CONJUGATE GRADIENT WITH SUBSPACE OPTIMIZATION

SAHAR KARIMI AND STEPHEN VAVASIS

Abstract. In this paper we present a variant of the conjugate gradient (CG) algorithm in which
we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO
for “conjugate gradient with subspace optimization”. It is related to earlier work by Nemirovsky
and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other
CG algorithms, the update step on each iteration is a linear combination of the last gradient and
last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical
complexity bound of O(y/L/llog(1/€)), where the ratio L/l characterizes the strong convexity of the
objective function. In practice, CGSO competes with other CG-type algorithms by incorporating
some second order information in each iteration.
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1. Introduction. The method of conjugate gradients (CG) was introduced by
Hestenes and Stiefel in 1952 [8] to minimize quadratic objective functions of the form
f(x) = x!Ax/2 — b'x (or equivalently, to solve Ax = b), where A is a symmetric pos-
itive definite matrix. We refer to this algorithm as “linear conjugate gradient.” Later,
the algorithm was generalized to “nonlinear conjugate gradient” which addresses un-
constrained minimization of arbitrary differentiable objective functions, by Fletcher
and Reeves [3] and Polak and Ribiére [13], and others. Nonlinear CG algorithms all
have the property that when applied to a quadratic objective function and coupled
with an exact line search, they reduce to linear CG. None of these algorithms, how-
ever, has a known complexity bound when applied to nonquadratic functions. Indeed,
Nemirovsky and Yudin [9] argue that their worst-case complexity for strictly convex
functions is quite poor.

Nemirovsky and Yudin, on the other hand, found a different generalization of
CG. Actually, their algorithm, which we refer to as NYCG, is not a generaliza-
tion of the CG algorithm itself but rather of its derivation from some equations
and inequalities that underlie it. Their algorithm achieves a worst-case complex-
ity bound of O(In(1/€)y/L/l). Here € is the desired relative accuracy, that is, € =
(F(x™) — F(x*)/(f(x°) — f(x*)), where x° is the starting point, x* is the optimizer,
and x" is the final iterate, and L and [ characterize the convexity of f. In particular,
we assume that for all x,y lying in the level set of xV,

1460~ VIl < Llix— ]| (1)
F(¥)~ 169 = (V100 —x) + gy — x. (12)

For example, in the case of a convex quadratic function f(x) = x!Ax/2 — bix, L/l is
the condition number of A. From inequality (1.1), it follows that

F(¥) ~ 769 < (V100 =) + 2y — xP. (13)

which will be useful in our analysis.

One drawback of the NYCG algorithm is that in the case of quadratic objective
functions, it does not reduce to linear CG (and in fact, is much slower in practice). A
second drawback is that it requires prior knowledge of the ratio L/l. This is because
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the algorithm needs to be restarted every O(y/L/l) iterations in order to achieve the
above-mentioned complexity bound.

A further disadvantage of NYCG is that it has a relatively expensive computation
on every iteration, namely, one must solve a two-dimensional convex optimization
problem using the ellipsoid method. This drawback was later remedied by a different
algorithm due to Nesterov [10]. Nesterov’s algorithm generates two sequences of
iterates; the first sequence of iterates is generated such that a sufficient reduction
in objective function is achieved, and the new iterate in the second sequence is an
affine combination of the last two iterates of the first sequence. Nesterov’s algorithm,
however, still has the two disadvantages mentioned in the previous paragraph.

The purpose of this paper is to develop an algorithm that we call conjugate
gradient with subspace optimization (CGSO) that mainly avoids the disadvantages
mentioned above. CGSO is mostly closely related to NYCG. In particular, we seek a
conjugate-gradient-like algorithm with the following properties.

1. The algorithm should reduce to linear CG when the objective function is
quadratic.
2. The algorithm should have the complexity bound of O(In(1/€)\/L/1) itera-
tions for convex functions satisfying (1.1) and (1.2).
3. The algorithm should not require prior knowledge of any parameters describ-
ing f.
4. The cost per iteration should not be excessive.
The algorithm we propose achieves goals 1-3, and mostly achieves goal 4. Like NYCG,
our algorithm must solve a convex optimization subproblem on every iteration. The
dimension of the subproblem is always at least 2 and is determined adaptively by the
algorithm. The worst-case upper bound we are able to prove for the dimension of this
subproblem is O(log j), where j is the number of iterations so far. However, in our
testing, the dimension of the subproblem was 2 in almost every case; in one test case
it reached the value 3 for a few iterations, but it never exceeded 3. Furthermore, we
find that solving the subproblem is usually fairly efficient because we usually apply
Newton’s method, using automatic differentiation to obtain the necessary first and
second derivatives.

Goal 3, the condition of no prior knowledge of parameters, has the obvious benefit
of making the algorithm easier to apply in practice. It also has a second subtler
benefit. For some convex problems, e.g., minimization of a log-barrier function, there
is no prior bound on L/l over the domain of the function since the derivatives tend to
infinity at the boundaries. However, as the minimizer is approached, the bad behavior
at the boundaries becomes irrelevant, and there is a new smaller ratio L/l relevant
for level sets in the neighborhood of the minimizer. In this case, CGSO automatically
adapts to the improved value of L/I. Such adaptation is possible also with NYCG,
and Nesterov’s algorithm too, but, as far as we know, the adaptation must be done
by the user and cannot be easily automated.

Methods reviewed in this paper are among techniques that are generally referred
to as “first-order algorithms”, because they use only the first derivative information
of the function in each iteration. Due to the successful theory of NYCG and Nesterov
techniques, first-order algorithms have attracted many researchers during the last
decade and have been extended to solving different classes of problems. Nesterov in
[11] propsed a variation of his earlier algorithms for minimizing a nonsmooth function.
In addition to nonsmooth optimization, Nesterov algorithm has been adapted for
constrained problems with simple enough feasible regions so that a projection on these
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sets can be easily computed. One may refer to [15] and references therein for a more
elaborated discussion on different adaptations of Nesterov’s algorithm. The focus of
this paper, however, is more on CG algorithm and not on first-order techniques in
general.

We now provide further background on conjugate gradient. The original linear
CG has the following form:

It = 5 () & (1.4a)
(d7)" Adi’
. . (rji1)" AdJ
Qi — _pitt (g)t R (1.4Db)
j
In the above equations r/ is Vf(z) = Ax/ — b and d° = —r’. It is possible to

show that the number of iterations in linear CG is bounded by the dimension of the
problem, n. For more details on linear CG, one may refer to [5] or [12].

Nonlinear CG was proposed by Fletcher and Reeves [3] as an adaptation of the
above algorithm for minimizing a general nonlinear function. The general form of this
algorithm is as follows:

I =xI ol d, (1.5a)

d/tt = —g/tt 4 gidl. (1.5b)

Here, d7 is the search direction at each iteration, g/*! is the gradient of the
function at (j+1)th iterate, i.e., Vf(x7*1); and o7 is the step size, usually determined
by a line search. Different updating rules for 37 give us different variants of nonlinear
CG. The most common formulas for computing 37 are:

Fletcher-Reeves (1964): SBrpg = ”ﬁ;i”,
Polak-Ribiere (1969): Bpr =

(87 (&7 &)
[E]

Hager and Zhang [6] present a complete list of all updating rules in their survey on
nonlinear CG. The convergence of nonlinear CG is highly dependent on the line search;
for some the exact line search is crucial. There are numerous papers devoted to the
study of global convergence of nonlinear CG algorithms, most of which discuss variants
of nonlinear CG that do not rely on exact line search to be globally convergent. Al-
Baali [1] discusses the convergence of Fletcher-Reeves algorithm with exact line search.
Gilbert and Nocedal [4] study the convergence of nonlinear CG algorithms with no
restart and no exact line search. Dai and Yuan [2] present a nonlinear CG for which
the standard Wolfe condition suffices. A recent variant of CG has been proposed
by Hager and Zhang [7] that relies on a line search satisfying the Wolfe Conditions.
Furthermore this algorithm has the advantage that every search direction is a descent
direction, which is not necessarily the case in nonlinear CG.

From Yuan and Stoer’s perspective [16], CG is a technique in which the search
direction d?*! lies in the subspace spanned by Sp{g’,d’}. In the algorithm they
propose they compute the new search direction by minimizing a quadratic approxi-
mation of the objective function over the mentioned subspace. A more generalized
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form of CG called Heavy Ball Method, was introduced by Polyak [14], in which x7*! is
x) +a(—g’) +B(x! —x?~1). He proved a geometric progression rate for this algorithm
when « and f belong to a specific range. In the same work, Polyak reviews the CG
method; our simplest form of CGSO, which is given in section 2.1, coincides with his
presentation of CG.

The remainder of this paper is devoted to CGSO and its properties. In section
2 we describe the algorithm. Our main result on the convergence of the algorithm is
presented in section 2.3. The implementation of the algorithm is discussed in section
3; furthermore the results and comparison of CGSO with CG are presented in this
section.

2. CGSO. In this section we present CGSO for solving the problem

min f (x), (2.1)
where f(x) is a strictly convex function characterized by parameters L and [. We
follow the standard notation throughout this paper. (.,.) represents the inner product
of two vectors in proper dimension, and ||.|| stands for the 2-norm of a vector unless
otherwise is stated. Bold lower case characters and upper case characters are used for
vectors and matrices respectively; and their superscript states the iteration count.

2.1. The Algorithm. Let g(x) denote the derivative of f(x); CGSO, in its
preliminary form, is as follows:
o x" = arbitrary;
o for j=1,2,...
— xIt =xJ + afg(x?) + B?d? where
d/ =xJ —x3~! and
of, 37 = argmin,, 45 f(x) + ag(x?) + pd)

As we shall see, some modifications are necessary to achieve the desired com-
plexity bound. The above algorithm is certainly a generalization of nonlinear CG,
since each search direction is a combination of previous gradients. Notice that the
above algorithm is a descent method (i.e. f(x/T!) < f(x7)). Furthermore, the above
algorithm performs at least as well as steepest descent in each iteration; hence it con-
verges to a stationary point, which, for the class of convex problems, coincides with
the minimizer of the function.

For convenience, let us represent g(x7) by g/, and let vs(x) denote the residual
of the function, i.e. f(x) — f(x*). By strong convexity of the function, we get the
following properties for the above algorithm:

(a) fOIT) < f() — oz llg?|?
(b) (&7,x* —x7) < f(x*) — f(x))
(0) wp(x®) = F(x0) = f* > L(x* —x")?

Property (a) follows from (1.3) and the fact that f(x/™!) < f(x7—1g7). Property
(b) is true by convexity of the function, and property (c) is a direct derivation from
inequality (1.2). We are now ready to present the main lemma on the complexity
bound of the algorithm.

LEMMA 2.1. Suppose m > {8,0\/?—‘ and

(f(Xm_ll— f(XO)) mz_ bV + mz_ N <gj7xj — XO> <0, (2'2)
j=0 Jj=0
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and

Negl|l <p (M)~ eI,
=0 §j=0

Ju

(2.3)

are satisfied, where p is a constant > 1, and

i \/f(xj) — St

g’l1?

Then the residual of the function is divided in half after m iterations; i.e. vy(x™) <
1 0
5Up(x7).

Proof. Our proof is an extension of the proof in section 7.3 in [9]

. Suppose by
contradiction that m > [8;)\/?—‘, (2.2) and (2.3) are satisfied; but vs(x™) > vf(2x0)'
By definition of M/,

FOITY) = f(x) = (V)7 1712,

hence
. . L2 .
vy (7 ) = vp(x) = (V)" 1671
Summing these inequalities over j =0,--- ,;m — 1, we get:
m—1 9
0<op(x™) =op(x%) = > (V)" |Ig’|I%,
j=0

or equivalently,

m

— .2 .
(V)" llg’I” < vp (7).
=0

—

J

By convexity of the function we have,

(2.4)

(g7, x* —x7) < f(x") + f(x)) = —vp(x),
and so

_ 0
(8% ") — (&, ) —x0) < () < () < L),

Let’s consider the weighted sum of all the above inequalities for j =0,...m — 1
with weights \’s to get:

m—1 m—1 m—1
<Z )\jgj,x* —XO> _ Z A <gj7xj —XO> < _Uf(xo) Z A ,
Jj=0 Jj=0 2 Jj=0

which can be rearranged to the following form,

m—1 o v (XO) m—1 ) m—1 ) ) .
<Z)\jg3,x*x0><f2 ZAJ +Z)\]<g3,xjfx0>.
Jj=0 7=0 j=0
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Equivalently we can rewrite the above inequality as:
m—1 0 m—1
Jod w0 _ vy (x”) j
<Z Mgl x* —x > < 1 Z A
7=0 7=0

®\ 0 m—1 ) m—1 ) . ‘
- 7f(x)4f(x) ;::0)\] +§>\J<gj,x3—x0>

Using inequality (2.2) along with the facts that f(x*) < f(x?) and M/ > 0 for all
7, we get:

m—1 o v (XO) m—1 )
<Z )\Jg],x*—x0> <—fT M. (2.5)

By the Cauchy-Schwarz inequality we have

m— m—1 v XO mfl‘
Z dillEs —x0||<<2)\jg x—x><—f(4) Z)\J ;

7=0 7=0

hence

m—1

Z/\jgj |[x* = x°|| > Z/\J . (2.6)

Jj=0

By property (c) we have

0
N @.7)

Furthermore, by inequalities (2.3) and (2.4) we get:

(V)? [lg7]12 < pyfus(x0). (2.8)

Replacing inequalities (2.7) and (2.8) in inequality (2.6), we get

9 0) m-1
pr/vp(x0)4/ vf x vf X)) Z M. (2.9)
§=0

Notice that by definition of A\ and property (a), A > ﬁ for all j, so

— 1
I> =
‘ N> 2Lm

J

3

Il
<

Using this fact in inequality (2.9), we get

) /vf(xo) 2vfl(x0) . vf(4x0) (\/g m))
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L
m < 8p\/7, (2.10)

which contradicts our assumption on the value of m. 0

therefore

Lemma 2.1 shows that under conditions (2.2) and (2.3), the residual of the func-
tion is divided in half every m = O(ﬁ) iterations. For the next sequence of m

iterations, a further reduction of 1 is achieved provided (2.2) and (2.3) hold, with

™ substituted in place of x°. Hence by letting x™ be the new x° and repeating the
same algorithm, we can find the e-optimal solution in log2 [Sp\/i -‘ iterations.

Of course, m is not known to our algorithm, a point to which we return in the next
section.

2.2. Restarting. As mentioned before, the algorithm should use first 0, then
m, then 2m and so on when checking (2.2) and (2.3) in order to achieve the desired
complexity bound. We use the term “restarting” to refer to the process of replacing
xY in inequalities (2.2) and (2.3) with x™ for some m > 0. Notice that this process
does not change any of the iterates, and it only changes the interval of indices in
which we check inequalities (2.2) and (2.3).

If we know parameters of the function, i.e. L and [, we can compute m directly;
hence we would be able to determine exactly when we need to restart the algorithm.
In many cases, however, finding the parameters of the function is a nontrivial problem
itself. In order to have an algorithm which does not rely on any prior knowledge about
the function, we propose the following technique.

Since 2P < m < 2P*! for some p, by restarting the algorithm every 2P*! iterations,
we are guaranteed that the residual of the function is divided in half between every two

consecutive restarts which contains at most 2m = (16p\ﬁl iterations, where the last

statement follows from the fact that 2P*! < 2m. Since the exact value of p is usually
unknown, we repeat the above procedure for every value of p € {P,,..., P,}. In the
section on implementation of the algorithm we will discuss the range of p we used,
however note that P, does not need to exceed [log, j], where j is the current iteration
count. This is because inequalities (2.2) and (2.3) are the same for all p > [log, j].
We can now state the CGSO algorithm in a more complete form:

x" = arbitrary; p: given;
For j=1,2,...
x/*1 = argmin f(z) where B/ = x/ + Sp {g/, d’}
xXEFEI

Let A = , /L0 —76I7D)
g7l
Forp= P, ..., [log, ]
If j + 1 = k,2P for some integer kp
Let r, = (kp — 1) 27; check
xJt1 x"P . . .
(f( ) f( ))( . )_’_El Tp)\z<gl7x1_xrp><0
and
|zl e L, O g
If any of the above 1nequahtles fails, take the “correction step”.
(which will be defined in the subsequent section)




8 Sahar Karimi and Stephen Vavasis

2.3. Correction Step. Let us refer to the set of iterates between two consec-
utive restart as a “block” of iterates; in other words for any p, the set of iterates
x0 x!, ..., x% =1 is the first block of size 27, x2",x2"*1 ... x%(2")~1 is the second
block of size 2P, and so on. At the end of each block we check inequalities (2.2) and

2.3). If they are satisfied and 2P > |8p,/L |, then by Lemma 2.1 we know that the
PA/ T

residual of the function is divided in half; however if any of these inequalities fails,
then as mentioned in the previous section we need to take “correction step” for the
next block of iterates. The correction step is basically computing the next block of
iterates in a way that satisfaction of inequalities (2.2) and (2.3) is guaranteed at the
end of this block. Then the correction step is omitted in the subsequent blocks until
the inequalities are violated again.

Recall that in an ordinary step, the new iterate, x/*! is calculated by a 2-
dimensional search on the plane passing through x7, and parallel to the 2-dimensional
subspace spanned by g/, and d’. Suppose at least one of the inequalities (2.2) and
(2.3) is violated for kth block of p; i.e. for the block of iterates x, ..., x"»T2"~1
where 7, = (k — 1)2P. Then for the next block we search for the new iterate x/™! on
the space of x7 + Sp {g’,d?, qJ,x/ — x"» } where ¢} = g:Tp gt

Finding the new iterate x?*! through a search on the space that in addition to g’
and d’ includes ¢, and x? —x" is what we referred to as “correction step”. Notice that
for each p with the violated constraints we increase the dimension of the search space
by 2. However, the dimension of the search space never exceeds O(P,) = 2+2[log, j],
which happens to be the case when the inequalities are violated for all possible values
of p.

It is quite easy to see that inequalities (2.2) and (2.3) are satisfied for the (k+1)th
block of p when we take the correction step throughout it. By KKT condition, we
have <gj,xj — x’"P> = 0 for all j in this block. Using this, along with the fact that
f(x?) < f(x"™) and non-negativity of A for all j, we derive (2.2). Similarly one can
argue that by KKT <gj, qg)_1> = 0 for all j, hence

rp+2P—1 rp+2P—1
YooNg = X gl
=7y =Ty

which means inequality (2.3) is satisfied. After finding the iterates of one block

through a correction step, the algorithm switches back to taking a regular step until

the next failure of the inequalities. We can now present the algorithm in its entirety.
ALGORITHM 1.

x0 = arbitrary; p: given; S = 0.
for j=1,2,...
x/! = argmin f(x) where B9 = xJ + Sp {gj, d’, Upesqg,, Upesx? — pr}

x€EJ

, [FI) = f(x+1
Let )\J = 4]6()( ?lgjfﬁz - )
forp="P,...,[logs j]
if j + 1 = k,2P for some integer k,
Let r, = (k, —1)27
ifpe S
S =5\{p}
else (i.e. ifp &€ S), check
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FEITH—f(xTP) j i j i) gi i r
(PG - 1( )( J )\>+Zg=%)\<g,x —XP><0

4 i=Tp
and
|z, Vet < o/, 07 1lei)?
if any of the above inequalities fails, S = S U {p}
end
end
end

end
THEOREM 2.2. Suppose m > {Sp\/;—‘ , and x7 is a sequence generated by algo-

rithm 1 for solving problem (2.1); then vy(xM+m) < LTy, (xmm).

Proof. Let p < P be the integer for which 2°~! < m < 27; and let s; stand for
2P, Using algorithm 1, we are guaranteed that for at least one of any two consecutive
blocks of size s; inequalities (2.2) and (2.3) are satisfied. The size of this block is

S5 > m > {8/)\/?—‘ and hence by lemma 2.1 we have

1
vy (x"T2R) < ivf(x"m). (2.11)

Since 2s5 < 4m, so f(x"MT4m) < f(x™+25): hence
D
vf (Xnm+4m) < vf(xnm+2s5)- (212)

(2.11) and (2.12) gives us the result we wanted to show. a0

In our experiment with the algorithm, however, we only include the x/ —x"» term
in the correction step. We will discuss this and few other remarks on the implemen-
tation of the algorithm in the following section.

3. Implementation.

3.1. Solving Each Iteration. Obviously the most important part in CGSO is
solving the subspace optimization problem in each iteration. In our implementation
of the algorithm, we used Newton’s method for this task unless it fails to rapidly
converge to the optimum. In the case of failure of Newton’s algorithm, the ellipsoid
method carries out the task of solving the optimization problem. In other words we
assign an upper bound to the number of iterations that Newton’s method may take,
and if it fails to converge within the given number of iterations the algorithm switches
to the ellipsoid method for finding the next iterate.

Recall that at (j + 1)th iterate, we search for x/*1 in the space of vectors x =
x/ + ag’ + fd7 + aQ + bR, where Q € R™*I5| is the matrix formed by columns qg)
for all p € S; R is the matrix of the same dimension with columns x/ — x™ for all
peS;aBeR, and a,b € RISl are coefficients that we want to find. Let y denote
the variable of the subspace optimization problem, i.e., y = [a, 3, a’, bt]t; in addition
let B = [gj, d’, Q, R] and K = 2+2|S5|. We can now state the formal presentation
of the subspace optimization problem,

Juin f(x’ + By) (3.1)

_ As mentioned above, we solve problem (3.1) with Newton’s method. Letting
f(y) = f(x? + By) and using chain rule we get the following formulas for the gradient
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and Hessian of each Newton’s iteration,

Vi(y)=B'Vf(x) (3-2)

V2f(y) = B'V*f(x)B (3.3)

Notice that some second order information of the function comes into play in
equation (3.3); and we believe that this is one of the reasons that CGSO stands out
in practice. We compute Vf(x) and V2f(x) directly when f(x) is simple enough.
For more complicated functions we use automatic differentiation (AD) in backward
mode to compute Vf(x) and V2f(x)B. Let B®*) denote kth column of matrix B.
Backward AD enables us to keep the computational cost of V f(x) within a constant
factor of the objective function evaluation cost; and the cost of computing V2 f(x) B(¥)
within a constant factor of the computational cost of gradient evaluation. The storage
space required in backward AD, however, is more than the required storage in forward
AD; and in worst case it can be proportional to the number of operations required
for computing f(x). In spite of that, we are able to keep the storage required by
backward AD for the class of problems we studied in O(s), where s is the space
required to compute f(x). Details on our test problems are presented in section 3.2.
For more information on AD, one may refer to [12].

In addition to the storage required by AD, we need to store x?, and matrix B;

r J i J i/ i r J i ol
we also need to update and store x"», Zi:rp PR i=r, A <g , X' —X P>, i—r, gty

g:rp (A)? Hng2 for all p € {P,...,logy j}. In our experiment with CGSO we take
P, to be 4. We find that K is equal to 2 in every case except one, in which it
reaches the value of 3. Hence the required storage space for the above elements is in
O(nmax{K,log,j}).

A difficulty we need to overcome in solving a problem with CGSO, especially when
we are trying to achieve high accuracy, is round-off error. In particular f(x/)—f(x/*1),
which is required for computing A, gets more and more inaccurate as the iterates
approach the optimum. To overcome this, we took advantage of the second order
Taylor series expansion. We have a subroutine that analyze the absolute error of
f(x7) — f(x7*1) computed directly and through Taylor series, i.e. f(x7) — f(xI*!) ~
—(Vf(x) (xI T —x7) 4+ L(x7 1 —xT)!V2 f(x7) (x/T! —x7); the one with smaller error
is accepted. In some cases the error analysis is not easy, hence a heuristic is used
to choose the preferred formula. Computing the difference of two objective values is
appeared in inequality (2.2) as well, in f(x™~!) — f(x°); the same subroutine is used
to compute this term.

3.2. Numerical Results. We have tested our algorithm on the following classes
of problem:
o fi(x)=—2"1", log (ajx — b;)
e fo(x) = —c'x — log (det (C — Diag(x)))
o f3(x) =31, (alx — bi)d where d is a given even integer.

Functions f; and fo are log-barrier functions, and f3 is an approximation to the
infinity norm of the vector Ax — b. Note that we need to restrict the degree, d, to
even numbers to save the convexity of fs.

All the codes for CGSO, Ellipsoid method, and automatic differentiation are
written in MATLAB. The Hessian of f; and f3 can be derived easily in closed form.
The Hessian of fy was obtained by applying backward mode AD by hand to a program
that computes fs.
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The stopping criteria we used for both CGSO and its subproblems are |V f(x)| <

€ and ’V f(x)H < ep, respectively. In our implementation, ey at iteration j is
B'V f(x? . . .
H+{§)”; however, if the subproblem is solved by Newton’s method, the obtained

solution is usually more accurate due to the fast local convergence of the New-
ton’s method. Notice that for f; and fo we have some hidden constraints, namely
alx —b; > 0in f; and C — Diag(x) = 0 in fy. Therefore CGSO switches to ellipsoid
method if Newton’s method does not converge in 15 iterations or if the iterates get
infeasible.

In [7], Hager and Zhang compared their variant of CG with L-BFGS and PRP,
and established the superior performance of their variant of CG. Hence, we compare
our algorithm with their variant of CG, represented by CGpz in Table 3.1 that
summarizes this comparison. The top portion of the table explains the instances that
we generated randomly. Parameters m, n, d, and € are defined as above; m; for f,
represents ¢ = mye where e is the all ones vector. The point of this parameter is that
larger values of my force C' — Diag(x*) for the optimizer 2* closer to the boundary of
the feasible region, hence the problem become more ill-conditioned.

Let A be the m by n matrix formed by a! as its rows; “ds.” indicates the density,
the percentage of nonzero entries of A for fi and f3, and density of C for fo. “It. count”
for both CG gz and CGSO indicates the total number of major iteration the algorithm
takes before convergence. “LS. count” is the total iteration performed by the line
search routine in CGpy; for each iterate of LS we need one gradient evaluation. In
CGSO, one gradient and one Hessian evaluation is required for each Newton’s iterate;
and one gradient is calculated in each iteration of the ellipsoid algorithm. As table 3.1
shows, the number of iterations CGSO takes is less than CGgz in all instances, and
the number of iterations for solving subproblems is significantly less than the number
of line search iterations; especially for instances 3 and 4, this difference is considerable.
The last row of the table implies that no correction step was taken in any of these
instances, except one. Actually the purpose of “Ins. 7”7 is to show that correction
step might be required for some problems. In this instance A is a square matrix of
size 50 x 50 with O(10?) condition number. The correction step is taken throughout
7 blocks corresponding to Pj, for which the size of the subproblems reaches 3. This,
however, is consistent with the theory because the larger the condition number is, the

larger % is; therefore 27 may not be a good approximation of [Sp\/?—‘.

3.3. Parameter p. Recall that p is a parameter of CGSO required for checking
inequality (2.3). As mentioned before, we do not check inequality (2.3) in our imple-
mentation of the algorithm; instead we gather the values of p and study their trend.
Table 3.2 summarizes the maximum value p reached in each instance over all values
of p. Figure 3.1 and 3.2 depict p for Ins. 1 and Ins. 3, respectively. We chose these
instances because they have higher p,,., and iteration count in each category. Our
observation suggests that a reasonably small bound for p should suffice. Notice that
the plotted values imply that p reaches its maximum for some p and then it decreases
for higher values of p, so it does not grow with p. Furthermore, as we get closer to
the optimum parameter p gets closer to 1. This is a common pattern for all test
problems we had. Instead of fixing p one may adaptively update this parameter. In
other words, we can assign a value to p and if inequality (2.3) fails for more than a
certain number of blocks, then we increase p, and as the algorithm progresses towards
the optimum we can decrease p.
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TABLE 3.1
Comparison of CGSO and CGyz

1 f2 /3
Ins.1 | Ins. 2 || Ins. 3 | Ins. 4 || Ins. 5 | Ins. 6 | Ins. 7

m 6000 6000 - 1500 2500 50
n 2000 2000 500 1000 3000 5000 50
my - - 100 10 - - -
d - - - - 6 4 4
ds. 1 0.5 0.012 | 0.006 0.5 0.5 1
€ le-8 le-8 le-3 le-8 le-18 | 1le-18 le-8
CCry It. count 404 357 3059 928 225 203 3442
LS. count 2999 2535 92682 | 14596 || 6220 7333 | 53474
It. count 261 213 1080 419 148 136 658
CGSO Newton 402 323 1884 600 545 0 1055
ellipsoid 394 422 6195 1641 410 0 0
Corr. 0 0 0 0 0 0 7
TABLE 3.2

Parameter p

Ins. 1 Ins.2 | Ins.3 | Ins.4 | Ins.5 | Ins. 6 | Ins. 7
Pmaz | 1.9848 | 1.9803 | 3.2511 | 2.144 | 1.016 | 1.0281 | 1.9430

4. Conclusion. We presented CGSO for solving unconstrained strongly convex
functions. CGSO is a variant of CG, since the update step in each iteration is a combi-
nation of previous gradients, and it reduces to linear CG when applied to a quadratic
function. The coefficients of previous gradients, however, do not follow an updating
rule and are found by a subspace optimization subproblem. We have discussed that
these subproblems are mostly two dimensional; in some cases the dimension of the
subproblems may reach slightly higher values, but it certainly never exceeds O (log j),
where j is the iteration count. We have also shown that CGSO benefits from the

optimal complexity bound of O (\/? log (%)) in theory. CGSO does not depend on

any prior information about the function and can easily be implemented. In practice,
it outperforms the variant of CG proposed by Hager and Zhang [7] which is known to
be stronger than other techniques such as L-BFGS or PRP. Practical efficiency of
CGSO can be improved by incorporating some second order information of the func-
tion in solving the subproblems with Newton’s method as discussed in the previous
section.
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