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Scarf’s min-max order formula for the distribution-free risk-neutral newsvendor problem is a classical result
in the field of inventory management. The min-max order formula provides, in closed-form, the order quantity
that maximizes the worst-case expected profit associated with the demand of a single product when only the
mean and variance of the product’s demand distribution, rather than the full distribution itself, is assumed
to be known. It has been a long-standing question whether a similar closed-form order formula exists for
the distribution-free risk-reward newsvendor problem; that is, for the order quantity that maximizes the
worst-case risk-reward associated with the demand of a single product when only the mean and variance of
the product’s demand distribution is assumed to be known. The main contribution of this work is to extend
Scarf’s closed-form order formula to one of the most important risk-reward criteria, namely when the reward
is defined by the expected profit, and the risk by the profit’s standard deviation. Furthermore, we provide
managerial insights associated with this result.
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1. Introduction

The classical newsvender problem is one of the elementary and fundamental models in inventory
management with vast applications in such areas as revenue management, supply chain manage-
ment, and even accounting management (refer to Khouja (1999), Porteus (1990), and Cachon
(2003) for further details on this problem along with variants). Numerous extensions and variations
of this basic model have been proposed in the literature to suit the specific applications, such as
airline seat reservation, supply chain contract, etc.

Formally the (risk-neural) newsvendor problem can be defined as follows. A newsvendor, fac-
ing uncertain product demand S with cumulative distribution π, unit selling price p (normal-
ized to be one without loss of generality for our purpose, i.e., p = 1) and unit purchasing price
c < p = 1, wants to decide the optimal order quantity x so as to maximize the expected profit
maxx≥0Eπ [min(x,S)− cx]. The solution to the optimal stocking quantity of the newsvendor is
well-known: x∗ = π−1(1− c); that is, the (1− c)-percentile of the distribution π.

1.1. Scarf’s min-max order formula

In the 50th anniversary issue of the journalOperations Research, Scarf, one of the earliest pioneers in
inventory theory, provided a personalized reminiscence on his contributions to the area of inventory
management, and the first one on his list is the min-max order formula (a.k.a., distribution-free,
or semi-parametric, or robust order formula) for the newsvender problem (Scarf (2002)).
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One of the main criticisms of the basic newsvendor order formula discussed in the introduction,
is the assumption of knowing the product’s demand distribution π, an unrealistic or too strict
assumption in practical applications. To mitigate this drawback, Scarf (1958, 2002) offered the
aforementioned min-max order formula. Scarf’s main idea is to assume that we know only the
mean Eπ[S] = µ and the variance Vπ[S] = (γ − 1)µ2 (γ ≥ 1) instead of the whole distribution π of
the demand S, and find the order quantity that maximizes the worst-case expected profit.

Let us denote σ = (σ0, σ1, σ2) = (1, µ, γµ2), and x+ =max{x,0} for the rest of the paper. Also
let fπ(x) = Eπ(min{x,S} − cx) be the expected profit for any given order quantity x ≥ 0. More
precisely, Scarf’s min-max order formula is obtained by maximizing the minimum expected profit
among all demand distributions with the given mean and variance. This problem can be formulated
as finding the solution of the following optimization problem:

f s = max
x≥0

min
π

fπ(x)

s.t. Eπ(S
i) = σi, for i= 0,1,2,

π a distribution in IR+.

(1)

The following theorem summarizes the classical result of Scarf.

Theorem 1. (Sacrf (1958, 2002)) The optimal solution xs of the Problem (1) above is

xs =

{
µ
(
1+ (1− 2c)

√
γ−1

4c(1−c)

)
, if γc≤ 1;

0, if γc > 1,

along with the optimal expected profit f s = µ
(
(1− c)−

√
(γ− 1)c(1− c)

)+

. �

As observed by Scarf (1958), the optimal expected profit f s under the Scarf strategy con-
sists of two terms, the first µ(1 − c) is the profit earned for an mean demand, and the second
µ
√
(γ− 1)c(1− c) is a loss term due to incomplete information about the demand. Nothing will be

ordered whenever the loss is larger than the profit (or equivalently, when γc > 1).
Note that Scarf’s min-max order formula is robust in the sense that it immunizes the expected

profit against possible mis-specification of the actual product’s demand distribution.
Although the ultimate goal of Scarf’s analysis is to provide an alternative method to solve the

newsvendor problem, an important ingredient of theoretically independent interest in his analysis
amounts to the bounding of the expectation of the special random variable (S − 1)+ given the
moment constraints σi, i= 0,1,2; that is:

p(σ) = max
π

Eπ[(S− 1)+]

s.t. Eπ(S
i) = σi for i= 0,1,2,

π a distribution in IR+.

Lemma 1 in Appendix A1 recalls the solution to the above problem. It turns out that bounding
expectation of this special random variable (S − 1)+ under moment constraints (a.k.a. moment
problem) has vast applications in option pricing, portfolio management, robust optimization and
stochastic programming etc. (see, e.g., Bertsimas et al (2000) and the references therein for further
details along this line of research). In turn, the extensions to Scarf’s min-max order formula that
we will introduce here are related to Lemma 1’s extensions, which similarly can also be applied to
provide extensions to related results in other areas. In particular, Theorems 5 and 6 for Problems (7)
and (8) respectively in Appendix A2 are of independent interests. We, however, focus our discussion
on the newsvendor problem setting.

One of the nice characteristics of Scarf’s min-max order formula is that it is provided by a simple
closed-form. This property makes it simple to derive not only qualitative, but also quantitative
managerial insights.
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1.2. Distribution-free risk-reward newsvendor order formula

In the last 50+ years since the appearance of Scarf’s formula, there have been numerous results in
the literature related to extensions of Scarf’s classical min-max order formula to different settings
and applications. But one intriguing question still remains:

Is there a similar closed-form formula for the distribution-free risk-award (risk-averse or risk-
seeking) newsvendor problem? In particular, when the reward is defined by the expected profit, and
the risk by the profit’s standard deviation.

The main contribution of this work is to answer this long-standing question in an affirmative
way. Let gπ(x) =

√
Varπ(min{x,S}− cx) be the standard deviation of the profit. Then we are

interested in the following problem: for any given constant λ, which reflects the decision-maker’s
risk-attitude (namely risk-averse if λ> 0, risk-seeking if λ< 0, and risk-neutral if λ= 0),

h∗ = f∗ −λg∗ = max
x≥0

min
π

fπ(x)−λgπ(x)

s.t. Eπ(S
i) = σi, for i= 0,1,2,

π a distribution in IR+.

(2)

The main result of this work is summarized below.

Theorem 2. The optimal order quantity x∗ for Problem (2) above is given by:

x∗ =

{
µ
(
1+ (1− 2c)

√
γ−1

λ2+4c(1−c)

)
, if γc≤ 1−λ

√
γ− 1;

0, otherwise,

along with the optimal objective value h∗ = µ
(
(1− c)− 2−1

√
γ− 1

(
λ+

√
λ2 +4c(1− c)

))+

, and

the corresponding expected profit f∗ and the standard deviation of the profit g∗





f∗ = µ
(
(1− c)− 2c(1− c)

√
γ−1

λ2+4c(1−c)

)
,

g∗ = µ
√
γ−1
2

(
1+ λ√

λ2+4c(1−c)

)
,

if γc≤ 1−λ
√
γ− 1, and 0 otherwise. �

We make a few observations on this result. First, one can immediately see that the above result
includes Scarf’s result in Theorem 1 as a special case when λ = 0. Second, as will be seen later
on, the proof of this theorem is technically involved. It is therefore quite surprising to obtain
these succinct closed-form formulas, which maintain the nice structural properties enjoyed by the
original Scarf formula, yet provide extra managerial insights brought out by the inclusion of the
risk parameter λ. Detailed observations and managerial insights will be provided in Section 3 along
with some numerical results.

1.3. Related work

There are two lines of research that are related to this work. The first is on how to apply the min-
max approach to variants of the newsvendor problem (e.g., Gallego (11992), Gallego and Moon
(1993), Gallego (1998), Gallego (2001), Godfrey, and Powell (2001), Yue et al. (2006), Gallego
(2007), Perakis and Roel (2008) etc.). The second is on how to incorporate risk into the newsvednor
problem. Two extant approaches have been proposed in addressing risks in the newsvendor setting.
One is the von Neumann and Morgenstern’s expected utility approach widely used in decision
theory (e.g., Lau (1980), Eeckhoudt et al. (1995)), and the other is the risk-reward approach first
popularized by Nobel Laurent Markovitz in portfolio theory (e.g., Lau and Lau 1999, Chen and
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Federgruen (2000), Choi et al., (2001), Chen et al (2007), Choi and Ruszczynski (2008), Chen et al
(2009)). There is still an ongoing debate on which method is more sensible. One particular criticism
on the expected utility approach is that it is highly nontrivial to select a proper utility in specific
applications, while the mean-risk approach usually enjoys a much more intuitive explanation.

In this work we will adopt the second approach in addressing risk by using the risk-reward
approach. The most related previous research is therefore Lau (1980) who proposed the mean-
standard deviation newsvendor model along with a numerical approach to solve the resultant
optimization problem, assuming known demand distribution. Our model in this paper can be
viewed as the robust version of the Lau’s model with the benefit of a closed-form solution.

The rest of this work is organized as follows. In Section 2 we make a high-level presentation of
the main idea of the proof of Theorem 2, leaving the details of the proof for the Appendices. We
then present illustrative numerical results along with managerial insights in Section 3.

2. Proof of Theorem 2: high-level

The proof of Theorem 2 for Problem (2) can be divided into three steps, and each step involves
two separated cases depending on the sign of λ, namely, λ≥ 0 or λ< 0.
Step 1. First of all, we consider the problem (3) of maximizing (for the case of λ≥ 0) the variance
of the profit subject to an extra constraint Eπ((

S

x
− 1)+) = µ̂∈Ωx,

v(x; µ̂)≡ max g2π(x)
s.t. Eπ(S

i) = σi, for i= 0,1,2,
Eπ((

S

x
− 1)+) = µ̂∈Ωx,

π a distribution on IR+,

(3)

and the problem (4) of minimizing (for the case of λ< 0) the variance of the profit subject to the
same constraints

v(x; µ̂)≡ min g2π(x)
s.t. Eπ(S

i) = σi, for i= 0,1,2,
Eπ((

S

x
− 1)+) = µ̂∈Ωx,

π a distribution on IR+.

(4)

In the above, for any x> 0,

Ωx =




µ̂ :
(µ
x
− 1
)+

≤ µ̂≤





µ

x
− 1

γ
, if µ

x
≥ 2

γ
,

1
2

((
µ

x
− 1
)
+
√
(γ− 1)

(
µ

x

)2
+
(
µ

x
− 1
)2
)
, if µ

x
≤ 2

γ
.





(5)

Here Ωx is the feasible region of µ̂ (See Appendix A1 for details).

Theorem 3. For any given µ̂ ∈Ωx, the optimal objective values of the above problems are given
by

v(x; µ̂) =





−µ2 +µx(1+ 2µ̂)−x2µ̂(1+ µ̂), if 0<x≤ γµ and
(µ
x
− 1)+ ≤ µ̂≤ µ

x
− 1

γ
,(√

(γ−1)µ2

4
+xµ̂(µ−x)−x2µ̂2 + µ

2

√
γ− 1

)2

, if x≥ γµ

2
and

µ

x
− 1

γ
≤ µ̂≤ (µx−1)+

√
(γ−1)(µx )2+(µx−1)2

2
.

and v(x; µ̂) =

(√
(γ−1)µ2

4
+xµ̂(µ−x)−x2µ̂2 − µ

2

√
γ− 1

)2

, respectively.
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Step 2. Second of all, note that

fπ(x)−λgπ(x)≥
{
µ−xµ̂− cx−λ

√
v(x; µ̂), if λ≥ 0,

µ−xµ̂− cx−λ
√
v(x; µ̂), otherwise.

So we have that

h(x) :=min
π

fπ(x)−λgπ(x) =

{
minµ̂∈Ωx

µ−xµ̂− cx−λ
√
v(x; µ̂), if λ≥ 0,

minµ̂∈Ωx
µ−xµ̂− cx−λ

√
v(x; µ̂), otherwise.

(6)

Denote the following quantities:

µ̂1(x) =
µ

x
− 1

γ
,

h1(x) =
x

γ

(
(1−λ

√
γ− 1)− γc

)
,

µ̂2(x) =
µ

x
− 1

2
+

1

2
√
λ2 +1

,

h2(x) = −(
1

2
(
√
λ2 +1− 1)+ c)x,

µ̂3(x) =
1

2


µ

x
− 1+

√
(γ− 1)(µ

x
)2 +(1− µ

x
)2

λ2 +1


 ,

h3(x) =
1

2

(
x− 2cx−

√
λ2 +1

√
(µ−x)2 +(γ− 1)µ2 +(1−λ

√
γ− 1)µ

)
.

Theorem 4. For a given x, if µ̂1(x), µ̂2(x), µ̂3(x) ∈ Ωx, then the optimal solution µ̂∗ and the
corresponding value of the objective function h(x) for Problem (6) are given as follows.
(I) λ≥ 0:

(i) If γ ≤ 2, then

(µ̂∗, h(x)) =

{
(µ̂1(x), h1(x)), if λ> (2x−γµ)

√
γ−1

|γµ+γx−2x| for x≥ γµ

2
;

(µ̂3(x), h3(x)), otherwise.

(ii) Otherwise,

(µ̂∗, h(x)) =





(µ̂3(x), h3(x)) if λ≤ (2x−γµ)
√
γ−1

γµ+γx−2x
for x≥ γµ

2
;

(µ̂1(x), h1(x)), if (2x−γµ)
√
γ−1

γµ+γx−2x
<λ< 2

√
γ−1

γ−2
;

(µ̂2(x), h2(x)), otherwise.

(II) λ< 0: µ̂∗ = µ̂3(x) and h(x) = h3(x).

Step 3. Finally, Problem (2) is reduced to maxx≥0 h(x), whose resolution leads to Theorem 2.

3. Numerical examples and managerial insights

With the closed-form formula given in Theorem 2, we are able to derive deeper managerial insights.
It is worth noting that extant literature without closed-form formulas either use simulation or fix
a specific distribution or rely upon comparative analysis in order to derive managerial insights,
resulting in limited or restricted applications or only qualitative insights.

Note that r = p/c= 1/c is the relative profit margin (due to normalized p= 1), and
√
γ− 1 is

nothing but the coefficient of variation (cv). Therefore the cut-off point γc= 1− λ
√
γ− 1 in the

order quantity formula can be rewritten as: 1+cv2 = r(1−λcv).
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3.1. Some basic observations

First of all, we can make the following enriched observations compared to those by Scarf (1958)
due to the inclusion of the risk-attitude parameter λ.
1. The optimal objective value h∗ also consists of two terms, the first µ(1−c) is still the profit for

an mean demand, and the second 2−1µ
√
γ− 1

(
λ+

√
λ2 +4c(1− c)

)
is a different loss term

due to incomplete information about the demand and the risk averseness λ of the decision-
maker. Nothing will be ordered whenever the loss is larger than the profit (i.e., γc > 1 −
λ
√
γ− 1).

2. The optimal order quantity can be interpreted as follows (see Fig. 1 for illustration):
(a) if r > 2, order more than the mean demand µ, and for fixed µ, the higher the cv, the

higher the order quantity, unless 1+cv2 > r(1−λcv).
(b) if r < 2, order less than the mean demand µ, and for fixed µ, the higher the cv, the lower

the order quantity, unless 1+cv2 > r(1−λcv).
(c) if r= 2, order the mean demand µ, independently of the cv, unless 1+cv2 > 2(1−λcv),

or equivalently cv2 +2λcv− 1> 0, or cv>−λ+
√
1+λ2, in which case order zero.

3. We compare the optimal order quantities for risk-neutral, risk-averse, and risk-seeking. Note
that when λ> 0, a risk-aversion person stocks a positive quantity whenever γc≤ 1−λ

√
γ− 1<

1 under a stricter condition compared to a risk-neutral person (γc≤ 1). On the other hand,
when λ < 0, a risk-seeking person stocks a positive quantity whenever γc≤ 1− λ

√
γ− 1> 1

under a more relaxed condition compared to a risk-neutral person.

3.2. Impact of the risk λ

For the following discussion, with fixed expected demand µ, uncertainty of the demand γ and
relative profit margin r, we consider the effects on the order quantity x∗ and various objective
values h∗, f∗ and g∗ in terms of the decision-maker’s risk attitude λ.
1. Impacts of risk measure λ on the order quantity x∗. The order quantity is almost sym-

metric for risk-averse and risk seeking decision-maker. Everything else being equal, the order
quantity x∗ decreases with higher risk-averseness (more positive) or higher risk-seekingness
(more negative) when the relative profit margin r > 2, and increases when the relative profit
margin r < 2. Note that the Scarf order corresponds to λ = 0. Therefore, this monotonicity
also tells us the difference between the Scarf strategy and the mean-standard deviation strat-
egy, namely, with higher risk-averseness or risk-seekingness, the former orders more than the
latter when the relative profit margin r is large (r > 2) and order less when it is small (r < 2).
Moreover, there is a threshold beyond which the risk-averseness is valued so high by the

decision-maker that order quantity is forced to be zero, though the threshold depends on
both the relative profit margin r and the demand uncertainty γ. Fig. 1 shows the effect for
three choices of r, namely r= 1.5,2,3. The order quantity is zero when λ> 3.267 for r= 1.5,
λ> 4.95 for r= 2, and λ> 6.633 for r= 3.

2. Impacts of risk measure λ on the objective values (h∗, f∗, g∗). The expected profit f∗

is still symmetric for risk-averse and risk seeking decision-maker, but the standard deviation
of the profit g∗ and the overall man-standard deviation h∗ shows an asymmetric behavior.
Everything else being equal, the expected profit f∗ behaves similarly to the order quantity, that
is, increasing with higher risk-averseness and higher risk-seekingness; the standard deviation
of the profit g∗ is increasing with higher risk-averseness, but decreasing with higher risk-
seekingness; and finally the mean-standard deviation objective h∗ is decreasing with higher
risk-averseness, but increasing with higher risk-seeking.
All these quantities f∗, g∗ and h∗ drop to zero once the risk-averseness is beyond certain

positive threshold. Below the threshold, the mean-standard deviation strategy, compared to
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Figure 1 Order quantity x∗ vs risk measure λ for µ= 100, and σ= 10

Scarf’s strategy, always generate more profit f∗(λ)> f∗(0) = f s along with higher profit risk
g∗(λ)> g∗(0) = g(xs) for risk-averse decision-maker λ> 0 and lower profit risk g∗(λ)< g∗(0) =
g(xs) for risk-seeking decision-maker λ< 0. But the counter-intuitive fact is that this can be
achieved with less order quantity compared to Scarf’s strategy when the profit margin is large
(i.e., r > 2) because xs = x∗(0)≥ x∗(λ) (See Fig. 1). Fig. 2 illustrates these observations for
three choices of r, namely r= 1.5,2,3.

(a) r= 1.5 (b) r= 2 (b) r= 3.

Figure 2 Various objective values (f∗, g∗, h∗) vs risk measure λ for µ= 100, and σ= 10

3.3. Risk-averse, risk neutral or risk-seeking

Based on the discussion above, the formulas we derived in this work (namely Theorem 2) provide
some guidance for decision-makers with different risk attitude along the risk spectra.

• On one extreme of the risk spectra, there exists certain threshold λ0 > 0 such that no quantity
is stocked for any λ > λ0. Therefore, an extremely risk-averse decision-maker will order zero as
shown in both Fig. 1 and Fig. 2.
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• On the other extreme of the risk spectra, namely when λ→−∞, an extremely risk-seeking
decision-maker will stock the mean demand µ with expected profit approaching µ(1−c) along with
diminishing profit uncertainty.

• For any decision-maker with risk attitude in between, the situation becomes more interesting.
We use the Sharpe ratio f∗/g∗ to examine how well the profit return compensates the decision-
maker for the risk taken. As illustrated clearly in Fig 3, below the threshold, the higher the Sharpe
ratio, namely the higher risk-seeking of the decision-making, the more profit for the same risk.

• Note that the min-max rule is a worst-case analysis method. Therefore, one should exercise
caution and care when applying the observations based on worst-case analysis to any specific
demand distribution.

(a) r= 1.5 (b) r= 2 (b) r= 3.

Figure 3 Sharpe ratio f∗/g∗ vs risk measure λ for µ= 100, and σ= 10
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Appendices

We first show Theorems 3 and 4 in Appendices A and B, leading to the final proof of Theorem 2
in Appendix C.

Appendix A: Proof of Theorem 3

First, simple algebra shows that the objective function of Problems (3) and (4) could be written
as

g2π(x) = Varπ(pmin{x,S}− cx) = (γ− 1)µ2 −x2
Varπ

((
S

x
− 1
)+)− 2x2µ̂2 − 2x(x−µ)µ̂.

Therefore, Problem (3) is reduced to

min Varπ

((
S

x
− 1
)+)

s.t. Eπ

((
S

x

)i)
= σi

xi
, for i= 0,1,2,

Eπ(
(
S

x
− 1
)+

) = µ̂
π a distribution on IR+;

and Problem (4) is reduced to

max Varπ

((
S

x
− 1
)+)

s.t. Eπ

((
S

x

)i)
= σi

xi
, for i= 0,1,2,

Eπ(
(
S

x
− 1
)+

) = µ̂
π a distribution on IR+.

By abusing the notations (S := S/x, σi := σi/x
i), the above two problems are simplified respec-

tively as

q(µ,γ, µ̂) = min Varπ

(
(S− 1)

+
)

s.t. Eπ (S
i) = σi, for i= 0,1,2,

Eπ (S− 1)
+
) = µ̂,

π a distribution on IR+,

(7)

and
q(µ,γ, µ̂) = max Varπ

(
(S− 1)

+
)

s.t. Eπ (S
i) = σi, for i= 0,1,2,

Eπ (S− 1)
+
) = µ̂,

π a distribution on IR+.

(8)

Consequently, the rest of this section will focus on solving Problems (7) and (8). We first address
the feasibility issue in Appendix A1, and then present closed-form solutions to Problems (7) and (8)
in Appendix A2, leading to the proof of Theorem 3.

Appendix A1: Feasibility

We recall two existing results for bounding the expectation of the any random variable (S − 1)+

subject to moments constraints:

p(σ) = max Eπ((S− 1)+)
s.t. Eπ(S

i) = σi, for i= 0,1,2,
π a distribution on IR+,
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and
p(σ) = min Eπ((S− 1)+)

s.t. Eπ(S
i) = σi, for i= 0,1,2,

π a distribution on IR+.

Lemma 1. (Scarf (1958)) If µ≥ 0 and γ ≥ 1, then

p(σ) =





µ− 1
γ
, if µ> 2

γ
,

1
2

(
(µ− 1)+

√
(γ− 1)µ2 +(µ− 1)2

)
, if µ≤ 2

γ
,

and p(σ) = (µ− 1)+, respectively. �

Therefore, Problem (7) or (8) is feasible if and only if µ≥ 0, γ ≥ 1, and µ̂∈Ω1 (see the definition
of Ωx in (5) in Section 2).

Appendix A2: Closed-form solution

In Appendices A2-1 and A2-2 respectively, we solve Problems (7) and (8) by demonstrating a pair
of primal and dual feasible solutions with equal objective values.

Appendix A2-1: Closed-form solution for Problem (7)

The dual problem corresponding to Problem (7) can be written as:

(Qd)
qd = max yo + y1µ+ y2γµ

2 + ŷ1µ̂− µ̂2

s.t. yo + y1s+ y2s
2 + ŷ1(s− 1)+ ≤ ((s− 1)+)

2
, ∀s∈ IR+

Clearly, weak duality holds between Problem (7) and (Qd), that is, q(µ,γ, µ̂)≥ qd.

Lemma 2. If (µ,γ, µ̂) is feasible for Problem (7), and µ̂ < µ− γ−1, then

π(s) =





p1 =
µ̂2

µ(γµ−1)−µ̂
, if s= s1 =

µ(γµ−1)

µ̂
,

p2 =
γµ2(µ−µ̂− 1

γ )

µ(γµ−1)−µ̂
, if s= 1,

p3 = 1−µ+ µ̂, if s= 0.

(9)

is feasible for Problem (7).

Proof of Lemma 2 First, the lemma assumption implies that µ≥ 0, γ ≥ 1 and µ̂∈Ω1, namely,

(µ− 1)+ ≤ µ̂ < µ− 1

γ
. (10)

The first inequality in (10) implies that p3 = 1−µ+ µ̂≥ 1−µ+(µ−1)+ ≥ 0. The second inequality
in (10) implies that s1 > 0 since γµ> 1+ γµ̂≥ 1, and p1 ≥ 0, p2 ≥ 0 since

µ(γµ− 1)− µ̂= γµ

(
µ− 1

γ

)
− µ̂ > 1

(
µ− 1

γ

)
− µ̂ > 0. (11)

So π(s) is a probability distribution. Moreover, s1 > 1 from (11), which, along with simple algebra,
shows that Eπ(1) = 1, Eπ(S) = µ, Eπ(S

2) = γµ2, and Eπ((S− 1)+) = µ̂. �



12

Lemma 3. If (µ,γ, µ̂) is feasible for Problem (7), and µ̂≥ µ− γ−1, then

π(s) =





p1 =
µ(2µ̂+(γ−1)µ+r(µ,γ,µ̂))−2µ̂

2(1−2µ+γµ2)
, if s= s1 = µ

(
1+ (γ−1)µ−r(µ,γ,µ̂)

2µ̂

)
,

1− p1, if s= s2 = µ
(
1− (γ−1)µ+r(µ,γ,µ̂)

2(1−µ+µ̂)

)
.,

(12)

is feasible for Problem (7), where

r(µ,γ, µ̂) =
√

(γ− 1) ((γ− 1)µ2 +4µ̂(µ− 1)− 4µ̂2). (13)

Proof of Lemma 3 We first show that 0 ≤ s2 ≤ 1. The lemma assumption implies that µ̂ ≥
µ− γ−1 and µ≤ 2γ−1. Therefore 2(1− µ+ µ̂)− (γ − 1)µ= 2(1+ µ̂)− (γ +1)µ≥ 2(1 + µ− γ−1)−
(γ − 1)µ = (γ − 1)(2γ−1 − µ) ≥ 0. Note that s2 ≥ 0 if and only if (2(1 − µ + µ̂) − (γ − 1)µ)2 ≥
r2(µ,γ, µ̂) = (γ−1) ((γ− 1)µ2 +4µ̂(µ− 1)− 4µ̂2) or equivalently (µ̂−µ+1)(γ(µ̂−µ)+1)≥ 0 after
simple algebra, which is evidently true. On the other hand, we will show that s2 < 1, which is

trivially true if µ≤ 1. In the case of µ> 1, µ̂≤ 2−1
(
(µ− 1)+

√
(γ− 1)µ2 +(µ− 1)2

)
implies that

2(1 − µ−1)(1 − µ + µ̂) − (γ − 1)µ < 0, implying further that 2(1 − µ−1)(1 − µ + µ̂) − (γ − 1)µ <
r(µ,γ, µ̂), or equivalently, s2 < 1.

Then we will show that s1 > 1, which is clearly true in case of µ> 1, since (γ−1)µ−r(µ,γ, µ̂)≥ 0
from µ̂≥ µ−1. Consider the case of µ≤ 1. It follows from µ̂≥ µ−γ−1 that (γ−1)µ−2 (µ−1 − 1) µ̂≥
µ−1((γ+1)(µ−γ−1)2+(γ−1)γ−2)≥ 0. Then simple algebra shows that (γ−1)µ−2 (µ−1 − 1) µ̂ >
r(µ,γ, µ̂), or equivalently s1 > 1.

We may rewrite p1 as p1 =
(µ−s2)

2

(µ−s2)2+σ2 , implying that 0 ≤ p1 ≤ 1. So π(s) is a probability dis-

tribution. Finally, s1 > 1 and s2 < 1, along with simple algebra, show that Eπ(1) = 1, Eπ(S) = µ,
Eπ(S

2) = γµ2, Eπ((S− 1)+) = µ̂. �

We now present the closed-form solution for Problem (7).

Theorem 5. If (µ,γ, µ̂) is feasible for Problem (7), then

q(µ,γ, µ̂) =





µ(γµ− 1)− µ̂− µ̂2, if µ̂ < µ− 1
γ
,

1
2

(
2µ̂(µ− 1)+µ

(
(γ− 1)µ− r(µ,γ, µ̂)

))
− µ̂2, if µ̂≥ µ− 1

γ
,

where r(µ,γ, µ̂) is defined in (13).

Proof of Theorem 5 We consider two cases.
Case 1. µ̂ < µ − γ−1. If (µ,γ, µ̂) is feasible for Problem (7), then π(s) in (9) is feasible for

Problem (7) from Lemma 2 and its corresponding objective value is equal to µ(γµ− 1)− µ̂− µ̂2.
Thus q ≤ µ(γµ − 1) − µ̂ − µ̂2 if µ ≥ 2γ−1. Consider the dual solution for (Qd) given by yo = 0,

y1 =−1, y2 = 1, and ŷ1 =−1. This solution is feasible for (Qd), and its corresponding objective value
is equal to µ(γµ− 1)− µ̂− µ̂2 ≤ qd. The weak duality implies that q(µ,γ, µ̂) = µ(γµ− 1)− µ̂− µ̂2

when µ̂ < µ− γ−1.
Case 2. µ̂ ≥ µ − γ−1. If (µ,γ, µ̂) is feasible for Problem (7), then π(s) in (12) is fea-

sible for Problem (7) from Lemma 3, and its corresponding objective value is equal to
2−1 (2µ̂(µ− 1)+µ((γ− 1)µ− r(µ,γ, µ̂)))− µ̂2. Thus q≤ 2−1 (2µ̂(µ− 1)+µ((γ− 1)µ− r(µ,γ, µ̂)))−
µ̂2. Consider the dual solution for (Qd) given by





yo =− 1
2

(
(2µ̂−µ)µ+ µ

r(µ,γ,µ̂)
(2(γ− 2)µ̂2 +(γ− 1)µ2 − 2µ̂(1+ (γ− 2)µ))

)

y1 = µ̂−µ− 1
r(µ,γ,µ̂)

(2µ̂2 − (γ− 1)µ2 + µ̂(2+ (γ− 3)µ))

y2 =− 1
2

(
1

µr(µ,γ,µ̂)
((γ− 1)µ2 +2µ̂(µ− 1)− 2µ̂2)− 1

)

ŷ1 = (µ− 1)− 1
r(µ,γ,µ̂)

((γ− 1)µ(µ− 1− 2µ̂)) .

(14)
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Note that
y2 =− 1

2

(
1

µr(µ,γ,µ̂)
((γ− 1)µ2 +2µ̂(µ− 1)− 2µ̂2)− 1

)

=− 1
4

(
r(µ,γ,µ̂)

(γ−1)µ
+ (γ−1)µ

r(µ,γ,µ̂)

)
+ 1

2
< 0,

and that
y0 + y1s+ y2s

2 = y2(s− s2)
2 ≤ 0,

y0 + y1s+ y2s
2 + ŷ1(s− 1)− (s− 1)2 = (y2 − 1)(s− s1)

2 ≤ 0,

where s1 and s2 are defined in (12). That is, the solution in (14) is feasible for (Qd), and its
corresponding objective value is equal to 2−1 (2µ̂(µ− 1)+µ ((γ− 1)µ− r(µ,γ, µ̂)))− µ̂2 ≤ qd. The
weak duality implies that q(µ,γ, µ̂) = 2−1 (2µ̂(µ− 1)+µ ((γ− 1)µ− r(µ,γ, µ̂)))− µ̂2 when µ̂≥ µ−
γ−1. �

Appendix A2-2: Closed-form solution for Problem (8)

The dual problem corresponding to Problem (8) can be written as:

(Q
d
)

qd = min yo + y1µ+ y2γµ
2 + ŷ1µ̂− µ̂2

s.t. yo + y1s+ y2s
2 + ŷ1(s− 1)+ ≥ ((s− 1)+)

2

∀ s∈ IR+

Clearly, weak duality holds between Problem (8) and (Q
d
), that is, q(µ,γ, µ̂)≤ qd.

Lemma 4. If (µ,γ, µ̂) is feasible for Problem (8), and µ̂≥ µ− γ−1, then

π(s) =





p1 =
µ(2µ̂+(γ−1)µ−r(µ,γ,µ̂))−2µ̂

2(1−2µ+γµ2)
, if s= s1 = µ

(
1+ (γ−1)µ+r(µ,γ,µ̂)

2µ̂

)
,

1− p1, if s= s2 = µ
(
1− 2(γ−1)µ̂

(γ−1)µ+r(µ,γ,µ̂)

)
,

(15)

is feasible for Problem (8), where r(µ,γ, µ̂) is defined in (13).

Proof of Lemma 4 If µ̂≥ µ−γ−1, it follow from µ≤ 2γ−1 that 2(1+ µ̂)− (γ+1)µ≥ 0, implying
that s2 ≥ 0. Otherwise, (µ− 1)+ ≤ µ̂ < µ− γ−1. Then it follows that (µ̂−µ+1)(γ(µ̂−µ)+ 1)≤ 0,
or equivalently s2 ≥ 0 by simple algebra. On the other hand, we will show that s2 < 1. In the case
of µ ≤ 1, it is trivially true. In the case of µ > 1, µ̂ ≥ µ− 1 implies that (γ − 1)µ+ r(µ,γ, µ̂) <
2µ̂(γ− 1)(1−µ−1)−1, or equivalently, s2 < 1.

Then we will show that s1 > 1 in the follows. In case of µ > 1, s1 > 1 is clearly true, since
(γ−1)µ+ r(µ,γ, µ̂)> 0. Consider the case of µ≤ 1. We will shows that (γ−1)µ> 2 (µ−1 − 1) µ̂, or
equivalently s1 > 1. If µ̂ < µ−γ−1, then (γ−1)µ−2 (µ−1 − 1) µ̂≥ (γ+1)(µ−γ−1)2+(γ−1)γ−2 > 0

by simple algebra. Otherwise, µ̂ ≤
(
(µ− 1)+

√
(γ− 1)µ2 +(µ− 1)2

)
/2 implies that (γ − 1)µ −

2 (µ−1 − 1) µ̂≥
√

(γ− 1)µ2 +(µ− 1)2(
√
(γ− 1)µ2 +(µ− 1)2 − (1−µ))> 0.

We may rewrite p1 as p1 =
(µ−s2)

2

(µ−s2)2+σ2 , implying that 0 ≤ p1 ≤ 1. So π(s) is a probability dis-

tribution. Finally, s1 > 1 and s2 < 1, along with simple algebra, show that Eπ(1) = 1, Eπ(S) = µ,
Eπ(S

2) = γµ2, Eπ((S− 1)+) = µ̂. �

Now, we present the closed-form solution for Problem (8).

Theorem 6. If (µ,γ, µ̂) is feasible for Problem (8), then

q(µ,γ, µ̂) = 2µ̂(µ−1)+µ((γ−1)µ+r(µ,γ,µ̂))

2
− µ̂2, (16)

where r(µ,γ, µ̂) is defined in (13).
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Proof of Theorem 6 Consider the dual solution for (Q
d
) given by





yo =− 1
2

(
(2µ̂−µ)µ− µ

r(µ,γ,µ̂)
(2(γ− 2)µ̂2 +(γ− 1)µ2 − 2µ̂(1+ (γ− 2)µ))

)
,

y1 = µ̂−µ+ 1
r(µ,γ,µ̂)

(2µ̂2 − (γ− 1)µ2 + µ̂(2+ (γ− 3)µ)) ,

y2 =
1
2

(
1

µr(µ,γ,µ̂)
((γ− 1)µ2 +2µ̂(µ− 1)− 2µ̂2)+ 1

)
,

ŷ1 = (µ− 1)+ 1
r(µ,γ,µ̂)

(γ− 1)µ(µ− 1− 2µ̂).

(17)

Note that
y2 = 1

2

(
1

µr(µ,γ,µ̂)
((γ− 1)µ2 +2µ̂(µ− 1)− 2µ̂2)+ 1

)

= 1
4

(
r(µ,γ,µ̂)

(γ−1)µ
+ (γ−1)µ

r(µ,γ,µ̂)

)
+ 1

2
> 1,

and that
y0 + y1s+ y2s

2 = y2(s− s2)
2 ≥ 0,

y0 + y1s+ y2s
2 + ŷ1(s− 1)− (s− 1)2 = (y2 − 1)(s− s1)

2 ≥ 0,

where s1 and s2 are defined in (15). That is, the solution in (17) is feasible for (Q
d
), and its

corresponding objective value is equal to 2−1 (2µ̂(µ− 1)+µ ((γ− 1)µ+ r(µ,γ, µ̂)))− µ̂2 ≥ qd. The
weak duality implies that 2−1 (2µ̂(µ− 1)+µ ((γ− 1)µ+ r(µ,γ, µ̂)))− µ̂2 ≥ q(µ,γ, µ̂).

On the other hand, if (µ,γ, µ̂) is feasible for Problem (8), then π(s) in (15) is fea-
sible for Problem (8) from Lemma 4, and its corresponding objective value is equal to
2−1 (2µ̂(µ− 1)+µ ((γ− 1)µ+ r(µ,γ, µ̂)))− µ̂2 ≤ q(µ,γ, µ̂). �

Theorems 5 and 6, after simple algebra, imply that the optimal solution for Problem (3) as given
in Theorem 3.

Appendix B: Proof of Theorem 4

Proof of Theorem 4 We first consider the simpler case of λ < 0, where we need to solve the
optimization problem (see (6) in Section 2):

min
µ̂∈Ωx

θ(µ̂) = µ−xµ̂− cx−λ
√

v(x; µ̂).

From Theorem 3, we have that

θ(µ̂) = µ−xµ̂− cx−λ

√(µ
2

√
γ− 1− y

)2

= µ−xµ̂− cx−λ
(µ
2

√
γ− 1− y

)
,

where y =
√

(γ−1)µ2

4
+xµ̂(µ−x)−x2µ̂2 and the second equality follows from that y ≤ µ

2

√
γ− 1 by

simple algebra. The derivative of θ(µ̂) is given by

θ′(µ̂) =−x

2

(
2− λ(µ−x− 2xµ̂)

y

)
.

Let θ′(µ̂) = 0, that is, 2y= λ(µ−x− 2xµ̂). Squaring both sides, we have

4
(
λ2 +1

)
µ̂2 − 4

(
λ2 +1

)(µ
x
− 1
)
µ̂+λ2

(µ
x
− 1
)2

− (γ− 1)
(µ
x

)2

= 0.

Then we get the unique stationary point of θ(µ̂) as

µ̂3(x) =
1

2


µ

x
− 1+

√
(γ− 1)(µ

x
)2 +(1− µ

x
)2

λ2 +1


 .
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And moreover, θ′(µ̂)≤ 0 when µ̂≤ µ̂3(x) and θ′(µ̂)≥ 0 when µ̂≥ µ̂3(x). Hence, µ̂3(x) is the mini-
mizer of θ(µ̂) if µ̂3(x)∈Ωx, or sufficiently if µ̂3(x)≥ (µ

x
− 1)+.

We will then proceed with the proof for λ≥ 0, where we need to solve the following optimization
problem (see (6) in Section 2):

min
µ̂∈Ωx

θ(µ̂) = µ−xµ̂− cx−λ
√

v(x; µ̂).

We consider two cases based on the range of µ̂.
Case 1. (µ

x
− 1)+ ≤ µ̂≤ µ

x
− 1

γ
, where 0<x≤ γµ. From Theorem 3, we have that

θ(µ̂) = µ−xµ̂− cx−λ
√

−µ2 +µx(1+ 2µ̂)−x2µ̂(1+ µ̂),

and the derivative of θ(µ̂) is given by

θ′(µ̂) =−x

2

(
2+

λ(2µ−x− 2xµ̂)√
−µ2 +µx(1+ 2µ̂)−x2µ̂(1+ µ̂)

)
.

For γ ≤ 2, we have that θ′(µ̂)≤ 0 (hence θ(µ̂) is non-increasing) since µ̂≤ µ

x
− 1

γ
≤ µ

x
− 1

2
, implying

that the minimizer of θ(µ̂) is achieved at the right boundary µ̂∗ = µ

x
− 1

γ
= µ̂1(x). For γ > 2, the

first-order condition θ′(µ̂) = 0 offers the unique stationary point µ̂= µ

x
− 1

2
+ 1

2
√

λ2+1
= µ̂2(x). The

minimizer of θ(µ̂) can be therefore decided as follows:
(i) If λ< 2

√
γ−1

γ−2
, then we have that

µ

x
− 1

2
+

1

2
√
λ2 +1

>
µ

x
− 1

γ
;

that is, θ′(µ̂) < 0 (hence θ(µ̂) is decreasing) when (µ
x
− 1)+ ≤ µ̂ ≤ µ

x
− 1

γ
, implying that the

minimizer of θ(µ̂) is achieved at the right boundary

µ̂∗ =
µ

x
− 1

γ
= µ̂1(x).

(ii) Otherwise, if λ≥ 2
√
γ−1

γ−2
, then (µ

x
− 1)+ ≤ µ

x
− 1

2
+ 1

2
√

λ2+1
≤ µ

x
− 1

γ
, and hence the minimizer of

θ(µ̂) is given by

µ̂∗ =
µ

x
− 1

2
+

1

2
√
λ2 +1

= µ̂2(x).

Case 2. µ

x
− 1

γ
≤ µ̂≤ (µx−1)+

√
(γ−1)(µx )2+(µx−1)2

2
, where x≥ γµ

2
. From Theorem 3, we have that

θ(µ̂) = µ−xµ̂− cx−λ
(
y+

µ

2

√
γ− 1

)
,

where y=
√

(γ−1)µ2

4
+xµ̂(µ−x)−x2µ̂2. The derivative of θ(µ̂) is given by

θ′(µ̂) =−x

2

(
2+

λ(µ−x− 2xµ̂)

y

)
.

The first-order condition θ′(µ̂) = 0 offers the unique stationary point:

µ̂3(x) =
1

2


µ

x
− 1+

√
(γ− 1)(µ

x
)2 +(1− µ

x
)2

λ2 +1


 .

The minimizer of θ(µ̂) can be therefore decided as follows:
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(i) If λ> (2x−γµ)
√
γ−1

|γµ+γx−2x| , then we have that µ̂3(x)<
µ

x
− 1

γ
; that is, θ′(µ̂)> 0 (hence θ(µ̂) is increasing)

when µ

x
− 1

γ
≤ µ̂≤ (µx−1)+

√
(γ−1)(µx )2+(µx−1)2

2
, implying that µ̂∗ = µ

x
− 1

γ
= µ̂1(x).

(ii) Otherwise, we have
(
µ

x
− 1
)+ ≤ µ̂3(x)≤ µ

x
− 1

γ
, implying that the optimal solution is achieved

at the stationary point, namely µ̂∗ = µ̂3(x). �

Appendix C: Proof of Theorem 2

We need two lemmas in Appendix C1 before the final proof Theorem 2 in Appendix C2.

Appendix C1: Two lemmas

Lemma 5. If 1−λ
√
γ− 1≥ γc,

1+
(1− 2c)

√
γ− 1√

λ2 +4c(1− c)
≥ γ

2
.

Proof of Lemma 5 We consider three cases.
Case 1. If γ ≤ 2 and 1≥ 2c, then

1+
(1− 2c)

√
γ− 1√

λ2 +4c(1− c)
≥ 1≥ γ

2
.

Case 2. If γ ≤ 2 and 1< 2c, then it follow that

γ ≤ 1

c
<

1

1− c
,

implying that 4 ((γ− 1)− γc) ·(1−γc)≤ 0≤ (γ−2)2λ2, which is equivalent to the desired inequality.
Case 3. If γ > 2, and |λ| ≤ 1−γc√

γ−1
, then it follows that 3γ− 4> c(6γ− 8)≥ c(−γ2 +8γ− 8) from

1≥ γc > 2c, implying that

4(γ− 1− γc)≥ (γ− 2)2

γ− 1
(1− γc),

which, together with the case assumption |λ| ≤ 1−γc√
γ−1

, implies that 4((γ − 1) − γc) · (1 − γc) ≥
(γ− 2)2λ2, which is equivalent to the desired inequality.

Case 4. If γ > 2, and λ≤− 1−γc√
γ−1

, then

1+
(1− 2c)

√
γ− 1√

λ2 +4c(1− c)
,

is non-increasing with λ within the range specified in the case assumption, implying the desired
result. �

Lemma 6. Let

x0 = µ

(
1+

(1− 2c)
√
γ− 1√

λ2 +4c(1− c)

)
.

If 1−λ
√
γ− 1≥ γc and λ≥ 0, then

λ≤ (2x0 − γµ)
√
γ− 1

|γµ+ γx0 − 2x0| .
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Proof of Lemma 6 We consider two cases.
Case 1. γ ≥ 2. The case assumption implies that γµ+ γx− 2x > 0, ∀x≥ 0. Moreover, 0≤ λ≤

1−γc√
γ−1

implies that −(γ− 1)λ2 − (γ− 2)
√
γ− 1 λ+(γ− 1)− c(1− c)γ2 ≥ 0, or equivalently

(λ+
√

γ− 1)γµ≤
(
2
√

γ− 1− (γ− 2)λ
)(

1+
(1− 2c)

√
γ− 1√

λ2 +4c(1− c)

)
µ,

implying the desired claim after simple algebra.
Case 2. γ < 2. We consider three subcases.
(i) First of all, if x0 < γµ

2−γ
, then the proof follows from the same argument as in Case 1 since

γµ+ γx0 − 2x0 > 0.
(ii) Second of all, if x0 ≥ γµ

2−γ
, and λ≤ 2

√
γ−1

2−γ
. Then x0 ≥ γµ

2−γ
implies that γµ+ γx− 2x < 0 for

any x > x0. Note that (2x−γµ)
√
γ−1

|γµ+γx−2x| is an increasing function of x in the range
[
γµ

2
, γµ

2−γ

)
and

decreasing in
(

γµ

2−γ
,+∞

)
. Moreover,

lim
x→+∞

(2x− γµ)
√
γ− 1

|γµ+ γx− 2x| =
2
√
γ− 1

2− γ
.

Therefore the desired result follows from the second case assumption:

λ≤ 2
√
γ− 1

2− γ
<

(2x0 − γµ)
√
γ− 1

|γµ+ γx0 − 2x0| .

(iii) Now we consider the remaining case, where γ < 2, x0 > γµ

2−γ
and λ > 2

√
γ−1

2−γ
. Note that λ >

2
√
γ−1

2−γ
> (γ−1)−γc√

γ−1
implies that (γ − 1)λ2 + (2 − γ)

√
γ− 1 λ − (γ − 1) + c(1 − c)γ2 ≥ 0, or

equivalently

(
λ(2− γ)− 2

√
γ− 1

)
·
(
1+

(1− 2c)
√
γ− 1√

λ2 +4c(1− c)

)
≤
(
λ−

√
γ− 1

)
γ,

implying the desired claim after simple algebra.
�

Appendix C2: Proof of Theorem 2

Now, we have all the ingredients to prove Theorem 2.
Proof of Theorem 2 We consider the two cases λ≥ 0 and λ< 0 separately.
(I) From Theorem 4, when λ≥ 0, we consider three cases as follows:
Case 1. h(x) = h1(x) =

x

γ

(
1−λ

√
γ− 1− γc

)
under the condition λ > (2x−γµ)

√
γ−1

γµ+γx−2x
. If 1 −

λ
√
γ− 1≤ γc in h(x), then h(x) being a linear function with a non-positive slope implies that the

maximizer of h(x) is x∗ = 0. Otherwise, if 1−λ
√
γ− 1> γc, namely, h(x) has a positive slope, then

x∗ should assume the largest possible value in its range. Note that the right-hand-side of the case
condition λ> (2x−γµ)

√
γ−1

γµ+γx−2x
as a function of x is increasing, implying that the largest feasible value of

x satisfies that λ= (2x−γµ)
√
γ−1

γµ+γx−2x
, which shares the same assumption as that for Case 3, and hence

the desired result is implied by the argument therein.
Case 2. h(x) = h2(x) = −

(
2−1

(√
λ2 +1− 1

)
+ c
)
x. Then h2(x) being non-increasing implies

that the maximizer of h(x) is x∗ = 0.
Case 3. h(x) = h3(x), where

h3(x) =
1

2

(
x− 2cx−

√
λ2 +1 ·

√
(µ−x)2 +(γ− 1)µ2 +(1−λ

√
γ− 1)µ

)
.
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The first-order condition offers the unique stationary point of h(x) as

x∗ = µ

(
1+

(1− 2c)
√
γ− 1√

λ2 +4c(1− c)

)
.

Lemmas 5 and 6 together imply that x∗ ≥ γµ

2
and λ≤ (2x∗−γµ)

√
γ−1

|γµ+γx∗−2x∗| , and hence x∗ is the maximizer

of h(x).
(II) When λ< 0, h(x) = h3(x). Let h

′(x) = 0, we obtain the unique stationary point of h(x):

x∗ = µ

(
1+

(1− 2c)
√
γ− 1√

λ2 +4c(1− c)

)
.

Lemma 5 implies that x∗ ≥ µγ/2≥ 0. Recall the definition of µ̂(x) from Section 2

µ̂3(x
∗) =

1

2


 µ

x∗ − 1+

√
(γ− 1)( µ

x∗
)2 +(1− µ

x∗
)2

λ2 +1


 ,

We now show that µ̂3(x
∗)∈Ωx∗ , together with x∗ ≥ 0, imply that x∗ is feasible for Problem (2). It

is sufficiently to show that µ̂3(x
∗)≥

(
µ

x∗
− 1
)+

, which is obviously true if 0≤ c≤ 0.5. For 0.5< c≤ 1,

inequality (2c− 1)2 ≤ 1 is equivalent to x∗

µ
≥ 1+

√
γ−1
λ

, implying that µ̂3(x
∗)≥ µ

x∗
− 1.

Moreover, note that h′(x)≤ 0 for x≤ x∗ and h′(x)≥ 0 for x≥ x∗ by simple algebra. Hence, h(x)
achieves its minimum at x∗. �


