive to the size of the parameter sets.

DP CI

Scenario (in seconds) Mean: std dev (in seconds)

1 72.21 8.15 : 1.20

2 106.45 8.15 : 1.29

Table 29: Running time comparison

7 Conclusions

In this paper we have proposed a new robust cycle-based control policy for a single installation,

finite horizon inventory model with non-stationary uncertain demand. Our policy is an extension

of the EOQ and (R,T )-type policies, and, like these policies, it is structurally simple and the

decisions in the policy have an intuitive appeal. Our policy provides a unified framework for

efficiently solving inventory control problems under various model assumptions. In particular, our

policy can be efficiently implemented both when the excess demand is backlogged or lost, when
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the fixed ordering cost is non-zero, and when the lead time is non-zero. The policy can also be

extended to the joint pricing and inventory control problem with a simple generalization.

The optimal decisions in our policy are computed by a Benders decomposition approach where

all the sub-problems are linear programs of modest size, even when the problem contains positive

fixed ordering costs. Since our policy only requires LP solvers, it is easily implementable and

has a higher likelihood of being adopted in practice. Our numerical experiments showed that the

performance of our policy is very close to that of the competing polices while requiring significantly

lower computing resources.

In this paper, we have restricted our attention to the single product, single installation inven-

tory models. Just as in the (R,T ) policy, the cycle length, or equivalently, the next reorder epoch,

is an explicit decision variable in our policy. Consequently, coordinating orders in more complex

inventory networks is relatively easy in the context of our policy [33]. We are currently investigat-

ing extensions of our robust cycle-based policy to more general supply chain settings, e.g., serial

system [18] and one-warehouse-multi-retailer system (OWMR) [38].
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