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1. Introduction Given a ground set X, let 2% be its power set. A set function f : 2¥ — R
is nonnegative if f(A) > 0, VA C X. It is symmetric if f(A) = f(X — A), VA C X, or simply

f(A) = f(A) whenever the ground set is obvious. It is submodular if
f(A)+ f(B)> f(AUB) + f(ANB), VA,BC X.

Let fj:2¥ = R* (j = 1,...,k) be k nongeative submodular functions. The main focus of this
work is on maximizing multiple nonnegative submdoular functions, namely, solving the following
k-criteria submodular function maximization problem:

(P): gnga))(({fl(s)v'uvfk(s)}'
Sometimes we also need to refer to the jth (j € {1,...,k}) mono-criterion problem:

(P): maxy(S)


http://people.unb.ca/~ddu
mailto:ddu@unb.ca
http://people.unb.ca/~ddu
mailto:liyubjut@gmail.com
mailto:liyubjut@gmail.com
mailto:nhxiu@center.njtu.edu.cn
mailto:nhxiu@center.njtu.edu.cn
mailto:xudc@bjut.edu.cn
mailto:xudc@bjut.edu.cn

The main issue of solving any multi-criteria optimization is that a solution simultaneously max-
imizing all objectives may not exist in general. Therefore many solution concepts, such as Pareto-
optimality (e.g. [18]), goal programming (e.g. [15]) and budgeted-constraint approach (e.g. [20,17])
etc., have been proposed in the literature to address this issue. The standard solution concept is
Pareto optimality: a solution such that no criterion could be made better off without making some
other criteria worse off. However, every solution concept has its pros and cons and hence may
be appropriate only for some of the real-life applications, resulting in many different solution con-
cepts still being proposed in the multi-criteria optimization area. For a detailed account of various
solution concepts and their applications, please refer to [9].

In this work, we adopt a fairly recent solution concept of simultaneous approxrimation, first
proposed by Stein and Wein [22], initially defined for scheduling problems, and later extended to
some other problems such as MAX-CUT [2]. For our purpose, we cast this solution concept under
the framework of a game setting. While the game can be defined analogously for any multi-criteria
optimization problem, we will focus on the k-criteria submodular function maximization problem
from now on.

The k-criteria submodular maximum game: Given k nongeative submodular functions f; :
2X — RT (j =1,...,k) over a common ground set X, there are k players. Each player tries to
maximizes its payoff f;(S) over its strategy space S C X. Moreover, all players are only allowed
to adopt the same strategy (pure or randomized), namely we focus on the symmetric game setting
(the asymmetric setting where players can use different strategies is trivial because of the inter-
independence of the payoffs of the players).

The usual approach for dealing with this game is via various concepts of equilibrium (such
as the most famous one: Nash-equilibrium), whose main consideration is on solution stability.
However, this work will focus on a different aspect of this game, namely, fairness. As explained
shortly, the simultaneous approzimation approach can offer some insights on this aspect. Due to the
correspondence between the original k-criteria submodular function maximization problem (P) and
the game defined above, we call any pure strategy of the game as a deterministic solution to (P),
and any mixed strategy of the game as a randomized solution of the (P). Now we formally define
the most important concept in the simultaneous approximation approach. Let S}‘ (j=1,...,k) be
the optimal solution for the jth mono-criterion problem (P;).

DEFINITION 1.1 For any « € [0, 1],
(i) A subset S C X is an a-deterministic solution for the problem (P) if
fi(S) > afi(S), Vi=1,... k.

(i) A mized strateqy T is an a-randomized solution for the problem (P) if
E[f;(T)] =z afj(S}), ¥i=1,....k.

The ratio « stipulates that how close each payoff function is to its ideal optimum, and hence
indeed can be used as a measure on how fair the eventual solution is to all the players.

For this type of solution concept, there are two fundamental issues to be addressed:

(I) characterize o such that an a-deterministic (or randomized) solution exist; and



(IT) how to find a good simultaneous approximation solution in polynomial-time for the deter-
ministic case and randomized polynomial-time for the randomized case?

Note that the first issue (I), trivial for the mono-criterion problem, turns out to be highly

nontrivial for the multi-criteria problem studied in this work, which is precisely the interest of this
work.

1.1 Our contributions For the aforementioned issue (I), when the submodular functions
are symmetric, we provide complete characterizations of the existence and non-existence for both
deterministic and randomized solutions, respectively. When the submodular functions are not
necessarily symmetric, we provide an example to show that there may exist no simultaneously
bounded deterministic solution for more than one criterion, and we present an existence bound for

the randomized solutions. The detailed existence and non-existence results are summarized below
(See Table [ for small k).

(i) For symmetric submodular functions,

e there exists a %—deterministic solution for k& = 2, and this is the best possible; however,
no simultaneously bounded deterministic solution exists for k£ > 3;

e there exists a %—randomlzed solution for any & > 2, and this bound is the best
possible, namely, there exist symmetric submodular functlons (f1,..., fr)forany k > 2
such that no a-randomized solution exists for any a > Qk T

(ii) For asymmetric submodular functions,

e 1o simultaneously bounded deterministic solution exists for k > 2;

e there exists a max{%, %}—randomized solution for any & > 2, and this bound is
the best possible for £ =2 and k = 3.

symmetric (optimal) | asymmetric (upper bound)

27(}71 2k 2

k 2F—1 max { ko 2F—1 }

1 1 1*

2 2 ~ .6667 i~5

3 i ~ 5714 L~ .3333*

4 1% ~ .5333 é% ~ .2745*

6 8

e [ h

7 f—gg ~ .5039 % ~ .2520

8 =£2 ~ .5020 54~ 2510

9 % ~ .5010 % ~ .2505

10 2= ~ 5005 =2 ~ 2502

Table 1: Existence bounds for small k, where the asterisk ones are tight bounds

On the algorithmic consequence, these existence results also lead to polynomial-time determinis-
tic or randomized solutions, addressing the aforementioned issue (IT). The simple (polynomial-time)
randomized algorithm which equi-probably select or reject any given element into the solution can



be easily proved to yield a %—randomized solution for the symmetric submodular function and a
%—randomized solution for the asymmetric case, and hence matching the existence results shown
above asymptotically when k& — co. Later on, we will discuss how these existence results can lead
to improved polynomial time approximation algorithms for the multi-criteria problems compared
to the aforementioned simple random algorithm for small criteria number k, when equipped with

existing approximation algorithms for the mono-criterion problem.

1.2 Background and applications Submodular optimization is one of the most important
subclasses of problems in combinatorial optimization with great practical and theoretical signifi-
cance, including many well-know combinatorial problems as special cases, such as the cut problem in
direct/undirected /hypergraphs, certain constraint satisfaction problems, entropy sampling, and the
facility location problem, among others. Moreover, submodular optimization problems are ubiqui-
tous in almost all research disciplines, both science and social science, in particular in economics and
management [23]. Both submodular minimization and maximization in the mono-criteria case have
been extensively investigated in the literature. While submodular minimization problem admits
strongly polynomial-time algorithm [21], the problem of maximizing a single submodular function
is strongly NP-hard in general as it includes the famous MAX-CUT problem as a special case. Since
the existence of optimal solution for mono-criterion submodular maximization problem is out of
question, the main interest lies in the design of good approximation algorithm and proof of inap-
proximability for the problem. This line of research has attracted a lot of attentions recently (e.g.,
see [Bl, 11] and references therein).

Our work here extends this line of research to the multi-criteria domain, which calls for extra
attention on the existence, a non-trivial issue here, contrary to the mono-criteria case. Moreover,
we believe, the extension to the multi-criteria problem can better meet the practitioners’ needs
in almost any application of the mono-criteria version, and hence of greater practical significance
in such problems, originally only dealt with from a single objective point of view. With ever
increasing global competition, corporations have been rapidly adapting their business models to
be competitive not only on one aspect, but on several grounds. This new requirement provides a
fruitful application filed for multi-objective optimization techniques to be deployed in facilitating
business decision-making.

The results developed in this work, both the existence and algorithmic consequences, can be
particularly insightful in those decisions-making situations, where different decision-makers have its
own objective estimation of the objective functions, trying to collaboratively reach a solution that
is equally close to everyone; or a single-decision maker has several similar but potentially conflicting
objective functions, trying to find a solution that is equally close to all its estimation. To appreciate
the application potentials of the results developed in this work, below we use one concrete example
from cluster analysis to serve as one of the motivations in pursuing this research.

Cluster analysis (or data classification), the partition of observed data into clusters of "closely
related" observations, has extensive applications in business management, economics, health care
system, information retrieval, bioinformatics, machine learning, data mining, pattern recognition,
image analysis, etc. While numerous clustering methods exit in the literature, we focus one method
based on the MAX-CUT problem. In the simplest bi-partition case, the desired clusters can be
obtained by solving an MAX-CuUT problem on a complete graph such that each observation is a
node, along with the edge weight being the “closeness” of the observations, measured usually by



some distance measures like the Euclidean distance, the Manhattan distance (or taxicab norm or
1-norm), the maximum norm (or infinity norm), or the Hamming distance, etc. In the mono-criteria
case, we have to deal with each distance measure separately, and the resultant clustering from one
distance measure may be dramatically different from the one based on another distance measure.
Suppose we now want to find a clustering that is equally close to all distance measures, then the
results developed in this work (particularly Theorems BIH3.2) are perfect fits as the cut function is
a symmetric submodular function.

1.3 Prior and related results There are two extant results that are closely related to our
work. The most relevant previous work is the recent result on bi-criteria MAX-CUT problem by
Angel [2], which is a special symmetric submodualr function. They prove the following results for
this bi-criteria problem: (1) there exists a 3-deterministic solution and this is the best possible;
however, no simultaneously bounded deterministic solution exists for k& > 3; (2) there exists a

@ ~ 0.618-randomized solution, and no a-randomized exists for any o > 2 ~ 0.667.

Our work here therefore greatly extends the above results in two directions: (1) we consider any
number of criteria k > 2; and (2) we consider any submodular function (asymmetric or symmetric).
Furthermore, as direct consequences of some of the results obtained in this work, we resolved several
open questions left therein, when our results are specialized to the MAX-CuUT problem.

Another related result is given recently by Chekuri et al [§] on monotonic submodular functions:
there exists a (1 — 6_1)—deterministic solution for any number of monotonic submodular functions
and it can be found in polynomial time.

After some preliminary results in Section[2, we first consider the existence issue for the symmetric
and asymmetric cases in Sections Bland 4] respectively. We then present the algorithmic corollaries
in Section 5l Finally, we provide some concluding remarks in Section

2. Preliminaries We present some useful facts which will be essential in the analysis of the
existence and non-existence results later on.

2.1 Facts useful for existence analysis We establish the following properties for any non-
negative submodular function.

LEMMA 2.1 Assume that f : 2% — RT is any nonnegative submodular function. Given two sets
A,BC X, let AAB = (A\B) U (B\A) be the symmetric difference. Then

f(AAB) + f(B) + f(AAB) + f(B) > f(A) + f(A).

PrOOF. By the submodularity of f:
J(AAB)+ f(B) > f((AAB)NB)+ f((AAB)UB) = f(B—-A) + f(AuB),

{(ARB) + {(B) > f(ABB)NB)+ /(ABB)UT) = f(F=4A) + (ATB),

implying that
f(AAB) + f(B) + f(AAB) + f(B)

—A)+ f(AUB))+ (f(B— A+ f(AUB))
+ f(A) + (f(A) + f(X)) > f(A) + f(A).

Vv Vv
<
=



where, the second inequality follows from the submodularity, and the last inequality follows from
the nonnegativity. g

Assuming symmetry in the above leads to the result below for symmetric submodular function.

LEMMA 2.2 Assume that f : 2% — RT is any nonnegative symmetric submodular function. Given
two sets A, B C X, let AAB be the symmetric difference. Then

f(AAB) + f(B) = f(A).

2.2 Facts useful for non-existence analysis We introduce some notational conventions for
easy presentation. Consider a complete graph Ko with vertex set Vi = {0,1,...,2¥ —1}. Vertices
in V are embedded into the k-dimensional space R¥ such that each i € V}, is associated with the
(row) vector i = (iy,...,i) € R¥, where i, € {0,1} for £ = 1,... k. Geometrically, the vertices in
V can be viewed as the corners of the k-dimensional hypercube (see Fig. [l for an illustration when
k = 3). For any vector, we define its 1-norm || e ||; as the sum of its coordinates in the vector.
From now on, we will use boldface letters to represent vectors. For example, given Vj, we denote
Vi = {i:i € V4 } as the corresponding set of vertices represented with the vectors.

1:(0,01) 5:(102)

3:(0L1) 7:(110)

0:(0,0,0) 4:(1,0,0)

2:(0,1,0) 6:(110)

Figure 1: Geometric representation of Va3 = {0,1,2,3,4,5,6,7} and the corresponding set of vector-
represented vertices V3 = {(0,0,0), (0,0,1),(0,1,0), (0,1,1),(1,0,0),(1,0,1),(1,1,0), (1,1,1)}

REMARK 2.1 An alternative (algebraic) way of looking at the vector i = (iy,...,i) is that the
coordinates can be obtained as follows: First, each integer i € Vi, can be converted to its binary
number representation (keep k-digits by adding leading zeros if necessary), which then can be viewed
as a vector with components being the binary digits of integeri. For example, whenk =3,i=2 € V3

can be converted to a binary number 010, which can be viewed as a (row) vector 2 = (iy,i2,13) =
(0,1,0) € R®.

For any i,j € Vi, we define the component-wise modulo operation:

qij=1i+j (mod2)=(i1+j1 (mod2),...,ix+jr (mod2)).



Let Qi = {qi; : i,j € Vi}. Then we have the following fact about Qy.

Fact 1 Q. is an multiset consisting of 2F copies of each element from V.

Proor. It is easy to see that Vi is closed under this modulo operation, namely for any
i,j € Vi, qij € Vk. Moreover, each element in i € Vi, after module operation with 0, belongs to
Qk. Therefore, Qf is an multiset consisting of only elements from V. We now prove that each
element occurs exactly 2¥ times. Imagine all elements in Vi as a sequence: m = (0,...,2¥ —1).
For any i € Vy, consider the following sequence generated after the modulo operation: 7! = (0 + i
(mod 2),...,2% — 1+i (mod 2)). Then it is easy to see that 7! is a permutation of 7, and moreover,
different i’s will generate different permutations, implying the desired multiplicity result since there
are 2F such different i’s in V.

O

3. Symmetric submodular functions We provide a complete characterization for both de-
terministic and randomized cases for the symmetric submodular functions in Sections B.1] and 3:2]
respectively.

3.1 Existence and non-existence of deterministic solution We consider the bi-criteria
problem first, and then show that, by an example, no simultaneously bounded deterministic solution
exists for three and more criteria.

THEOREM 3.1 Assume that there are two criteria, namely, k = 2, and assume the submodular
functions in problem (P) are nonnegative and symmetric. Then we have:
(i) For any instance of problem (P), there ezists a %-deterministic solution for the problem (P).
(ii) Moreover, there ezist two nonnegative and symmetric submodular functions such that no «-

deterministic solution exists such that o > %

Proor. (1) Let A; and Ay be the optimal solutions for the two mono-criterion problems (P;)
and (P,), respectively. We construct the desired deterministic solution A as follows:

Ay, if 2f2(A1) > f2(A2);
A= q A, if 2f1(A2) > fi(Ar);
A1AA,,  otherwise.

Evidently, we obtain a %—deterministic solution in the first case, and a %—deterministic solution
in the second case. In the third case, we have 2f3(A;) < f2(As2) and 2f1(A42) < f1(A1), together
with Lemma [Z2 from Section 1] implying that, for the first objective,

J1(A1AAs) + f1(A2) > f1(A1),

or equivalently

A(AIAL) > A(A) ~ fi(42) > fi(AY) — S Ai(A) = 5 1(A).



Analogously, for the second objective, we can prove

1
f2(A1AAy) > §f2(A2)~
Therefore in the third case we obtain a %—deterministic solution.

(2) To prove the non-existence results, we consider the cut function in undirected graph. The
following example belongs to [2]. Consider the complete graph K3 in Figure[Z(a). The optimal cut
value for both objectives are two while no feasible cut has values strictly better than one on both
objectives. |

For more than two criteria (i.e., k > 3), the following example, an extension of the above exam-
ple, shows that in general no simultaneously bounded deterministic solution exists for symmetric
submodular functions.

EXAMPLE 3.1 (Unbounded deterministic solution for the symmetric case when k > 3) Consider the
Max-CuT problem on an undirected cycle graph C, = (1, ..., k), whose cut functions are symmetric
and submodular. The weights for these k criteria are specified by a k-dimensional vector. Assign
respectively weight vector e; (i = 1,...,k) to the k edges, where e; is the all-zero vector except on
the ith coordinate (See Figure[2(b) for the case of k = 3). The optimum cut value for each criterion
s one while any deterministic cut achieves zero on at least one coordinate. Thus, no simultaneously
bounded deterministic solution exists.

(01) (1,0) e, =(10,0)

) e, =(010)
(a) Two criteria. (b) Three criteria.

Figure 2: Non-existence example for the symmetric cases

3.2 Existence and non-existence of randomized solution First, we prove the existence
result in Theorem Then, in Theorem [3.3] we prove that the result in Theorem is the
best possible via the MAX-CUT problem as the cut function is a special symmetric submodular
function. The readers may find it beneficial to refer to the illustrative examples for the case of
k = 3 in Sections [3.4] and while reading the proofs of these two theorems.

THEOREM 3.2 Assume the submodular functions are nonnegative, symmetric and submodular in
problem (P). Then there exists an a-randomized solution such that

2k—1
2k — 17
and this quantity approaches to 0.5 when k — oo.

o =



ProoF. Let A = {Ai,..., A}, where each A; (j = 1,...,k) is the optimal solution for the
mono-criterion problem (P;). W.l.o.g., assume the optimal objective values are all equal to one,
namely f;(A;) =1 (£ =1,...,k). For any nonempty subset X = {4;,,...,4;,} CA(1<i; <
- <ijp<kand1</{<k), define the symmetric difference solution

Siyip = A A AA;,.

Let S be the set of all such symmetric difference sets corresponding to the 2¥ — 1 nonempty sets of
A and obviously |S| = 2¥ — 1. The desired randomized solution S is obtained by equiv-probably
selecting all the sets in S. The desired expected value of S follows from the submodularity of f;
(j =1,...,k) after appropriate pairing and harnessing the properties of symmetric difference. Due
to symmetry, we only prove the desired result for f;.

2F - DE[A(9)] = Zf1<si>+ > AlSy)

i,j:1<i<j<n

+ Z f1(Sije) + -+ + f1(S1..k)-

ik 1<i<j<k<n

Any term S;, . ;, above, satisfying that i; =1 and £ > 2, can be equivalently written as S;,. ;, =
A1AS;,. i, := A1AB. Considering the pair of cuts A;AB and B, Lemma from Section 2.1]
implies that

fi(A1AB) + fi(B) = f1(A1) = 1.
Note that we have in total 2¥=! — 1 such pairs, together with fi(A;) = 1, implying the desired

result
(25 — )E[fi(S)] = 2,

O

THEOREM 3.3 For the k-criteria MAX-CUT problem, there exists an instance such that no (-
randomized solution exists such that 5 > a.

Proor. Consider the complete graph Kyr with vertex set V' from Section Each edge will
be assigned with a weight (row) vector in R” such that its fth coordinate is the weight for the (th
mono-criterion problem. We then show that for this weighted complete graph, no random solution
has a ratio strictly better than « with respect to the cut function.

For any edge (i,j) such that i < j € V, define the weight vector for edge (7, j) as follows:
_ 9
llaij |2

Wij

Note that the sum of weights ||wjj|[1 on each edge (¢, 7) is equal to one, implying that the max
cut value in Ky with respect to unit weights is equal to 25—125=1 = 22(=1)  Let S be any random
cut in this weighted graph. And denote E[cut;(S)] to be the expected cut value of S for criterion
¢. Then

E

k
Zcutg(S)] < 92k=1) (1)
(=1
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We devote the rest of the argument to the proof of the next claim.
CLAIM 1. The max cut value for each criteria is at least (28 — 1)2F~1 /.

This claim, together with (), implies the desired result

k
LE |37 cut;(9)
e EZE[cutj(S)] I = R Iy I
~k cut; (S*) cut; (S*) T2k —1)2k1/k - 2k — 17

We prove Claim 1 for the /th criterion by demonstrating a cut (Sy, S;) with the value equal to
(28 —1)2k=1 /K as follows:

For each vertexi € V, i € Sy iff ip = 1, that is, the (th coordinate of the corresponding vector is
one.

Evidently |_S[| = 2k=1 Let Q be the set of all ¢;;’s such that qj; =i+ j (mod 2) for any i € S,
and any j € Sg. We need the following claim for Q to calculate the cut value of (Sp, Sp).

2k71

CLAIM 2. Qy is an multiset consisting of copies of distinct elements from Sp.

Due to symmetry, we only prove Claim 2 for £ = 1. Let V' = {0,1,...,2*"! —1}. Then for
each ¢ € V', q € RF 1 let Q' = {g;; iy =1+ (mod 2), Vi',j" € V'}. Then Q' is a multiset
consisting of 28=1 copies of distinct elements from V' from Fact B2 Claim 2 now follows by noting
that (1) for any i’,j’ € V', we can obtainan i € Sy = S; asi= (1,i') e RfFanda j e S =& as

j=1(0,j) € R*, and vice versa. And (2) i +j (mod 2) = (1,i’ +j (mod 2).
We now calculate the cut value for the ¢ criterion:

Cioy _ 28'(2h—1)
> =3 gy = “Z E

i€S,jES q€Q,

In the above, the second equality follows from Claim 2 that each ¢ has a multiplicity of 2¢71,
and a simple counting argument that the number of different ¢ € O whose fth coordina-

tor is equal to one and the corresponding edge is assigned value 1/¢, equal to C,‘;’j, namely
{a€ Qe:ar=1llal =c}}| = CiT).
O

3.3 Notes Note that the results in Theorems[3:2]and B3limprove/extend the result in [2] for
the special bi-criteria maximum cut problem. First, for the upper bound, our result specialized to
the bicriteria maximum cut problem given an improved bound 2/3 ~ 0.667 over (v/5—1)/2 = 0.618,
and the new bound is the best possible considering the lower bound example given in [2]. The
latter lower bound is also extended in this work to any number of criteria, and hence answering
affirmatively the main open question left in [2] (See Corollary 2 in Section 5.1l for more details).

3.4 An illustration of the proof of Theorem 3.2 for kK = 3 For Theorem[3.2] when k = 3,
we have
S={A1, A, A3, A1 AAs, A1 A A3, AsAA3, AiAA A A3}
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To show, for j = 1, that (2°—1)E[f1(S)] > 2¥7!, or, when k = 3, E[f1(S)] > 3, we form the following
pairs: (A1AAs, As), (A1AA3, Ag), and (A1 AA3A A3, AsAAs). Then the desired inequality follows
from the following results:

fi(4) = 1,
J1(A1AA) + f1(A2) > fi(A1) =1,
J1(A1AA3) + f1(A3) > fi(A1) =1,
J1(A1AAAA3) 4 f1(A2AA3) > fi(Ar) =1,

where the first one follows from the assumption that all optimal objective values are one, and the
last three follow from Lemma

3.5 An illustration of the proof of Theorem [3.3|for kK = 3 For Theorem[3.3] when k = 3,
Table 2 shows the results from the module operation: q;; =i+j (mod 2), along with edge weights

table in Table B

qij 0 1 2 3 4 5 6 7
(0,00) (0,0,1) (0,100 (0,1,1) (1,00) (1,01 (1,1,0) (1,1,1)
0 (0,0,0) - (0,0,1) (0,1,0) (0,1,1) (1,000 (1,0,1) (1,1,0) (1,1,1)
1(0,0,1) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (L,1,1) (1,1,0)
2 (0,1,0) - (0,0,1) (1,1,0) (1,1,1) (1,0,0) (1,0,1)
3 (0,1,1) - (1,1,1) (1,1,0) (1,0,1) (1,0,0)
4 (170)0) - (0)071) (0>170) (071)1)
5 (170)1) - (0)171) (071)0)
6 (1,1,0) - (0,0,1)
7(1,1,1) -
Table 2: Module operation on V3 in Theorem [3.2]
Wij 0 1 2 3 4 5 6 7
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
0 (0,0,0) - (0,01) (0,100 (0,3,3) (100 (30,3) (3.5.0) (3, 3.3)
100, -4y 010 (o) oo (Lha) (Lo
2 (071)0) - (0)071) (?a%ao) (%17%17%) (]-)070) (5;07%)
3(0,1,1) - (333 (3200 (3.0,3) (10,0)
4 (170)0) - (070)1) (0>170) (07 %a %)
5 (170)1) - (Oa %a %) (0>170)
6 (1,1,0) - (0,0,1)
7(1,1,1) -

Table 3: Edge weights derived from Table

Since the the sum of weights on each edge is one (Table[), we know that the max cut value in Ko«
with respect to unit weights is equal to 2¢~12F=1 = 22(k=1) " which is equal to 16 when k = 3. The
desired result follows if the max cut value for each criteria is at least (28 —1)2*~!/k, which is 28/3 for
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k = 3. Note that S = {4, 5,6, 7} for the first criterion, {2, 3,6, 7} for the second, and T' = {1, 3,5, 7}
for the third are such cuts, generated respectively by {100,101,110,111}, {010,011, 110,111}, and
{001,011, 101, 111}. Table @ illustrates Claim 2.

qgj 0 1 2 3 dij 0 1 2 3
(0,00 (0,1) (1,00 (1,1) (0,00) (0,0,1) (0,1,0) (0,1,1)
0(0,0) | (0,00 (0,1) (1,00 (1,1) 4 (1,0,0) | (1,0,0) (1,0,1) (1,1,0) (1,1,1)
1(0,1) | (0,1) (0,0) (L1) (L0) | = |5(L0,1) | (1,01) (L1,0,0) (1,1,1) (1,1,0)
2(1,0) | (1,0) (1,1) (0,00 (0,1) 6 (1,1,0) | (1,1,0) (1,1,1) (1,0,0) (1,0,1)
3(1,1) | (1,1) (1,00 (0,1) (0,0) 7(1,1,1) | (1,1,1) (1,1,0) (1,0,1) (1,0,0)

Table 4: Module operation on V3 (left) and the resultant Module operation on V3 (right) in the
proof of Claim 2 for the first criterion in Theorem [B.3]

4. Asymmetric submodular functions We consider deterministic and randomized cases for
the asymmetric submodular functions.

4.1 Existence and non-existence of deterministic solution The following example shows
that in general, no simultaneously bounded deterministic solution exists for asymmetric submodular
functions when k& > 2.

EXAMPLE 4.1 (Unbounded deterministic solution for asymmetric case for any k > 2) Consider the
Max-CuT problem on a directed cycle graph Cy = (1,..., k), whose cut functions are asymmetric
and submodular. Assign respectively weight vector e; (i = 1,...,k) to the k edges, where e; is the
all-zero vector except on the ith coordinate. The optimum cut value for each criterion is one while
any deterministic cut achieves zero on at least one coordinate. Thus, no simultaneously bounded
deterministic solution ezists.

4.2 Existence and non-existence of randomized solution The algorithm that evenly
choose all the k optimal solutions for the mono-criterion problems offers a (1, ..., 1)-randomized
solution for any nonnegative set function. And the following example shows that they are the best

possible for k < 3.

EXAMPLE 4.2 For k =2, consider the two nodes graphs with two arcs going in opposite directions
between them. One with weight (1,0) and another (0,1). For k = 3, consider the directed cycle Cs
with weights (1,0,0), (0,1,0) and (0,0,1).

The above simple random algorithm will not offer us the best bound for k£ > 4, as shown in the
theorem below.

THEOREM 4.1 Assume the submodular functions are nonnegative and submodular in problem (P).
Then there exists an «-randomized solution such that
2k—2
a= ok _ 1’

and this quantity approaches to 0.25 when k — oc.
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Proor. Let A = {A4;,..., A} be the maximum cut for problem (P). W.l.o.g., assume the
optimal cut values are all equal to one. For any nonempty subset X = {A4;,,...,4;,} CA (1<
i1 <---<ip<kand1l</l<Ek), we define the symmetric difference cut along with its complement

Siyip = A AN---AA;,,
Siyip = A A AA;

In total we have 2(2¥ — 1) such symmetric difference cuts corresponding to the 2¥ — 1 nonempty
sets of A and their complements. The desired randomized cut S is obtained by equiv-probably
selecting these 2(2F — 1) cuts. The desired expected value of S follows from the submodularity of
fi (4 =1,...,k) after appropriate pairing and harnessing the properties of symmetric difference.
Due to symmetry, we only prove the desired result for f;.
2" =DE[AS)] = D (AS)+AGEN+ D (f1(Sy) + f1(Sy))
i=1 4,§:1<i<j<n
+ Z (f1(Sije) + f1(Sijr)) + -+ + (f1(S1.n) + f1(S1..k))-

ik 1<i<j<k<n

Any terms S;,. ;, and gilmi( above, s_atisfying that i1 = 1 and £ > 2, can be equivalently written
as S, ., = A1AS,,. i, == A1AB, and S, . 4, :_AlAB, respectively. Considering the pair of cuts
A1 AB and B, and the pair of cuts A;AB and B, Lemma 2] from Section 2] implies that

fi(A1AB) + f1(B) + f1(A1AB) + f1(B) > fi(A1) + fi(41) > 1.

Note that we have in total 2°~! — 1 such pairs, together with fi(A4;) + fi(A;) > 1, implying the
desired result

2(2F — DE[f1(9)] > 281
0

5. Algorithmic corollaries We now discuss the issue of how to find a deterministic or ran-
domized feasible solution for the multi-criteria problem in polynomial-time. We first consider the
deterministic solution case, and then followed with the randomized solution.

5.1 Polynomial-time algorithm for deterministic solution We only consider the bi-
criteria symmetric case as there is no simultaneously bounded deterministic solution for symmetric
case with more three objectives and the asymmetric case. Theorem [3] implies that there ex-
ists a polynomial time algorithm which can find an §-deterministic solution by calling any given
a-approximation algorithm for the mono-criterion problem. In particular, under the value-oracle
model, the best possible algorithm for symmetric submodular maximization has an approximation
ratio % ([11]), implying that:

Corollary 1 In the bi-criteria symmetric submodular maximization problem, assume that the sub-
modular function is given under the oracle model. Then there exists a polynomial-time algorithm
which can find a i—deterministic solution.

We may get better bound if the submodular function is given under succinct representation, where
the submodular functions depend only on a constant number of of elements, such as the cut function
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in graph and hypergraphs. In particular, for the bi-criteria weighted max-cut problem, it was
already proved in [2] that there exists a polynomial-time algorithm which can find a (0.439,0.439)-
deterministic solution by calling the 0.879-approximation algorithm by Goemans and Williamson
[13].

5.2 Polynomial-time algorithm for randomized solution It is well-known that the ran-
domized algorithm which equi-probably selects or rejects any given element into the solution is a
%—approximation algorithm for the mono-criterion symmetric submodular function maximization
problem and a i—approximation for the asymmetric case. Moreover, the %—approximation cannot
be improved under the value oracle model ([I1]).

It is not difficult to see that, for the multi-criteria problem, the same simple randomized algorithm
yields a (%, ceey %)—randomized solution for the symmetric case and a %—randomized solution for
asymmetric case.

Note that the existence results proved here cannot yield better bounds than the aforementioned
simple random algorithm under the oracle model. But it can offer better bounds under the succinct
representation model for smaller k. In particular, for the symmetric case, Theorem together
with the 0.879-approximation algorithm in [I3] imply that

Corollary 2 For the k-criteria MAX-CUT problem, there exists a polynomial-time algorithm which
can find a 0.5860-randomized solution for k = 2, and a 0.5023-randomized solution for k = 3.

The last bound actually answered affirmatively the open question posted in [2] for three criteria:
“the existence of a polynomial time randomized algorithm that has a performance ratio strictly better
than % for three and more criteria is open.”.

For the asymmetric case, Theorem 1] together with the 0.874-approximation algorithm in [10,
16] imply that

Corollary 3 For the k-criteria MAX-DI1-CUT problem, there exists a polynomial-time algorithm
which can find a 0.2913-randomized solution for k = 2.

6. Concluding remarks An obvious open question left here is to find the tight randomized
ratio for the asymmetric submodular function when £ > 4. To offer a taste of how challenging this
open question might be, we report a tight result for the special 4-criteria MAX-DI1-CuUT problem:

e there exists a % ~ 0.27448-randomized solution for the 4-criteria MAX-DI1-CUT problem,

and this bound is tight as shown by the instance in Fig[Bl

This is proved with the aid of symbolic calculation via Maple and Matlab and the same code goes
out of memory for k£ > 5.

Note that the last bound 0.27448 implies that general bound earlier for any asymmetric sub-
modular function in Theorem [£1]is not tight, as it only offers max{i, %} ~ 0.2667. Therefore one
possible first step in resolving the aforementioned open question is to find such a tight bound for
the special directed cut function when k > 5.
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Figure 3: Non-existence proof for k = 4: where only cross-layer edges are shown and each of the
three vertical layers is a clique and the edges are omitted here. Namely nodes (0111,1011, 1101,
1110) form th eleft-clique, nodes (0011, 0101, 0110, 1001, 1010, 110) form the middle-clique and
nodes (0001, 0010, 0100, 1000) form the right-clique. Moreover, the numbers indicate the sum of
weight on each edge, which is evenly distributed to the four criteria. Namely 3 is the edge weight
within the left-clique and the right-clique, 7 is the edge weight within the middle-clique, 7.5 is the
weight between the middle-clique and left-cliques (right-clique), and 2 is the edge weight between
the left-clique and the right-clique.
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