
pcaL1: An Implementation in R of Three Methods

for L1-Norm Principal Component Analysis

J. Paul Brooks
Virginia Commonwealth University

Sapan Jot
Virginia Commonwealth University

Abstract

pcaL1 is a package for the R environment for finding principal components using meth-
ods based on the L1 norm. The principal components derived using traditional principal
component analysis (PCA) can be interpreted as an optimal solution to several optimiza-
tion problems involving the L2 norm. Using the L1 norm in these problems provides an
alternative that is more robust to outlier observations in moderate-sized datasets. Replac-
ing the L2 norm with the L1 norm in the different optimization problems yields different
principal components. The package pcaL1 implements three algorithms: PCA-L1, L1-
PCA, and L1-PCA∗. Results are presented for test datasets that indicate the conditions
under which each method performs best and the computation time required by each im-
plementation.

Keywords: R, L1 norm, principal component analysis.

1. Introduction

Principal component analysis (PCA) has a variety of uses including dimensionality reduction
and has been applied to problems in computer vision, face reconstruction, and chemometrics.
As shown by Jolliffe (2002), calculating principal components can be viewed as finding an
optimal solution to several different optimization problems as well as a decomposition of
the covariance matrix into its eigenvectors and eigenvalues. PCA can be viewed as finding
successive orthogonal directions of maximum variation in data, finding successive orthogonal
directions of minimum variation in data, and finding a subspace that minimizes the sum-of-
squared distances of points to their projections on the subspace.

Variants of traditional L2-norm PCA (L2-PCA) can be derived by altering the optimization
problems or the covariance matrix. The L1 norm is often used in order to reduce the influence
of outlier observations on the results. Each of the interpretations of L2-PCA can be adapted
to incorporate the L1 norm; however, the results when using the L1 norm do not all coincide
as they do for L2-PCA. Therefore, there are many L1-norm PCA methods possible. This
paper describes the implementation in R (?) of three L1-norm PCA methods that all have
their basis in a geometric interpretation of PCA.

Previous related work includes an R implementation of a projection pursuit PCA method by
Filzmozer, Fritz, and Kalcher (2011) in a package called pcaPP. The concept of projection
pursuit has been applied to finding successive directions of maximum dispersion in data,
where dispersion can be measured using the L1 norm or an approximation (Choulakian 2006;

2 pcaL1

Maronna 2005; Croux and Ruiz-Gazen 2005). The implementation in pcaPP is described in
detail by Croux, Filzmoser, and Oliveira (2007).

In this paper, we describe the implementation of three methods for L1-norm PCA as an R
package called pcaL1. The methods that we implement are PCA-L1 (Kwak 2008), L1-PCA
(Ke and Kanade 2003, 2005), and L1-PCA∗ (Brooks, Dulá, and Boone 2012). PCA-L1 is a
method for finding successive directions of maximum dispersion in data based on approxi-
mating successive, orthogonal L1-norm best-fit lines. L1-PCA is a method for estimating the
L1-norm best-fit subspace. L1-PCA∗ is a method for finding successive, orthogonal L1-norm
best-fit hyperplanes that contain the origin. In each interpretation, the L1 norm is more
resistant against the magnifying effects of outliers than the traditional L2 norm.

The remainder of the paper is organized as follows. In the next section, notation is intro-
duced. Section 3 describes three L1-norm PCA methods using the common notation, presents
an analysis of their computational complexity, and describes their implementation in the R
package pcaL1. Section 4 contains computational results on simulated and real-world datasets
that give insight into the relative strengths of each method, the empirical computational com-
plexity, and the benefits of an R implementation.

2. Notation and definitions

Boldface uppercase letters represent matrices, and boldface lowercase letters represent vectors.
A dataset is represented by an n × m matrix X with one row for each observation, or by
a set of observations xi ∈ Rm, i = 1, . . . , n. We assume that the rank of X is min{n,m}
and that the data are centered. Let q be the dimension of the subspace into which we wish
to project data. The m× q matrix V corresponds to an internal representation (Rockafellar
1970) of the subspace S = {x ∈ Rm|x = V u for some u}. The columns of V are denoted
vj , j = 1, . . . , q. They span the subspace S and are the principal components. The n × q
matrix U is the matrix of scores, and the score of observation xi is ui. The n×m matrix E
is the matrix of reconstructions, and is the matrix of projected points in terms of the original
coordinates.

3. L1-norm PCA methods

In this section, we describe three L1-norm PCA methods and their implementation in R
package pcaL1 as functions pcal1, l1pca, and l1pcastar. The source code is available at
http://cran.r-project.org/web/packages/pcaL1/. Each function takes a data matrix or
data table and returns principal components. Options for the functions include the specifying
the projection dimension, returning scores, and returning the proportion of L1 dispersion
explained by the principal components.

Each R function uses the .C interface to call a C implementation. The C programming
language is used for its speed and dynamic memory allocation. The implementations of
algorithms L1-PCA and L1-PCA∗ require the solution of linear programs (LPs) as subroutines.
All linear programs are solved using Clp, a free linear programming solver available in the
COIN-OR repository (http://www.coin-or.org).

http://cran.r-project.org/web/packages/pcaL1/
http://www.coin-or.org

J. Paul Brooks, Sapan Jot 3

3.1. pcal1

pcal1 is our implementation of PCA-L1 (Kwak 2008), a procedure for finding a local optimum
to the problem of finding a direction along which L1 dispersion is maximized. This direction
is the first principal component. The optimization problem may be written as

max
v

n∑
i=1

|v>xi|, (1)

subject to
v>v = 1.

For a solution v, the inner product (v>xi)v gives the projection of xi onto the direction v,
and |v>xi| gives the length of the projection.

Principal components j = 2, . . . ,m may be found by finding a local optimum to (1) where
the original data have been replaced by the projection into the orthogonal complement of the
subspace spanned by principal components 1, . . . , j − 1. Pseudocode is given in Algorithm 1.
Step 1 initializes the data so that on the first pass through the for loop in Step 2, the original
data is used. Step 3 projects data into the orthogonal complement spanned by principal
components 1, . . . , j − 1.

Step 4 requires an initial guess for the direction of maximum L1 dispersion. Possiblities
include setting v(0) = arg max ‖xj

i‖2, setting v(0) to be the first principal component from
L2-PCA applied to Xj , or using a random vector. Steps 6 through 12 conduct a polarity
check to establish whether the data vectors are oriented in the same general direction as the
current estimate v(t). In Steps 14 and 15, the estimate is calculated based on the current
polarity of the points. Steps 18 through 20 prevent the possibility that the algorithm will get
stuck at a local minimum.

The complexity of Algorithm 1 is O(nmq× T), where T is an upper bound on the number of
iterations required for convergence in Steps 5 through 22. Kwak (2008) claims that T depends
only on n so that computational time does not depend as heavily on the number of variables
as on the number of observations.

A flowchart detailing the implementation of pcal1 in pcaL1 is in Figure 3. The function pcal1

is defined in the script pcal1.R that passes the data to pcal1_R.c where further memory is
allocated as needed. The algorithm is implemented in pcal1.c.

A call to pcal1 produces the loadings matrix V , comprised of the principal components as
columns. One may specify the number of principal components q to calculate, whether to
center the data by subtracting the coordinatewise median, and the method for initialization
of v(0). Initialization options include using the first L2-PCA principal component, using
arg maxxi,i=1,...,n ‖x‖2, or using a random vector. Options are available to also calculate the
scores, the L1 dispersion explained by each component, and the reconstructed points. As the
calculation of principal components proceeds, the component number is printed to the screen.

R> library("pcaL1")

R> data("USArrests")

R> mypcal1 <- pcal1(USArrests[,c("Murder", "Assault", "Rape")],

+ projDim=2, center=TRUE, scores=TRUE,

+ projPoints=TRUE, dispExp=TRUE, initialize="l2pca")

4 pcaL1

Algorithm 1 PCA-L1

Given an n×m data matrix X.

1: Set v0 = 0,X0 = X.
2: for (j = 1;j ≤ q; ++j) do
3: Set Xj = Xj−1 − vj−1(v>j−1Xj−1).
4: Initialize v(0).
5: Set t = 0
6: for (i = 1; i ≤ n; ++i) do
7: if v(t)>xj

i < 0 then
8: pi(t) = −1
9: else

10: pi(t) = 1.
11: end if
12: end for
13: Set t = t+ 1.
14: Set v(t) =

∑n
i=1 pi(t− 1)xj

i .
15: Set v(t)← v(t)/ ‖ v(t) ‖2.
16: if v(t) 6= v(t− 1) then
17: Go to Step 6.
18: else if There exists i such that v>(t)xj

i = 0 then
19: Perturb v(t) with a small nonzero random vector ε:
20: Set v(t) = (v(t) + ε)/‖v(t) + ε‖2 and go to Step 6.
21: else
22: Set vj = v(t).
23: end if
24: end for

J. Paul Brooks, Sapan Jot 5

1 2

R> mypcal1

$projPoints

[,1] [,2] [,3]

Alabama 2.851277376 77.10710869 1.4875374

Alaska 6.581845450 103.86755060 23.9207756

Arizona 5.943769727 134.82393165 10.2629548

.

.

.

West Virginia -4.005451580 -77.91512625 -10.4929124

Wisconsin -4.824096429 -105.99398228 -9.2782269

Wyoming -0.492932597 2.00148398 -4.4946307

$dispExp

[1] 0.86994879 0.06249969

$scores

[,1] [,2]

Alabama -77.0298940 -4.71637503

Alaska -105.6357564 15.65500684

Arizona -135.3434281 -0.55286092

.

.

.

West Virginia 78.6050386 -4.26141462

Wisconsin 106.5057412 -0.78023788

Wyoming -1.6122357 -4.67453976

$loadings

[,1] [,2]

[1,] -0.04440952 0.12076723

[2,] -0.99581560 -0.08471306

[3,] -0.07986917 0.98905964

attr(,"class")

[1] "pcal1"

The scores, the projected points in terms of the components given in V , are calculated as the
n× q matrix U = XV . The L1 dispersion explained by component j is calculated as∑n

i=1 |uij |∑n
i=1

∑m
k=1 |xik|

.

Note that the sum of L1 dispersion explained over the components does not sum to 1 as for
L2-PCA because of the lack of rotational invariance in the L1 components. The projected
points in terms of the original data are given by the n×m matrix E = (V V >X)>.

6 pcaL1

3.2. l1pca

We describe an implementation L1-PCA (Ke and Kanade 2003, 2005) as function l1pca, a
method for estimating the best-fitting L1 subspace. The optimization problem is written as

min
V ,U

‖X> − V U>‖1 =

n∑
i=1

‖xi − V ui‖1. (2)

The measure of best fit is the sum of L1 distances from the original points in X to their
projections in the subspace E = UV >. The columns of V define the principal components
and therefore the subspace. Note that there is no orthonormality constraint so that the
principal components may be oblique.

The algorithm finds a local optimum to (2) by alternately fixing U and V and solving the
resultant linear program. Pseudocode is given in Algorithm 2. In Step 1, an initial guess for V
is specified. The guess may be the rotation matrix given by L2-PCA or a randomly-generated
matrix.

Step 3 finds an estimate for the matrix of scores U by fixing V at its current estimate. As
suggested by Ke and Kanade (2003, 2005), this problem may be decomposed into n small
linear programs. There is one linear program for each observation xi:

min
δ,ui

m∑
i=1

δi, (3)

subject to
−δ ≤ xi − V (t− 1)ui ≤ δ.

Each linear program produces the new estimate of the score ui for observation xi.

Step 4 derives a new estimate for V based on the current estimate for U . Let ui(t) be the
vector of score estimates for observation xi at iteration t. The optimization problem may be
written and solved as a linear program:

min
V ,λ+

,λ−

n∑
i=1

m∑
j=1

(λ+ij + λ−ij), (4)

subject to
xi − V ui(t) + λ+

i − λ
−
i = 0 i = 1, . . . , n,

λ+
i ,λ

−
i ≥ 0 i = 1, . . . , n.

Step 5 normalizes the columns of V by dividing by the L2 norm so that the principal com-
ponent have unit length. The estimation process is repeated until convergence is reached as
checked in Step 6.

The complexity of Algorithm 2 is O((nLP1 +LP2)T) where LP1 is the complexity of solving
(3), LP2 is the complexity of solving (4), and T is the number of iterations required for
convergence. According to Chvátal (1983), the complexity of solving a linear program with
v variables and c constraints using the simplex method is typically O(c log v). The linear
program (3) has q +m variables and 2m constraints. The linear program (4) has 2nm+mq
variables and nm constraints. The complexity may then be approximated as O(nm log(2nm+
mq)T).

J. Paul Brooks, Sapan Jot 7

Algorithm 2 L1-PCA

Given an n×m data matrix X.

1: Initialize V (0).
2: Set t = t+ 1.
3: U(t) = arg min

U
‖X> − V (t− 1)U>‖1.

4: V (t) = arg min
V
‖X> − V U>(t)‖1.

5: Normalize the columns of V (t).
6: if V (t) 6= V (t− 1) then
7: Go to Step 2.
8: else
9: Set V = V (t) and U = U(t).

10: end if

A flowchart detailing the implementation of l1pca in pcaL1 is in Figure 4. The function l1pca

is defined in the script l1pca.R that passes the data to l1pca_R.c where further memory is
allocated as needed. The algorithm is implemented in pcal1.c, which calls functions in the
Clp callable library for solving linear programming instances.

A call to l1pca produces the loadings matrix V , the scores matrix U , and the L1 dispersion
explained by each component. One may specify the dimension of the projected subspace q,
whether to center the data by subtracting the coordinatewise median, and the method for
initialization of V (0). Options for initialization include using the first q principal components
from L2-PCA or using a randomly-generated matrix. One may also specify whether to calcu-
late the reconstructed points, the maximum number of iterations, and a tolerance parameter
that measures convergence. The tolerance parameter allows one to specify an upper bound
on max{|vij(t)−vij(t−1)| : i = 1, . . . , n; j = 1, . . . ,m} that must be satisfied for convergence.

As the calculation of principal components proceeds, the iteration number is printed to the
screen.

R> library("pcaL1")

R> data("USArrests")

R> myl1pca <- l1pca(USArrests[,c("Murder", "Assault", "Rape")],

+ projDim=2, center=TRUE, projPoints=TRUE,

+ initialize="l2pca", tolerance=0.0001, iterations=10)

1 2 3

R> myl1pca

$projPoints

[,1] [,2] [,3]

Alabama 3.1146903688 7.710284e+01 1.3086579

Alaska 5.3065250952 1.039066e+02 24.3714659

Arizona 5.8616196121 1.347930e+02 10.7769448

.

.

.

West Virginia -3.6110836144 -7.791753e+01 -10.7705013

8 pcaL1

Wisconsin -4.6544881752 -1.059938e+02 -9.3964668

Wyoming -0.1429585415 1.983520e+00 -4.5139013

$dispExp

[1] 0.8698929 0.0622168

$scores

[,1] [,2]

Alabama -76.9316809 -4.68982596

Alaska -105.6543784 16.53935706

Arizona -135.5640716 0.73310352

.

.

.

West Virginia 78.6690923 -4.91781243

Wisconsin 106.4994205 -1.31578915

Wyoming -1.6530327 -4.64235766

$loadings

[,1] [,2]

[1,] -0.04309571 0.04585239

[2,] -0.99625047 -0.07607457

[3,] -0.07501836 0.99604730

attr(,"class")

[1] "l1pca"

The matrix of scores is the matrix U in Algorithm 2 at the time of convergence. The L1
dispersion explained by each component is calculated as for pcal1. The reconstructed points
are given by the n×m matrix E = (V V >X)>.

3.3. l1pcastar

L1-PCA∗ is an L1-norm method for finding successive best-fit hyperplanes containing the
origin. The principal components are taken to be the directions orthogonal to the hyperplanes,
in reverse order. The problem of finding the best-fit L1-norm hyperplane containing the origin
may be written as

min
V ,U

n∑
i=1

‖xi − V ui‖1, (5)

where V is an m× (m−1) matrix. It can be shown that the L1 projection onto a hyperplane
always occurs along a unit direction and the direction of projection is independent of location
(Brooks and Dulá 2012). Therefore, a best-fit hyperplane is found by computing m L1 linear
regressions, where each variable serves as the dependent variable, and selecting the regression
hyperplane with the smallest error.

At each iteration, the algorithm finds a global optimum to (5), uses the optimal L1 regression
coefficients to find the coefficients of a principal component, then projects the data onto the

J. Paul Brooks, Sapan Jot 9

best-fitting hyperplane. Pseudocode is given in Algorithm 3. Step 1 checks if the number of
variables m is larger than the number of observations n. Note that if m > n, then the data lie
in an n-dimensional subspace. A representation of the points in an n-dimensional subspace
may be obtained by singular value decomposition. In Step 4, the initial data and projection
matrix Qm+1 are defined. The loop in Step 5 indicates that the principal components are
calculated in reverse order as we project data down from m dimensions to one dimension.

Steps 6-12 find the best of j L1 linear regressions by allowing each variable to take a turn as
the response. An L1 linear regression hyperplane may be found by solving a linear program
in Step 8 (Charnes, Cooper, and Ferguson 1955; Wagner 1959). Fixing the kth coefficient
of β to be −1 specifies that the kth variable is the response. The vector β∗ is the direction
orthogonal to the L1-norm best-fit hyperplane in terms of the j-dimensional projection of the
data. This direction defines the jth principal component, calculated by projecting the vector
out to the original m dimensions in Step 16.

Step 14 projects the points in j dimensions into a (j−1)-dimensional subspace by changing one
variable value; i.e., the projection is along one unit direction. Steps 15-18 calculate the score of
each point as the rows of Xj−1. In Step 15, a set of spanning vectors for the projected points
is calculated. The method implemented in pcaL1 is to use the singular value decomposition
of Zj . The projection matrices Q` are used in Step 16 to project the principal components
back to the original m-dimensional subspace. In Step 19, the first principal component is
defined as the direction orthogonal to the previous m− 1 best-fit hyperplanes.

The solution of the linear programs associated with finding L1 regression hyperplanes is the
most computationally-intensive step in each iteration j of Algorithm 3. The complexity of
Algorithm 3 is O(

∑m′

j=2 jLP (2n′ + j, n′)), where LP (2n′ + j, n′) is the complexity of solving
the linear program associated with finding the L1 linear regression hyperplane and m′ =
min{n,m} and n′ = max{n,m}. Each LP has 2n′ + j variables and n′ constraints, so with
the approximation due to Chvátal (1983), the complexity of Algorithm 3 may be approximated

as O(
∑m′

j=2 jn
′ log(2n′ + j)).

A flowchart detailing the implementation of l1pcastar in pcaL1 is in Figure 5. The function
l1pcastar is defined in the script l1pcastar.R that passes the data to l1pcastar_R.c where
further memory is allocated as needed. The algorithm is implmented in l1pcastar.c. The L1
regression hyperplanes are calculated by solving linear programs using Clp, and singular value
decompositions are calculated using the function dgesvd in LAPACK (Anderson, Bai, Bischof,
Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, and Sorensen
1999).

A call to l1pcastar produces the loadings matrix V . One may specify the dimension of the
projected subspace q, whether to center the data by subtracting the coordinatewise median,
whether to calculate the scores in q dimensions, whether to calculate the reconstructions
of the scores in q dimensions, and whether to calculate the L1 dispersion contained in the
scores in q dimensions. Regardless of the specified value of q, the data are projected into a
one-dimensional subspace, and all of the principal components are returned. The projected
dimension q is used to determine the dimension of the space containing the scores and the
dimension of the subspace spanned by the reconstructions. The calculations of scores, L1 dis-
persion explained, and reconstructions are given as options because of the additional memory
required.

As the calculation proceeds, the dimension of the projected subspace j is printed to the screen.

10 pcaL1

Algorithm 3 L1-PCA∗

Given an n×m data matrix X.

1: if m > n then
2: Represent points in an n-dimensional subspace using the singular value decomposition

of X.
3: end if
4: Set Xm = X; let Qm+1 be an m×m identity matrix.
5: for (j = m; j > 1; --j) do
6: Set k∗ = 0, R0(X

j) =∞.
7: for (k = 1; k ≤ j; ++k) do
8: Solve Rk(X) = min

β,λ+
,λ−

∑n
i=1(λ

+
i + λ−i)

subject to

β>xj
i + λ+i − λ

−
i = 0 i = 1, . . . , n
βk = −1

λ+i , λ
−
i ≥ 0 i = 1, . . . , n

9: if Rk(Xj) < Rk∗(X
j) then

10: Set k∗ = k, β∗ = β.
11: end if
12: end for
13: Calculate α ∈ Rm by setting αk∗ = 0 and α` = β∗` /‖β

∗‖2 for ` 6= k∗.
14: Set Zj = Xj . Replace column k∗ of Zj with Xjα.
15: Set Qj to be a j × (j − 1) matrix whose columns are a set of vectors spanning the

subspace containing the rows of Zj .

16: Set vj =
(

Πj+1
`=m+1Q

`
)
β∗/‖β∗‖2.

17: Set Xj−1 = ZjQj .
18: end for
19: Set v1 = Π2

`=m+1Q
`.

J. Paul Brooks, Sapan Jot 11

R> library("pcaL1")

R> data("USArrests")

R> myl1pcastar <- l1pcastar(USArrests[,c("Murder", "Assault", "Rape")],

+ projDim=2, center=TRUE, scores=TRUE,

+ projPoints=TRUE, dispExp=TRUE)

2 1

R> myl1pcastar

$projPoints

[,1] [,2] [,3]

Alabama 3.10038554 77 1.1

Alaska 5.31161925 104 24.4

Arizona 5.87584419 135 10.9

.

.

.

West Virginia -3.61579367 -78 -10.8

Wisconsin -4.65000000 -106 -9.3

Wyoming -0.14162457 2 -4.5

$dispExp

[1] 0.86989847 0.06220124

$scores

[,1] [,2]

Alabama -76.9254159 -4.72258251

Alaska -105.6764388 16.49435028

Arizona -135.5650376 0.67537402

.

.

.

Washington 13.4978267 7.14727377

West Virginia 78.6756475 -4.88430746

Wisconsin 106.5011666 -1.27043607

Wyoming -1.6468379 -4.64305746

$loadings

[,1] [,2] [,3]

[1,] 0.04331743 0.04560367 -0.99801999

[2,] 0.99586535 -0.08181134 0.03948561

[3,] 0.07984866 0.99560394 0.04895897

attr(,"class")

[1] "l1pcastar"

The scores, the points projected into the fitted q-dimensional space, are given by U = Xq.
The projections in the j-dimensional subspace in terms of the original m dimensions is given

12 pcaL1

by E =
(

Πq+1
`=m+1Q

`(Xq)>
)>

. The L1 dispersion explained for the components is calculated

in the same manner as for pcal1 and l1pca.

4. Computational results

The implementations pcal1, l1pca, and l1pcastar in the R environment facilitates a com-
parison of the methods using simulated data. Comparisons to other methods implemented
in R are accessible as well. We apply the methods of pcaL1 and pcaPP (Filzmozer et al.
2011) to outlier-contaminated datasets to evaluate the robustness to outliers. We then ap-
ply the methods to datasets with varying dimensions to observe the effect on computational
complexity.

The methods of pcaL1 are tested using datasets with clustered leverage outliers. Datasets
are constructed so that most observations are near a “true” subspace while some of the ob-
servations are outliers. The outlier observations have one or more variables with values that
are far from the true subspace, but are near to each other. The unbalanced outliers have the
effect of pulling the fitted subspace away from the true subspace. To evaluate each method,
we calculate the sum of the distances of projected points (i.e., the reconstructions) to the
true subspace. The effects of varying the number of contaminated variables, the magnitude
of contamination, and dataset size are investigated.

In these experiments, the method for pcaPP depends on the size of n and m. If n ≥ m, the
function PCAgrid is used; if n < m, the function PCAproj is used.

Preliminary tests indicated that for pcal1 and l1pca, the best results are obtained when using
L2-PCA for initialization. Therefore, L2-PCA is used for initialization in all experiments.

Experiment 1. In the first experiment, we investigate the effects of outlier magnitude and
outlier contamination on the ability to fit a subspace. Each dataset consists of n = 1000
observations and m = 10 dimensions, and the true subspace has dimension q = 5 and is
spanned by the first five unit directions. The first five columns for each observation are
sampled from a U(−10, 10) distribution. For clean data, the remaining five dimensions are
sampled from a Laplace(0, 0.1) distribution. Outliers comprise ten percent of each dataset.
For outliers, p columns are sampled from a Laplace(µ, 0.01) distribution, and the last 5 − p
columns are sampled from a Laplace(0, 0.1) distribution. The outlier contamination p is varied
over 1, 2, 3, and the outlier magnitude µ is varied over 1, 5, 10, 25. For each configuration,
100 datasets are generated. The error for a point is measured using the L1 distance of its
projection into the fitted five-dimensional space to the true subspace.

The results are in Figure 1 and Table 1. For p = 1 and µ = 1, 5, and 10, the L1-norm
PCA methods in pcaL1 resist the effects of outliers and have a lower error when compared to
L2-PCA. The method in pcaPP has the highest average error when µ ≤ 10. When µ = 25,
the PCA-L1 and L1-PCA begin to fit the outliers instead of recovering the true subspace,
and have higher error rates than L2-PCA. The method pcaPP has lower error rates than
L2-PCA, but is still affected by the outliers. L1-PCA∗ appears unaffected by the magnitudes
of outlier contamination for p = 1. A similar phenomenon is observed for p = 2 and p = 3.
For p = 3 and µ = 10, the approach of a breakdown point is observed as the average and
standard deviation of the errors begins to increase rapidly. The standard deviation of errors
for pcaPP is high for every configuration, indicating a sensitivity to small changes in input
data. In the presence of low outlier contamination (µ ≤ 5), L1-PCA has the lowest average

J. Paul Brooks, Sapan Jot 13

0
10

00
20

00
30

00
40

00

Outlier Magnitude

L 1
 D

is
ta

nc
e

µ = 1 µ = 5 µ = 10 µ = 25

Legend

L2−PCA
PCA−L1
L1−PCA
L1 − PCA*

pcaPP

0
10

00
30

00
50

00
Outlier Magnitude

L 1
 D

is
ta

nc
e

µ = 1 µ = 5 µ = 10 µ = 25

0
20

00
40

00
60

00
80

00

Outlier Magnitude

L 1
 D

is
ta

nc
e

µ = 1 µ = 5 µ = 10 µ = 25

(a) p = 1 (b) p = 2 (c) p = 3

Figure 1: The error versus outlier magnitude for (a) p = 1, (b) p = 2, and (c) p = 3 outlier
contaminated-dimensions. For each replication, error is measured as the sum of L1 distances
of projected points in a five-dimensional space to the “true” five-dimensional subspace of the
data. The average over 100 replications is plotted.

error rates followed by L1-PCA∗. As the contamination magnitude is increased, L1-PCA∗ has
the lowest average error and has a breakdown point only when p = 3 and µ > 10.

Experiment 2. In the second experiment, we investigate the effects of dataset size on the
ability to fit a subspace and on computation time. The computational complexities of the
methods implemented in pcaL1 are difficult to compare because tight bounds are unknown
for the convergence rates of the methods implemented in pcal1 and l1pca. This experiment
provides insight into the computational time required and performance for each method for
varying numbers of observations n and variables m.

Each dataset in this experiment is constructed as described for Experiment 1, with the fol-
lowing changes. Fora all datasets, q = 5, p = 2, and µ = 25. For m = 10 and 50, datasets
are constructed with n = 10, 50, 100, 500, and 1000 to observe the dependence on n. For
n = 10 and 50, datasets are constructed with m =10, 50, 100, 500, and 1000 to observe the
dependence on m. For each configuration, 100 datasets are generated.

The results are in Figure 2 and Tables 2-5. For n ≥ m, L1-PCA∗ has the lowest average error
among all methods, with pronounced improvement as n is increased. When n = 1000 and
m = 50, the average error for other methods is at least ten times that of L1-PCA∗. When
n ' m, the standard deviation for L1-PCA∗ is higher than L2-PCA and the other methods
in pcaL1, indicating a sensitivity to small changes in input data for those configurations. As
in Experiment 1, for n ≥ m, the other L1 methods perform worse than L2-PCA and appear
to be fitting the outliers rather than the points near the true subspace. As n is increased,
the computation times for all methods except L1-PCA and L1-PCA∗ remain negligible. For
n = 1000, L1-PCA requires more than six minutes, and L1-PCA∗ requires more than two
hours. The computation time for L1-PCA∗ increases slower than n log n as expected by the
worst-case analysis. The differences in error rates appear to justify the extra computation
time for L1-PCA∗.

When m > n, L2-PCA and L1-PCA have the lowest error rates. As m is increased, an
advantage is seen for L1-PCA. The error rates for L1-PCA are 10-30% lower than for the

14 pcaL1

0
5

10
15

n

L 1
 E

rr
or

 p
er

 O
bs

er
va

tio
n

10 500 1000

0
20

00
40

00
60

00
80

00

n

T
im

e
(s

)

10 500 1000

Legend

L2−PCA
PCA−L1
L1−PCA
L1 − PCA*

pcaPP

(a) Error, m = 50 (b) Time, m = 50

0
10

20
30

40
50

60

m

L 1
 E

rr
or

 p
er

 O
bs

er
va

tio
n

10 500 1000

0
20

0
40

0
60

0
80

0

m

T
im

e
(s

)

10 500 1000

Legend

L2−PCA
PCA−L1
L1−PCA
L1 − PCA*

pcaPP

(c) Error, n = 50 (d) Time, n = 50

Figure 2: The average L1 error per observation and computational time for different sizes of
data matrices. (a) The L1 error per observation for m = 50 as a function of sample size n,
(b) the total computational time for m = 50 as a function of sample size n, (c) the L1 error
per observation for n = 50 as a function of m, (d) the total computational time for n = 50 as
a function of m. Each plotted point represents 100 replications.

other methods. A tradeoff in performance and computation time is again observed. The
computation times for all methods remains under five seconds except for L1-PCA. For n = 50
and m = 1000, L1-PCA requires over 10 minutes on average.

5. Conclusions

This paper describe the implementation of three L1-norm PCA methods. Each method is
presented with common notation so that the approaches may be easily compared. Their
implementation in an R package facilitates performance comparisons. Worst-case and emprir-
ical computational complexities are presented. The performance of the methods on simulated
data shows that under different conditions, different methods are indicated based on error
rates and computation time. Unlike L2-norm PCA, there are many L1-norm PCA methods
possible. The software package presented here provides a basic framework for comparing new
methods.

J. Paul Brooks, Sapan Jot 15

Acknowledgements

The first author is supported in part by NIH-NIAID awards UH2AI083263-01 and UH3AI08326-
01 and NASA award NNX09AR44A. The authors would like to acknowledge the Center for
High Performance Computing at VCU for providing computational infrastructure and sup-
port.

16 pcaL1

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz JD, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. Third edition.
Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-447-8
(paperback).

Brooks J, Dulá J (2012). “The L1-norm best-fit hyperplane problem.” Applied Mathematics
Letters, in press.

Brooks J, Dulá J, Boone E (2012). “A pure L1-norm principal component analysis.” Submit-
ted; available at http://www.optimization-online.org/DB HTML/2010/01/2513.html.

Charnes A, Cooper W, Ferguson R (1955). “Optimal estimation of executive compensation
by linear programming.” Management Science, 1, 138–150.

Choulakian V (2006). “L1-norm projection pursuit principal component analysis.” Computa-
tional Statistics and Data Analysis, 50, 1441–1451.

Chvátal V (1983). Linear Programming. Freeman.

Croux C, Filzmoser P, Oliveira M (2007). “Algorithms for Projection-Pursuit robust principal
components analysis.” Chemometrics and Intelligent Laboratory Systems, 87, 218–225.

Croux C, Ruiz-Gazen A (2005). “High breakdown estimators for prinicpal components: the
projection-pursuit approach revisited.” Journal of Multivariate Analysis, 95, 206–226.

Filzmozer P, Fritz H, Kalcher K (2011). pcaPP: Robust PCA by projection pursuit. R package
version 1.9-3, URL http://CRAN.R-project.org/package=pcaPP.

Jolliffe I (2002). Principal Component Analysis. 2nd edition. Springer.

Ke Q, Kanade T (2003). “Robust subspace computation using L1 norm.” Technical Report
CMU-CS-03-172, Carnegie Mellon University, Pittsburgh, PA.

Ke Q, Kanade T (2005). “Robust L1 norm factorization in the presence of outliers and
missing data by alternative convex programming.” In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

Kwak N (2008). “Principal component analysis based on L1-norm maximization.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30, 1672–1680.

Maronna R (2005). “Principal components and orghogonal regression based on robust scales.”
Technometrics, 47, 264–273.

Rockafellar R (1970). Convex analysis. Princeton University Press.

Wagner H (1959). “Linear programming techniques for regression analysis.” Journal of the
American Statistical Association, 54, 206–212.

http://CRAN.R-project.org/package=pcaPP

J. Paul Brooks, Sapan Jot 17

R package
pcaL1

Function
pcal1

pcal1.R pcal1_R.c

pcal1.cSet j = 1

Is j > q? Return
Calculate
Xj

Initialize
v(0)

Polarity
Check

Calculate
v(t)

Convergence? j = j + 1

yes

no

yes

no

Figure 3: Flowchart of steps in implementation of function pcal1 in R package pcaL1.

18 pcaL1

R package
pcaL1

Function
l1pca

l1pca.R l1pca_R.c

l1pca.c
Initialize
V (0)

Solve LPs
for U

Solve LP
for V

Normalize
columns

of V

Convergence? Return

no

yes

Figure 4: Flowchart of steps in implementation of function l1pca in R packagae pcaL1.

Affiliation:

J. Paul Brooks
Department of Statistical Sciences & Operations Research
Virginia Commonwealth University
P.O. Box 843083 Richmond, VA, USA 23284
E-mail: jpbrooks@vcu.edu

mailto:jpbrooks@vcu.edu

J. Paul Brooks, Sapan Jot 19

Table 1: Average (standard deviation) of L1 distance to true subspace for m = 10. The
number of outlier-contaminated dimensions is p. The outlier magnitude is µ. The results
reflect 100 replications for each configuration.
p µ L2-PCA PCA-L1 L1-PCA L1-PCA∗ pcaPP

0 0 36.6 (6.5) 41.9 (7.7) 27.8 (5.4) 39.4 (6.8) 823.5 (195.1)
1 1 44.9 (9.2) 51.4 (10.4) 28.5 (5.6) 37.5 (7.4) 875.6 (206.3)
2 1 52.9 (11.2) 61.7 (14.6) 29.0 (6.1) 39.4 (7.2) 894.7 (211.2)
3 1 57.3 (16.9) 64.4 (18.7) 29.2 (5.8) 38.5 (7.5) 933.8 (218.2)
1 5 87.5 (29.2) 101.1 (33.3) 28.2 (5.3) 38.0 (7.0) 993.9 (246.3)
2 5 158.2 (64.8) 174.2 (66.2) 27.8 (5.1) 39.0 (7.2) 1151.3 (294.9)
3 5 228.2 (100.0) 249.3 (109.6) 29.4 (5.0) 38.4 (7.8) 1205.2 (382.2)
1 10 187.1 (78.6) 192.2 (82.0) 27.2 (5.1) 38.0 (7.0) 1126.0 (323.6)
2 10 539.9 (252.0) 448.5 (196.0) 28.7 (5.8) 40.4 (7.4) 1267.9 (365.6)
3 10 2820.0 (1177.7) 1071.9 (448.5) 401.0 (1271.2) 62.9 (22.9) 1499.1 (386.4)
1 25 2718.4 (100.4) 3164.8 (224.0) 2719.6 (104.6) 37.0 (6.5) 1590.2 (582.7)
2 25 5201.5 (52.8) 5417.6 (348.8) 5258.1 (95.1) 38.8 (7.5) 3500.3 (997.3)
3 25 7718.2 (38.0) 7786.8 (123.7) 7745.3 (63.3) 38.5 (7.8) 4549.3 (784.2)
0 0 39.7 (6.3) 46.6 (7.7) 29.1 (4.5) 37.2 (5.7) 1061.5 (240.3)
1 1 50.4 (7.5) 58.8 (10.3) 29.1 (4.6) 34.8 (5.0) 1107.8 (287.9)
2 1 62.2 (11.6) 72.3 (12.8) 30.4 (4.6) 36.5 (5.5) 1186.6 (574.1)
3 1 73.5 (20.2) 85.6 (21.2) 31.8 (4.7) 35.0 (5.8) 1171.1 (278.6)
1 5 121.3 (26.1) 142.3 (35.4) 30.2 (4.0) 35.5 (5.0) 1291.3 (263.5)
2 5 236.0 (70.0) 257.5 (68.5) 30.3 (4.9) 36.2 (5.6) 1434.2 (304.4)
3 5 349.2 (106.7) 385.0 (124.2) 31.8 (5.0) 35.7 (6.1) 1663.2 (372.8)
1 10 278.6 (73.8) 298.9 (79.1) 30.1 (4.9) 35.3 (5.4) 1406.5 (322.5)
2 10 908.5 (295.9) 775.8 (281.3) 30.3 (4.8) 39.2 (6.3) 1707.9 (382.2)
3 10 4177.9 (783.2) 1893.4 (691.8) 1118.9 (1981.8) 93.1 (31.7) 1953.5 (424.8)
1 25 2700.8 (79.3) 3044.7 (368.0) 2751.1 (97.4) 34.8 (5.3) 2126.1 (640.4)
2 25 5202.6 (49.7) 5336.8 (164.4) 5257.1 (84.7) 35.0 (5.6) 4754.9 (811.1)
3 25 7715.5 (33.7) 7781.4 (111.3) 7753.5 (73.4) 2873.9 (3726.6) 6729.9 (770.2)

Table 2: Average (standard deviation) of L1 distance to true subspace for m = 50. The
dimension of the “true” underlying subspace is five, the number of outlier-contaminated di-
mensions is two, and the outlier magnitude is 25. The results reflect 100 replications for each
configuration.

n L2-PCA PCA-L1 L1-PCA L1-PCA∗ pcaPP

10 85.2 (3.3) 89.0 (3.4) 89.4 (5.0) 94.1 (5.1) 112.8 (23.6)
50 341.8 (12.2) 359.5 (15.7) 341.2 (14.8) 296.7 (117.0) 792.0 (116.6)

100 631.7 (13.8) 662.4 (23.3) 632.9 (21.4) 216.6 (187.0) 1550.8 (187.5)
500 2830.3 (35.6) 2937.0 (97.6) 2827.1 (55.1) 301.3 (14.8) 6420.7 (845.1)

1000 5497.0 (50.2) 5695.8 (153.8) 5515.4 (87.3) 421.3 (20.5) 11478.5 (1326.5)

20 pcaL1

Table 3: Average (standard deviation) of computation time for m = 50. The dimension of
the “true” underlying subspace is five, the number of outlier-contaminated dimensions is two,
and the outlier magnitude is 25. The results reflect 100 replications for each configuration.

n L2-PCA PCA-L1 L1-PCA L1-PCA∗ pcaPP

10 0.0032 (0.00064) 0.0023 (0.00048) 0.073 (0.014) 0.010 (0.0012) 0.0015 (5e-04)
50 0.0062 (0.00068) 0.013 (0.00044) 0.77 (0.15) 3.6 (0.085) 0.0018 (0.00042)

100 0.0082 (9e-04) 0.019 (0.00072) 2.7 (0.56) 33.1 (0.54) 0.0023 (0.00046)
500 0.018 (0.0012) 0.054 (0.0027) 77.6 (13.3) 1522.8 (14.1) 0.0053 (0.00045)

1000 0.031 (0.0021) 0.11 (0.0077) 406.8 (62.0) 7529.2 (154.9) 0.0096 (0.00062)

Table 4: Average (standard deviation) of L1 distance to true subspace for n = 50. The
dimension of the “true” underlying subspace is five, the number of outlier-contaminated di-
mensions is two, and the outlier magnitude is 25. The results reflect 100 replications for each
configuration.

m L2-PCA PCA-L1 L1-PCA L1-PCA∗ pcaPP

10 274.0 (12.1) 277.9 (13.9) 283.1 (14.6) 230.0 (101.6) 243.8 (58.0)
50 341.8 (12.2) 359.5 (15.7) 341.2 (14.8) 296.7 (117.0) 792.0 (116.6)

100 425.3 (12.2) 459.7 (15.5) 419.4 (15.7) 449.2 (96.4) 592.6 (143.3)
500 1102.2 (18.3) 1258.2 (27.4) 1023.3 (22.6) 1473.5 (109.4) 1736.7 (264.5)

1000 1938.0 (23.4) 2253.1 (45.4) 1780.3 (41.6) 2737.1 (115.8) 2830.3 (273.0)

Table 5: Average (standard deviation) of computation time for n = 50. The dimension of
the “true” underlying subspace is five, the number of outlier-contaminated dimensions is two,
and the outlier magnitude is 25. The results reflect 100 replications for each configuration.

m L2-PCA PCA-L1 L1-PCA L1-PCA∗ pcaPP

10 0.0024 (0.00064) 0.0018 (0.00045) 0.064 (0.0089) 0.09 (0.0035) 0.00065 (0.00048)
50 0.0062 (0.00068) 0.013 (0.00044) 0.77 (0.15) 3.6 (0.085) 0.0018 (0.00042)

100 0.0093 (0.00087) 0.024 (0.00063) 2.7 (0.44) 3.6 (0.065) 0.0037 (0.00049)
500 0.030 (0.001) 0.12 (0.0048) 108.7 (39.7) 3.7 (0.059) 0.066 (0.012)

1000 0.056 (0.0017) 0.33 (0.023) 688.2 (201.0) 4.2 (0.11) 0.23 (0.032)

J. Paul Brooks, Sapan Jot 21

R package
pcaL1

Function
l1pcastar

l1pcastar.R l1pcastar_R.c

l1pcastar.cIs m > n?
Represent
points in n
dimensions

Set j = m

Is j = 1?
Solve j L1
regressions

to get k∗,β∗

Project points
along k∗ into
(j − 1)-
dimensional
subspace

Find a span-
ning set for
(j − 1)-
dimensional
subspace

Calculate
vj , X

j−1
Set

j = j − 1

Calculate
v1

Return

yes

no

yes

no

Figure 5: Flowchart of steps in implementation of function l1pcastar in R package pcaL1.

	Introduction
	Notation and definitions
	L1-norm PCA methods
	pcal1
	l1pca
	l1pcastar

	Computational results
	Conclusions

