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1 Introduction

The Variational Inequality Problem (VIP), from now on, is a mathematical model that
embraces diverse applications that arise naturally in science and engineering. Particular cases
of these problems are: optimization problems, boundary value problems of Partial Differen-
tiable Equations (PDEs), economic equilibrium problems, traffic network equilibrium problems,
among others. We refer to reader to the two volumes monography of Facchinei and Pang [6]
for the current state of the art on the theory and algorithms for (VIP) and their existence
bibliography.

In this paper we consider the (VIP) define now on Hadamard manifolds (complete simply
connected finite-dimensional Riemannian manifolds of non positive sectional curvature): given
a nonempty closed convex set X in a Hadamard manifold M, find x∗ ∈ X and v∗ ∈ V (x∗) such
that:

(V IP ) 〈v∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ X,

where V : M→→TM is a multivalued vector field on M, TM is the tangent bundle of the
manifold M and exp−1

x∗ is the inverse of the exponential map expx∗ . Obviously, when M is the
Euclidean space this problem is the classical finite dimensional (VIP).

A motivation to study this subject is the work of Németh [10] who, motivated by the idea
of solve boundary value problems on manifolds, proposed the study of (VIP) on Riemannian
manifolds. Another one is that using (VIP) on Hadamard manifolds we can solve in particular
non convex minimization problems and non monotone singularity problems in Euclidean spaces
respectively, that is, if we can transform those problems into convex minimization and monotone
singularity problems on Hadamard manifolds respectively, we can use the algorithms introduced
on those manifolds.

Another motivation, is that the class of Hadamard manifolds is the natural motivation
to study more general spaces of nonpositive curvature such as, for example, Hadamard (also
called CAT(0)) and Alexandrov spaces. Observe that spaces of nonpositive curvature play a
significant role in many areas: Lie group theory, combinatorial and geometric group theory,
dynamical system, harmonic maps and vanishing theorems, geometric topology, Kleinian group
theory and Theichmüller theory, see the books [1, 2, 5, 9] for details.

The first study of the (VIP) on Hadamard manifolds is due to Németh [10]. In that paper,
the author generalized to Hadamard manifolds some basic existence and uniqueness theorems
of the classical theory of variational inequalities on Euclidean spaces. Those results recently
have been extended to finite dimensional Riemannian manifolds by Shu-Long Li et al. [8]. The
particular problem of finding zeros of monotone vector fields using the proximal point method
with riemannian distance has been studied by Da Cruz Neto et al. [3] and Chong Li, et al. [7].

The proximal point method to solve the minimization problem min{f(x) : x ∈M} generates
a sequence {xk} given by x0 ∈M, and

xk ∈ argmin{f(x) + (λk/2)d2(x, xk−1) : x ∈M}, (1.1)

where λk is a certain positive parameter and d is the Riemannian distance in M . It is well
known, see Ferreira and Oliveira, [11], that if M is a Hadamard manifold, f is convex in (1.1)

and {λk} satisfies
+∞∑
k=1

(1/λk) = +∞, then limk→∞ f(xk) = inf{f(x) : x ∈ M}. Furthermore,

if the optimal set is nonempty, we obtain that {xk} converges to an optimal solution of the
problem.
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Recently, Papa Quiroz and Oliveira [13] has been generalized the proximal point method
for solving quasiconvex minimization problems by using the following iteration

0 ∈ ∂̂
(
f(.) + (λk/2)d2(., xk−1)

)
(xk) (1.2)

where ∂̂ is the regular subdifferential on Hadamard manifolds. Of course both (1.1) and (1.2)
are equivalent when f is convex in M, but in the quasiconvex case these iterative schemes are
quite different in nature.

For the problem of finding a singularity of a multivalued vector field on a Hadamard mani-
fold, find x̄ ∈ M such that 0 ∈ V (x), Chong Li et al. [7] extended the proximal point method
using the iteration:

0 ∈ V (xk+1)− λk exp−1
xk+1

xk (1.3)

The authors proved that if V is a monotone and upper Kuratowski semicontinuous vector field,
V −1(0) 6= ∅ and λk satisfies

sup{λk : k ≥ 0} < +∞,

and supposing that the sequence {xk} generated by (1.3) is well defined, then {xk} converges
to a singularity of V. Furthermore, if dom(V ) = M and V is maximal monotone, then the
sequence is well defined. Also these authors given some applications in minimization problems
with constraints, minimax problems and (VIP) with univalued vector field.

In the present work we deal with the generalization of the well known proximal point method
using Bregman distances from Euclidean spaces to Hadamard manifolds to solve (VIP) with
multivalued vector field. Our algorithm, given xk−1 ∈ int(X) ∩ S, find a point xk ∈ X ∩ S̄ by
the iteration:

0 ∈ Vk(xk) :=
(
V (·) + λk∂Dh(·, xk−1)

)
(xk) (1.4)

where X is a closed convex set of M, S is a convex open set of M and Dh is the Bregman
distance with zone S, see Definition 4.2 of Section 4.

Observe that our approach has some advantages on the classical proximal point method
(1.3). One of them is that we can consider arbitrary Bregman functions, another one is that to
find {xk} in each iteration is not need to use the normal cone vector field as it was considered
in [7] and therefore, in our opinion, the introduced algorithm is more practical to solve general
(VIP).

The paper is organized as follows. In section 2 we give some results on Riemannian geometry
that we will use along the paper. In section 3, we present the Variational Inequality Problems
on Hadamard manifolds and we give some examples of problems which can be expressed as
(VIP) on Hadamard manifolds. In Section 4 the definitions of Bregman function and Bregman
distances are introduced and some necessary properties are given. Section 5, we introduce the
proximal point algorithm with Bregman distances to solve the (VIP). In Section 6 we analise
the global convergence of the algorithm. Finally in Section 7 we give our conclusions.

2 Some Results on Riemannian Geometry

In this paper we give some basic properties and notation of Riemannian manifolds that we
are going to use, we refer the reader to do Carmo [4] and Sakai [?] for details.

Let M be a differential manifold with finite dimension n. We denote by TxM the tangent

space of M at x and TM =
⋃

x∈M TxM . TxM is a linear space and has the same dimension of
M . Because we restrict ourselves to real manifolds, TxM is isomorphic to IRn. If M is endowed
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with a Riemannian metric g, then M is a Riemannian manifold and we denote it by (M,G)
or only by M when no confusion can arise, where G denotes the matrix representation of the
metric g. The inner product of two vectors u, v ∈ TxM is written as 〈u, v〉x := gx(u, v), where

gx is the metrics at point x. The norm of a vector v ∈ TxM is set by ||v||x := 〈v, v〉1/2x . If
there is no confusion we denote 〈, 〉 = 〈, 〉x and ||.|| = ||.||x. The metrics can be used to define
the length of a piecewise smooth curve α : [t0, t1]→M joining α(t0) = p′ to α(t1) = p through
L(α) =

∫ t1
t0
‖α′(t)‖α(t)dt. Minimizing this length functional over the set of all curves we obtain

a Riemannian distance d(p′, p) which induces the original topology on M .
Given two vector fields V and W in M , the covariant derivative of W in the direction V is

denoted by ∇VW . In this paper ∇ is the Levi-Civita connection associated to (M,G). This
connection defines an unique covariant derivative D/dt, where, for each vector field V , along
a smooth curve α : [t0, t1] → M , another vector field is obtained, denoted by DV/dt. The
parallel transport along α from α(t0) to α(t1), denoted by Pα,t0,t1 , is an application Pα,t0,t1 :
Tα(t0)M → Tα(t1)M defined by Pα,t0,t1(v) = V (t1) where V is the unique vector field along α
so that DV/dt = 0 and V (t0) = v. Since ∇ is a Riemannian connection, Pα,t0,t1 is a linear
isometry, furthermore P−1

α,t0,t1 = Pα,t1,t0 and Pα,t0,t1 = Pα,t,t1Pα,t0,t, for all t ∈ [t0, t1]. A curve
γ : I →M is called a geodesic if Dγ′/dt = 0.

A Riemannian manifold is complete if its geodesics are defined for any value of t ∈ IR.
Let x ∈ M , the exponential map expx : TxM → M is defined as expx(v) = γ(1), where γ is
the geodesic such that γ(0) = x and γ′(0) = v. If M is complete, then expx is defined for all
v ∈ TxM. Besides, there is a minimal geodesic (its length is equal to the distance between the
extremes).

Given the vector fields X,Y, Z on M, we denote by R the curvature tensor defined by
R(X,Y )Z = ∇Y∇XZ − ∇X∇Y Z + ∇[X,Y ]Z, where [X,Y ] := XY − Y X is the Lie bracket.
Now, the sectional curvature as regards X and Y is defined by

K(X,Y ) =
〈R(X,Y )Y,X〉

‖X‖2‖Y ‖2 − 〈X,Y 〉2
.

The gradient of a differentiable function f : M → IR, gradf , is a vector field on M defined
through df(X) = 〈gradf,X〉 = X(f), where X is also a vector field on M .

The complete simply-connected Riemannian manifolds with nonpositive curvature are called
Hadamard manifolds.

Theorem 2.1 Let M be a Hadamard manifold. Then M is diffeomorphic to the Euclidian space
IRn, n = dimM. More precisely, at any point x ∈M, the exponential mapping expx : TxM →M
is a global diffeomorphism.

Proof. See Sakai, [15], Theorem 4.1, page 221.

A consequence of the preceding theorem is that Hadamard manifolds have the property of
uniqueness of geodesic between any two points. Another useful property is the following: let
[x, y, z] be a geodesic triangle, which consists of vertices and the geodesics joining them. We
have:

Theorem 2.2 Given a geodesic triangle [x, y, z] in a Hadamard manifold, it holds that:

d2(x, z) + d2(z, y)− 2〈exp−1
z x, exp−1

z y〉 ≤ d2(x, y),

where exp−1
z denotes the inverse of expz .
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Proof. See Sakai, [15], Proposition 4.5, page 223.

Definition 2.1 Let M be a Hadamard manifold. A subset A is said to be convex in M if given
x, y ∈ A, the geodesic curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y verifies γ(t) ∈ A,
for all t ∈ [0, 1].

Definition 2.2 Let M be a Hadamard manifold and f : M → IR∪{+∞} be a proper function.
f is called convex if for all x, y ∈M and t ∈ [0, 1], it holds that

f(γ(t)) ≤ tf(y) + (1− t)f(x),

for the geodesic curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y. When the preceding
inequality is strict, for x 6= y and t ∈ (0, 1), the function f is called strictly convex.

Theorem 2.3 Let f : M → IR∪ {+∞} be a proper function with domf convex in a Hadamard
manifold M . Function f : M → IR is convex in M if and only if ∀x, y ∈M and γ : [0, 1]→M
(the geodesic joining x to y) the function f(γ(t)) is convex in [0, 1].

Proof. See [16], page 61, Theorem 2.2.

A function f : M → IR ∪ {+∞} is called concave if −f is convex. Furthermore, if f is
both convex and concave then f is said to be linear affine on M. It can be proved that, a twice
differentiable function f on an open convex set A is linear affine if and only if 〈Hf

x (v), v〉x = 0,
for all x ∈ A and v ∈ TxM. Of fact, 〈Hf

x (v), v〉x = 0, if and only if 〈Hf
x (v), v〉x ≥ 0 and

〈Hf
x (v), v〉x ≤ 0, if and only if f is convex and concave. In other words, f is linear affine if and

only if the vector field gradf is parallel.

Proposition 2.1 Let M be a Hadamard manifold and h : M → IR a differentiable function.
Let y ∈M, v ∈ TyM and define g : M → IR such that

g(x) = 〈v, exp−1
y x〉y,

for x ∈M . Then the following statements are true:

i. gradg(x) = Pγ,0,1v, where γ : [0, 1] → M is the geodesic curve such that γ(0) = y and
γ(1) = x.

ii. g is an affine function in M .

Proof. Simmilar to Papa Quiroz and Oliveira, [12], Proposition 3.4.

Definition 2.3 Let f : M → IR∪ {+∞} be a proper convex function. Given x ∈ domf, we say
that s ∈ TxM is a subgradient of f at x if

f(y) ≥ f(x) + 〈s, exp−1
x y〉,∀y ∈M

The set of all the subgradients of f at x, denoted by ∂f(x), is called the Fecnchel subdifferential
of f at x, that is,

∂f(x) := {s ∈ TxM : f(y) ≥ f(x) + 〈s, exp−1
x y〉,∀y ∈M}.

Lemma 2.1 If p : M → IR ∪ {+∞} is differentiable at x̄ then ∂p(x̄) = {gradp(x̄)}
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Proof. Since p is differentiable at x̄ we have

p(γ(t)) = p(x̄) + t〈gradp(x̄), γ′(0)〉+ o(t), (2.5)

for all geodesic γ such that γ(0) = x̄, where limt→0 o(t)/t = 0. Let s ∈ ∂p(x̄), then

p(γ(t)) ≥ p(x̄) + t〈s, γ′(0)〉, (2.6)

for all geodesic γ such that γ(0) = x̄, where limt→0 θ(t)/t = 0. From (2.5) and (2.6) we obtain

0 ≥ 〈s− gradp(x̄), γ′(0)〉 − o(t)

t

for all geodesic γ such that γ(0) = x̄. Taking in particular γ such that γ(0) = x̄ and γ′(0) =
s− gradf(x̄), and taking t→ 0, we have

s = gradp(x̄).

Definition 2.4 Let M be a Hadamard manifold. A multivalued set vector field V from M to
TM, denoted by V : M→→TM is an application from M to TM such that V (x) ⊂ TxM. The
set

dom(V ) = {x ∈M : V (x) 6= ∅}

is called the domain of V.

Definition 2.5 We say that the multivalued vector field V : M→→TM is monotone if for all
x, y ∈M the following condition is satisfied

〈Pγ,0,1v − w, exp−1
x y〉 ≥ 0, (2.7)

for all v ∈ V (y) and all w ∈ V (x), where γ is the (unique) geodesic such that γ(0) = y and
γ(1) = x.

Next, we introduce the definition of maximal vector fields and give a fundamental result which
will be very important to the convergence of the proposed method when dom(V ) ⊆ int(X)∩S.

Definition 2.6 A multivalued vector field V : M→→TM is maximal monotone if

i) V is monotone

ii) For all V ′ monotone such that V (x) ⊂ V ′(x) for all x ∈M, it holds V = V ′.

The following lemma shows that maximal monotone vector fields on Hadamard manifolds are
closed.

Lemma 2.2 If limk→+∞ z
k = z̄, V : M → TM is maximal monotone and limk→+∞ Pγk,0,1y

k =
ȳ, where γk is the geodesic such that γk(0) = zk and γk(1) = z̄, where yk ∈ V (zk), then ȳ ∈ V (z̄).

Proof. Define

V ′(z) =

{
V (z), z 6= z̄

V (z̄) ∪ {ȳ}, z = z̄
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We claim that V ′ is monotone. We need to show

〈Pγ,0,1y − y′, exp−1
z′ z〉 ≥ 0, ∀z, z ∈M ;∀y ∈ V ′(z);∀y′ ∈ V ′(z′),

where γ is the geodesic such that γ(0) = z and γ(1) = z′. By the monotonocity of V it suffices
to check the above inequality only for y′ = ȳ, z′ = z̄. From monotonicity of V we have

〈Pαk,0,1y − y
k, exp−1

zk
z〉 ≥ 0,∀z ∈M ;∀y ∈ V (z), (2.8)

where αk is the geodesic such that αk(0) = z and αk(1) = zk. Taking limits in (2.8) we obtain

〈Pγ,0,1y − ȳ, exp−1
z̄ z〉 ≥ 0,∀z ∈M ;∀y ∈ V (z).

So V ′ is monotone. Since V (x) ⊂ V ′(x), for all x ∈ M and V is monotome we conclude that
V = V ′. In particular we have V (z̄) = V ′(z̄) = V (z̄) ∪ {ȳ}, that is, ȳ ∈ V (z̄) and the lemma is
proved.

3 VIP on Hadamard Manifolds

In this paper we are interested in solving the (VIP) on Hadamard manifolds: given a
nonempty closed convex set X on a Hadamard manifold M, find x∗ ∈ X and v∗ ∈ V (x∗) such
that

〈v∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ X, (3.9)

where V : M→→TM is a multivalued vector field on M.
In an attempt to motivate our work we will give some examples of problems which can be
expressed as (VIP) on Hadamard manifolds.

3.1 Convex minimization problems on Hadamard manifolds.

Let f : M → IR be a convex function and X be a nonempty closed convex set on a Hadamard
manifold M. Consider the following optmization problem:

min{f(x) : x ∈ X}.

It can be easily proved, using Proposition 5.4 of [7], that this problem is equivalent to (3.9) for
V = ∂f.

3.2 Singularity Problems on Hadamard manifolds

Let M be a Hadamard manifold and consider V : M→→TM be a multivalued monotone vector
field. The singularity problem is to find a point x̄ ∈M such that

0 ∈ V (x̄).

It can be show that this problem is equivalent to (3.9) when X = M.
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3.3 Nash Equilibrium Problems on Hadamard Manifolds:

In a general noncooperative game, there are n players each of whom has a certain cost function
and strategy set that may depend on the other player’s actions. We assume that player i’s
strategy set is Xi, which is a subset of the Hadamard manifold Mni and is independt of the
other player’s strategies. Player i’s cost function µi(x) depends of all players strategies, which
are described by the point x = (x1, x2, ..., xn), where xi ∈ Mni for i = 1, ..., n. Player i’s
problem is to determine, for each fixed but arbitrary tuple x̃i ≡ (xj : j 6= i) of the other player’s
strategies an optimal strategy xi that solves the cost minimization problem in the variable yi :

min µi(yi, x̃
i)

s.a :
yi ∈ Xi

we denote the solution set of this optimization problem by Si(x̃
i); note the dependence of this

set on the tuple x̃i. A slight abuse of notation ocurrs in the objective function µi(yi, x̃
i); it is

understood that this mean the function µi evaluated at the points whose j− th subvector is xj

for j 6= i and whose i−th subvector is yi.
A Nash equilibrium on a Hadamard manifold is a tupla of strategies x = (xi : i = 1, 2, ..., n)

with the property that for each i, xi ∈ S(x̃i).
The following result gives a set of sufficient conditions under which a Nash equilibrium can

be obtained by solving a (VIP).

Proposition 3.1 Let each Xi be a closed convex subset of a Hadamard manifold Mni
i . Suppose

that for each fixed tuple x̃i, the function µi(., x̃
i) : M → IR is convex and continuously differ-

entiable. Then a tuple x = (xi : i = 1, ..., n) is a Nash equilibrium if, and only if, x solves the
(VIP) where X =

∏n
i=1Xi and V (x) = ((gradxi µi(x))ni=1).

Proof. By convexity and the minimum principle, if x is a Nash Equilibrium then for each
i = 1, ..., n 〈

gradxi (µi(x)), exp−1
xi
yi
〉
≥ 0, ∀yi ∈ Xi.

Thus, we obtain,

〈V (x), exp−1
x y〉 =

n∑
i=1

〈
gradxi (ui(x)), exp−1

xi
yi
〉
≥ 0,∀y ∈ X.

Conversely, if x solves the (VIP) where X =
∏n
i=1Xi and V (x) = ((gradxi µi(x))ni=1), then

〈V (x), exp−1
x y〉 ≥ 0,∀y ∈ X.

In particular, for each i = 1, ..., n, let y be the tuple whose j − th subvector is equal to xj ,
for j 6= i, and i−th subvector is equal to yi, is an arbitrary element of the set Xi. The above
inequality then becomes 〈

gradxi (ui(x)), exp−1
xi
yi
〉
≥ 0, ∀yi ∈ Xi.
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4 Bregman Distances on Hadamard Manifolds

Let M be a Hadamard manifold and S a nonempty open convex set of M with a topological
closure S̄. Let h : S̄ → IR be a differentiable function in S. Define the funcion Dh(., .) : S̄×S →
IR so that

Dh(x, y) := h(x)− h(y)− 〈gradh(y), exp−1
y x〉y. (4.10)

Let us adopt the following notation for the partial level sets of Dh. For α ∈ IR, take

Γ1(α, y) := {x ∈ S̄ : Dh(x, y) ≤ α},

Γ2(x, α) := {y ∈ S : Dh(x, y) ≤ α}.

Definition 4.1 Let M be a Hadamard manifold. A real function h : M → IR is called a
Generalized Bregman function, denoted by h ∈ GB, if there exists a nonempty open convex set
S so that

a. h is continuous on S̄;

b. h is strictly convex on S̄;

c. h is continuously differentiable in S;

d. For all α ∈ IR the partial level sets Γ1(α, y) and Γ2(x, α) are bounded for every y ∈ S and
x ∈ S̄, respectively.

In this case Dh is called generalized Bregman distance from x to y.

Definition 4.2 Let M be a Hadamard manifold. A real function h : M → IR is called a
Bregman function, denoted by h ∈ B, if there exists a nonempty open convex set S such that h
satisfies the conditions of the aforementioned definition and, also satisfies:

e. If limk→+∞ y
k = y∗ ∈ S̄, then limk→+∞Dh(y∗, yk) = 0, and

f. If limk→+∞Dh(zk, yk) = 0, limk→+∞ y
k = y∗ ∈ S̄ and {zk} is bounded, then limk→+∞ z

k =
y∗.

In this case Dh is called Bregman distance from x to y.

From the above definitions we obtain, obviously, that B ⊆ GB and the equality is satisfied when
S = M. In both definitions, the set S is called the zone of the function h. Some examples of
Bregman distance for different Riemannian manifolds have been provided by [12], Section 8.

Lemma 4.1 Let h ∈ GB with zone S. Then

i. gradDh(., y)(x) = gradh(x) − Pγ,0,1gradh(y), for all x, y ∈ S, where γ : [0, 1] → M is the
geodesic curve such that γ(0) = y and γ(1) = x.

ii. Dh(., y) is strictly convex on S̄ for all y ∈ S.

iii. For all x ∈ S̄ and y ∈ S, Dh(x, y) ≥ 0 and Dh(x, y) = 0 if and only if x = y.
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Proof. Analogous to Lemma 4.1 of [12].

Note that Dh is not a distance in the usual sense of the term. In general, the triangular
inequality is not valid, as the symmetry property.
From now on, we use the notation gradDh(x, y) to mean gradDh(., y)(x). So, if γ is the geodesic
curve so that γ(0) = y and γ(1) = x, from Lemma 4.1, i, we obtain

gradDh(x, y) = gradh(x)− Pγ,0,1gradh(y).

Lemma 4.2 Let h ∈ GB with zone S and y ∈ S. Suppose that z ∈ S, then, the function

G(x) := Dh(x, y)−Dh(x, Py)

is a linear affine on S̄.

Proof. From (4.10) G(x) = h(z) − h(y) + 〈gradh(z), exp−1
z x〉z − 〈gradh(y), exp−1

y x〉y. Due
to the affine linearity of functions 〈gradh(z), exp−1

z x〉z and 〈gradh(y), exp−1
y x〉y at x (See

Proposition 2.1, ii) the result follows.

Proposition 4.1 Let h ∈ GB with zone S. For all y, z ∈ S and x ∈ S̄ we have

〈gradDh(z, y), exp−1
z x〉 = Dh(x, y)−Dh(x, z)−Dh(z, y).

Proof. Let γ : [0, 1]→M be the geodesic curve so that γ(0) = z and γ(1) = x. Due to Lemma
4.2 the function G(x) = Dh(x, y)−Dh(x, z) is linear affine on S̄. That is, G is both convex and
concave. Then, from Theorem 2.3 we have G(γ(t)) = tG(x) + (1− t)G(z), which gives,

1

t
(Dh(γ(t), y)−Dh(z, y))− 1

t
(Dh(γ(t), z)−Dh(z, z)) = (Dh(x, y)−Dh(x, z)−Dh(z, y))

where we took into account that Dh(z, z) = 0. Taking limit when t→ 0 we obtain

〈gradDh(z, y), exp−1
z x〉 = Dh(x, y)−Dh(x, z)−Dh(z, y).

Definition 4.3 h is said be a boundary coercive function if for each {xk} ⊂ S convergent to
some point x with x ∈ Bound(S) (boundary of S) we have

lim
k→∞
〈gradh(xk), exp−1

xk
y〉 = −∞

Lemma 4.3 Let h ∈ GB with zone S and boundary coercive. Then, for each y ∈ S we obtain

∂xDh(x, y) =

{
gradh(x)− Pγ,0,1gradh(y), x ∈ S

∅, x /∈ S (4.11)

Where ∂xDh(x, y) is the Fenchel subdifferential of Dh(., y) at x.

Proof. If x ∈ S, it holds by Lemma 2.1 and Lemma 4.1. It is also clear that ∂xDh(x, y) = ∅
for x /∈ S̄. Therefore, we need consider the case when x ∈ Bound(S). Take x ∈ Bound(S) and
suppose there exists v ∈ ∂xDh(x, y). Let {ζk} ⊂ (0, 1) be a sequence such that limk→∞ ζk = 0,
and we define

xk := expx

(
ζk exp−1

x y
)
.
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This implies that
ζk〈v, exp−1

x y〉 = 〈v, exp−1
x xk〉. (4.12)

It is easy to check that xk ∈ S. Besides, As v ∈ ∂xDh(x, y) we have

Dh(xk, y) ≥ Dh(x, y) + 〈v, exp−1
x xk〉

implying that
〈v, exp−1

x xk〉 ≤ Dh(xk, y)−Dh(x, y) (4.13)

Now, by Lemma 4.1, ii, Dh(x, y) > Dh(xk, y) + 〈gradDh(xk, y), exp−1
xk
x〉, and thus

Dh(xk, y)−Dh(x, y) < −〈gradDh(xk, y), exp−1
xk
y〉. (4.14)

From (4.12) and inequalities (4.13) and (4.14) we obtain

ζk〈v, exp−1
x y〉 = 〈v, exp−1

x xk〉 < −〈gradDh(xk, y), exp−1
xk
x〉. (4.15)

We consider the function
g(z) := 〈w, exp−1

xk
z〉, ∀w ∈ TxkM (4.16)

which, by Proposition 2.1, ii, is a linear affine function, that is, g(γ(t)) = tg(y)+(1−t)g(x), ∀t ∈
[0, 1] where γ : [0, 1]→M is the geodesic curve such that γ(0) = x and γ(1) = y. Taking t = ζk
in the previous equality and as g(xk) = 0 we have g(x) = ζk

(ζk−1)g(y), i.e,

〈w, exp−1
xk
x〉 =

ζk
(ζk − 1)

〈w, exp−1
xk
y〉. (4.17)

We define,
wk := −gradDh(xk, y) (4.18)

Using (4.17) and (4.18) in (4.15), we have

〈v, exp−1
x y〉 ≤ 1

ζk − 1
〈wk, exp−1

xk
y〉 (4.19)

Observe that Dh(u, v) +Dh(v, u) = −〈gradDh(v, u), exp−1
v u〉. Using this identity in (4.19), we

have
(1− ζk) 〈v, exp−1

x y〉+Dh(xk, y) ≤ −Dh(y, xk).

Taking k → ∞ and using the boundary coercivity property of h and the definition of Dh, we
have 〈v, exp−1

x y〉+Dh(x, y) ≤ −∞, which is a contradiction. Therefore ∂xDh(x, y) = ∅ for all
x ∈ ∂S.

4.1 Fejér Convergence with Bregman Distances

Definition 4.4 Let M be a Hadamard manifold. A sequence {yk} of M is Dh-Fejér convergent
to a nonempty set U ⊂M, if

Dh(u, yk+1) ≤ Dh(u, yk),

for every u ∈ U.
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Theorem 4.1 Let M be a Hadamard manifold and h ∈ GB with zone S. If {yk} is Dh-Fejér
convergent to a nonempty set U ⊂ M, then {yk} is bounded. If, furthermore, h ∈ B and a
cluster point ȳ of {yk} belongs to U, then {yk} converges and limk→+∞ y

k = ȳ.

Proof. From the above definition

0 ≤ Dh(u, yk) ≤ Dh(u, y0), (4.20)

for all u ∈ U . Thus, yk ∈ Γ2(u, α) with α = Dh(u, y0). We can now apply Definition 4.1, d, to
see that {yk} is bounded.
Let ȳ a cluster point of {yk}, with ȳ ∈ U , then there exists a subsequence {ykj} so that
limj→∞ y

kj = ȳ. From Definition 4.1, e, it is true that limj→+∞Dh(ȳ, ykj ) = 0. From (4.20),
{Dh(ȳ, yk)} is a nonincreasing bounded below sequence with a subsequence converging to 0,
hence the overall sequence converges to 0, that is,

lim
k→+∞

Dh(ȳ, yk) = 0. (4.21)

To prove that {yk} has an unique limit point, let y′ be another limit point of {yk}. From (4.21)
liml→+∞Dh(ȳ, ykl) = 0 with liml→+∞ y

kl = y′. Using Definition 4.1, f, we have y′ = ȳ. It
follows that {yk} cannot have more than one limit point and therefore, limk→+∞ y

k = ȳ.

5 The Algorithm

We are interested in solving the (VIP): given a nonempty closed convex set X of a Hadamard
manifold M and V : M→→TM a multivalued vector field, find x∗ ∈ X and v∗ ∈ V (x∗) such
that

〈v∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ X,

PBM Algorithm

Let h ∈ GB with zone S, as defined in Section 4, such that X ∩ S̄ 6= ∅, and let Dh be the
function associate to h and defined by (4.10).

Initialization:
Let {λk} be a sequence of positive parameters and an initial point

x0 ∈ int(X) ∩ S. (5.22)

Main Steps:
For k = 1, 2, 3, ..., given xk−1 ∈ int(X) ∩ S
If 0 ∈ V (xk−1), then stop.
Otherwise, find xk ∈ X ∩ S̄, such that

0 ∈ Vk(xk) :=
(
V (·) + λk∂Dh(·, xk−1)

)
(xk) (5.23)

where ∂Dh(·, xk−1) is the Fenchel subdifferential of Dh(·, xk−1)
Take k = k + 1.

Along the paper we assume the following:

General Assumption (GA): For each k ∈ IN there exists xk ∈ int(X) ∩ S satisfying (5.23).
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Remark 5.1 Since that a broad class of Generalized Bregman functions satisfies Assumption
(GA), for example boundary coercive Bregman functions, see Lemma 4.3, that assumption is
not very restrictive.

Remark 5.2 Under assumption (GA), we have that there exists gk ∈ V (xk) such that

gk = −λkgradDh(xk, xk−1).

As we are interested in the asymptotic convergence of the method, we also assume that the
algorithm not stop in a finite number of iterations, that is, 0 /∈ V (xk−1) for all k, which
immediately implies that xk 6= xk−1, for all k.

6 Convergence for Monotone Vector Fields

In this section we also assume the following assumption:

Assumption 1: X∗ ∩ S̄ 6= ∅, where X∗ is the solution set of the (VIP) and S is the zone
of h ∈ GB.

Theorem 6.1 Under assumptions GA, 1, h ∈ GB and the monotonicity of V, the following
inequality holds

Dh(x∗, xk) ≤ Dh(x∗, xk−1)−Dh(xk, xk−1),

for all x∗ ∈ X∗ ∩ S̄. Thus, {xk} is Dh-Fejér convergent to X∗ ∩ S̄.

Proof. By assumption GA, xk ∈ intX ∩ S. As V is monotone, taking y = xk and x = x∗ in
(2.7) we have

〈Pγk,0,1v
k, exp−1

x∗ x
k〉 ≥ 0, (6.24)

for all vk ∈ V (xk), where γk : [0, 1]→M is the geodesic such that γk(0) = xk and γk(1) = x∗.
Since that the parallel transport is a linear isometry and from above inequality we have
〈vk, exp−1

xk
x∗〉 ≤ 0. Now, from Remark 5.2, taking in particular vk = −λkgradDh(xk, xk−1), we

have that
〈gradDh(xk, xk−1), exp−1

xk
x∗〉 ≥ 0.

Taking z = xk, x = x∗ and y = xk−1 in Proposition 4.1 we have

Dh(x∗, xk) ≤ Dh(x∗, xk−1)−Dh(xk, xk−1). (6.25)

Thus, we obtain Dh(x∗, xk) ≤ Dh(x∗, xk−1), since that Dh(xk, xk−1) ≥ 0. Then, by Definition
4.4, {xk} is Dh-Fejer convergent to X∗ ∩ S̄.

Corollary 6.1 Under assumptions of the previous Theorem, the sequence {xk}, generated by
the algorithm, is bounded.

Proof. It is a consequence of Theorem 4.1.

Proposition 6.1 Under assumptions GA, 1, h ∈ GB and the monotonicity of V, the following
fact are true:

a) For all x∗ ∈ X∗ ∩ S̄, {Dh(x∗, xk)} converges;
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b) limk→∞Dh(xk, xk−1) = 0;

c) Furthermore, if h ∈ B and limj→∞ x
kj−1 = x̄ then limj→∞ x

kj = x̄.

Proof.
a) From Theorem 6.1 and Lemma 4.1, iii, we have 0 ≤ Dh(x∗, xk) ≤ Dh(x∗, xk−1). Thus,
{Dh(x∗, xk)} is a nonincreasing sequence bounded from below and hence convergent.
b) Rearranging terms in the inequality (6.25), we have that

0 ≤ Dh(xk, xk−1) ≤ Dh(x∗, xk−1)−Dh(x∗, xk).

Using item a), we obtain the result.
c) Let {xkj} be a subsequence of {xk} such that limj→∞ x

kj−1 = x̄. From item b) limj→∞Dh(xkj , xkj−1) =
0; As {xkj} is bounded, then, applying Definition 4.2, f, we get limj→∞ x

kj = x̄.

Theorem 6.2 Under assumptions GA, 1, h ∈ B and the monotonicity of V, and if one of the
following condition is satisfied:

i. T is maximal and dom(V ) ⊆ int(X) ∩ S;

ii. There exists x∗ ∈ X∗ ∩ S̄ such that limk→∞Dh(x∗, xk) = 0

then, the sequence {xk} converges to a solution of the VIP.

Proof. From Corollary 6.1, we have that {xk} is bounded then there exists a point x̄ ∈ X ∩ S̄
and a subsequence {xkj} such that limj→∞ x

kj−1 = x̄. From Proposition 6.1, c, we have that
limj→∞ x

kj = x̄.
i. As dom(V ) ⊆ int(X) ∩ S and From Remark 5.2 and Proposition 6.1, c, we have that
gkj ∈ V (xkj ) and gkj → 0. Then using Lemma 2.2 we obtain that 0 ∈ V (x̄) and thus x̄ ∈ X∗.
Then using h ∈ B, theorems 6.1 and 4.1 we obtain the result.
ii. Let yj = xkj ∈ int(X) ∩ S and zj = x∗ and from assumption limj→∞Dh(zj , yj) = 0. Then,
using Definition 4.2 item f., we obtain that x̄ = x∗ ∈ X∗. Finally using that h ∈ B and Theorem
4.1 we obtain that {xk} converges to x∗.

7 Conclusion

In this paper we prove the convergence of a proximal point method using Bregman distances
to solve (VIP) with multivalued monotone vector fields. To the our knowledge, this is the
first attempt to develop a method with generalize distances on Hadamard manifolds. For a
computational implementation of the proposed method it is needed to solve the iteration (5.23)
using a local algorithm, which only provides an approximate solution. Therefore, we consider
that in a future work it is important to analyze the convergence of the proposed algorithm
considering now an inexact iteration.

On the other hand, observe that the assumption ii of Theorem 6.2 is very strong to obtain
the convergence of the proposed method. To remove this assumption is necessary to make a
deeper study of the monotone vector fields on Hadamard manifolds. This is a research that we
are doing in the working paper [14].
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