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Abstract. Recently, Fan [4, Math. Comput., 81 (2012), pp. 447-466] proposed a modified
Levenberg-Marquardt (MLM) method for nonlinear equations. Using a trust region technique,
global and cubic convergence of the MLM method is proved [4] under the local error bound
condition, which is weaker than nonsingularity. The purpose of the paper is to investigate the
convergence properties of the MLM method with a line search technique. Since the search di-
rection of the MLM method may be not a descent direction, standard line searches can not be
used directly. In this paper, we propose a nonmonote second order Armijo line search which
guarantees the global convergence of the MLM method. Moreover, we prove that the unit step
will be always accepted finally. Then cubic convergence of the MLM method is preserved under
the local error bound condition.
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1 Introduction

Let F : Rn → Rn be a continuously differentiable mapping. Consider the system of
nonlinear equations

F (x) = 0, (1.1)

which is one of the cornerstones of computation mathematics. Throughout the paper, we
suppose that the solution set X of (1.1) is nonempty, and in all cases ‖ · ‖ stands for the
2-norm. Many efficient solution techniques like the Newton method, quasi-Newton meth-
ods, the Gauss-Newton method, the Levenberg-Marquardt method, etc. are available for
this problem such as [1, 3, 5, 8, 10, 11, 12, 14, 15, 16, 17].

In this paper, we focus on the Levenberg-Marquardt (LM) method, which computes
the search direction by

dLM
k = −(JT

k Jk + λkI)−1JT
k Fk,

where λk is a nonnegative regularized parameter, Fk = F (xk) and Jk = F ′(xk) is the
Jacobian of F at xk. It is well-known that the LM method has quadratic convergence
as the Newton method if the Jacobian is Lipschitz continuous and nonsingular at the
solution.

However, the condition on the nonsingularity of the Jacobian is very strong. Recently,
under the local error bound condition which is weaker than nonsingularity [15], Fan
[4] proposed a modified Levenberg-Marquardt (MLM) method with cubic convergence.
At each iteration, the MLM method first obtains dLM

k by solving the following linear
equations

(JT
k Jk + λkI)d = −JT

k Fk with λk = µk‖Fk‖δ, δ ∈ [1, 2],

where µk > 0 is updated from step by step using a trust region technique, then solves
the linear equations

(JT
k Jk + λkI)d = −JT

k F (yk) with yk = xk + dLM
k
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to get the approximate LM step dMLM
k and set the search direction dk = dLM

k + dMLM
k .

It is clear that dk may be not necessarily a descent direction of the merit function
‖F (x)‖2. Fan [4] obtained the global convergence of the MLM method using a trust
region technique.

However, it is not easy to prove the global convergence of the MLM method when
using line search since dk is no longer a descent direction. And hence standard line search
techniques can not be used directly in this case.

The purpose of the paper is to investigate this problem, that is, with some line search,
whether the global and cubic convergence of the MLM method can be preserved as the
trust region case under the local error bound condition.

First let us simply recall some nonmonotone line search techniques. The best known
nomonotone line search was proposed by Grippo, Lampariello and Lucidi [7] for opti-
mization, which can be written as follows:

f(xk + αkdk) ≤ max
0≤j≤M−1

f(xk−j) + γ∇f(xk)T dk,

where M is a nonnegative integer, γ ∈ (0, 1) and f is a merit function such that f(x) = 0
if and only if ‖F (x)‖ = 0. However this line search is only suitable for descent methods
which satisfy ∇f(xk)T dk < 0.

Li and Fukushima [10] presented a nonmonotone line search for nonlinear equations,
that is,

‖F (xk + αkdk)‖2 − ‖F (xk)‖2 ≤ −σ1‖αkF (xk)‖2 − σ2‖αkdk‖2 + εk‖F (xk)‖2, (1.2)

where σ1, σ2 are positive constants and the positive sequence {εk} satisfies (1.8). This
line search can avoid the necessity of descent directions to ensure that each iteration
is well defined. However it is not suitable for the MLM method since the direction of
this method contains two parts. Hence we need to modify this line search for the MLM
method.

Note that Goldfarb [6, 14] proposed a second order Armijo step rule for the negative
curvature direction method for solving optimization, which is given by

f(xk + αksk + α2dk) ≤ γ
(
αks

T
k∇f(xk) +

1
2
α4

kd
T
k∇2f(xk)dk

)
, (1.3)

where γ ∈ (0, 1) and (sk, dk) is a descent pair(please see [6, 14]) of the objective function
f at xk.

Motivated by (1.2) and (1.3), in this paper, we propose a new nonmonotone second
order Armijo type line search (1.7) below. Now it is convenient for us to present the
complete algorithm with this new line search as follows.
Algorithm 1.1 (The MLM method with line search).

Step 1. Choose a starting point x0 ∈ Rn and several constants µ > 0, σ1, σ2, σ3 > 0
and r, ρ ∈ (0, 1). Let k := 0.

Step 2. If ‖JT
k Fk‖ = 0, then stop. Otherwise compute dk by solving the following

linear equations

(JT
k Jk + λkI)d = −JT

k Fk with λk = µ‖Fk‖. (1.4)

Then solve the following linear equations to obtain d̂k:

(JT
k Jk + λkI)d = −JT

k F (yk) with yk = xk + dk. (1.5)
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Step 3. If
‖F (xk + dk + d̂k)‖ ≤ ρ‖Fk‖, (1.6)

then take αk = 1 and go to Step 5. Otherwise go to Step 4.

Step 4. Compute αk = max{1, r1, r2, · · · } with α = ri satisfying

‖F (xk + αdk + α2d̂k)‖2 − ‖Fk‖2

≤ −σ1α
2‖dk‖2 − σ2α

2‖d̂‖2 − σ3α
2‖Fk‖2 + εk‖Fk‖2, (1.7)

where {εk} is a given positive sequence such that

∞∑

k=0

εk < ∞. (1.8)

Step 5. Set xk+1 = xk + αkdk + α2
kd̂k. Let k := k + 1 and go to Step 2.

Remark: (i) It is clear that as α → 0+, the left-hand side of (1.7) goes to zero, while the
right-hand side tends to the positive εk‖Fk‖2. Thus (1.7) is satisfied for all sufficiently
small α > 0. Then the algorithm is well defined.

(ii) The computation cost of the MLM method is almost as same as that of the stan-
dard LM method since (1.5) only involves F (yk) and can use the available decomposition
of JT

k Jk + λkI after solving (1.4).
(iii) In [4], the parameter λk = µk‖Fk‖δ with δ ∈ [1, 2]. In Algorithm 1.1, we only set

λk = µ‖Fk‖ which is also suggested by Kelley in his book [9].
The paper is organized as follows. In Section 2, we show the global convergence

of Algorithm 1.1 under suitable conditions. In Section 3, we prove that αk ≡ 1 for
sufficiently large k. And hence the cubic convergence of Algorithm 1.1 is still preserved
under the local error bound condition.

2 Global convergence

Define the level set
Ω = {x| ‖F (x)‖ ≤ e

ε
2 ‖F0‖}, (2.1)

where ε is a positive constant such that

∞∑

k=0

εk ≤ ε < ∞. (2.2)

Lemma 2.1. [2, Lemma 3.3] Let {ak} and {rk} be positive sequences satisfying ak+1 ≤
(1 + rk)ak + rk and

∑∞
k=0 rk < ∞. Then {ak} converges.

Then we have the following lemma whose proof is similar to that of Lemma 2.1 in
[10], however for completeness, we give the proof here.

Lemma 2.2. Let the sequence {xk} be generated by Algorithm 1.1, then the sequence
{‖Fk‖} converges and xk ∈ Ω for all k ≥ 0.

Proof. From (1.6) and (1.7), we have

‖Fk+1‖2 ≤ (1 + εk)‖Fk‖2,
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which together with (2.2) and Lemma 2.1 implies that {‖Fk‖2} converges. Hence {‖Fk‖}
also converges.

Moreover, from (2.2), we deduce that

‖Fk+1‖ ≤ (1 + εk)
1
2 ‖Fk‖ ≤ · · · ≤ Πk

i=0(1 + εi)
1
2 ‖F0‖

≤
( k∑

i=0

1
k + 1

(1 + εi)
) k+1

2 ‖F0‖

≤
(
1 +

ε

k + 1

) k+1
2 ‖F0‖

≤ e
ε
2 ‖F0‖,

which means xk ∈ Ω for all k. The proof is completed. ¤
It is clear that Lemma 2.2 implies the sequence {‖Fk‖} is bounded, that is, there

exists a constant M > 0 such that

‖Fk‖ ≤ M, ∀k ≥ 0. (2.3)

In this section, we make the following assumptions to study the global convergence of
Algorithm 1.1.
Assumption 2.1 There exists a neighbourhood Ω1 of Ω such that F (x) and its Jacobian
J(x) are Lipschitz continuous, that is, there exists a positive constant L such that

‖J(x)− J(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω1, (2.4)

and
‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω1. (2.5)

From (2.5), we have
‖J(x)‖ ≤ L, ∀x ∈ Ω1. (2.6)

In fact, for x ∈ Ω1, h ∈ Rn and t > 0, we have

‖J(x)h‖ =
∥∥∥F (x + th)− F (x)

t
−

(F (x + th)− F (x)
t

− J(x)h
)∥∥∥

≤
∥∥∥F (x + th)− F (x)

t

∥∥∥ +
∥∥∥F (x + th)− F (x)

t
− J(x)h

∥∥∥

≤ L‖h‖+
∥∥∥F (x + th)− F (x)

t
− J(x)h

∥∥∥,

where the second inequality uses (2.5). Let t → 0+, by the differentiability of F , we have

‖J(x)h‖ ≤ L‖h‖,

which implies (2.6).
Now we give the following global convergence result for Algorithm 1.1.

Theorem 2.1. Let Assumption 2.1 hold. Then Algorithm 1.1 terminates in finite iter-
ations or satisfies

lim inf
k→∞

‖JT
k Fk‖ = 0. (2.7)
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Proof. We prove the theorem by contradiction. Suppose it is not true, then there exists
an integer k̂ such that

‖JT
k Fk‖ ≥ τ, ∀k ≥ k̂, (2.8)

which implies that
‖Fk‖ ≥ τ1 (2.9)

holds for sufficiently large k with some positive constant τ1.
If (1.6) holds for infinite k, then ‖Fk‖ → 0, which is a contradiction to (2.9). In fact,

denote the index sets

Hj = {k ≤ j| (1.6) holds}, Gj = {0, 1, · · · , j}\Hj , j = 1, 2, · · · .

If (1.6) holds for infinite k, then as j →∞,

|Hj | → ∞,

where |Hj | is the number of the set Hj . From (1.6) and (1.7), we have

‖Fk+1‖ ≤
∏

i∈Gk

(1 + εi)1/2
∏

i∈Hk

ρ‖F0‖

=
∏

i∈Gk

(1 + εi)1/2ρ|Hk|‖F0‖

≤ eε/2ρ|Hk|‖F0‖ → 0, as k →∞.

From now on we assume (1.6) holds only for finite k. Therefore we obtain from (1.7)
that ∞∑

k=0

α2
k‖dk‖2 < ∞,

∞∑

k=0

α2
k‖d̂k‖2 < ∞,

∞∑

k=0

α2
k‖Fk‖2 < ∞,

which imply

lim
k→∞

αk‖dk‖ = 0, lim
k→∞

αk‖d̂k‖ = 0, lim
k→∞

αk‖Fk‖ = 0.

These equalities together with (2.9) yield

lim
k→∞

αk = 0. (2.10)

Set ᾱk = αk/r. Then from the line search (1.7), we have

‖F (xk + ᾱkdk + ᾱ2
kd̂k‖2 − ‖Fk‖2

≥ −σ1ᾱ
2
k‖dk‖2 − σ2ᾱ

2
k‖d̂k‖2 − σ3ᾱ

2
k‖Fk‖2 + εk‖Fk‖2

≥ −σ1ᾱ
2
k‖dk‖2 − σ2ᾱ

2
k‖d̂k‖2 − σ3ᾱ

2
k‖Fk‖2,

which means that

ᾱ2
k

(
σ1‖dk‖2 + σ2‖d̂k‖2 + σ3‖Fk‖2

)

≥ −(‖F (xk + ᾱkdk + ᾱ2
kd̂k)‖2 − ‖Fk‖2

)

= −
(
2F T

k (F (xk + ᾱkdk + ᾱ2
kd̂k)− Fk) + ‖F (xk + ᾱkdk + ᾱ2

kd̂k)− Fk‖2
)

≥ −2F T
k (F (xk + ᾱkdk + ᾱ2

kd̂k)− Fk)− C1ᾱ
2
k(‖dk‖2 + ‖d̂k‖2), (2.11)
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for some positive constant C1, where the last inequality uses (2.5) and the fact ᾱk ≤ 1
r .

Now we estimate the term F T
k (F (xk + ᾱkdk + ᾱ2

kd̂k)− Fk). Note that

F T
k

(
F (xk + ᾱkdk + ᾱ2

kd̂k)− Fk

)

= F T
k

(
F (xk + ᾱkdk + ᾱ2

kd̂k)− F (xk + ᾱkdk)
)

+ F T
k

(
F (xk + ᾱkdk)− Fk

)

≤ LMᾱ2
k‖d̂k‖+ F T

k Jkᾱkdk + F T
k

∫ 1

0

(
J(xk + tᾱkdk)− Jk

)
ᾱkdkdt

≤ 2LMᾱ2
k‖d̂k‖ − ᾱkd

T
k (JT

k Jk + λkI)dk, (2.12)

where the first inequality uses (2.5) and (2.3), the last inequality uses (1.4) and (2.4).
Then from (2.11)-(2.12), we get that there exists a positive constant C2 such that

ᾱk ≥
dT

k (JT
k Jk + λkI)dk

C2(‖dk‖2 + ‖d̂k‖2 + ‖Fk‖2 + ‖d̂k‖)
≥ λkd

T
k dk

C2(‖dk‖2 + ‖d̂k‖2 + ‖Fk‖2 + ‖d̂k‖)
. (2.13)

Let the SVD of Jk be
Jk = UΣV T ,

where U, V are two orthogonal matrixes, and Σ is a diagonal matrix with nonnegative
σi ≥ 0, i = 1, · · · , n. Then

‖(JT
k Jk + λkI)−1‖ = ‖V (Σ2 + λkI)−1V T ‖

= ‖(Σ2 + λkI)−1‖
= max

i∈{1,2··· ,n}
(σ2

i + λk)−1

≤ λ−1
k .

From (1.4), (2.5), (2.6) and the above inequality, we have

‖dk‖ = ‖(JT
k Jk +λkI)−1JT

k Fk‖ ≤ ‖(JT
k Jk +λkI)−1‖‖Jk‖‖Fk‖ ≤ Lλ−1

k ‖Fk‖ =
L

µ
. (2.14)

Similarly, from (1.5), (2.9) and (2.5), we obtain

‖d̂k‖ = ‖(JT
k Jk + λkI)−1JT

k F (yk)‖
≤ ‖(JT

k Jk + λkI)−1JT
k (F (yk)− Fk)‖+ ‖(JT

k Jk + λkI)−1JT
k Fk‖

≤ L2λ−1
k ‖dk‖+ ‖dk‖ ≤

(
1 +

L2

µτ1

)
‖dk‖. (2.15)

If lim infk→∞ ‖dk‖ = 0, then we have from (1.4) and (2.3) that

lim inf
k→∞

‖JT
k Fk‖ = lim inf

k→∞
‖(JT

k Jk + λkI)dk‖ = 0,

which contradics to (2.8). Hence there exists a constant τ2 > 0 such that

lim inf
k→∞

‖dk‖ ≥ τ2,

which together with (2.13)-(2.15), (2.3) and (2.9) implies that {αk} is bounded away
from zero. This leads to a contradiction to (2.10). The proof is then finished. ¤
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3 Cubic convergence

In this section, we assume that xk → x∗ ∈ X and the sequence {xk} lies in some
neighbourhood of x∗. The key to the local convergence is to show that the unit step will
be taken for all sufficiently large k. We give the following assumptions as same as those
of [4] for the local convergence analysis.
Assumption 3.1 (i) ‖F (x)‖ provides a local error bound on some neighbourhood of x∗,
i.e., there exist two positive constant c1 and b1 such that

‖F (x)‖ ≥ c1dist(x,X), ∀x ∈ N(x∗, b1) = {x| ‖x− x∗‖ ≤ b1}. (3.1)

(ii) The Jacobian J(x) is Lipschitz continuous on N(x∗, b1), that is, there exists a
constant L such that

‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b1). (3.2)

It is clear that if J(x) is nonsingular at a solution, then ‖F (x)‖ provides a local error
bound on its neighbourhood. However, the converse is not necessarily true [15], which
shows that the local error bound condition is weaker than nonsingularity.

By Assumption 3.1, we have

‖F (y)− F (x)‖ ≤ L‖y − x‖, ∀x, y ∈ N(x∗, b1) (3.3)

and
‖F (y)− F (x)− J(x)(y − x)‖ ≤ L‖y − x‖2, ∀x, y ∈ N(x∗, b1). (3.4)

In the following, we denote x̄ ∈ X such that

‖x̄− x‖ = dist(x,X) = inf
y∈X

‖y − x‖.

From the local error bound condition and (3.3), we have

c1µ‖x̄k − xk‖ ≤ λk = µ‖Fk‖ ≤ Lµ‖x̄k − xk‖. (3.5)

Now suppose the SVD of J(x∗) is

J(x∗) = (U∗
1 , U∗

2 )
(

Σ∗1 0
0 0

)(
V ∗

1
T

V ∗
2

T

)
= U∗

1 Σ∗1V
∗
1

T , (3.6)

where (U∗
1 , U∗

2 ) and (V ∗
1 , V ∗

2 ) are two orthogonal matrixes, and Σ∗1 is a diagonal matrix
with positive diagonals. Correspondingly, we can suppose that the SVD of J(x) has the
following form

J(x) = (U1, U2)
(

Σ1 0
0 Σ2

)(
V1

T

V2
T

)
= U1Σ1V

T
1 + U2Σ2V

T
2 , (3.7)

where Rank(Σ1) = Rank(Σ∗1) and Σ2 converges to zero as x → x∗. In the following,
for clearness, we also neglect the subscription k in the decomposition of J(xk), and still
write J(xk) as same as (3.7).

By the matrix perturbation theory [13] and (3.2), we have

‖Σ1 − Σ∗1‖+ ‖Σ2‖ ≤ ‖Jk − J(x∗)‖ ≤ L‖xk − x∗‖,
which implies

‖Σ1 − Σ∗1‖ ≤ L‖xk − x∗‖, ‖Σ2‖ ≤ L‖xk − x∗‖. (3.8)
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Note that xk → x∗, then there exist a constant C3 such that

‖Σ1‖ ≤ C3, ‖Σ−1
1 ‖ ≤ C3. (3.9)

Then we deduce
∥∥(JT

k Jk + λkI)−1Jk

∥∥

=

∥∥∥∥∥(V1, V2)
(

(Σ2
1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

)(
U1

T

U2
T

) ∥∥∥∥∥

≤
∥∥∥∥∥

(
(Σ2

1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

) ∥∥∥∥∥

≤
∥∥∥∥∥

(
Σ−1

1

λ−1
k Σ2

) ∥∥∥∥∥

≤ C3 +
L‖xk − x∗‖

c1µ‖x̄k − xk‖ , (3.10)

where the last inequality follows from (3.9), (3.8) and (3.5). Then we have the following
lemma.

Lemma 3.3. Let Assumption 3.1 hold, then we have

‖dk‖ = O(‖x̄k − xk‖),
‖d̂k‖ = O(‖x̄k − xk‖).

Proof. From (1.4), it is easy to see that dk is also the minimizer of the following convex
optimization problem:

min
d∈Rn

ϕk,1(d) = ‖Fk + Jkd‖2 + λk‖d‖2. (3.11)

Thus from (3.11), F (x̄k) = 0, (3.4) and (3.5), we get

‖dk‖2 ≤ ϕk,1(dk)
λk

≤ ϕk,1(x̄k − xk)
λk

=
‖Fk + Jk(x̄k − xk)‖2

λk
+ ‖x̄k − xk‖2

≤ C4‖x̄k − xk‖3 + ‖x̄k − xk‖2

for some positive constant C4, which implies that

‖dk‖ = O(‖x̄k − xk‖). (3.12)

From (1.5), (3.4), (1.4), (3.10) and (3.12), we obtain

‖d̂k‖ = ‖(JT
k Jk + λkI)−1JT

k F (yk)‖
≤ ‖(JT

k Jk + λkI)−1JT
k (F (yk)− Fk − Jkdk)‖

+‖(JT
k Jk + λkI)−1JT

k Fk‖+ ‖(JT
k Jk + λkI)−1JT

k Jkdk‖
≤ L‖dk‖2‖(JT

k Jk + λkI)−1Jk‖+ 2‖dk‖
≤ C5‖dk‖‖xk − x∗‖+ C5‖dk‖
= O(‖x̄k − xk‖)

for some positive constant C5. This finishes the proof. ¤
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Lemma 3.4. Let Assumption 3.1 hold, then we have

‖U2U
T
2 Fk‖ = o(‖x̄k − xk‖),

‖F (yk)‖ = o(‖x̄k − xk‖).
Proof. Let J̃k = U1Σ1V

T
1 and d̃k = −J̃+

k Fk, where J̃+
k is the Moore-Penrose generalized

inverse of J̃k. Then d̃k is the least squares solution of min ‖Fk + J̃kd‖. From (3.4) and
(3.8), we have

‖U2U
T
2 Fk‖ = ‖Fk + J̃kd̃k‖

≤ ‖Fk + J̃k(x̄k − xk)‖
≤ ‖Fk + Jk(x̄k − xk)‖+ ‖(J̃k − Jk)(x̄k − xk)‖
≤ L‖x̄k − xk‖2 + ‖(U2Σ2V

T
2 )(x̄k − xk)‖

≤ L‖x̄k − xk‖2 + L‖xk − x∗‖‖x̄k − xk‖
= o(‖x̄k − xk‖). (3.13)

From the SVD of Jk, it is easy to get

dk = −V1(Σ2
1 + λkI)−1Σ1U

T
1 Fk − V2(Σ2

2 + λkI)−1Σ2U
T
2 Fk.

Then we know

‖Fk + Jkdk‖ = ‖λkU1(Σ2
1 + λkI)−1UT

1 Fk + λkU2(Σ2
2 + λkI)−1UT

2 Fk‖
≤ λk‖Σ−2

1 ‖‖Fk‖+ ‖U2U
T
2 Fk‖

≤ L2µC2
3‖x̄k − xk‖2 + ‖U2U

T
2 Fk‖

= o(‖x̄k − xk‖), (3.14)

where the second inequality uses (3.5), (3.3), F (x̄k) = 0 and (3.13).
Note that yk = xk + dk, then from (3.4) and (3.14), we have

‖F (yk)‖ ≤ ‖F (yk)− Fk − Jkdk‖+ ‖Fk + Jkdk‖
≤ L‖dk‖2 + o(‖x̄k − xk‖)
= o(‖x̄k − xk‖).

¤
Lemma 3.5. Let Assumption 3.1 hold. Then for sufficiently large k, we have αk ≡ 1.

Proof. From (1.5), it is easy to see that d̂k is the minimizer of the convex optimization
problem:

min
d∈Rn

ϕk,2(d) = ‖F (yk) + Jkd‖2 + λk‖d‖2.

Then by Lemma 3.4, we have

‖F (yk) + Jkd̂k‖ ≤
√

ϕk,2(d̂k) ≤
√

ϕk,2(0) = ‖F (yk)‖ = o(‖x̄k − xk‖). (3.15)

Therefore from (3.4), Lemma 3.3, Lemma 3.4, (3.14) and (3.15), we have

‖F (xk + dk + d̂k)‖
≤ ‖F (xk + dk + d̂k)− Fk − Jk(dk + d̂k)‖+ ‖Fk + Jk(dk + d̂k)‖
≤ C6(‖dk‖2 + ‖d̂k‖2) + ‖Fk + Jkdk‖+ ‖F (yk) + Jkd̂k‖+ ‖F (yk)‖
= o(‖x̄k − xk‖)
= ηk‖x̄k − xk‖ ≤ c−1

1 ηk‖Fk‖ ≤ ρ‖Fk‖,

9



for some constant C6 > 0, where the last line uses the error bound condition and ηk → 0.
The above inequalities show that (1.6) holds for all sufficiently large k, which means

αk ≡ 1 for sufficiently large k, i.e., the unit step will be always accepted finally. ¤
Then cubic convergence of Algorithm 1.1 can be established using completely same

arguments as [4]. We list this local convergence result but omit the proof here.

Theorem 3.1. Let Assumption 3.1 hold. Then xk → x∗ cubically.
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