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Abstract. This paper is devoted to the study of the symmetric cone linear complemen-
tarity problem (SCLCP). In this context, our aim is to characterize the class Qb in terms
of larger classes, such as Q and R0. For this, we introduce the class F and Garćıa’s
transformations. We studied them for concrete particular instances (such as second-order
and semidefinite linear complementarity problems) and for specific examples (Lyapunov,
Stein functions, among others). This naturally permits to establish noncoercive existence
results for SCLCPs.
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1. Introduction

Consider a Euclidean Jordan algebra (V, ◦, ⟨·, ·⟩), where ◦ denotes the Jordan product
and V a finite-dimensional vector space over the real field R equipped with the inner
product ⟨·, ·⟩. Let L : V → V be a linear transformation (for short L ∈ L(V)) and q ∈ V.
This paper is devoted to the study of the symmetric cone linear complementarity problem
(SCLCP), which consists of finding an element x̄ such that:

(1) x̄ ∈ K, ȳ = L(x̄) + q ∈ K and ⟨ȳ, x̄⟩ = 0.

Here, K := {y = x ◦ x : x ∈ V}, denotes the set of squares elements in V. In what
follows, this problem will be denoted by LCP(L,K, q), and its solution will be denoted by
SOL(L,K, q). Also, its feasible set is defined to be FEAS(L,K, q) := {x ∈ K : L(x) + q ∈
K}. This problem is a particular case of a variational inequality problem (e.g. [1]), and it
provides a simple unified framework for various existing complementarity problems such
as the linear complementarity problem over the nonnegative orthant (LCP) (e.g. [2]),
the second-order cone linear complementarity problem (SOCLCP) (e.g. [3, 4]) and the
semidefinite linear complementarity problem (SDLCP) (e.g. [5, 6]), and hence has extensive
applications in engineering, economics, game theory, management science, and other fields;
see [1, 7, 8, 9] and references therein.

In the last years, SCLCP has been studied by divers authors, with special emphasis in
its particular cases: SOCLP and SDLCP. For instance, Gowda et al. [10] extended divers
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types of P-transformations and the GUS-transformation for linear transformation from
LCP to the SCLCP setting. These notions are further exploited in the papers [11, 12, 13].

A key issue in linear complementarity problems -of the form SCLCP- consists in find-
ing necessary and sufficient conditions on the linear transformation L that ensures the
nonemptyness and bounded of the solution set SOL(L,K, q) for all q. The class of linear
functions L satisfying this condition is called Qb-transformation.

The aim of this paper is to characterize classQb in the context of SCLCP. More precisely,
we are interested in to find large classes of linear functions L for which Qb behaves similar
than larger classes, such as Q and R0. For this, on the one hand, we extend from LCPs
[14] and SDLCPs [15] particular class called F. Within this class we prove that classes
Qb and Q coincide. Then, we consider subclasses of F (called F1 and F2) and study
their connections as well as different examples of linear functions L belonging to them.
We also extended a particular class, called T, which was originally defined in [16] in the
LCP framework, and compare it with class F. Actually, we prove that T ⊆ F2. We also
specialize all these classes to particular SCLCP such as LCP, SOCLCP and SDLCP. On
the other hand, we define the class of Garćıa’s transformations for SCLCPs. The latter is
an extension from LCPs to this setting (cf. [17]). See [6] to see its extension to SDLCP.
Within this class, we are able to prove that classes Q and R0 coincide. This allows to state
some existence result for SCLCPs.

The existing literature on SCLCPs includes only some few works about the class Qb. For
instance, in one of this articles, Gowda and Tao [18] show that, within the class Z, classes
Q and S behave similarly (see the definitions of S- and Z-transformations in Section 2.2).

This paper is organized as follows. Section 2 is devoted to the preliminaries. It is
split into two subsections; first one recalls basic results on Euclidean Jordan algebras,
while second one summarizes some classes of linear transformations in L(V) with their
respective connections. In Sections 3 and 4, we established our main results described
above. Indeed, Section 3 is dedicated to the study of linear functions for which classes Q
and Qb coincide, while Section 4 is devoted to existence results for SCLCPs associated
with Garćıa’s transformations, for which we prove that R0 and Qb.

2. Preliminaries

2.1. Euclidean Jordan algebras review. In this subsection, we briefly describe some
concepts, properties, and results from Euclidean Jordan algebras that are needed in this pa-
per and that have become important in the study of conic optimization; see, e.g., Schmieta
and Alizadeh [19]. Most of this material can be found in Faraut and Koyányi [20].

A Euclidean Jordan algebra is a triple (V, ◦, ⟨·, ·⟩), where (V, ⟨·, ·⟩) is a finite-dimensional
vector space over R equipped with an inner product ⟨·, ·⟩, the jordan product (x, y) 7→
x ◦ y : V× V → V is a bilinear mapping satisfying the following three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 = x ◦ x, and
(ii) ⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩ for all x, y, z ∈ V,

and there exists a unitary element e ∈ V satisfying that x◦e = x for all x ∈ V. Henceforth,
we simply say that V is a Euclidean Jordan algebra and x ◦ y is called the Jordan product
of x and y. A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two
Euclidean Jordan algebras.

In an Euclidean Jordan algebra V, it is known that the set of squares K = {x2 : x ∈ V}
is a symmetric cone (see [20, Theorem III.2.1]). This means that K is a self-dual closed
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convex cone with nonempty interior int(K) and for any two elements x, y ∈ int(K), there
exists an invertible linear transformation Γ : V → V such that Γ(K) = K and Γ(x) = y.

The rank of (V, ◦, ⟨·, ·⟩) is defined as

r = max{deg(x) : x ∈ V},
where deg(x) is the degree of x ∈ V given by

deg(x) = min{k > 0 : {e, x, x2, . . . , xk} is linearly dependent}.

Example 2.1. Typical examples of Euclidean Jordan algebras are:

(i) Euclidean Jordan algebra of n-dimensional vectors:

V = Rn, K = Rn
+, r = n, ⟨x, y⟩ =

n∑
i=1

xiyi, x ◦ y = x ∗ y,

where x ∗ y denotes the componentwise product of vectors x and y. Here, the
unitary element is e = (1, . . . , 1) ∈ Rn.

(ii) Euclidean Jordan algebra of quadratic forms:

V = Rn, K = Ln
+ = {x = (x1, x̄) ∈ R× Rn−1 : ∥x̄∥ ≤ x1}, , r = 2,

⟨x, y⟩ =
n∑

i=1

xiyi, x ◦ y = (x1, x̄) ◦ (y1, ȳ) = (⟨x, y⟩, x1ȳ + y1x̄).

In this algebra, the cone of squares is called the Lorentz cone (or the second-order
cone). Moreover, the unitary element is e = (1, 0, . . . , 0) ∈ Rn.

(iii) Euclidean Jordan algebra of n-dimensional symmetric matrices: Let Sn be the set
of all n×n real symmetric matrices and Sn

+ be the cone of n×n symmetric positive
semidefinite matrices.

V = Sn, K = Sn
+, r = n, ⟨X,Y ⟩ = tr(XY ), X ◦ Y =

1

2
(XY + Y X).

Here tr denotes the trace of a matrix X = (Xij) ∈ Sn. In this setting, the identity
matrix I ∈ Rn×n is the unit element e.

Other examples are the set of n × n hermitian positive semidefinite matrices made of
complex numbers, the set of n× n positive semidefinite matrices with quaternion entries,
the set of 3 × 3 positive semidefinite matrices with octonion entries, the exceptional 27-
dimensional Albert octonion cone (see [20, 21]).

An element c ∈ V is an idempotent if c2 = c; it is a primitive idempotent if it is nonzero
and cannot be written as a sum of two nonzero idempotents. We say that a finite set
{e1, . . . , er} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 for all i ̸= j, and
r∑

i=1

ei = e.

Note that ⟨ei, ej⟩ = ⟨ei ◦ ej , e⟩ = 0 whenever i ̸= j. The following theorem gives us
a spectral decomposition for the elements in an Euclidean Jordan algebra (see Theorem
III.1.2 of [20]).

Theorem 2.1 (Spectral decomposition theorem). Suppose that (V, ◦, ⟨·, ·⟩) is a Euclidean
Jordan algebra with rank r. Then, for every x ∈ V, there exists a Jordan frame {e1, . . . , er}
and real numbers λ1(x), . . . , λr(x) such that x = λ1(x)e1 + . . . + λr(x)er. The numbers
λi(x)’s, called the eigenvalues of x, are uniquely determined.
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It is easy to show that x ∈ K (resp. int(K)) if and only if every eigenvalue λi(x) of x is
nonnegative (resp. positive). Due to the uniqueness of the eigenvalues λi(x) we can define
the trace of a element x as tr(x) =

∑r
i=1 λi(x). Notice that the latter also implies that

tr(c) = 1 for every primitive idempotent c in V.

Remark 2.2. We recall that in any simple Euclidean Jordan algebra V, there exists a
θ > 0 such that ⟨x, y⟩ = θ · tr(x ◦ y) (see [20, Proposition III.4.1]). Hence, θ = ⟨c, e⟩ = ∥c∥2
for every primitive idempotent c in V. In particular, we have ∥ei∥2 = θ for every element
ei of a Jordan frame {e1, . . . , er}..

For any a ∈ V, the Lyapunov transformation La : V → V and the quadratic representa-
tion Pa : V → V are defined as

(2) La(x) := a ◦ x, Pa(x) := (2L2
a − La2)(x) = 2a ◦ (a ◦ x)− a2 ◦ x, for all x ∈ V.

These transformations are linear and self-adjoint on V (see [20]). In the following example,
we describe these transformations in the Euclidean Jordan algebras defined in Example
2.1.

Example 2.2. (i) For the Euclidean Jordan algebra of n-dimensional vectors, the
above transformations are given by

La(x) = Diag(a)x, Pa(x) = Diag(a2)x,

where Diag(q) denotes a diagonal matrix of size n whose diagonal entries are given
by the entries of q.

(ii) For Euclidean Jordan algebra of quadratic forms, the above transformations are

La(x) =

(
a1 ā⊤

ā a1I

)(
x1
x̄

)
, Pa(x) =

(
∥a∥2 2a1ā

⊤

2a1ā (a21 − ∥ā∥2)I + 2āā⊤

)(
x1
x̄

)
.

(iii) For the Euclidean Jordan algebra of n-dimensional symmetric matrices, the above
transformations are given by

LA(X) = A ◦X =
1

2
(AX +XA), PA(X) = AXA,

A useful tool in the theory of Euclidean Jordan algebras is the Peirce decomposition
theorem which is stated as follows (see Theorem IV.2.1 of [20]).

Theorem 2.3. Let (V, ◦, ⟨·, ·⟩) be a Euclidean Jordan algebra with rank r and let {e1, . . . , er}
be a Jordan frame in V. For i, j ∈ {1, 2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei, Vij := {x ∈ V : x ◦ ei = 1
2x = x ◦ ej}, i ̸= j.

Then, the space V is the orthogonal direct sum of subspaces Vij (i ≤ j). Furthermore,

(a) Vij ◦ Vij ⊆ Vii + Vjj;
(b) Vij ◦ Vjk ⊆ Vik if i ̸= k;
(c) Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given any Jordan frame {e1, . . . , er}, we can write any element x ∈ V as

(3) x =
∑

1≤i≤j≤r

xij =
r∑

i=1

xiei +
∑

1≤i<j≤r

xij ,

where xi ∈ R and xij ∈ Vij . Equation (3) corresponds to the Peirce decomposition of x
associated with {e1, . . . , er}.
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Example 2.3. (i) Let V = Rn and {e1, . . . , en} be the canonical basis of Rn, that
is, ei is a vector with 1 in the i-th entry and 0’s elsewhere. It is easily seen that
{e1, . . . , en} is a Jordan frame in Rn, called canonical Jordan frame, and also that

Vii = {κei : κ ∈ R}, for i = 1, . . . , n, Vij = {0}, i ̸= j.

Hence, any element x ∈ Rn can be written as x =
∑n

i=1 κiei, which denotes its
Pierce decomposition associated with {e1, . . . , en}.

(ii) Let V = Rn and {e1, e2} defined by e1 = (12 ,
1
2 ,0n−2), e2 = (12 ,−

1
2 ,0n−2), where

0n−2 is a vector of zeros in Rn−2. Clearly, this set is a Jordan frame in Rn, called
canonical Jordan frame. It is easy to verify that

Vii = {κei : κ ∈ R}, for i = 1, 2, V12 = {x ∈ Rn : x1 = x2 = 0}.
Thus, given an x ∈ V we can write

x = (x1 + x2)e1 + (x1 − x2)e2 + (0, 0, x3 . . . , xn),

which denotes its Pierce decomposition associated with {e1, e2}.
(iii) Let V = Sn and consider the set {E1, . . . , En}, where Ei is the diagonal matrix with

1 in the (i, i)-entry and 0’ elsewhere. It is easily seen that this set is a Jordan frame
in Sn, called canonical Jordan frame. Also, associated with this Jordan frame, it
is easy to verify that

Vii = {κEi : κ ∈ R}, for i = 1, . . . , n, Vij = {θEij : θ ∈ R}, i ̸= j,

where Eij is a matrix with 1 in the (i, j) and (j, i)-entries and 0’ elsewhere. Thus,
any X ∈ Sn can be written as

X =
n∑

i=1

xiiEi +
∑

1≤i<j≤n

xijEij .

This expression denotes the Pierce decomposition ofX associated with {E1, . . . , En}.

Orthogonal projection. In V, fix a Jordan frame {e1, . . . , er} and define

V(α) := {x ∈ V : x ◦ (e1 + . . .+ el) = x}
for α = {1, . . . , l} with 1 ≤ l ≤ r. This set is a subalgebra of V with rank l (see [20,

Proposition IV.1.1]). The symmetric cone in this subalgebra is defined by K(α) := {y ◦ y :

y ∈ V(α)} = V(α) ∩ K (see [12, Theorem 3.1]). Corresponding to V(α), we consider the

(orthogonal) projection P (α) : V → V(α). Let x ∈ V be written as x = u + v, where

u ∈ V(α) and v ∈ (V(α))⊥. Then, P (α)(x) = u. Now, we consider that x has the following
Peirce decomposition corresponding to {e1, . . . , er}:

x =

r∑
i=1

xiei +
∑

1≤i<j≤r

xij ,

then (see [10, Lemma 20])

P (α)(x) =

l∑
i=1

xiei +
∑

1≤i<j≤l

xij .

Note that for a given Jordan frame {e1, . . . , er}, we can permute the objects and select

the first l objects (for any 1 ≤ l ≤ r). Thus there are 2r−1 projections P (α) corresponding
to a Jordan frame.
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In a similar way one can define the subalgebra V(ᾱ) by using the set {el+1, . . . , er} and

also the projection P (ᾱ) on V(ᾱ), where ᾱ = {1, . . . , r}\α.

Example 2.4. ([10, Example 1.2]) For V = Sn, consider the Jordan frame {E1, E2, . . . , En}
(defined in Example 2.3(iii)). Let α := {1, . . . , l} with 1 ≤ l ≤ n. Then X ∈ V(α) has the
form

X =

(
Xαα 0
0 0

)
,

where Xαα is the principal submatrix of X corresponding to the index set α. Thus, we
may view V(α) as S |α|. Hence, the projection P (α) : Sn → V(α) is given by

P (α)(Y ) =

(
Yαα 0
0 0

)
.

The following result characterizes all Euclidean Jordan algebras (See [20, Propositions
III.4.4 and III.4.5, Theorem V.3.7]).

Theorem 2.4. Any Euclidean Jordan algebra is, in a unique way, a direct sum of simple
Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean Jordan
algebra is, in a unique way, a direct sum of symmetric cones in the constituent simple
Euclidean Jordan algebras.

We note that the ‘direct sum’ in the theorem refers to the orthogonal as well as the Jordan
product direct sum. Thus given a Euclidean Jordan algebra V and the corresponding
symmetric cone K, we may write

V = V1 × V2 × · · · × Vj̄ and K = K1 ×K2 × · · · × Kj̄ ,

where each Vj is a simple Jordan Algebra with the corresponding symmetric cone Kj .

Moreover, for x = (x(1), x(2), . . . , x(j̄)) and y = (y(1), y(2), . . . , y(j̄)) in V with x(j), y(j) ∈ Vj ,
we have

x ◦ y = (x(1) ◦ y(1), . . . , x(j̄) ◦ y(j̄)), ⟨x, y⟩ =
j̄∑

j=1

⟨x(j), y(j)⟩, ∥x∥2 =
j̄∑

j=1

∥x(j)∥2.

Remark 2.5. When the Jordan Algebra V is not simple (that is, when j̄ > 1 in the previous
setting), it can be verified that every primitive idempotent element c of V has necessarily

the form c = (0, 0, . . . , c(j), 0, . . . , 0) for some primitive idempotent element c(j) in Vj.

In any Euclidean Jordan algebra V, one can define automorphism groups in the following
way (Faraut and Korányi [20]).

Definition 2.6. A linear transformation Λ : V → V is said to be an automorphism of V
if Λ is invertible and

(4) Λ(x ◦ y) = Λ(x) ◦ Λ(y) for all x, y ∈ V.

The set of all automorphisms of V is denoted by Aut(V).

Definition 2.7. A linear transformation Λ : V → V is said to be an automorphism of K
if Λ(K) = K. Note that this transformation constrained to K is necessarily invertible. We
denote the set of all automorphisms of K by Aut(K), and each element of it by Γ.

It directly follows from (4) that Aut(V) ⊆ Aut(K). Moreover, if Γ ∈Aut(K), then Γ−1

and Γ⊤ ∈ Aut(K) ([12, Proposition 4.1]).
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Example 2.5. (i) For V = Rn, it is easily seen that Aut(Rn) consists of permutation
matrices, and any element in Aut(Rn

+) is a product of a permutation matrix and a
diagonal matrix with positive diagonal entries.

(ii) For V = Rn, it is known [10, example 2.1] that any automorphism Λ in Aut(Rn)

can be written as Λ =

(
1 0
0 D

)
, where D is an (n − 1) × (n − 1) orthogonal

matrix. Also, an n × n matrix Γ ∈Aut(Ln
+) if and only if there exists µ > 0 such

that

Γ⊤JΓ = µJ,

where J = Diag(1,−1, . . . ,−1) ∈ Rn×n. .
(iii) For V = Sn, it is known (see [22, Theorem 2]) that corresponding to any Λ ∈Aut(Sn),

there exists an orthogonal matrix U such that

Λ(X) = UXU⊤ (∀X ∈ Sn).

Also, for Γ ∈Aut(Sn
+), there exists an invertible matrix Q ∈ Rn×n such that

Γ(X) = QXQ⊤ (∀X ∈ Sn).

From now on, (V, ◦, ⟨·, ·⟩) will be an Euclidean Jordan algebra of rank r and {e1, . . . , er}
will be a Jordan frame in V.

We end this subsection by recalling properties that we shall employ throughout this
paper. Their proofs and more details can be found in [10, 12, 19, 20, 23].

Proposition 2.8. The following results hold:

(a) x ∈ K if and only if ⟨x, y⟩ ≥ 0 holds for all y ∈ K. Moreover, x ∈ int(K) if and
only if ⟨x, y⟩ > 0 for all y ∈ K \ {0}.

(b) For x, y ∈ V the following conditions are equivalent:
(i) x, y ∈ K, and ⟨x, y⟩ = 0.
(ii) x, y ∈ K, and x ◦ y = 0.
In each case, the elements x and y operator commute, that is, LxLy = LyLx.

(c) The elements x and y operator commute if and only if x and y have their spectral
decompositions with respect to a common Jordan frame.

(d) If x ∈ K, then P (α)(x) ∈ K(α). Moreover, if x ∈ int(K), then P (α)(x) ∈ int(K(α)).
(e) Suppose that x ∈ K and let x =

∑r
i=1 xiei +

∑
1≤i<j≤r xij be its Peirce decomposi-

tion. If xk = 0 for some index k, then
∑

1≤k<j≤r xkj +
∑

1≤i<k≤r xik = 0.

(f) For any x, y ∈ V, we have tr(x ◦ y) ≤
∑r

i=1 λi(x)λi(y). The latter holds with
equality if and only if x and y operator commute.

(g) Let x, y ∈ K. Then tr(x ◦ y) ≥ 0. Moreover, tr(x ◦ y) = 0 if and only if x ◦ y = 0.
(h) The smallest and the largest eigenvalue of x ∈ V are given by

λmin(x) = min
u̸=0

tr(x ◦ u2)
tr(u2)

, λmax(x) = max
u ̸=0

tr(x ◦ u2)
tr(u2)

.

In particular, when V is simple, these eigenvalues can be equivalently written as

λmin(x) = min
u̸=0

⟨x, u2⟩
∥u∥2

, λmax(x) = max
u ̸=0

⟨x, u2⟩
∥u∥2

.
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2.2. Linear transformations review. The literature on symmetric cone LCP (see [10,
11, 13, 18]) has already be extended, from the LCP theory. Most of the well-known classes
of matrices used in that context have been extended to symmetric cone LCP. We list these
classes here below to be employed in the sequel. Given a linear transformation L ∈ L(V),
we say that:

• L has the Q-property if SOL(L,K, q) ̸= ∅, for all q ∈ V.
• L has the Qb-property if SOL(L,K, q) ̸= ∅ and bounded, for all q ∈ V.
• L is an R0-transformation if SOL(L,K, 0) = {0}.
• L is copositive (resp. strictly copositive) if ⟨L(x), x⟩ ≥ 0 (resp. > 0) for all x ∈ K
(resp. for all x ∈ K, x ̸= 0).

• L is monotone (resp. strongly monotone) if ⟨L(x), x⟩ ≥ 0 (resp. > 0) for all x ∈ V
(resp. for all x ∈ V, x ̸= 0).

• L has the P-property if [x and L(x) operator commute and x ◦ L(x) ∈ −K ⇒
x = 0].

• L has the Q0-property if [FEAS(L,K, q) ̸= ∅ ⇒ SOL(L,K, q) ̸= ∅].
• L has the S-property if there is a x ∈ int(K) such that L(x) ∈ int(K).
• L is normal if L commutes with L⊤. Here, L⊤ : V → V denotes the transpose of
L, which is defined by ⟨L(x), y⟩ = ⟨x, L⊤(y)⟩ for all x, y ∈ V.

• L is a star-transformation if [v ∈ SOL(L,K, 0) ⇒ L⊤(v) ∈ −K].
• L has the Z-property if [x, y ∈ K, ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ ≤ 0].
• L is a Lyapunov-like transformation if [x, y ∈ K, ⟨x, y⟩ = 0 ⇒ ⟨L(x), y⟩ = 0].

It is easy to check that monotone (resp. strongly monotone) transformations are copos-
itive (resp. strictly copositive) and that Lyapunov-like transformations has Z-property.

The next proposition establishes some links between the classes mentioned above.

Proposition 2.9. Let L ∈ L(V) and q ∈ V be given. The following relations hold:

(a): L is strongly monotone =⇒ L ∈ P =⇒ L ∈ R0;
(b): L ∈ S ⇐⇒ FEAS(L,K, q) ̸= ∅ for all q ∈ V;
(c): Q = Q0 ∩ S;
(d): If L is a Lyapunov-like transformation or L ∈ R0 or skew-symmetric (that is,

L⊤ = −L) or monotone =⇒ L is a star-transformation.

Proof. Statement (a) is proven in [10]. The equality in (c) follows from (b).
(b): (⇐) Let d ∈ int(K). By hypothesis FEAS(L,K,−d) ̸= ∅, that is, there exists x ∈ K
such that y = L(x)− d ∈ K. From this we get L(x) = y + d ∈ int(K), since K + int(K) =
int(K). Hence L ∈ S.
(⇒) As K is self-dual closed convex cone with int(K) ̸= ∅, then by [24, Theorem 2.2.13]
we conclude that K has a closed bounded base, that is, K = cone(B), where B is a
compact set such that 0 /∈ B. By hypothesis there is x ∈ K such that L(x) ∈ int(K). Fix
q ∈ V. As B is compact, there exists e1, e1 such that mine∈B⟨L(x), e⟩ = ⟨L(x), e1⟩ > 0 and
mine∈B⟨q, e⟩ = ⟨q, e2⟩. Clearly, there is some t > 0 such that t⟨L(x), e1⟩+ ⟨q, e2⟩ > 0. For
each y ∈ K, there exist γ ≥ 0 and e ∈ B such that y = γe. Therefore,

⟨tL(x) + q, y⟩ = γ(t⟨L(x), e⟩+ ⟨q, e⟩) ≥ γ(t⟨L(x), e1⟩+ ⟨q, e2⟩) > 0.

Then, as y ∈ K was arbitrary, by Proposition 2.8, Part (a) we obtain that tL(x) + q =
L(tx) + q ∈ K. Thus, tx ∈ FEAS(L,K, q). The desired equivalence follows.

(d): If L is a Lyapunov-like transformation, then v ∈ SOL(L,K, 0) implies L⊤(v) =
0 ∈ −K. If L ∈ R0 or L is skew-symmetric, then the proof is trivial. If L is monotone,
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then for v ∈ SOL(L,K, 0) from ⟨L(tx − v), tx − v⟩ ≥ 0 for all t ∈ R and x ∈ K it is
not difficult to obtain that (L + L⊤)(v) ∈ K ∩ (−K). As int(K) ̸= ∅, the cone K is
pointed by [25, Exercise 6.22]; that is, K ∩ (−K) = {0}; thus, (L + L⊤)(v) = 0 and
L⊤(v) = −L(v) ∈ −K. �

3. Characterizations of Q- and Qb-transformations

A direct consequence of [1, Proposition 2.5.6] is that, within the class R0, the classes Q
and Qb coincide. This result holds even when K is a general closed convex solid cone in
the SCLCP (cf. (1)). Let us recall this result here below.

Lemma 3.1. Let L ∈ R0. Then, L ∈ Qb ⇐⇒ L ∈ Q.

Moreover, since SOL(L,K, 0) is always a cone, it also follows that:

Lemma 3.2. It holds that Qb ⊆ R0. Consequently, Qb = Q ∩R0.

Previous lemmas motivate us to study classes of linear transformations in L(V), larger
than R0, for which the last results are fulfilled.

3.1. The class of F-transformations and its subclasses. Inspired by [14] and [15,
Definition 3.5], we introduce the next new class of linear transformations in L(V).

Definition 3.3. We say that L ∈ L(V) is an F-transformation or L ∈ F if for each
v ∈ SOL(L,K, 0)\{0} there exists χv ∈ V such that

(5) (i) χv ∈ K, (ii) ⟨χv, v⟩ > 0, (iii) L⊤(χv) ∈ −K.

Indeed, this class was defined in [14] in the LCP context as follows:

Definition 3.4. A matrix M ∈ Rn×n is said to be an F1-matrix if, for every v ∈
SOL(M, 0) \ {0}, there exists a nonnegative diagonal matrix Σ such that Σv ̸= 0 and
M⊤Σv ∈ −Rn

+. Here SOL(M, q) denotes, for given M ∈ Rn×n and q ∈ Rn, the solution of
problem LCP(M, q).

Therein, the equivalence of Lemma 3.1 is proven within the class F1. This class turns
to be larger than R0, which makes the result interesting to be analyzed for more general
complementarity problems. So, in [15], this definition was extended to the SDLCP frame-
work as well as the desired equivalence between classes Q and Qb. As one can expect,
both definitions, for the LCP and the SDLCP setting, are particular cases of Definition 3.3
given above. The rest of this section is dedicated to extend the desired equivalence within
the class F and to study its different subclasses.

Given a linear transformation L : V → V and Λ ∈Aut(V), we define a linear transfor-

mation L̃ on V by

L̃ := Λ⊤LΛ.

Example 3.1. Consider in V = Sn, the automorphism Λ ∈Aut(V) defined in Example
2.5(iii). Then,

L̃(X) = U⊤L(UXU⊤)U.

The next result shows that this class is invariant under automorphisms.

Lemma 3.5. Let L : V → V be a linear transformation and Λ ∈ Aut(V) be orthogonal.

Then L has the F-property if and only if L̃ has the F-property.
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Proof. We first point out that Λ−1(SOL(L,K, q)) = SOL(L̃,K,Λ⊤q) (see [12, Theorem
5.1]).

(⇒): Let w be a nonzero solution of LCP(L̃,K, 0). Then, by above equality, we get
that for any Λ ∈ Aut(V) orthogonal, v = Λ(w) is nonzero solution of LCP(L,K, 0). So,
by hypothesis there exist a χv ∈ V such that (5) holds. Clearly, χw = Λ⊤(χv) ∈ K. Also,
⟨χw, w⟩ = ⟨χv, v⟩ > 0. Finally, since L⊤(χv) ∈ −K, Λ is orthogonal and Λ⊤(K) = K, it

follows that L̃⊤(χw) ∈ −K and hence L̃ ∈ F.
(⇐): Let v be a nonzero solution of LCP(L,K, 0). Then, by the above equality, we get that

for any Λ ∈ Aut(V) being orthogonal, w = Λ−1(v) is nonzero solution of LCP(L̃,K, 0).
Thus, by hypothesis there exist a χw ∈ V such that (5) holds. Clearly, χv = Λ(χw) ∈ K
and ⟨χv, v⟩ = ⟨χw,Λ

⊤(v)⟩ > 0, since Λ(K) = K and Λ is orthogonal. Finally, since

L̃⊤(χw) ∈ −K, L̃⊤(χw) = Λ⊤L⊤(χv) and Λ⊤(K) = K, it follows that L⊤(χv) ∈ −K and
hence L ∈ F. �

We now establish the main properties of the class F. In particular, assertion (b) below
extends Lemma 3.1 to this larger class.

Theorem 3.6. Let L ∈ L(V) be given.

(a): If L ∈ F ∩ S, then L ∈ R0 ;
(b): Let L ∈ F. Then, L ∈ Qb ⇐⇒ L ∈ Q.

Proof. (a): Let L ∈ F ∩ S. We argue by contradiction. Suppose that L ̸∈ R0, that is,
there exist v ∈ SOL(L,K, 0)\{0}. Since L ∈ F, there exists a χv satisfying (i)-(iii) in
Definition 3.3. This together with Proposition 2.8, Part (a) implies that ⟨L(x)− v, χv⟩ < 0
for all x ∈ K. Consequently, L(x) − v /∈ K for all x ∈ K. Therefore, by Proposition 2.9,
Part (b), it follows that L ̸∈ S, obtaining a contradiction.

(b): Obviously L ∈ Qb implies L ∈ Q. If L ∈ Q, then L ∈ S (cf. Proposition 2.9, Part
(c)). Thus, L ∈ F ∩ S. By item (a) above we conclude that L ∈ R0, and consequently
L ∈ Q ∩R0. We thus conclude that L ∈ Qb thanks to equality Qb = Q ∩R0 established
in Lemma 3.2. �

To check whenever a linear transformation L belongs to F can be a difficult task.
This is mainly because there is no a clear guide about how to chose, for a given v ∈
SOL(L,K, 0)\{0}, a χv satisfying conditions (i)–(iii) in Definition 3.3. For this, we focus
now on the subclass of F for which χv is chosen via Schur product (see [26, Section 5]) of
two elements.

Definition 3.7. For any A = (aij) ∈ Sr and x ∈ V, with Peirce decomposition x =∑
i≤j xij, we define the Schur product of A and x by

(6) A • x :=
∑

1≤i≤j≤r

aijxij .

Definition 3.8. Let L : V → V be a linear transformation. We say that L is an F1-
transformation or L ∈ F1, if for each v ∈ SOL(L,K, 0)\{0}, with Peirce decomposition
v =

∑
i≤j vij, there exists a matrix Ξ = (ξij) ∈ Sr

+ such that

(i) Ξ • v ∈ K (ii) ⟨Ξ • v, v⟩ > 0 (iii) L⊤(Ξ • v) ∈ −K.

Remark 3.9. Notice that, if Ξ is positive semidefinite and x ∈ K, then Ξ •x ∈ K (cf. [26,
Theorem 4]). Hence, condition (i) above becomes superfluous.
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We illustrate this concept in the Euclidean Jordan algebras defined in Example 2.1.

Example 3.2. (i) For V = Rn and K = Rn
+, we consider the Jordan frame {e1, . . . , en}

(defined in Example 2.3(i)). Then, for Ξ = (ξij) ∈ Sn
+, the Schur product of Ξ and

v ∈ SOL(L,Rn
+, 0)\{0} reduces to

Ξ • v =
n∑

i=1

ξiiviei = Diag(ξ11, . . . , ξnn)v,

where v =
∑n

i=1 viei is its Peirce decomposition associated with {e1, . . . , en}. Tak-
ing Σ = Diag(ξ11, . . . , ξnn) ∈ Sn

+, Definition 3.8 reduces to Definition 3.4 in the
LCP context.

(ii) For V = Rn, K = Ln
+, we consider the canonical Jordan frame {e1, e2}(defined

in Example 2.3(ii)). Then, for Ξ = (ξij) ∈ S2
+, the Schur product of Ξ and

v ∈ SOL(L,Ln
+, 0)\{0} reduces to

Ξ • v = ξ11(v1 + v2)e1 + ξ22(v1 − v2)e2 + ξ12(0, 0, v3, . . . , vn),

where v = (v1 + v2)e1 + (v1 − v2)e2 + (0, 0, v3, . . . , vn) is its Peirce decomposition
associated with {e1, e2}. Taking into account this, condition (ii) of Definition 3.8
is reduced to

⟨Ξ • v, v⟩ = 1

2
(ξ11(v1 + v2)

2 + ξ22(v1 − v2)
2) + ξ12∥(v3, . . . , vn)∥2 > 0.

(iii) For V = Sn and K = Sn
+, we consider {E1, . . . , En} the canonical Jordan frame

(defined in Example 2.3(iii)). Then, for Ξ = (ξij) ∈ Sn
+, the Schur product of Ξ

and V ∈ SOL(L,Sn
+, 0)\{0} coincide with the well-known Schur (or Hadamard)

product of two symmetric matrices (see [27]). Thus, Definition 3.8 reduces to
Definition of F1-transformation given in [15] in the SDLCP context: L ∈ L(Sn)
is an F1-transformation if for each V ∈ SOL(L,Sn

+, 0)\{0} there exists a matrix
Λ ∈ Sn

+ such that

(i) Λ • V ∈ Sn
+ (ii) ⟨Λ • V, V ⟩ > 0 (iii) L⊤(Λ • V ) ∈ −Sn

+.

In the following proposition we list various classes of linear transformations that are
contained in the class F1.

Proposition 3.10. L ∈ F1 if any of the following conditions is satisfied:

(a): L is a star-transformation ;
(b): L ∈ Z and

(i): −L is copositive or
(ii): L is normal ;

Proof. (a): Let v ∈ SOL(L,K, 0)\{0} with Peirce decomposition v =
∑

i≤j vij . Since L is

a star-transformation, we have L⊤(v) ∈ −K. Then, conditions (i)–(iii) of Definition 3.8
can be easily checked provided that Ξ = 11, which denotes the n× n matrix whose entries
are all equal to 1 (note that 11 ∈ Sr

+ and 11 • v = v). The result follows.
(b): Let v ∈ SOL(L,K, 0)\{0} with Peirce decomposition v =

∑
i≤j vij , that is, v, L(v) ∈

K and ⟨L(v), v⟩ = 0. Since L ∈ Z, we get ⟨L(v), L(v)⟩ ≤ 0, and consequently L(v) = 0.
We proceed to prove both cases.
(i): If −L is copositive, then ⟨L(tx+ v), tx+ v⟩ ≤ 0 for all x ∈ K and for all t > 0. From
this, after dividing by t we get t⟨L(x), x⟩+ ⟨L(x), v⟩ ≤ 0 for all t > 0. Taking limit t ↘ 0
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we obtain ⟨x, L⊤(v)⟩ ≤ 0 for all x ∈ K. From Proposition 2.8, Part (a), we conclude that
L⊤(v) ∈ −K, that is, L is a star-transformation. The desired result follows from (a).
(ii): Since L is normal and L(v) = 0, we obtain that

∥L⊤(v)∥2 = ⟨v, L(L⊤(v))⟩ = ⟨v, L⊤(L(v))⟩ = 0.

That is, L⊤(v) = 0, which is in −K. Thus, the desired result follows again from (a).
�

T-Transformation. In the following definition, we extend the notion of T-property for
matrices given in [16] to our SCLCP context.

Definition 3.11. We say that L ∈ L(V) has the T-property if for any Λ ∈ Aut(V) being
orthogonal and any index set α = {1, . . . , l} (1 ≤ l ≤ r), the existence of a solution x ∈ V
to the system
(7)

P (α)(x) ∈ int(K(α)), (I − P (α))(x) = 0, P (α)(L̃(x)) ∈ −K(α), P (ᾱ)(L̃(x)) ∈ K(ᾱ),

(I − P (α) − P (ᾱ))(L̃(x)) = 0,

ᾱ = {1, . . . , r}\α, implies that there is a nonzero y ∈ V satisfying
(8)

P (α)(y) ∈ K(α), (I − P (α))(y) = 0, P (α)(L̃⊤(y)) ∈ −K(α), P (ᾱ)(L̃⊤(y)) ∈ −K(ᾱ),

(I − P (α) − P (ᾱ))(L̃⊤(y)) = 0, ⟨P (α)(y), P (α)(L̃(x))⟩ = 0.

We illustrate this concept in some known examples of Euclidean Jordan algebras.

Example 3.3. (i) For V = Rn and K = Rn
+, we consider the Jordan frame {e1, . . . , en}

(defined in Example 2.3(i)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, it is easily

seen that V(α) = {(xα, 0) ∈ V : xα ∈ Rl} and V(ᾱ) = {(0, xᾱ) ∈ V : xᾱ ∈ R|ᾱ|}.
Hence, the projection P (α) of x ∈ V on V(α) is given by P (α)(x) =

∑l
i=1 xiei, where

x =
∑n

i=1 xiei is its Peirce decomposition. On the other hand, taking I ∈ Aut(Rn)

(because I(e) = e) we get that P (ᾱ)(L̃(x)) =
∑n

i=l+1 ziei, where L(x) =
∑n

i=1 ziei
is its Peirce decomposition associated to {e1, . . . , en}. Hence, taking into account
the above and that L(x) = Mx with M ∈ Rn×n, Definition 3.13 reduces to saying:
A matrixM ∈ Rn×n has T-property if only if for any nonempty set α = {1, . . . , l} ⊆
{1, . . . , n}, the existence of a vector xα ∈ R|α| satisfying

(9) xα > 0, Mααxα ≤ 0 and Mᾱαxα ≥ 0,

implies that there exists a nonzero vector yα ∈ R|α|
+ such that

(10) y⊤αMα· ≤ 0 and y⊤α (Mααxα) = 0.

The last definition by using subclass, coincides with that given by Aganagić and
Cottle [16] in the LCP context.

(ii) For V = Rn, K = Ln
+, we consider the canonical Jordan frame {e1, e2}(defined in

Example 2.3(ii)). Then, corresponding to α = {1, 2} we have V(α) = V (because

e1 + e2 = e) and, associated with α = {1} and ᾱ = {2} we have V(α) = V11

and V(ᾱ) = V22, respectively. Moreover, K(α) = {κe1 : κ ∈ R+}. Hence, for

α = {1}, the projection P (α) of x = (x1, . . . , xn) ∈ Rn on V(α) is given by P (α)(x) =
(x1 + x2)e1, where x = (x1 + x2)e1 + (x1 − x2)e2 + (0, 0, x3, . . . , xn) is its Peirce
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decomposition associated with {e1, e2}. On the other hand, since V(α) are one
dimensional spaces, their orthogonal projection are easily computed at the elements
of L(V1), with L ∈ L(Rn), as follows:

(11) P (α)(L(κe1)) = κ
⟨L(e1), e1⟩

∥e1∥2
e1, P (ᾱ)(L(κe1)) = κ

⟨L(e1), e2⟩
∥e2∥2

e2, κ ∈ R.

So, for L(x) = Mx with M ∈ Rn×n and for x ∈ Rn with Pierce decomposition
x = (x1 + x2)e1 + (x1 − x2)e2 + (0, 0, x3, . . . , xn), Definition 3.11, for α = {1},
reduces to:
A matrix M : Ln → Ln is said to have the T -property if for any matrix Λ =(

1 0
0 D

)
with D ∈ Rn−1×n−1 being an orthogonal matrix, the existence of a

solution x ∈ Rn to the system

(12)
x1 = x2 > 0, x3 = · · · = xn = 0, ⟨Λ⊤MΛ(e1), e1⟩ ≤ 0, p = 0,

⟨Λ⊤MΛ(e1), e2⟩ ≥ 0,

where L̃(x) = κ1e1+κ2e2+(0, 0, p), implies that there is a nonzero y ∈ Rn satisfying
(13)

y1 = y2 ≥ 0, y3 = · · · = yn = 0, y1⟨Λ⊤M⊤Λ(e1), e1⟩ ≤ 0, p′ = 0,
y1⟨Λ⊤M⊤Λ(e1), e2⟩ ≤ 0, y1⟨Λ⊤MΛ(e1), e1⟩ = 0,

where L̃⊤(y) = κ′1e1+κ′2e2+(0, 0, p′). Here we have used the Pierce decomposition
of y with respect to {e1, e2}.

(iii) For V = Sn and K = Sn
+, we consider the Jordan frame {E1, . . . , En} (defined in

Example 2.3(iii)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, taking into account
Examples 2.4, 2.5 and 3.1, Definition 3.11 reduces to saying:
A linear transformation L : Sn → Sn is said to have the T-property if for any
orthogonal matrix U ∈ Rn×n and for any index set α = {1, . . . , k}(1 ≤ k ≤ n), the
existence of a solution X ∈ Sn to the system

(14)

Xαα ∈ S |α|
++, Xij = 0, ∀i, j /∈ α, [L̃U (X)]αα ∈ −S |α|

+ , [L̃U (X)]αᾱ = 0, [L̃U (X)]ᾱᾱ ∈ S |ᾱ|
+ ,

implies that there is a nonzero matrix Y ∈ Sn satisfying

(15)
Yαα ∈ S |α|

+ , Yij = 0, ∀i, j /∈ α, [L̃⊤
U (Y )]αα ∈ −S |α|

+ , [L̃⊤
U (Y )]ᾱᾱ ∈ −S |ᾱ|

+

[L̃⊤
U (Y )]αᾱ = 0, ⟨Yαα, [L̃U (X)]αα⟩ = 0.

As far as, we know this is the first time that T-transformation is extend to a nonpoly-
hedral cone K.

The following result is a extension of [16, Proposition 2] to our SCLCP context.

Proposition 3.12. If a linear transformation L : V → V is monotone, then it has the
T-property.

Proof. Let Λ be an orthogonal automorphism of V, α = {1, . . . , l} (1 ≤ l ≤ n) be a

nonempty index set, and x ∈ V a solution of the system (7). Clearly, L̃ and L̃⊤ are

monotone. Then, from the inequality 0 ≤ ⟨x, L̃(x)⟩ = ⟨P (α)(x), P (α)(L̃(x))⟩ and the fact

that P (α)(x) ∈ int(K(α)) and P (α)(L̃(x)) ∈ −K(α), we deduce that P (α)(L̃(x)) = 0. Hence,

⟨x, L̃(x)⟩ = ⟨P (α)(x), P (α)(L̃(x))⟩ = 0.
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We claim that

P (α)(L̃⊤(x)) ∈ −K(α), P (ᾱ)(L̃⊤(x)) ∈ −K(ᾱ), (I − P (α) − P (ᾱ))(L̃⊤(x)) = 0.

Indeed, since ⟨x, (L̃ + L̃⊤)(x)⟩ = 0 and L̃+ L̃⊤ is a self-adjoint monotone linear transfor-

mation, it clearly follows that (L̃ + L̃⊤)(x) = 0. But L̃(x) ∈ K (because P (α)(L̃(x)) = 0

and (7) holds), then L̃⊤(x) ∈ −K. From this, it follows that P (α)(L̃⊤(x)) ∈ −K(α) and

P (ᾱ)(L̃⊤(x)) ∈ −K(ᾱ). On the other hand, since P (α)(x) ∈ int(K(α)), P (α)(L̃⊤(x)) ∈ −K(α)

and

⟨P (α)(L̃⊤(x)), P (α)(x)⟩ = ⟨L̃⊤(x), x⟩ = 0,

it follows that P (α)(L̃⊤(x)) = 0. This together with condition −L̃⊤(x) ∈ K and Proposition

2.8, Part (e) implies that (I − P (ᾱ))(L̃⊤(x)) = 0. Thus, y = x solve (8). �

F2-Transformation.

Definition 3.13. A linear transformation L : V → V is said to have the F2-property if
for any Λ ∈ Aut(V) orthogonal and any index set α = {1, . . . , l} (1 ≤ l ≤ r), the existence
of a solution x ∈ V to the system
(16)

P (α)(x) ∈ int(K(α)), (I − P (α))(x) = 0, (I − P (ᾱ))(L̃(x)) = 0, P (ᾱ)(L̃(x)) ∈ K(ᾱ),

ᾱ = {1, . . . , r}\α, implies that there is a nonzero y ∈ V satisfying
(17)

P (α)(y) ∈ K(α), (I − P (α))(y) = 0, (I − P (ᾱ))(L̃⊤(y)) = 0, P (ᾱ)(L̃⊤(y)) ∈ −K(ᾱ).

We illustrate this definition in the following Euclidean Jordan algebras.

Example 3.4. (i) For V = Rn and K = Rn
+, we consider the Jordan frame {e1, . . . , en}

(defined in Example 2.3(i)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Taking into
account Example 3.3, Part (ii) and that L(x) = Mx with M ∈ Rn×n, Definition
3.13 reduces to saying:
A matrixM ∈ Rn×n is an F1-matrix if only if for any nonempty set α = {1, . . . , l} ⊆
{1, . . . , n}, the existence of a vector xα ∈ R|α| satisfying

(18) xα > 0, Mααxα = 0 and Mᾱαxα ≥ 0,

implies that there exists a nonzero vector yα ∈ R|α|
+ such that

(19) y⊤αMαα = 0 and y⊤αMαᾱ ≤ 0.

The last definition by using subclass, coincides with that given by Flores and López
[14] in LCP context.

(ii) For V = Rn and K = Ln
+, we consider the Jordan frame {e1, e2} defined in Ex-

ample 3.3(ii). Then, taking into account the ideas of Example 3.3(ii) and letting
L(x) = Mx with M ∈ Rn×n for all x ∈ Rn, Definition 3.13, for α = {1}, reduces
to saying:
A matrix M ∈ Rn×n is said to have the F2-property if for any matrix Λ =(

1 0
0 D

)
with D ∈ Rn−1×n−1 an orthogonal matrix, the existence of a solution

x ∈ Rn to the system

(20) x1 = x2 > 0, x3 = · · · = xn = 0, ⟨Λ⊤MΛ(e1), e1⟩ = 0, p = 0, ⟨Λ⊤MΛ(e1), e2⟩ ≥ 0,
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where L̃(x) = κ1e1+κ2e2+(0, 0, p), implies that there is a nonzero y ∈ Rn satisfying
(21)

y1 = y2 ≥ 0, y3 = · · · = yn = 0, y1⟨Λ⊤M⊤Λ(e1), e1⟩ = 0, p′ = 0, y1⟨Λ⊤M⊤Λ(e1), e2⟩ ≤ 0,

where L̃⊤(y) = κ′1e1 + κ′2e2 + (0, 0, p′).
(iii) For V = Sn and K = Sn

+, we consider the Jordan frame {E1, . . . , En} (defined
in Example 2.3(iii)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, taking into
account Examples 2.4, 2.5(iii) and 3.1, Definition 3.13 reduces to Definition of F2-
transformation given in [15] in SDLCP context: A linear transformation L : Sn →
Sn is said to have the F2-property if for any orthogonal matrix U ∈ Rn×n and for
any index set α = {1, . . . , k}(1 ≤ k ≤ n), the existence of a solution X ∈ Sn to the
system

(22)

Xαα ∈ S |α|
++, Xij = 0,∀i, j /∈ α, [L̃U (X)]αα = 0, [L̃U (X)]αᾱ = 0, [L̃U (X)]ᾱᾱ ∈ S |ᾱ|

+ ,

implies that there is a nonzero matrix Y ∈ Sn satisfying
(23)

Yαα ∈ S |α|
+ , Yij = 0, ∀i, j /∈ α, [L̃⊤

U (Y )]αα = 0, [L̃⊤
U (Y )]αᾱ = 0 [L̃⊤

U (Y )]ᾱᾱ ∈ −S |ᾱ|
+ .

Proposition 3.14. If L has the F2-property, then L is an F-transformation.

Proof. Let v be a nonzero solution of LCP(L,K, 0). Consider an orthogonal automorphism
Λ ∈Aut(V) such that

Λ⊤(v) = Λ−1(v) =
r∑

i=1

λi(v)ei = λ1(v)e1 + . . .+ λl(v)el + 0el+1 + . . .+ 0er,

where {e1, . . . , er} is a Jordan frame of V and λi(v) > 0 for all i = 1, . . . , l, with l ∈
{1, . . . , r}. We proceed to show that x = Λ−1(v) is a solution of (16). It is immediate that

x = P (α)(x) ∈ int(K(α)), where α = {1, . . . , l}, and hence x satisfies first two conditions

of (16). Also, L̃(x) = Λ⊤(L(v)). So, since L(v) ∈ K it follows that P (ᾱ)(L̃(x)) ∈ K(ᾱ) (cf.
[12, Remark 4.1] and Proposition 2.8, Part (d)). Moreover, condition ⟨L(v), v⟩ = 0 implies

that ⟨x, L̃(x)⟩ = 0. Then, by using Proposition 2.8, Part (b) and (c), we get that L̃(x) has
the following spectral decomposition

L̃(x) =

r∑
i=1

λi(L̃(x))ei = 0e1 + . . .+ 0el + λl+1(L̃(x))el+1 + . . .+ λr(L̃(x))er,

where λi(L̃(x))ei ≥ 0 for all i = l + 1, . . . , r. From this, it follows that L̃(x) ∈ K(ᾱ) and

hence P (ᾱ)(L̃(x)) = L̃(x). Then, L̃(x) satisfies the last two conditions of (16). Therefore,
there exists a nonzero solution y of (17).

We claim that τv = Λ(y) satisfies conditions (i)–(iii) in (5). Indeed, it is obvious that

τv ∈ K, because y = P (α)(y) ∈ K(α) and Λ(K) = K. So, due to that x ∈int(K(α)), y ∈ K(α)

with y ̸= 0, from Proposition 2.8, Part (a), we get

⟨τv, v⟩ = ⟨y, x⟩ > 0.

Finally, since L⊤(τv) = (Λ⊤)−1(L̃⊤(y)) and L̃⊤(y) ∈ −K (consequence of (17)), it follows
that L⊤(τv) ∈ −K. We have thus deduced that L is an F-transformation. �

In the following proposition we list various classes of linear transformations that are
contained in the class F2.
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Proposition 3.15. L ∈ F2 if any of the following conditions is satisfied:

(a): L is a star-transformation ;
(b): L ∈ Z and

(i): −L is copositive or
(ii): L is normal ;

(c): L has T-property.

Proof. (a): Let Λ be an orthogonal automorphism of V, α = {1, . . . , l} (1 ≤ l ≤ n) be a
nonempty index set, and x ∈ V be a solution of the system (16). Let us define v = Λ(x).

Clearly, v, L(v) = (Λ⊤)−1(L̃(x)) ∈ K (because x, L̃(x) ∈ K and Λ, (Λ⊤)−1 preserve K)

and ⟨v, L(v)⟩ = ⟨x, L̃(x)⟩ = 0. Hence, v is a nonzero solution of SOL(L,K, 0). Since L is a

star-transformation, we have that L⊤(v) ∈ −K. Then, L̃⊤(x) = Λ−1L⊤(v) ∈ −K (because

Λ−1 preserve K). On the other hand, since P (α)(x) ∈ int(K(α)), P (α)(L̃⊤(x)) ∈ −K(α) (cf.
Proposition 2.8, Part (d)) and

⟨P (α)(L̃⊤(x)), P (α)(x)⟩ = ⟨L̃⊤(x), x⟩ = ⟨x, L̃(x)⟩ = 0,

it follows that P (α)(L̃⊤(x)) = 0. This together with condition −L̃⊤(x) ∈ K and Proposition

2.8, Part (e) implies that (I − P (ᾱ))(L̃⊤(x)) = 0. Therefore, y = x solves (17). Thus, we
conclude that L has the F2-property.

(b): Let Λ be an orthogonal automorphism of V, α = {1, . . . , l} (1 ≤ l ≤ n) be a nonempty
index set, and x ∈ V a solution of the system (16). As before, v = Λ(x) is a nonzero
element of SOL(L,K, 0). Since L ∈ Z, we obtain ⟨L(v), L(v)⟩ ≤ 0 and consequently

L(v) = 0. Hence, L̃(x) = Λ⊤L(v) = 0. On the other hand, as ⟨L̃(z), z⟩ = ⟨L(Λ(z)),Λ(z)⟩
and −L is copositive, it follows that −L̃ is copositive (because Λ preserve K). Moreover, as

L is normal and Λ is an orthogonal automorphism, it follows that L̃ also is normal. Thus,

the arguments given in order to prove that L ∈ F1, but applied to L̃ instead of L, imply
that L has the F2-property.

(c): If L has the T-property, then obviously L ∈ F2, since (16) implies that P (α)(L̃(x)) = 0

and this implies P (α)(L̃⊤(y)) = 0. �

3.2. Examples of transformations. In this section, we present some linear in L(V) that
belong to subclasses F1, F2 and T. These linear transformations are intensively studied
in the LCP literature.

(1) Lyapunov transformation: Let a ∈ V with V any Euclidean Jordan algebra.
The Lyapunov transformation La defined in (2) is a Lyapunov-like transformation
[13]. By Proposition 2.9, Part (d), Proposition 3.10, Part (a) and Proposition 3.15,
Part (a) we have that La ∈ F1 ∩ F2. On the other hand, if a ∈int(K), then La is
strongly monotone (cf. Proposition 2.8, Part(a)); thus, La has the T-property by
Proposition 3.12.

(2) Quadratic representation: Let V be a Euclidean Jordan algebra and a ∈ V.
If, in addition, V is simple and ±a ∈int(K), the transformation Pa is strongly
monotone (see [13, Theorem 6.5]). By Proposition 2.9, Parts (a) and (c), Propo-
sition 3.10, Part (a) and Proposition 3.15, Part (c) we have that Pa ∈ F1 ∩ F2.
On the other hand, under the same assumptions, Pa also has the T-property by
Proposition 3.12.

(3) Stein transformation: Let a ∈ V with V any Euclidean Jordan algebra. Consider
the Stein transformation Sa defined by Sa = I − Pa. If λi(±a) ⊆ (−1, 1), for all i,
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then the transformation Sa is strongly monotone (see [28, Theorem 3.3]). Hence, by
using Proposition 2.9, Parts (a) and (c), Proposition 3.10, Part (a) and Proposition
3.15, Part (c) we have that Sa ∈ F1 ∩ F2. On the other hand, under the same
assumptions, Sa also has the T-property by Proposition 3.12.

(4) The relaxation transformation: Let {e1, . . . , er} be a Jordan frame in V and
A ∈ Rr×r. We define RA : V → V as follows. For any x ∈ V, write the Peirce
decomposition x =

∑r
i=1 xiei +

∑
i<j xij . Then

RA(x) =

r∑
i=1

yiei +
∑
i<j

xij ,

where [y1, y2, . . . , yr]
⊤ = A([x1, x2, . . . , xr]

⊤). This is a generalization of a concept
introduced in [29] for V = Sn. Let A be a P-matrix (i.e all its principal minors
are positive). By [11, Proposition 5.1], the latter is equivalent to saying that RA

has the P-property, which in turn by Proposition 2.9, Parts (a) and (c), implies
that RA is star-transformation. Hence, by using Proposition 3.10, Part (a) and
Proposition 3.15, Part (a) we have that RA ∈ F1∩F2. On the other hand, if A is a
nonnegative diagonal matrix, then clearly RA is monotone transformation. Hence,
by using Proposition 3.12 we have that RA has the T-property.

4. Existence results for symmetric cone LCP’s

In this section, we present coercive and noncoercive existence results for symmetric
cone SCLCP’s. Our approach follows the same arguments of [30] for LCP’s and of [6] for
SDLCP’s. For this, we recall that problem (1) is equivalent to the following variational
inequality problem VIP(L,K, q): find an element x̄ such that:

(24) x̄ ∈ K and ⟨L(x̄) + q, x− x̄⟩ ≥ 0, for all x ∈ K.

We approximate this problem by the following sequence of variational inequality problems
VIP(L,Dk, q): find an element xk such that:

(25) xk ∈ Dk and ⟨L(xk) + q, x− xk⟩ ≥ 0 for all x ∈ Dk.

where Dk := {x ∈ K : ⟨d, x⟩ ≤ σk} with d ∈ int(K) and σk → +∞. Since each set Dk is
compact and convex, by Hartman-Stampacchia theorem we have that (25) has a nonempty
solution set SOL(L,Dk, q). Moreover, it is clear that each solution xk is a solution of (25)
if and only if Xk ∈ Ωk is an optimal solution of the linear program

inf
x

[
⟨L(xk) + q, x⟩ : x ∈ K, ⟨d, x⟩ ≤ σk

]
.

Applying optimality conditions, we obtain that xk is a solution of (25) if and only if
there exists θk ∈ R such that (xk, θk) is a solution of the following problem, called the
augmented symmetric cone LCP: find xk ∈ K and θk ≥ 0 such that

yk := L(xk)+q+θkd ∈ K, ⟨d, xk⟩ ≤ σk, ⟨yk, xk⟩ = 0 and θk(σk−⟨d, xk⟩) = 0. (ASCLCPk)

From this, we observe that

(26) ⟨d, xk⟩ < σk =⇒ θk = 0 =⇒ xk ∈ SOL(L,K, q).
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Moreover, we have from (ASCLCPk) that

(27) θk = −
⟨
L(xk) + q,

xk

σk

⟩
.

Implications (26) shows that only the case ⟨d, xk⟩ = σk, for all k ∈ N, deserves further
analysis. This analysis is carried out below by extending the arguments from [6, 30] to our
symmetric cone framework via the spectral decomposition theorem. Since ⟨d, xk⟩ = σk for

all k ∈ N, we are interested in to obtain asymptotic properties of the sequence {xk

σk
}.

As yk, x
k

σk
∈ K and ⟨yk, xk

σk
⟩ = 0 for all k ∈ N, by Proposition 2.8, Part (b) and (c), it

follows that there exists a Jordan frame {ek1, . . . , ekr} such that

(28)
xk

σk
=

r∑
i=1

λi

(
xk

σk

)
eki , yk =

r∑
i=1

λi(y
k)eki ,

where λ(x
k

σk
) := (λ1(

xk

σk
), . . . , λr(

xk

σk
)) and λ(yk) := (λ1(y

k), . . . , λr(y
k)) denote the eigen-

values of xk

σk
and yk, respectively. Therefore,

⟨
d, x

k

σk

⟩
=

∑r
i=1 λi(

xk

σk
)⟨d, eki ⟩ = 1 and since

λi(
xk

σk
)⟨d, eki ⟩ ≥ 0 for all i ∈ {1, . . . , r}, we conclude that for all k ∈ N it holds that

γk :=
(
λ1

(
xk

σk

)
⟨d, ek1⟩, . . . , λr

(
xk

σk

)
⟨d, ekr ⟩

)
∈ ∆ :=

{
γ ∈ Rr

+ :

r∑
i=1

γi = 1
}
.

As stated in [31, Theorem 18.2], the simplex ∆ can be decomposed as the disjoint union
of the relative interior of its extreme faces ∆Ji = co{(0, . . . , 0, 1︸ ︷︷ ︸

s

, 0, . . . 0) : s ∈ Ji}, with Ji

being a nonempty subindex set of {1, . . . , r} for each i = 1, . . . , 2r − 1; that is to say,

(29) ∆ =

2r−1⊔
i=1

ri
(
∆Ji

)
.

The next result describes the asymptotic behavior of the sequence {xk

σk
}.

Lemma 4.1. Let {xk} be a sequence of solutions to (ASCLCPk) such that ⟨d, xk⟩ = σk
for all k ∈ N and xk

σk
→ v for some v ∈ K. Then

(a): v ∈ SOL(L,K, τvd) with τv = −⟨L(v), v⟩ ≥ 0.

Moreover, there exist a nonempty subindex set Jv ⊆ {1, . . . , r}, a Jordan frame {e1, . . . , er}
and a subsequence {km} such that

(b): {ekm1 , . . . , ekmr } → {e1, . . . , er} and λ(x
km

σkm
) → λ(v) as m → +∞; thus γkm →

γ := (λ1(v)⟨d, e1⟩, . . . , λr(v)⟨d, er⟩) ∈ ∆.

(c): γkm ∈ ri(∆Jv); i.e., supp{λ(x
km

σkm
)} = Jv and λ(ykm)

∣∣∣
Jv

= 0 for all m ∈ N. As a

consequence supp{λ(v)} ⊆ Jv;

Finally, for every z ∈ K \ {0} with supp{λ(z)} ⊆ Jv one has

(d): ⟨ykm , z⟩ = 0 for all m ∈ N;
(e):

⟨
L(xkm) + q, z

⟨d,z⟩

⟩
= ⟨L(xkm) + q, v⟩ for all m ∈ N;

(f): ⟨L(v), z
⟨d,z⟩⟩ = ⟨L(v), v⟩.
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Proof. (a): By dividing inequality (25) by σ2
k, setting x = 0 and x = σk

⟨d,z⟩z for z ∈ K \ {0},
and taking limit k → +∞ we get ⟨L(v), v⟩ ≤ 0 and ⟨L(v), z

⟨d,z⟩ − v⟩ ≥ 0 respectively. The

results follows from this since ⟨d, v⟩ = 1.
(b): Let us consider the case when V is not necessarily simple. Due to Theorem 2.4, it

suffices to consider V = V1×V2×· · ·×Vj̄ , where each Vj is a simple Jordan Algebra with
the corresponding symmetric cone Kj and rank rj . As before, the superscript (j) is used
to denote the j-th block of a given vector in V.

Remarks 2.2 and 2.5, applied to each Vj , imply the existence of positive numbers θj , with

j = 1, . . . , j̄, such that either ||(eki )(j)||2 = 0 or ||(eki )(j)||2 = θj , for all i ∈ {1, . . . , r}, k ∈ N,
where the latter holds for one and only one block j. Then ∥eki ∥2 ≤ max{θj : j = 1, . . . , j̄},
for all i ∈ {1, . . . , r}, k ∈ N. Set θ̄ := max{θj : j = 1, . . . , j̄}. Therefore, there exists a

Jordan frame {e1, . . . , er} and a subsequence {km} such that {ekm1 , . . . , ekmr } converges to
{e1, . . . , er}. Moreover, Proposition 2.8, Part (h), yields 1

λmin(d) ≤
∑j̄

j=1 θj⟨d(j), (eki )(j)⟩∑j̄
j=1 θj∥(eki )(j)∥2

≤
θ̄
∑j̄

j=1⟨d(j), (eki )(j)⟩∑j̄
j=1 θ

2
j

=
θ̄⟨d, eki ⟩∑j̄

j=1 θ
2
j

,

for all i ∈ {1, . . . , r} and for all k ∈ N. This together with the equality
∑r

i=1 λi(
xk

σk
)⟨d, eki ⟩ =

1 implies that eigenvalues λi(
xk

σk
), with i = 1, . . . , r, are bounded. Hence, passing to a subse-

quence if necessary, it follows that {λ(xkm

σkm
)} converges to λ(v) as m → +∞. Consequently,

γkm → γ as m → +∞, and γ ∈ ∆.
(c): Since γk ∈ ∆ for all k, from decomposition (29) without loss of generality we may

consider that there exists a nonempty subindex set Jv ⊆ {1, . . . , r} such that γkm ∈ ri(∆Jv)

for all m ∈ N. Hence, we obtain that supp{λ(xkm

σkm
)} = Jv for such m (see [25, Exer-

cise 2.28(e)]). From this, we prove that supp{λ(v)} ⊆ Jv. From the spectral decomposi-
tions (28) we get

0 =
⟨xkm
σkm

, ykm
⟩

=

r∑
i,j=1

λi

(
xkm

σkm

)
λj(y

km)⟨ekmi , ekmj ⟩

=

r∑
i=1

λi

(
xkm

σkm

)
λi(y

km)∥ekmi ∥2

=
∑
i∈Jv

λi

(
xkm

σkm

)
λi(y

km)∥ekmi ∥2.

and thus λ(ykm)
∣∣∣
Jv

= 0 since λi(
xkm

σkm
) > 0 for i ∈ Jv.

(d): Let z ∈ K be such that supp{λ(z)} ⊆ Jv. By applying part (g) of Proposition 2.8
and item (c) above, we obtain:

0 ≤ tr(ykm ◦ z) ≤ ⟨λ(ykm), λ(z)⟩ = ⟨λ(ykm)
∣∣∣
Jv
, λ(z)

∣∣∣
Jv
⟩ = 0.

Therefore, tr(ykm ◦ z) = 0 for all m ∈ N. The desired result follows from Parts (g) and (b)
of Proposition 2.8.

1This upper bound can be slightly improved thanks to Remark 2.5. Indeed, one can obtain λmin(d) ≤
⟨d,eki ⟩
θji,k

≤ ⟨d,eki ⟩
minj θj

, where ji,k corresponds to the nonzero block of eki .
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(e): If z ∈ K \ {0} is such that supp{λ(z)} ⊆ Jv, then equation (27) and item (d) yield⟨
L(xkm) + q,

xkm

σkm

⟩
=

⟨
L(xkm) + q,

z

⟨d, z⟩

⟩
.

Replacing z by v, we obtain item (e).
(f): After dividing the equality in item (e) by σkm and taking the limit m → +∞ we

obtain the desired result. �
The proof of Lemma 4.1, Part (a), shows us that sets SOL(L,K, τd) for τ ≥ 0 play an

important role in our analysis. Conditions imposed to these sets allow us to extend to
SCLCP’s the following classes of linear transformations that were introduced for LCP’s by
Garćıa (see [30] and the references therein) and that were extended to SDLCP’s in [6].

Definition 4.2. Let L : V → V be a linear transformation.

• L is a Garćıa’s transformation if there exists a d ∈ int(K) such that SOL(L,K, τd) =
{0} for all τ > 0. In this case we say that L is a G-transformation with respect to
d, or simply L ∈ G(d).

• L is a #-transformation if [v ∈ SOL(L,K, 0) =⇒ (L+ L⊤)(v) ∈ K].
• L is a G#-transformation if L ∈ G and it is a #-transformation. Similarly, a
G(d)#-transformation is defined for d ∈ int(K).

Example 4.1. (1) Monotone and copositive transformations are G-transformations.
(2) Proceeding exactly as in [6, Proposition 4.8] one can prove that L ∈ # if any

of the following conditions is satisfied: L is self-adjoint (that is, L⊤ = L); L is
skew-symmetric; L ∈ R0; L is copositive; −L is a star-transformation; and L is a
star-transformation and −L⊤ ∈ Z.

The next result shows that the class G is invariant under automorphisms.

Lemma 4.3. Let L : V → V be a linear transformation. For Γ ∈ Aut(K), define

L̂ = Γ⊤LΓ. Then, L is a G-transformation with respect to d if and only if L̂ is a G-
transformation with respect to Γ⊤(d).

Proof. The result follows directly from Γ−1(SOL(L,K, d)) = SOL(L̂,K,Γ⊤(d)) (see [12,
Theorem 5.1]) and Γ⊤ ∈ Aut(K). �

The next proposition provides two characterizations of the class of Garcia’s linear trans-
formations. This is an symmetric cone version of [30, Proposition 3.1] and [6, Proposi-
tion 4.6] proved for LCP’s and SDLCP’s ,respectively.

Proposition 4.4. Let d ∈ int(K) and L : V → V be a linear transformation. Then, the
following are equivalent:

(a) L ∈ G(d);

(b)
[
v ∈ K, L(v)− ⟨L(v), v⟩d ∈ K, ⟨d, v⟩ = 1

]
=⇒ ⟨L(v), v⟩ ≥ 0;

(c)
[
v ∈ K, ⟨d, v⟩ = 1, ⟨L(v), v⟩ < 0

]
=⇒ L(v)− ⟨L(v), v⟩d /∈ K.

Proof. (a) ⇒ (b): We argue by contradiction. Suppose that the left-hand side of item
(b) holds and ⟨L(v), v⟩ < 0. It follows that ⟨L(v) − ⟨L(v), v⟩d, v⟩ = 0 and hence v ∈
SOL(L,K, τd) with τ = −⟨L(v), v⟩ > 0. By linearity we have v/τ ∈ SOL(L,K, d), which
implies that v = 0 by item (a), obtaining a contradiction with the fact that ⟨d, v⟩ = 1.
(b) ⇒ (c): We argue by contradiction. Suppose that the left-hand side of item (c) holds
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and that L(v) − ⟨L(v), v⟩d ∈ K. Then, by using item (b) we conclude that ⟨L(v), v⟩ ≥ 0,
obtaining a contradiction.
(c) ⇒ (a): We argue by contradiction. Suppose that for some τ > 0 there exists a v ̸= 0
such that v/τ ∈ SOL(L,K, d). By changing τ if necessary we may assume that ⟨d, v⟩ = 1.
By assumption we have that v, L(v)+τd ∈ K and ⟨v, L(v)+τd⟩ = 0. From this, we deduce
that ⟨L(v), v⟩ = −τ < 0. Then, by using item (c) we conclude that L(v)− ⟨L(v), v⟩d /∈ K,
obtaining a contradiction with the fact that L(v) + τd ∈ K. �

We now obtain a bound for the asymptotic cone of the solution set to symmetric cone
LCP’s for G#-transformations.

Proposition 4.5. If L ∈ G#, then SOL(L,K, q)∞ ⊆ SOL(L,K, 0) ∩ {−q}+.

Proof. Let d ∈ int(K) be such that L ∈ G#(d) and v ∈ SOL(L,K, q)∞. If v = 0 then
the inclusion is trivial. So, we consider that v ̸= 0. Without loss of generality we assume
that ⟨d, v⟩ = 1. By definition there exists {xk} and {tk} such that xk ∈ SOL(L,K, q)

for all k ∈ N, tk → +∞ and xk

tk
→ v as k → +∞. By defining σk := ⟨d, xk⟩ for all

k ∈ N it is easy to check that σk → +∞ and xk

σk
→ v. By Lemma 4.1, Part (a) we have

v ∈ SOL(L,K, τvd) \ {0} with τv = −⟨L(v), v⟩ ≥ 0. If τv > 0, then we get a contradiction
to L being a G-transformation. Therefore, τv = 0 and we have v ∈ SOL(L,K, 0). From

this and Lemma 4.1, Part (f) for z = xkm

σkm
we get ⟨L(v), xkm

σkm
⟩ = 0. Then,

0 =
⟨
L(xkm) + q,

xkm

σkm

⟩
= ⟨L(xkm) + q, v⟩ = ⟨xkm , (L+ L⊤)(v)⟩+ ⟨q, v⟩,

where we have used Lemma 4.1, Part (d) and the fact that each xkm is a solution to problem
(1). As L ∈ #, we have (L+L⊤)(v) ∈ K, which in turn by Proposition 2.8, Part (a) implies
that ⟨xkm , (L+ L⊤)(v)⟩ ≥ 0. Hence, from the above equality we get ⟨q, v⟩ ≤ 0. �

We now obtain existence results that extend [32, Theorems 9 and 11] given for LCP’s
and [6, Theorem 5.1] given for SDLCP’s.

Theorem 4.6. Let q ∈ V and L ∈ G#.

(a): If q ∈ SOL(L,K, 0)+, then SOL(L,K, q) is nonempty (possibly unbounded);
(b): If q ∈ int[SOL(L,K, 0)+], then SOL(L,K, q) is nonempty and compact.

Proof. Let d ∈ int(K) be such that L ∈ G#(d).
(a): Let {(xk, θk)} be a sequence of solutions to problems (ASCLCPk). If there exists

k ∈ N such that ⟨d, xk⟩ < σk, then by implication (26) we have that xk ∈ SOL(L,K, q)
and we are done. On the contrary, if ⟨d, xk⟩ = σk for all k ∈ N, then up to subsequences
xk

σk
→ v for some v. By Lemma 4.1, Part (a) we have v ∈ SOL(L,K, τvd). Proceeding as

in Proposition 4.5 we prove that τv = 0; thus, v ∈ SOL(L,K, 0). From this, by Lemma 4.1

there exists a nonempty subindex set Jv ⊆ {1, . . . , r} and a subsequence {xkm

σkm
} such that

supp{λ(xkm

σkm
)} = Jv and ⟨L(v), xkm⟩ = 0 for all m ∈ N. By using this, equality (27), and

Lemma 4.1, Part (e) we obtain

0 ≤ θkm = −
⟨
L(xkm) + q,

xkm

σkm

⟩
= −⟨L(xkm) + q, v⟩ = −⟨xkm , (L+ L⊤)(v)⟩ − ⟨q, v⟩.
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As v ∈ SOL(L,K, 0), by hypothesis we get ⟨q, v⟩ ≥ 0 and (L+L⊤)(v) ∈ K; thus, ⟨xkm , (L+
L⊤)(v)⟩ ≥ 0 by Proposition 2.8, Part (a). Consequently, θkm = 0 and by implication (26)
we conclude that xkm ∈ SOL(L,K, q) and we are done.

(b): From item (a) we conclude that SOL(L,K, q) ̸= ∅. To prove that this set is bounded
it is sufficient to show that SOL(L,K, q)∞ = {0}. This follows from Proposition 4.5 since by
hypothesis SOL(L,K, 0) ∩ {−q}+ = {0}. Indeed, if on the contrary we suppose that there
exists u ̸= 0 such that u ∈ SOL(L,K, 0) and ⟨q, u⟩ ≤ 0, then as q ∈ int[SOL(L,K, 0)+] =
SOL(L,K, 0)s+ (see [25, Exercise 6.22]) we obtain ⟨q, u⟩ > 0, a contradiction. �

The last theorem directly implies the following result.

Corollary 4.7. If L ∈ G, then L ∈ R0 if and only if L ∈ Qb.

Remark 4.8. The hypothesis on q of Theorem 4.6, Part (a) implies the following necessary
condition:

q ∈ SOL(L,K, 0)+ =⇒ λmax(q) ≥ 0.

Indeed, if q ∈ SOL(L,K, 0)+, then ⟨q, x⟩ ≥ 0 for all x ∈ SOL(L,K, 0). In case when V is
not simple, we denote by Vj, with j = 1, . . . , j̄, the simple Jordan Algebra located in the

j-th position, by Kj its corresponding symmetric cone, by rj its rank, and by x(j) and q(j)

the j-th block of x and q, respectively. So, Proposition 2.8, Part (f), applied to Vj, implies

that
∑j̄

j=1

∑rj
i=1 λi(q

(j))λi(x
(j)) ≥ ⟨q, x⟩ ≥ 0. But, since λi(x

(j)) ≥ 0 for all i = 1, . . . , rj

and j = 1, . . . , j̄ (because x(j) ∈ Kj), it necessarily follows that λmax(q) ≥ 0.

By taking into account Example 4.1 we now list some conditions under which the linear
transformations defined in Section 3.2 are Garćıa’s transformations.

Example 4.2. Let V be a Euclidean Jordan algebra and a ∈ V.
(1) If a ∈int(K), then La is strongly monotone (cf. Proposition 2.8, Part(a)). Thus,

La ∈ G(d) ∩R0 for any d ∈ int(K).
(2) If V is simple and ±a ∈int(K), the quadratic transformation Pa is strongly mono-

tone by [13, Theorem 6.5]. Thus, Pa ∈ G(d) ∩R0 for any d ∈ int(K).
(3) If λi(±a) ⊆ (−1, 1), for all i, then the Stein transformation Sa is strongly monotone

(see [28, Theorem 3.3]). Thus, Sa ∈ G(d) ∩R0 for any d ∈ int(K).
(4) Let A ∈ Rr×r be a nonnegative matrix, then the relaxation transformation RA is

copositive. Thus, RA ∈ G(d) for any d ∈ int(K).
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[6] López, J., López, R., Ramı́rez C., H.: Existence and stability results based on asymptotic analysis
for semidefinite linear complementary problem. Technical Report DIM-CMM No B-11/09-241 (2011),
submitted.
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