
Semi-continuous network flow problems

Gustavo Angulo, Shabbir Ahmed, Santanu S. Dey
H. Milton Stewart School of Industrial and Systems Engineering,

Georgia Institute of Technology, Atlanta, GA, USA.
765 Ferst Drive NW, GA, USA

gangulo@gatech.edu, sahmed@isye.gatech.edu, sdey@isye.gatech.edu

April 26, 2012

Abstract

We consider semi-continuous network flow problems, that is, a class of network flow problems
where some of the variables are restricted to be semi-continuous. We introduce the semi-continuous
inflow set with variable upper bounds as a relaxation of general semi-continuous network flow prob-
lems. Two particular cases of this set are considered, for which we present complete descriptions
of the convex hull in terms of linear inequalities and extended formulations. We consider a class
of semi-continuous transportation problems where inflow systems arise as substructures, for which
we investigate complexity questions. Finally, we study the computational efficacy of the devel-
oped polyhedral results in solving randomly generated instances of semi-continuous transportation
problems.

Keywords: Mixed-integer programming, network flow problems, semi-continuous variables.

1 Introduction

A variable x is said to be semi-continuous if x is required to belong to a set of the form {0} ∪ [l, u]
for some 0 ≤ l ≤ u. We call l and u lower and upper bounds of x, respectively. A semi-continuous
variable can be regarded as a generalization of a binary variable. In fact, by setting l = u = 1 in the
above definition, we have that x is binary. As such, the presence of these variables may lead to hard
optimization problems.

Semi-continuous variables appear in inventory management models where shippings from a given supplier
are required to be between prestablished minimum and maximum quantities whenever an order is placed
[13]. In portfolio optimization, semi-continuous constraints are known as minimum transaction levels,
and are studied in [2] and [11]. Semi-continuous variables are also common when modeling petrochemical
processes as described in [8] and [9]. Furthermore, as [9] and [13] suggest, supply chain models may
involve network flow structures with semi-continuity constraints on flow variables whenever production,
purchases and shipping in low quantities are undesirable from the operational point of view.

Although semi-continuity can be modeled by means of introducing additional binary variables and
constraints, this approach may have some drawbacks. We increase the size of the problem at hand,
which can already be large-scale. Additionally, the presence of binary variables may lead to unnecessary
branching decisions and large LP relaxations in a branch-and-bound procedure. On the other hand,
models that incorporate auxiliary binary variables may benefit from presolve and bound tightening

1

procedures available in state-of-the-art MIP solvers such as CPLEX and may be solved efficiently. To
overcome difficulties with auxiliary binary variables, branching rules and cuts without the use of binary
variables for some combinatorial problems have been studied in [4] and [5]. In particular, in [6] and [7]
the semi-continuous knapsack problem is introduced and cutting-planes are presented.

In the present work, we study some particular semi-continuous sets. Specifically, given their wide
applicability, we focus on network flow problems having semi-continuous flow variables. Our main
contributions are complete descriptions of the convex hull of two particular cases of a semi-continuous
inflow set with variable upper bounds and a computational study of the effectiveness of the derived
inequalities on a class of semi-continuous transportation problems. We observe that the polyhedral
results derived from the semi-continuous sets can significantly improve the performance of standard
mixed integer formulations involving auxiliary binary variables. The rest of the paper is organized as
follows. In Section 2 we introduce the semi-continuous inflow set along with some basic properties. In
Sections 3 and 4 we present polyhedral studies of two particular cases of this set. Then, in Section 5
we introduce a class of semi-continuous transportation problems for which we give complexity results.
We devote Section 6 to computational results regarding the performance of the polyhedral results when
solving semi-continuous transportation problems. Finally, in Section 7 we conclude with some remarks.

2 The semi-continuous inflow set

Consider the network substructure shown in Figure 1. Let N := {1, . . . , n} be a set of nodes, where
n ≥ 2, and let d > 0 be the required total flow from nodes in N to another node 0. For i ∈ N , let yi
be flow from node i to node 0, and xi be the flow into node i. Let li and hi be the lower bounds on
flows xi and yi whenever these variables are positive. Let ti be the exogenous supply into node i. The
semi-continuous inflow set with variable upper bounds is a set S(t, h) ⊆ Rn × Rn defined as

S(t, h) :=


(x, y) ∈ Rn × Rn :

∑
i∈N

yi ≥ d (1)

yi ≤ ti + xi ∀i ∈ N (2)

xi ∈ {0} ∪ [li,∞) ∀i ∈ N (3)

yi ∈ {0} ∪ [hi,∞) ∀i ∈ N (4)


.

Constraint (1) ensures that the minimum total inflow into the node 0 is met. Constraints (2) bound yi
by the total available inflow ti + xi for node i ∈ N . Finally, constraints (3) and (4) are semi-continuity
requirements on x and y, respectively.

Next we discuss how the set S(t, h) arises as a substructure in general semi-continuous network flow
problems. Consider a network represented by a directed graph G = (V,E), where each node v ∈ V
satisfies a constraint of the form ∑

u∈V +(v)

fvu −
∑

u∈V −(v)

fuv = dv, (5)

where variable fvu ≥ 0 is the flow through the arc (v, u) ∈ E, V +(v) := {u ∈ V : (v, u) ∈ E},
V −(v) := {u ∈ V : (u, v) ∈ E}, and dv is a given real parameter. Suppose that fuv ∈ {0} ∪ [luv, uuv],
that is, fuv is semi-continuous. We refer to such problems as semi-continuous network flow problems.
We obtain S(t, h) as a relaxation as follows.

Consider a node v ∈ V with dv < 0 as depicted in Figure 2. Since the first sum in (5) is nonnegative,

2

i
xi ∈ {0} ∪ [li,∞) yi ∈ {0} ∪ [hi,∞) d > 0

N

ti ≥ 0

0

Figure 1: Inflow relaxation.

we have ∑
u∈V −(v)

fuv ≥ −dv = |dv|,

which has the form of the semi-contiuous knapsack set introduced in [6]. However, since we are dealing
with a network flow problem, there is more structure to be exploited when looking for tighter relaxations.
Indeed, consider (u, v) ∈ E. Then v ∈ V +(u) and (5) applied to u can be written as∑

w∈V +(u)\{v}
fuw + fuv −

∑
w∈V −(u)

fwu = du. (6)

As before, since the first sum in (6) is nonnegative, we arrive at

fuv ≤
∑

w∈V −(u)

fwu + du ≤
∑

w∈V −(u)

fwu + max{du, 0}. (7)

Note that fu :=
∑
w∈V −(u) fwu is a semi-continuous variable taking values in {0} ∪ [lu, uu], where

lu := minw∈V −(u){lwu} and uu :=
∑
w∈V −(u) uwu. We obtain the system∑
u∈V −(v)

fuv ≥ |dv|

fuv ≤ fu + max{du, 0} ∀u ∈ V −(v)

fu ∈ {0} ∪ [lu, uu] ∀u ∈ V −(v) (8)

fuv ∈ {0} ∪ [luv, uuv] ∀u ∈ V −(v), (9)

which is a relaxation for the original network flow set. Finally, removing the upper bounds from (8) and
(9) we arrive at a relaxation having the form of S(t, h).

A similar approach can be followed when dv > 0, in which case we drop the second sum in (5) and relax
the balance equation for nodes in V +(v). In either case, by appropriately manipulating (5) applied to
v ∈ V and u ∈ V +(v) ∪ V −(v), we obtain the set S(t, h) as a relaxation.

We omit the case d = 0 since (1) becomes redundant and then S(t, h) is the product of n simple
2-dimensional sets.

3

vu

V −(v) V +(v)

du
|dv|

fuv

Figure 2: Nodes v and u, where u ∈ V −(v) and dv < 0.

2.1 Complexity of optimization

It is not difficult to verify that having finite upper bounds as in (8) and (9) would yield a set that is
already hard to deal with. On the other hand, (3) and (4) are not MIP-representable, and thus the
complexity of optimization over S(t, h) is not obvious at first glance. We show that optimization over
this set is intractable.

Proposition 1. Optimizing a linear function over S(t, h) is NP-hard, even if l = 0.

Proof. We will show that the Binary Knapsack problem, which is NP-hard, can be reduced to opti-
mization of a linear function over S(t, h).

We start with a feasible instance of the Binary Knapsack problem of the form

min
∑
i∈N

fizi

s.t.
∑
i∈N

wizi ≥ d

zi ∈ {0, 1} ∀i ∈ N,

where d ∈ Z+, w ∈ Zn+, and f ∈ Zn+. Consider the change of variables yi = wizi for all i ∈ N . Given
that zi ∈ {0, 1}, we have that yi ∈ {0, wi}. Furthermore, this is equivalent to requiring yi ∈ {0}∪ [wi,∞)
and yi ≤ wi. Thus, the optimal value of the instance is the same as that of

min α>y

s.t.
∑
i∈N

yi ≥ d

yi ≤ wi ∀i ∈ N
yi ∈ {0} ∪ [wi,∞) ∀i ∈ N,

where αi = fi
wi

for each i ∈ N . Now, consider the problem

min c>x+ α>y

s.t.
∑
i∈N

yi ≥ d

yi ≤ wi + xi ∀i ∈ N
xi ≥ 0 ∀i ∈ N

yi ∈ {0} ∪ [wi,∞) ∀i ∈ N,

4

where ci = M > 0 for all i ∈ N . Let (x∗, y∗) be an optimal solution and let N∗ := {i ∈ N : y∗i > 0}.
Given that c > 0, we must have y∗i = wi + x∗i for all i ∈ N∗. If 0 <

∑
i∈N x

∗
i < 1, then we have

d ≤
∑
i∈N

y∗i =
∑
i∈N∗

y∗i =
∑
i∈N∗

(wi + x∗i)

=⇒ d ≤
⌊∑
i∈N

y∗i

⌋
=
∑
i∈N∗

wi =
∑
i∈N
by∗i c.

Thus, given that α > 0, rounding down each component of y∗ improves the solution. Hence, either
x∗ = 0 or

∑
i∈N x

∗
i ≥ 1. However, if M is sufficiently large, say M =

∑
i∈N αiwi =

∑
i∈N fi, then

we must have x∗ = 0. Therefore, the optimal values of this problem, which is an instance of linear
optimization over S(t, h), and the instance of the Binary Knapsack problem we started with are the
same. Given that the transformation is polynomial in the original input size, the proof is complete.

Despite the general complexity result in Proposition 1, there are at least two situations where S(t, h) is
tractable, namely when ti = 0 for all i ∈ N and when hi = 0 for all i ∈ N . Note that the first case is
a restriction. The second one is a relaxation as y becomes continuous. These cases will be discussed in
Sections 3 and 4, respectively.

2.2 Basic polyhedral results

For a set C of real vectors, let conv(C) denote its convex hull.

In [6], the semi-continuous knapsack is introduced. This set is of the form

K =

x ∈ Rn :

∑
i∈N

wixi ≤ r

xi ∈ [0, pi] ∪ [li, ui] ∀i ∈ N+

xi ∈ [0, pi] ∪ [li,∞) ∀i ∈ N+
∞ ∪N−

 ,

where N+, N+
∞, N− constitute a partition of N , wi > 0 for all i ∈ N+∪N+

∞, and wi < 0 for all i ∈ N−.
Several classes of valid inequalities are presented along with lifting procedures. Note that when r < 0
and N− = N , this set is a relaxation of S(t, h) as we can aggregate constraints and arrive at a system
having the above form. Thus, valid inequalities for K give rise to valid inequalities for S(t, h). In some
cases, a complete description of conv(K) can be found. In particular, if N = N−, pi = 0 for each i ∈ N ,
and r < 0, then

conv(K) =

x ∈ Rn :

∑
i∈N

wi
min{r, wi}

xi ≥ 1

0 ≤ xi ∀i ∈ N

 .

As we shall see, an exponential family of inequalities similar to the one above will suffice to describe
conv(S(t, h)) when t = 0 or h = 0. We first establish some fundamental results regarding S(t, h).

Proposition 2. S(t, h) is full-dimensional.

Proof. Consider the point (x̄, ȳ) ∈ Rn ×Rn given by x̄i = max{d, li, hi}+ 1 and ȳi = max{d, hi} for all
i ∈ N . We have that (x̄, ȳ) belongs to S(t, h), and adding any canonical vector from Rn × Rn to (x̄, ȳ)
yields another point that is also feasible to S(t, h). The collection of such 2n points along with (x̄, ȳ) is
an affinely independent set, and therefore S(t, h) is of full dimension.

5

Proposition 3. conv(S(t, h)) is a polyhedron.

Proof. Proposition 3 is a particular case of Proposition 23 given in the Appendix.

We now proceed to identify the trivial facets of conv(S(t, h)).

Proposition 4. For each each i ∈ N , yi ≥ 0 and yi ≤ ti + xi are facet-defining for conv(S(t, h)). In
addition, xi ≥ 0 is facet-defining if and only if ti > 0.

Proof. Let i ∈ N . Choose a point x̄ ∈ Rn satisfying x̄j > max{d, lj , hj} for all j ∈ N . Set ȳi = 0 and
ȳj = x̄j for all j ∈ N , j 6= i. We have that (x̄, ȳ) belongs to S(t, h). Now for each j ∈ N , j 6= i, consider
the points

(
xj , yj

)
and

(
xn+j , yn+j

)
given by(

xjk, y
j
k

)
=

{
(x̄j + ε, ȳj) k = j

(x̄k, ȳk) k 6= j,(
xn+j
k , yn+j

k

)
=

{
(x̄j , ȳj − ε) k = j

(x̄k, ȳk) k 6= j.

Finally, let
(
xi, yi

)
= (x̄, ȳ) and let

(
xn+i, yn+i

)
be given by(

xn+i
k , yn+i

k

)
=

{
(x̄i + ε, ȳi) k = i

(x̄k, ȳk) k 6= i.

For ε > 0 sufficiently small,
{(
xj , yj

)
,
(
xn+j , yn+j

)
: j ∈ N

}
is contained in S(t, h). Moreover, it is

an affinely independent set, and since these 2n points satisfy yi ≥ 0 at equality, this constraint defines
a facet of conv(S(t, h)). The proof for yi ≤ ti + xi is analogous by setting ȳi = ti + x̄i and defining(
xn+i, yn+i

)
as (

xn+i
k , yn+i

k

)
=

{
(x̄i + ε, ȳi + ε) k = i

(x̄k, ȳk) k 6= i.

For the last part, if ti > 0, set x̄i = 0 and ȳi = ti. Again, the proof is similar by defining
(
xn+i, yn+i

)
as(

xn+i
k , yn+i

k

)
=

{
(x̄i, ȳi − ε) k = i

(x̄k, ȳk) k 6= i.

Finally, note that if ti = 0, then xi ≥ 0 is dominated by yi ≥ 0.

In the following two sections we turn our attention to polyhedral results for S(0, h) and S(t, 0), respec-
tively.

3 The case t = 0

In this section we assume that t = 0, and therefore S(0, h) ⊆ Rn×Rn is the set of vectors (x, y) satisfying∑
i∈N

yi ≥ d (10)

yi ≤ xi ∀i ∈ N (11)

xi ∈ {0} ∪ [li,∞) ∀i ∈ N (12)

yi ∈ {0} ∪ [hi,∞) ∀i ∈ N. (13)

6

3.1 Inequality description of conv(S(0, h))

Define the sets
L := {i ∈ N : max{d, hi} < li},

H := {i ∈ N : hi ≥ d},

and consider the family of inequalities given by∑
i∈T

xi
li

+
∑

i∈N\T

yi
max{d, hi}

≥ 1 ∀T ⊆ L. (14)

Recalling that d > 0, we have that li = 0 implies i ∈ N \ L. Thus, (14) is well-defined for all T ⊆ L.

Proposition 5. For each T ⊆ L, (14) is valid and facet-defining for conv(S(0, h)).

Proof. To show validity, consider (x, y) ∈ S(0, h) and T ⊆ L. If for some i ∈ T we have xi > 0, then
xi

li
≥ 1. If for some i ∈ (N \ T) ∩ H we have yi > 0, then yi

max{d,hi} = yi
hi
≥ 1. In both cases (14) is

satisfied. If none of them occur, then yi = 0 for all i ∈ T ∪ [(N \T)∩H]. Since (x, y) ∈ S(0, h), we must
have

∑
i∈N yi ≥ d, and therefore∑

i∈(N\T)\H

yi
max{d, hi}

=
∑

i∈(N\T)\H

yi
d

=
∑
i∈N

yi
d
≥ 1.

Hence, (14) is satisfied in this case as well.

Now, given T ⊆ L, we will show that (14) is facet-defining by showing 2n affinely independent points in
S(0, h) that satisfy (14) at equality. Let

(
xi, yi

)
, i = 1, . . . , 2n, be such points. In particular,

(
xi, yi

)
and

(
xn+i, yn+i

)
will be associated to i ∈ N as follows:

If i ∈ T , then (
xij , y

i
j

)
=

{
(li,max {d, hi}) j = i

(0, 0) j 6= i,

(
xn+i
j , yn+i

j

)
=

{
(li,max {d, hi}+ ε) j = i

(0, 0) j 6= i.

If i ∈ N \ T , then (
xij , y

i
j

)
=

{
(max {d, hi, li} ,max{d, hi}) j = i

(0, 0) j 6= i,(
xn+i
j , yn+i

j

)
=

{
(max {d, hi, li}+ ε,max{d, hi}) j = i

(0, 0) j 6= i.

The points previously defined belong to S(0, h) for ε > 0 sufficiently small. Finally,
{(
xi, yi

)
,
(
xn+i, yn+i

)
: i ∈ N

}
is a linearly independent set of points satisfying (14) at equality. Thus this constraint defines a facet of
conv(S(0, h)).

Theorem 6 below shows that all the non-trivial facets of conv(S(0, h)) are given by (14).

7

Theorem 6. conv(S(0, h)) is given by the following facet-defining inequalities∑
i∈T

xi
li

+
∑

i∈N\T

yi
max{d, hi}

≥ 1 ∀T ⊆ L

yi ≤ xi ∀i ∈ N (15)

yi ≥ 0 ∀i ∈ N. (16)

Proof. We already showed that (14) is facet-defining for each T ⊆ L, and that (16) and (15) are also
facet-defining for each i ∈ N . To show that (14)-(15) completely describe conv(S(0, h)), it suffices to
show that if we optimize any non-zero linear function over S(0, h), then there exists one inequality from
(14)-(15) such that all optimal solutions, if one exists, belong to the facet defined by that inequality.

Let (c, α) ∈ Rn × Rn be a non-zero vector and consider the problem

min
{
c>x+ α>y : (x, y) ∈ S(0, h)

}
.

Assumption 1: c ≥ 0 and c+ α ≥ 0.

If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded. Thus, we may assume
c ≥ 0, c+ α ≥ 0. ♦

In particular, Assumption 1 implies that the optimal value is nonnegative and that an optimal solution
exists. Let (x∗, y∗) be any such solution.

Assumption 2: α ≥ 0.

If for some i ∈ N , αi < 0, then y∗i = x∗i , that is, (15) is satisfied as an equality. To see this, suppose
that y∗i < x∗i . If y∗i > 0, then we can increase it and get a better solution. If y∗i = 0, since x∗i > 0 and
ci > 0 by Assumption 1 and αi < 0, we can decrease x∗i to zero and get a better solution. Thus, we
may assume α ≥ 0. ♦

Assumption 3: c+ α > 0.

Suppose that ci = αi = 0 for some i ∈ N . Then the optimal value is zero. Since (c, α) 6= (0, 0), by
Assumptions 1 and 2, there must exist j ∈ N , j 6= i, such that either αj > 0 or cj > 0. By optimality,
in the former case we must have y∗j = 0, while in the latter x∗j = 0 must hold. Therefore, either (16) or
(15) must be satisfied at equality. Thus, we may assume c+ α > 0. ♦

Claim 1: y∗i > 0⇒ cix
∗
i + αiy

∗
i > 0.

If y∗i > 0, then x∗i > 0, and by Assumption 3, cix
∗
i + αiy

∗
i > 0 holds. ♦

Let T = {i ∈ L : αi = 0}. Then ci > 0 for all i ∈ T by Assumption 3, and αi > 0 for all i ∈ L \ T . We
claim that ∑

i∈T

x∗i
li

+
∑

i∈N\T

y∗i
max{d, hi}

= 1.

We prove the claim by contradiction. Let T+ = {i ∈ T : x∗i > 0} and (N \ T)+ = {i ∈ N \ T : y∗i > 0}.
Then ∑

i∈T+

x∗i
li

+
∑

i∈(N\T)+

y∗i
max{d, hi}

> 1. (17)

8

Claim 2: T+ = ∅.

Suppose i ∈ T+, that is, x∗i ≥ li > max{d, hi}. Since αi = 0 and αj > 0 for all j ∈ L \ T , by optimality
we must have y∗j = 0 for all j ∈ L \T . In addition, by Claim 1, we must have y∗j = 0 for all j ∈ N \L as
well. Thus (N \ T)+ = ∅. Moreover, given that cj > 0 for any j ∈ T+, we must have T+ = {i}. Then
(17) takes the form x∗i > li, a contradiction with optimality as ci > 0. ♦

By Claim 2, we arrive at ∑
i∈(N\T)+

y∗i
max{d, hi}

> 1. (18)

Claim 3: (N \ T)+ ∩H = ∅.

Let i ∈ (N \ T)+ be such that hi ≥ d. By Claim 1 and optimality, (N \ T)+ = {i}. Then (18) implies
y∗i > hi ≥ d. If i ∈ L \ T , then αi > 0 and by optimality we have a contradiction. If i ∈ N \ L, then
li ≤ max{hi, d} = hi. Since ci + αi > 0, by optimality we must have y∗i = hi, a contradiction as well. ♦

By Claim 3, we arrive at ∑
i∈(N\T)+

y∗i > d. (19)

Claim 4: |(N \ T)+| ≥ 2.

Since (N \ T)+ cannot be empty, suppose (N \ T)+ = {i}. Then (19) and Claim 3 imply y∗i > d > hi.
Again, if i ∈ L \ T , then αi > 0 and we have a contradiction. If i ∈ N \ L, then li ≤ max{hi, d} = d.
Since ci + αi > 0, by optimality we must have y∗i = d, a contradiction as well. ♦

Let
i0 ∈ arg min

{
ci + αi : i ∈ (N \ T)+

}
,

and let i1 ∈ (N \ T)+, i1 6= i0, which exists by Claim 4. Recall that from Assumption 3, ci0 + αi0 > 0.
For ε > 0 sufficiently small, define (x̄, ȳ) as

(x̄i, ȳi) =


(
x∗i0 + y∗i1 − ε, y∗i0 + y∗i1 − ε

)
i = i0

(0, 0) i = i1
(x∗i , y

∗
i) i 6= i0, i 6= i1.

Certainly x̄i ≥ li whenever x̄i > 0, ȳi ≥ hi whenever yi > 0, and ȳi ≤ x̄i for all i ∈ N . Thus, given that∑
i∈N y

∗
i > d, we conclude that (x̄, ȳ) is a feasible solution. Moreover,∑

i∈N
ci(x

∗
i − x̄i) + αi(y

∗
i − ȳi) = −ci0(y∗i1 − ε)− αi0(y∗i1 − ε) + ci1x

∗
i1 + αi1y

∗
i1

= − (ci0 + αi0) (y∗i1 − ε) + ci1x
∗
i1 + αi1y

∗
i1

> − (ci0 + αi0) y∗i1 + ci1y
∗
i1 + αi1y

∗
i1

≥ 0,

where the two inequalities follow from ci0 + αi0 > 0, y∗i1 > 0, and x∗i1 ≥ y∗i1 , and from the definition of
i0, respectively.

Hence, (x̄, ȳ) improves upon (x∗, y∗) and we get the required contradiction.

9

3.2 Extreme points of conv(S(0, h))

Since by Theorem 6 an outer description of conv(S(0, h)) in terms of linear inequalities is available, we
look for an inner description in terms of extreme points.

Proposition 7. Let (x, y) be an extreme point of conv(S(0, h)). Then both x and y have exactly one
non-zero entry.

Proof. We claim that if xi > 0, then yi > 0. By contradiction, suppose xi > 0 and yi = 0. We can set

(xi, yi) =
1

2
[(2xi, 0) + (0, 0)] .

Thus, (x, y) can be written as the average of two distinct points in S(0, h).

Now, suppose that x has more than one non-zero entry, say xi > 0 and xj > 0. By the claim, yi > 0
and yj > 0. We can set

hi ≤ yi = λxi, 0 < λ ≤ 1

hj ≤ yj = µxi, 0 < µ ≤ 1.

Finally, we can write

(xi, xj , yi, yj) = (xi, xj , λxi, µxj)

=
λxi

λxi + µxj
(xi +

µ

λ
xj , 0, λxi + µxj , 0)

+
µxj

λxi + µxj
(0, xj +

λ

µ
xi, 0, λxi + µxj).

Hence, (x, y) can be written as a strict convex combination of two distinct points in S(0, h).

Combining Theorem 6 and Proposition 7, we have the following result.

Proposition 8. If (x, y) is an extreme point of conv(S(0, h)), then the non-zero entries of (x, y) are
one of the following:

• i ∈ N \ L⇒ xi = max{d, hi}, yi = max{d, hi},

• i ∈ L⇒
{
xi = li, yi = li
xi = li, yi = max{d, hi}.

Proof. Let (x, y) be an extreme point of conv(S(0, h)). From Proposition 7, (x, y) has exactly one pair of
non-zero entries, say (xi, yi). From Theorem 6, (xi, yi) has to satisfy either yi ≥ max{d, hi} if i ∈ N \L,
or both xi ≥ li and yi ≥ max{d, hi} if i ∈ L. From these inequalities together with yi ≤ xi, at least two
have to be satisfied at equality since xi > 0, yi > 0, and yj = xj = 0 for all j ∈ N , j 6= i. The possible
solutions are exactly the combinations indicated above.

From Proposition 8, optimization over S(0, h) can be done by enumeration in O(n) time.

10

3.3 Extended formulation for conv(S(0, h))

Now, let us consider the separation problem associated to (14). Given (x∗, y∗), let

T ∗ =

{
i ∈ L :

x∗i
li
≤ y∗i

max{d, hi}

}
.

If (14) is satisfied for T ∗, then it is satisfied for any T ⊆ L, and if in addition (16) and (15) hold,
then (x∗, y∗) belongs to conv(S(0, h)). Otherwise, T ∗ gives the most violated inequality from (14),
and therefore it can be used to separate (x∗, y∗) from conv(S(0, h)). Clearly, computing T ∗ and its
corresponding inequality can be done in O(n) time.

Further note that (x, y) satisfies (14) for all T ⊆ L if and only if∑
i∈N\L

yi
max{d, hi}

+
∑
i∈L

min

(
xi
li
,

yi
max{d, hi}

)
≥ 1.

If fact, this is the separation routine for (14) given a point (x, y). Now, the above condition holds if and
only if there exists π ∈ R|L| such that

xi
li
≥ πi ∀i ∈ L

yi
max{d, hi}

≥ πi ∀i ∈ L∑
i∈N\L

yi
max{d, hi}

+
∑
i∈L

πi ≥ 1.

Thus, introducing variables π, we obtain an extended formulation W of conv(S(0, h)) in a space of
higher dimension given by

W =


(x, y, π) ∈ Rn × Rn × R|L| :

∑
i∈N\L

yi
max{d, hi}

+
∑
i∈L

πi ≥ 1

xi
li
≥ πi ∀i ∈ L

yi
max{d, hi}

≥ πi ∀i ∈ L
yi ≥ 0 ∀i ∈ N

xi − yi ≥ 0 ∀i ∈ N


.

Let projx,y(W) denote the projection of W onto the (x, y)-space.

Corollary 9. conv(S(0, h)) = projx,y(W).

This extended formulation is compact in the sense that we have, at most, doubled the number of variables
and constraints.

11

4 The case h = 0

In this section we assume that h = 0 and then S(t, 0) ⊆ Rn × Rn takes the form∑
i∈N

yi ≥ d (20)

yi ≤ ti + xi ∀i ∈ N (21)

xi ∈ {0} ∪ [li,∞) ∀i ∈ N (22)

yi ≥ 0 ∀i ∈ N. (23)

4.1 Inequality description of conv(S(t, 0))

Proposition 10.
∑
i∈N yi ≥ d is facet-defining for conv(S(t, 0)).

Proof. Choose a point x̄ ∈ Rn satisfying x̄i > max{d, li} for all i ∈ N and set ȳi = d
n for all i ∈ N . We

have that (x̄, ȳ) belongs to S(t, 0) and satisfies
∑
i∈N ȳi = d. Now for each j ∈ N , j < n, consider the

points
(
xj , yj

)
and

(
xn+j , yn+j

)
given by(
xji , y

j
i

)
=

{
(x̄j + ε, ȳj) i = j

(x̄i, ȳi) i 6= j,

(
xn+j
i , yn+j

i

)
=

 (x̄j , ȳj − ε) i = j
(x̄n, ȳn + ε) i = n

(x̄i, ȳi) i 6= j, i 6= n.

Finally, let
(
x2n, y2n

)
= (x̄, ȳ) and let (xn, yn) be given by

(xni , y
n
i) =

{
(x̄n + ε, ȳn) i = n

(x̄i, ȳi) i 6= n.

For ε > 0 sufficiently small,
{(
xj , yj

)
,
(
xn+j , yn+j

)
: j ∈ N

}
is contained in S(t, 0). Moreover, it is

an affinely independent set, and since these 2n points satisfy
∑
i∈N yi ≥ d at equality, this constraint

defines a facet of conv(S(t, 0)).

Definition 11. A subset R ⊆ N is a reverse cover if dR := d−∑i∈R ti > 0.

Let R ⊆ 2N be the set of all reverse covers. For a reverse cover R ∈ R, consider the inequality∑
i∈R

xi
max{li, dR}

+
∑

i∈N\R

yi
dR
≥ 1. (24)

Also, let LR := {i ∈ R : li > dR}. Note that if R = ∅, we recover (20).

Proposition 12. For each reverse cover R ∈ R, (24) is valid for conv(S(t, 0)).

Proof. Let (x, y) ∈ S(t, 0). If there exists i ∈ LR with xi > 0, then (24) is satisfied. Otherwise, xi = 0
for all i ∈ LR. Then

d ≤
∑
i∈N

yi =
∑
i∈LR

yi +
∑

i∈R\LR

yi +
∑

i∈N\R
yi ≤

∑
i∈LR

ti +
∑

i∈R\LR

(ti + xi) +
∑

i∈N\R
yi

12

=⇒ dR = d−
∑
i∈R

ti ≤
∑

i∈R\LR

xi +
∑

i∈N\R
yi.

Since max{li, dR} = dR > 0 for each i ∈ R \ LR, (24) is satisfied.

Definition 13. A reverse cover R ∈ R is proper if

1. LR 6= ∅.

2. ti > 0 for all i ∈ R \ LR.

Proposition 14. For each reverse cover R ∈ R, (24) is facet-defining if and only if R is empty or if
R is proper.

Proof. The case R = ∅ follows from Proposition 10. Thus, let R be a proper reverse cover and let
i ∈ LR. For each j ∈ N , consider the points

(
xj , yj

)
and

(
xn+j , yn+j

)
defined as follows.

If j ∈ R, (
xjk, y

j
k

)
=

 (max{lj , dR}, tj + dR) k = j
(0, tk) k ∈ R, k 6= j
(0, 0) k ∈ N \R.

Then ∑
k∈N

yjk =
∑
k∈R

tk + dR = d

and ∑
k∈R

xjk
max{lk, dR}

+
∑

k∈N\R

yjk
dR

=
max{lj , dR}
max{lj , dR}

= 1.

If j ∈ LR, (
xn+j
k , yn+j

k

)
=

 (lj , tj + dR + ε) k = j
(0, tk) k ∈ R, k 6= j
(0, 0) k ∈ N \R.

Then ∑
k∈N

yn+j
k =

∑
k∈R

tk + dR + ε ≥ d

and ∑
k∈R

xn+j
k

max{lk, dR}
+

∑
k∈N\R

yn+j
k

dR
=

lj
max{lj , dR}

= 1.

If j ∈ R \ LR,

(
xn+j
k , yn+j

k

)
=


(li, ti + dR + ε) k = i

(0, tj − ε) k = j
(0, tk) k ∈ R, k 6= i, k 6= j
(0, 0) k ∈ N \R.

13

Then ∑
k∈N

yn+j
k =

∑
k∈R

tk − ε+ dR + ε = d

and ∑
k∈R

xn+j
k

max{lk, dR}
+

∑
k∈N\R

yn+j
k

dR
=

li
max{li, dR}

= 1.

If j ∈ N \R, (
xjk, y

j
k

)
=

 (max{lj , dR}, dR) k = j
(0, tk) k ∈ R
(0, 0) k ∈ N \R, k 6= j,

(
xn+j
k , yn+j

k

)
=

 (max{lj , dR}+ ε, dR) k = j
(0, tk) k ∈ R
(0, 0) k ∈ N \R, k 6= j.

Then ∑
k∈N

yjk =
∑
k∈N

yn+j
k =

∑
k∈R

tk + dR = d

and ∑
k∈R

xjk
max{lk, dR}

+
∑

k∈N\R

yjk
dR

=
∑
k∈R

xn+j
k

max{lk, dR}
+

∑
k∈N\R

yn+j
k

dR
=
dR
dR

= 1.

Given that dR < lj for all j ∈ LR and 0 < tj for all j ∈ R \LR, for ε > 0 sufficiently small, we have that{(
xj , yj

)
,
(
xn+j , yn+j

)
: j ∈ N

}
is contained in S(t, 0). Moreover, it is an affinely independent set, and

since these 2n points satisfy (24) at equality, this constraint defines a facet of conv(S(t, 0)).

For the converse, let R be a nonempty cover that is not proper, thus either LR = ∅ or there exists
i ∈ R \LR having ti = 0. In the former case, max{li, dR} = dR for all i ∈ R, and then (24) is generated
as the sum of (20) and (21) for i ∈ R. In the latter, since ti = 0, we have dR\{i} = dR and yi ≤ xi.
Since i ∈ R \ LR, we also have max{li, dR} = dR. Thus∑

j∈R

xj
max{lj , dR}

+
∑

j∈N\R

yj
dR

=
∑

j∈R\{i}

xj
max{lj , dR}

+
xi

max{li, dR}
+

∑
j∈N\R

yj
dR

≥
∑

j∈R\{i}

xj
max{lj , dR}

+
yi
dR

+
∑

j∈N\R

yj
dR

=
∑

j∈R\{i}

xj
max{lj , dR}

+
∑

j∈N\(R\{i})

yj
dR
.

Hence, the inequality given by R is implied by the one given by R \ {i}, and therefore it cannot be
facet-defining.

We now present the main result of this section.

14

Theorem 15. conv(S(t, 0)) is given by the following inequalities∑
i∈R

xi
max{li, dR}

+
∑

i∈N\R

yi
dR
≥ 1 ∀R ∈ R

yi ≤ xi + ti ∀i ∈ N (25)

xi ≥ 0 ∀i ∈ N (26)

yi ≥ 0 ∀i ∈ N. (27)

Proof. Let (c, α) ∈ Rn × Rn be a non-zero vector and consider the problem

min
{
c>x+ α>y : (x, y) ∈ S(t, 0)

}
.

As in the proof of Theorem 6, we will show that if this problem has finite optimal value, then there
exists one inequality from (24)-(27) that contains all optimal solutions.

Assumption 1: c ≥ 0 and c+ α ≥ 0.

If for some i ∈ N we have ci < 0 or ci + αi < 0, then the problem is unbounded. Thus, we may assume
c ≥ 0 and c+ α ≥ 0. ♦

In particular, Assumption 1 implies that the objective value is bounded and there exists an optimal
solution. Let (x∗, y∗) be any such solution.

Assumption 2: α ≥ 0.

If for some i ∈ N we have αi < 0, then y∗i = ti + x∗i by optimality, that is, (25) is satisfied at equality.
Thus, we may assume α ≥ 0. ♦

From Assumptions 1 and 2, we have that the optimal value is nonnegative.

Assumption 3: c>x∗ + α>y∗ > 0.

Suppose that the optimal value is zero. Since (c, α) 6= (0, 0), by Assumptions 1 and 2, there must exist
i ∈ N such that either αi > 0 or ci > 0. By optimality, in the former case we must have y∗i = 0, while
in the latter x∗i = 0 must hold. Therefore, either (27) or (26) must be satisfied at equality. Thus, we
may assume c>x∗ + α>y∗ > 0. ♦

Claim 1: c+ α > 0.

If ci = αi = 0 for some i ∈ N , then the optimal value is zero, contradicting Assumption 3. ♦

Let R := {i ∈ N : αi = 0}. From Assumption 3 and the definition of R, we have
∑
i∈R ti < d, since

otherwise the optimal value is zero. Hence, R is a reverse cover. We also have ci > 0 for all i ∈ R by
Claim 1, and αi > 0 for all i ∈ N \R.

We claim that ∑
i∈R

x∗i
max{li, dR}

+
∑

i∈N\R

y∗i
dR

= 1.

Suppose not. Let L+
R := {i ∈ LR : x∗i > 0}, (R \ LR)+ := {i ∈ R \ LR : x∗i > 0}, and (N \ R)+ := {i ∈

N \R : y∗i > 0}. Then ∑
i∈L+

R

x∗i
li

+
∑

i∈(R\LR)+

x∗i
dR

+
∑

i∈(N\R)+

y∗i
dR

> 1. (28)

15

Claim 2: L+
R = ∅.

Suppose i ∈ L+
R, that is, i ∈ R and x∗i ≥ li > dR. Note that since αj = 0 for all j ∈ R, we can set

y∗j = tj for each j ∈ R, j 6= i, and y∗i = ti + dR without affecting the feasibility and objective value of
the solution. Recalling that ci > 0 for all i ∈ R and αi > 0 for all ∈ N \R, from (28) and optimality we
have (R\LR)+ = (N \R)+ = ∅ and L+

R = {i}. Then (28) implies x∗i > li > dR, contradicting optimality
since setting x∗i = li improves the objective value. ♦

Now, we have ∑
i∈(R\LR)+

x∗i +
∑

i∈(N\R)+

y∗i > dR. (29)

Claim 3: (N \R)+ = ∅.

From (29) and Claim 2, we have

d <
∑

i∈(R\LR)+

x∗i +
∑
i∈R

ti +
∑

i∈(N\R)+

y∗i =
∑
i∈R

(x∗i + ti) +
∑

i∈(N\R)+

y∗i .

If (N \ R)+ is nonempty, we can set y∗i = ti + x∗i for each i ∈ R without changing the objective value,
and then decrease y∗i for some i ∈ (N \R)+, contradicting optimality as αi > 0 for all i ∈ (N \R)+. ♦

We arrive at ∑
i∈(R\LR)+

x∗i > dR.

Then we can improve upon (x∗, y∗) by taking i ∈ arg min{cj : j ∈ (R \ LR)+} and defining (x̄, ȳ) by

(x̄j , ȳj) =

 (dR, tj + dR) j = i
(0, tj) j ∈ R, j 6= i
(0, 0) j ∈ N \R.

4.2 Extended formulation for conv(S(t, 0))

At first sight, it is not clear how to separate the inequalities given by (24). We will show that this can
be done using an extended formulation. We first state a result similar to Proposition 7.

Proposition 16. If (x, y) is an extreme point of conv(S(t, 0)), then x has at most one non-zero entry.

Proof. We claim that if xi > 0, then yi > ti. By contradiction, suppose xi > 0 and yi ≤ ti. We can set

(xi, yi) =
1

2
[(2xi, yi) + (0, yi)] .

Thus, (x, y) can be written as the average of two distinct points in S(t, 0).

16

Now, suppose that x has more than one non-zero entry, say xi > 0 and xj > 0. By the claim, yi > ti
and yj > tj . Thus, there exist λ, µ ∈ (0, 1] such that yi = ti +λxi and yj = tj +µxj . Then we can write

(xi, xj , yi, yj) = (xi, xj , ti + λxi, tj + µxj)

=
λxi

λxi + µxj
(xi +

µ

λ
xj , 0, ti + λxi + µxj , tj)

+
µxj

λxi + µxj
(0, xj +

λ

µ
xi, ti, tj + λxi + µxj).

Also, notice that

ti + λxi + µxj = ti + λ
(
xi +

µ

λ
xj

)
≤ ti +

(
xi +

µ

λ
xj

)
,

tj + λxi + µxj = tj + µ

(
λ

µ
xi + xj

)
≤ tj +

(
λ

µ
xi + xj

)
.

Hence, (x, y) can be written as a strict convex combination of two distinct points in S(t, 0).

Now consider the polyhedra

S0 := {(x, y) ∈ S(t, 0) : xj = 0 ∀j ∈ N} =

(x, y) ∈ Rn+ × Rn+ :

∑
j∈N yj ≥ d
−yj ≥ −tj ∀j ∈ N
−xj ≥ 0 ∀j ∈ N

 ,

Si := {(x, y) ∈ S(t, 0) : xi ≥ li, xj = 0 ∀j 6= i} =

(x, y) ∈ Rn+ × Rn+ :

∑
j∈N yj ≥ d

xi − yi ≥ −ti
−yj ≥ −tj ∀j 6= i
xi ≥ li
−xj ≥ 0 ∀j 6= i

 , i ∈ N.

Note that Si is nonempty for each i ∈ N , while S0 is nonempty if and only if
∑
j∈N tj ≥ d. Set

N̄ = {0} ∪N .

For a set C, let conv(C) denote the closure of its convex hull. If C is convex, let ext(C) and rec(C)
denote the set of extreme points and the recession cone of C, respectively.

Proposition 17. conv(S(t, 0)) = conv(∪i∈N̄Si).

Proof. The reverse inclusion is easy as Si ⊆ S(t, 0) for all i ∈ N̄ and conv(S(t, 0)) is closed by Proposi-
tion 3.

For the forward inclusion, let (x, y) ∈ ext(conv(S(t, 0))). From Proposition 16, (x, y) belongs to some
Si, i ∈ N̄ , thus ext(conv(S(t, 0))) ⊆ conv(∪i∈N̄Si). It remains to show that rec(conv(S(t, 0))) ⊆
rec(conv(∪i∈N̄Si)). Let (x, y) ∈ rec(conv(S(t, 0))). From Theorem 15, we can conclude that x ≥ 0, y ≥
0, and x ≥ y. Write (x, y) =

∑
i∈N (xie

i, yie
i), where ei is the i-th canonical vector in Rn. On the other

hand, from a result in disjuctive programming [1], we have rec(conv(∪i∈N̄Si)) = conv(∪i∈N̄rec(Si)).
Since rec(Si) is a convex cone for each i ∈ N̄ , we also have conv(∪i∈N̄rec(Si)) =

∑
i∈N̄ rec(Si). Given

that (xie
i, yie

i) ∈ rec(Si) for each i ∈ N , we have that (x, y) ∈ rec(conv(∪i∈N̄Si)), which completes the
proof.

17

From Proposition 17, conv(S(t, 0)) admits a compact representation as the projection onto (x, y) of
a higher dimensional polyhedron which can be used to find violated inequalities. Specifically, given

(x̄, ȳ) ∈ Rn × Rn, let P ⊆ R(n+1)n
+ × R(n+1)n

+ × Rn+1
+ be the set of vectors (x, y, λ) satisfying∑

j∈N
y0
j − dλ0 ≥ 0 (α0)

−y0
j + tjλ

0 ≥ 0 ∀j ∈ N (β0j)

−xj ≥ 0 ∀j ∈ N∑
j∈N

yij − dλi ≥ 0 ∀i ∈ N (αi)

xii − yii + tiλ
i ≥ 0 ∀i ∈ N (βii)

−yij + tjλ
i ≥ 0 ∀i ∈ N, ∀j 6= i (βij)

xii − liλi ≥ 0 ∀i ∈ N (γi)

−xij ≥ 0 ∀i ∈ N, ∀j 6= i

xii = x̄i ∀i ∈ N (νi)∑
j∈N̄

yji = ȳi ∀i ∈ N (ηi)

∑
j∈N̄

λj = 1 (π).

Thus, (x̄, ȳ) belongs to conv(∪i∈N̄Si), and therefore to conv(S(t, 0)), if and only if P is nonempty. Let

Q ⊆ Rn+1
+ × R(n+1)n

+ × Rn+ × Rn × Rn × R be the set of vectors (α, β, γ, η, ν, π) such that

α0 − β0j + νj ≤ 0 ∀j ∈ N
−dα0 +

∑
j∈N

tjβ0j + π ≤ 0

αi − βij + νj ≤ 0 ∀i ∈ N, ∀j ∈ N
βii + γi + ηi ≤ 0 ∀i ∈ N

−dαi +
∑
j∈N

tjβij − liγi + π ≤ 0 ∀i ∈ N

π +
∑
i∈N

ηix̄i +
∑
i∈N

νiȳi > 0.

After removing unnecessary variables and constraints from P , by Farkas’ Lemma, P is nonempty if and
only if Q is empty. Moreover, given (x̄, ȳ) in the continuous relaxation of (20)-(23), there is a violated

18

inequality from (24) if and only if the problem

min
∑
i∈N

ηix̄i +
∑
i∈N

νiȳi − π (30)

s.t. α0 − β0j − νj ≤ 0 ∀j ∈ N
−dα0 +

∑
j∈N

tjβ0j + π ≤ 0

αi − βij − νj ≤ 0 ∀i ∈ N, ∀j ∈ N
βii + γi − ηi ≤ 0 ∀i ∈ N

−dαi +
∑
j∈N

tjβij − liγi + π ≤ 0 ∀i ∈ N
∑
i∈N

ηi +
∑
i∈N

νi + π = 1

α, β, γ, η, ν, π ≥ 0

has negative optimal value. In such case, any optimal solution to (30) yields a valid inequality for
conv(S(t, 0)) that is not satisfied by (x̄, ȳ).

5 A semi-continuous transportation problem

5.1 The problem and its complexity

Consider now the case where we intersect m ≥ 1 sets of the form S(t, h). Specifically, letM := {1, . . . ,m}
be a set of nodes that receive flow from nodes in N , where each j ∈M has a demand dj > 0 to be met.
In this context, we refer to N and M as suppliers and customers, respectively. In this setting, l ∈ Rn+ is
a vector of lower bounds for supplier capacities, h ∈ Rnm+ is a vector of lower bounds for arc flows, and
t ∈ Rn+ is a vector of initial supplier capacities.

Let S∗ ⊆ Rn × Rnm be the set of vectors (x, y) such that∑
i∈N

yij ≥ dj ∀j ∈M (31)∑
j∈M

yij ≤ ti + xi ∀i ∈ N (32)

xi ∈ {0} ∪ [li,∞) ∀i ∈ N (33)

yij ∈ {0} ∪ [hij ,∞) ∀i ∈ N, ∀j ∈M. (34)

Constraints (31), (33), and (34) are analogous to (1), (3), and (4) of S(t, h), respectively. In addition,
constraints (32) ensure that the total outflow from any supplier does not exceed its available capacity.
As with the inflow set, a graphical interpretation is given in Figure 3.

Now we address the complexity of optimization over S∗.

Proposition 18. Optimizing a linear function over S∗ is NP-hard, even if t = 0 and h = 0.

Proof. We will show that the Uncapacitated Facility Location Problem (UFLP), which is NP-hard, can
be reduced to optimization of a linear function over S∗. An instance of UFLP is defined by a set of

19

i
xi ∈ {0} ∪ [li,∞) yij ∈ {0} ∪ [hij ,∞) dj > 0

N

j

M

ti ≥ 0

Figure 3: Semi-continuous transportation problem.

potential facilities N , a set of customers M , and cost functions f : N → R+ and e : N ×M → R+. The
objective is to compute

min
N ′⊆N

∑
i∈N ′

fi +
∑
j∈M

min
i∈N ′

eij

 .

We can formulate UFLP as an integer programming problem. Let zi = 1 if and only if facility i is open,
and wij = 1 if and only if customer j is assigned to facility i. The corresponding formulation is

z1 = min
∑
i∈N

fizi +
∑
j∈M

∑
i∈N

eijwij

s.t. wij ≤ zi ∀i ∈ N, ∀j ∈M∑
i∈N

wij = 1 ∀j ∈M

wij ∈ {0, 1} ∀i ∈ N, ∀j ∈M
zi ∈ {0, 1} ∀i ∈ N.

Given an instance π1 of UFLP, we want to construct an instance π2 of linear optimization over S∗ with
the same objective value. We identify N with the set of supply nodes and M with the set of customers.
Let li = m+1 for all i ∈ N , dj = 1 for all j ∈M , ci = fi

m+1 for all i ∈ N , and αij = eij for all i ∈ N and
j ∈ M . We also set ti = 0 for each i ∈ N , and hij = 0 for each i ∈ N and j ∈ M . The corresponding
instance π2 is then

z2 = min
∑
i∈N

fi
m+ 1

xi +
∑
i∈N

∑
j∈M

eijyij

s.t.
∑
j∈M

yij ≤ xi ∀i ∈ N
∑
i∈N

yij ≥ 1 ∀j ∈M

yij ≥ 0 ∀i ∈ N, ∀j ∈M
xi ∈ {0} ∪ [m+ 1,∞) ∀i ∈ N.

Let (z∗, w∗) be an optimal solution to π1. If we set xi = li if z∗i = 1 and 0 otherwise, and yij = dj if
w∗ij = 1 and 0 otherwise, then we get a feasible solution (x, y) to π2 with cost z1. Hence, z2 ≤ z1.

20

Now, let (x∗, y∗) be an optimal solution to π2. Since c ≥ 0, α ≥ 0, and li ≥ m+ 1, we may assume that
x∗i ∈ {0, li} for all i ∈ N . In addition, by integrality property of networks, we may also assume that
y∗ij ∈ {0, dj} for any i ∈ N and j ∈M . Setting zi = 1 if x∗i = li and 0 otherwise, and wij = 1 if y∗ij = dj
and 0 otherwise, we get a feasible solution (z, w) to π1 with cost z2. Hence, z1 ≤ z2.

5.2 Analysis of a relaxation of S∗

A special case of S∗ arises when h = 0, which constitutes a relaxation for this class of problems. In such
a case, we shall present structural characteristics of the convex hull of this set that will give us some
insight into the complexity of optimization over it. In fact, we will show some results for a slightly more
general set.

For lower bounds l ∈ Rn+, demands d ∈ Rm+ , not necessarily positive, and initial capacities t ∈ Rn+, we
define

S∗(l, d, t) :=


(x, y) ∈ Rn × Rnm :

∑
i∈N

yij ≥ dj ∀j ∈M∑
j∈M

yij ≤ ti + xi ∀i ∈ N

yij ≥ 0 ∀i ∈ N, j ∈M
xi ∈ {0} ∪ [li,∞) ∀i ∈ N


.

Once more, we begin with a result in the spirit of Propositions 7 and 16.

Proposition 19. If (x, y) is an extreme point of conv(S∗(l, d, t)), then
∑
j∈M yij > ti for all i ∈ N

such that xi > 0.

Proof. Suppose that xi > 0 and
∑
j∈M yij ≤ ti for some i ∈ N . Then we can write

(xi, yi1, . . . , yim) =
1

2
[(2xi, yi1, . . . , yim) + (0, yi1, . . . , yim)],

that is, (x, y) is the strict convex combination of two distinct points in S∗(l, d, t), and thus it cannot be
an extreme point of conv(S∗(l, d, t)).

For (x̄, ȳ) ∈ S∗(l, d, t), we define the support σ(x̄) of x̄ as the subset of suppliers with positive production,
that is

σ(x̄) := {i ∈ N : x̄i > 0}.

We will prove that if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then |σ(x̄)| ≤ m. We need the
following key lemma.

Lemma 20. If t = 0 and (x̄, ȳ) is an extreme point of conv(S∗(l, d, 0)), then |σ(x̄)| ≤ m.

Proof. For a contradiction, suppose that for some positive integers n > m the claim does not hold.
Choose n and m so that n + m is minimum among all such instances. Note that by Proposition 16,
m > 1. Let (x̄, ȳ) be an extreme point of S∗(l, d, 0) having |σ(x̄)| > m, where l ∈ Rn+ and d ∈ Rm+ .

By minimality of n + m, we may assume that |σ(x̄)| = n, since otherwise xi = 0 for some i ∈ N , and
removing this supplier from the instance would yield a smaller counterexample.

21

Claim 1: n = m+ 1.

If n > m+ 1, let N̂ := N \ {n}. We define d̂ ∈ Rm+ by

d̂j :=
∑
i∈N̂

ȳij ∀j ∈M.

Let (x̂, ŷ) ∈ Rn−1
+ × R(n−1)m

+ and l̂ ∈ Rn−1
+ be the restrictions of (x̄, ȳ) and l with respect to N̂ ,

respectively. We have that (x̂, ŷ) is feasible for S∗(l̂, d̂, 0) and |σ(x̂)| = n− 1 ≥ m+ 1. By minimality of

n+m, (x̂, ŷ) cannot be an extreme point of conv(S∗(l̂, d̂, 0)). Thus, we can write

(x̂, ŷ) =

q∑
p=1

λp(x
p, yp),

where q ≥ 2, {(xp, yp) : p = 1, . . . , q} are distinct points in S∗(l̂, d̂, 0), λp > 0 for all p = 1, . . . , q, and∑q
p=1 λp = 1. For each p = 1, . . . , q, we extend (xp, yp) to (x̃p, ỹp) ∈ Rn × Rnm by setting x̃pn = x̄n and

ỹpnj = ȳnj for all j ∈ M . Since xp ≥ l̂ and x̄n ≥ ln, we have x̃p ≥ l. In addition, for each j ∈ M , we
have ∑

i∈N
ỹpij =

∑
i∈N̂

ypij + ȳnj ≥ d̂j + ȳnj ≥ dj .

Thus, {(x̃p, ỹp) : p = 1, . . . , q} are distinct points in S∗(l, d, 0). We can see that

(x̄, ȳ) =

q∑
p=1

λp(x̃
p, ỹp)

and therefore (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, 0)). The claim is thus proved. ♦

Let G = (N ∪M,E) be a bipartite graph where i ∈ N is adjacent to j ∈M if and only if ȳij > 0. Notice
that since σ(x̄) = N , by Proposition 19 we have that for each i ∈ N , there exists j ∈M having ȳij > 0,
and therefore deg(i) ≥ 1 for all i ∈ N . Furthermore, we may assume deg(j) ≥ 1 for all j ∈ M , since if
deg(j) = 0, then dj = 0 and removing this customer from the instance yields a smaller counterexample.
Therefore, given that n = m + 1, there must exist some component of G having more suppliers than
customers. Hence, we may assume that G is connected, since otherwise some component of G induces a
smaller counterexample. We may also assume that G is acyclic, since otherwise we can modify ȳ along
the arcs in a cycle and write (x̄, ȳ) as the average of two different solutions in S∗(l, d, 0). Thus, we may
assume that G is a tree.

Claim 2: deg(j) = 2 ∀j ∈M .

We first argue that deg(j) ≥ 2 for all j ∈ M . By contradiction, we may assume that deg(m) = 1 and

that m is supplied by n. As before, let N̂ := N \ {n} and M̂ := M \ {m}. We define d̂ ∈ Rm−1
+ by

d̂j :=
∑
i∈N̂

ȳij ∀j ∈ M̂.

Taking the restrictions of (x̄, ȳ) and l with respect to N̂ and M̂ , and proceeding as in the proof of Claim 1,
we conclude that (x̄, ȳ) cannot be an extreme point of conv(S∗(l, d, 0)). Hence, deg(j) ≥ 2 ∀j ∈ M .
However, since G is a tree, we have |E| = |N ∪M | − 1 = m+ 1 +m− 1 = 2m, and thus deg(j) = 2 for
each j ∈M . The claim is thus proved. ♦

22

Now, for each i ∈ N , let
M(i) := {j ∈M : (i, j) ∈ E},

N(i) := {l ∈ N \ {i} : ∃j ∈M such that (i, j), (l, j) ∈ E}.

In other words, M(i) are the customers served by i, while N(i) are the suppliers that share a customer
with i, which we refer to as its neighbors. Clearly l ∈ N(i) if and only if i ∈ N(l). Note that since G is
acyclic, any two suppliers can have at most one common customer. Thus, given neighbors i and l in N ,
there exists a unique j =: j(i, l) ∈M connecting them in G.

Let (c, α) ∈ Rn × Rnm be such that (x̄, ȳ) is the unique minimizer in S∗(l, d, 0) with respect to this
function. For each i ∈ N , consider the solution (xi, yi) given by

xil =

 0 l = i
x̄l + ȳij(i,l) l ∈ N(i)

x̄l otherwise,
yilj =

 0 l = i
ȳlj + ȳij(i,l) l ∈ N(i), j = j(i, l)

ȳlj otherwise.

Thus, we obtain (xi, yi) from (x̄, ȳ) by moving the production from i to its neighbors and removing i
from the solution. It is straightforward to verify that (xi, yi) is feasible to S∗(l, d, 0). However, since
(x̄, ȳ) is the unique minimizer for (c, α), we have that the cost incurred by (x̄, ȳ) is less than the cost
incurred by (xi, yi). Since these solutions only differ in the variables associated to i and its neighbors,
we have

cix̄i +
∑

j∈M(i)

αij ȳij <
∑
l∈N(i)

(cl + αlj(i,l))ȳij(i,l).

Recalling that
∑
j∈M(i) ȳij ≤ x̄i, we have∑

j∈M(i)

(ci + αij)ȳij <
∑
l∈N(i)

(cl + αlj(i,l))ȳij(i,l).

Rewriting the left-hand-side in the last inequality, we obtain∑
l∈N(i)

(ci + αij(i,l))ȳij(i,l) <
∑
l∈N(i)

(cl + αlj(i,l))ȳij(i,l).

Hence, there must exist some l ∈ N(i) such that

ci + αij(i,l) < cl + αlj(i,l).

For neighbors i and l, we say that i dominates l if the above inequality holds. Thus, we have that any
supplier has to dominate at least one of its neighbors.

Let G′ = (N,E′) be a graph where (i, j) ∈ E′ if and only if i and j are neighbors in G, and note that
G′ is also a tree. Let L ⊆ N be the set of leaves of G′. Since n = m+ 1 ≥ 3, L has at least two elements
and N \ L is nonempty. Note that any leaf dominates its unique neighbor. Now, pick some r ∈ L as
a root of G′, and let i ∈ N \ L be such that all of its children are leaves of G′. Since i is dominated
by its children, it must dominate its parent. Reasoning by induction, we have that any supplier has to
dominate its parent. In particular, we conclude that r is dominated by its child, a contradiction since r
is a leaf. This completes the proof.

With Proposition 19 and Lemma 20 at hand, we can prove the main result of this section.

23

Theorem 21. For any t ≥ 0, if (x̄, ȳ) is an extreme point of conv(S∗(l, d, t)), then |σ(x̄)| ≤ m.

Proof. For a contradiction, suppose that for some positive integers n > m the claim does not hold. Let
(x̄, ȳ) be an extreme point of S∗(l, d, t) having |σ(x̄)| > m, where l, t ∈ Rn+ and d ∈ Rm+ .

For each i ∈ N , let j(i) ∈ M be such that
∑
j∈M, j<j(i) ȳij ≤ ti and

∑
j∈M, j≤j(i) ȳij > ti. Since (x̄, ȳ)

is an extreme point of conv(S∗(l, d, t)), by Proposition 19, j(i) is well defined for all i ∈ N . We define

ŷ ∈ Rnm+ and d̂ ∈ Rm+ by

ŷij =


0 j < j(i)∑

k∈M, k≤j(i)
ȳik − ti j = j(i)

ȳij j > j(i),

d̂j =
∑
i∈N

ŷij ∀j ∈M.

Also, let x̂ = x̄. Then
∑
j∈M ŷij =

∑
j∈M ȳij − ti ≤ x̄i = x̂i for all i ∈ N . Moreover, (x̂, ŷ) is

feasible to S∗(l, d̂, 0). Since |σ(x̂)| = |σ(x̄)| > m, by Lemma 20, (x̂, ŷ) cannot be an extreme point of

conv(S∗(l, d̂, 0)). Thus, we can write

(x̂, ŷ) =

q∑
p=1

λp(x
p, yp),

where q ≥ 2, {(xp, yp) : p = 1, . . . , q} are distinct points in S∗(l, d̂, 0), λp > 0 for all p = 1, . . . , q, and∑q
p=1 λp = 1. Notice that for each p = 1, . . . , q and i ∈ N , ypij = 0 for all j < j(i). Then we can define

w ∈ Rnm by

wij =

 ȳij j < j(i)
ȳij − ŷij j = j(i)

0 j > j(i),

and set x̃p = xp and ỹp = yp + w. Notice that for all i ∈ N ,

wij(i) = ȳij(i) − ŷij(i) = ȳij(i) −
∑

j∈M, j≤j(i)
ȳij + ti = −

∑
j∈M, j<j(i)

ȳij + ti ≥ 0.

Thus, w ≥ 0 and ỹp is nonnegative for all p = 1, . . . , q. Also, for all i ∈ N we have∑
j∈M

ỹpij =
∑
j∈M

ypij +
∑

j∈M, j≤j(i)
ȳij − ŷij(i) =

∑
j∈M

ypij + ti ≤ xpi + ti = x̃pi + ti.

24

Finally, for all j ∈M we have∑
i∈N

ỹpij =
∑
i∈N

ypij +
∑

i∈N : j≤j(i)
ȳij −

∑
i∈N : j=j(i)

ŷij

≥ d̂j +
∑

i∈N : j≤j(i)
ȳij −

∑
i∈N : j=j(i)

ŷij

=
∑
i∈N

ŷij +
∑

i∈N : j≤j(i)
ȳij −

∑
i∈N : j=j(i)

ŷij

=
∑

i∈N : j=j(i)

ŷij +
∑

i∈N : j>j(i)

ŷij +
∑

i∈N : j≤j(i)
ȳij −

∑
i∈N : j=j(i)

ŷij

=
∑
i∈N

ȳij

≥ dj .

Thus, (x̃p, ỹp) ∈ S∗(l, d, t) for all p = 1, . . . , q and are all distinct by the definition of ỹp. Furthermore,
it is straightforward to verify that

∑q
p=1 λp(x̃

p, ỹp) = (x̄, ȳ). Hence (x̄, ȳ) cannot be an extreme point
of conv(S∗(l, d, t)), yielding the required contradiction.

Corollary 22. Minimizing a linear function over S∗(l, d, t) can be done by solving O(nm) linear pro-
gramming problems.

In other words, optimization over S∗(l, d, t) can be done in polynomial time when m is fixed.

As an algorithmic implication, we can tweak the branch-and-bound procedure when we optimize over
S∗(l, d, t): whenever a node of the search-tree has m bounds of the form xi ≥ li, we can fix the
production of the remaining suppliers to 0. However, our experimental experience indicates that a
standard branch-and-cut solver does not need to branch that many times, rendering this approach
inapplicable for practical purposes.

On the other hand, we can construct relaxations of S∗ by considering the subsystem defined by a few
customers, say two, and taking h = 0. By Theorem 21 and an argument similar to Proposition 17, a
compact extended formulation is available for its convex hull from which strong valid inequalities for
conv(S∗) may be devised.

6 Computation

We test the performance of the inequalities presented in Sections 3 and 4 on instances of the semi-
continuous transportation problem described in Section 5. We address the effectivity of the cuts used
alone or combined with CPLEX cuts, and the differences between semi-continuous and binary formula-
tions.

Each instance is formulated in CPLEX either declaring all variables as semi-continuous or using auxiliary
binary variables to enforce semi-continuity. Even though the description of the transportation problem
given in Section 5 involves unbounded semi-continuous variables, we use a constant M > 0 as an upper
bound in the binary formulation. Letting d̄ :=

∑
j∈M dj , l̄ := maxi∈N{li}, h̄ := maxi∈N, j∈M{hij}, and

t̄ := maxi∈N{ti}, we set M = max{d̄, l̄, h̄}+ t̄.

Also, we consider the cases t = 0 and t > 0 separately. In the first case, we ignore the initial capacities
and therefore cuts of the form (14) may be generated. In the second case, valid cuts may be generated

25

using the extended formulation (30). In both cases, to separate a fractional solution (x̄, ȳ), we consider
the inflow set corresponding to each customer j ∈M and we try to find a cut violated by (x̄, ȳj). Thus,
we may add up to m cuts in a single round. Cuts are added only at the root node. In addition, when
t = 0, we also test an extended formulation where a vector πj is appended for each j ∈ M . Adding
the constraints that define W in Corollary 9 for each j ∈M , we obtain an extended formulation where
all the inequalities describing the inflow relaxation for each customer are already implied, and therefore
there is no need to generate cuts on-the-fly. Even though an extended formulation is also available when
t > 0, its size becomes a bottleneck even when solving the root relaxation, and thus it is not considered
in our experimental setup.

In our experiments, we use n ∈ {30, 50, 80} and m ∈ {30, 50, 80}. For each combination of these
parameters, with the exception of (n,m) = (80, 80) due to time limits, we generate 10 instances as
follows:

• li ∼ U [100, 500] ∀i ∈ N

• hij ∼ U
[
0, 2

m li
]
∀i ∈ N, ∀j ∈M

• ti ∼ U [10, 50] ∀i ∈ N

• dj ∼ U
[
10 nm , 50 nm

]
∀j ∈M

• ci ∼ U
[
40, 40 + 1000

li

]
∀i ∈ N

• αij ∼ U [−10, 90] ∀i ∈ N, ∀j ∈M,

where X ∼ U [a, b] means that X is a random variable following a uniform distribution on the interval
[a, b]. Then, for each instance and for each formulation, we solve using CPLEX 12.2 default branch-and-
cut (C), using only our cuts within branch-and-cut (U), using both CPLEX and user cuts (C+U), and
solving the extended formulation (E) in the case t = 0. All experiments were carried out on a personal
computer on a single thread running at 3.33 Ghz with 4 GB of RAM under Linux environment. A time
limit of 1800 CPU seconds per instance is enforced.

6.1 The case t = 0

Table 1 shows the number of instances solved within the time limit, Table 2 shows the average number
of explored nodes needed to reach optimality within CPLEX’s default tolerance, and Table 3 shows the
average time in CPU seconds required by such task. In all cases, columns n and m denote the size of
the problem, columns Semi-continuous and Binary denote the type of formulation being considered,
and columns C, U, C+U, and E denote the procedure being used, as explained above. All the averages
are with respect to the number of instances that were solved. If no instance was solved for a particular
combination of n and m, a dash “-” appears in the corresponding cell.

Table 1 shows that not all instances were solved within the time limit. This may be a bit surprising,
as the underlying problem structure is fairly simple and the number of variables does not exceed a
few thousands. Adding our cuts alone and the extended formulation have the best performance in
this sense, specially in the binary formulation where all instances where solved by both methods. As
we can see from Table 2, the node count of the extended formulation is roughly one or two orders of
magnitude smaller when compared to the other procedures in both formulations. If we consider adding
cuts on-the-fly, combining CPLEX and user cuts shows the best performance in the semi-continuous
formulation, while CPLEX default cuts seem to be the best option for the largest instances with the
binary formulation. Regarding time, from Table 3 we observe that the extended formulation is the best

26

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 10 10 10 10 10 10 10 10
30 50 10 10 10 10 10 10 10 10
30 80 10 10 10 8 10 10 10 10
50 30 10 10 10 10 10 10 10 10
50 50 10 10 10 9 9 10 10 10
50 80 4 10 5 10 1 10 4 10
80 30 5 10 4 10 10 10 10 10
80 50 0 5 0 10 4 10 2 10

Table 1: Number of solved instances when t = 0.

method in most cases when the semi-continuous formulation is used, whereas this approach is the best
only in the largest instances when the binary formulation is considered. Among cutting procedures,
adding only user cuts performs better than the rest in both formulations and is the only way to solve
the largest instances within the time limit, with time reductions of up to one order of magnitude. Again,
this can be somewhat surprising in the case of the binary formulation, as these cuts were not developed
with binary variables in mind, and in this case we expected the presolve routines and flow covers to
be particulary effective. On the other hand, combining these and CPLEX cuts decrease the overall
performance and is comparable to the default solver.

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 3936.2 3266.5 2919.2 72.8 313.3 808.4 268.1 32.7
30 50 6246.6 4940.7 3653.6 213.0 493.3 731.9 618.7 61.7
30 80 11764.3 9330.0 6232.5 930.3 1142.3 1042.6 840.3 206.1
50 30 24045.9 23725.8 20548.9 297.5 1501.4 4545.5 1248.5 84.8
50 50 49407.0 40399.5 54556.6 145.1 3433.0 7446.9 2382.6 135.1
50 80 81456.8 159338.0 55918.8 1019.9 2086.0 23129.2 2621.3 470.3
80 30 56262.8 210466.0 48761.0 192.8 4049.3 30828.1 4731.6 67.6
80 50 - 438369.0 - 332.3 12265.2 114003.0 17426.5 287.5

Table 2: Number of nodes needed to optimality when t = 0.

n m Semi-continuous Binary
C U C+U E C U C+U E

30 30 17.1 4.0 17.7 3.4 23.6 2.0 22.9 4.8
30 50 54.7 12.9 45.2 16.9 98.7 4.6 126.2 20.3
30 80 129.7 33.9 117.8 126.5 409.4 9.3 332.0 89.1
50 30 256.1 28.9 244.0 10.0 148.1 11.3 151.9 12.1
50 50 609.0 59.6 724.1 13.6 597.4 21.7 586.0 37.6
50 80 1399.7 316.7 1155.6 135.5 578.2 98.5 1144.6 165.3
80 30 924.7 168.2 1018.3 8.2 264.5 48.1 234.2 8.2
80 50 - 746.4 - 28.5 1438.7 354.6 1409.4 45.7

Table 3: CPU time needed to optimality when t = 0.

Table 4 shows information regarding cuts. Column headers n, m, Semi-continuous, Binary, U, and
C+U have the same meaning as in the previous tables. In addition, columns Gen denote the average
number of user cuts that were generated, while columns Appl denote the average number of cuts that
were actually applied. As we let CPLEX decide whether or not to apply user cuts that are generated
by our separation routine, the numbers in these columns are different in general.

27

n m Semi-continuous Binary
U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 96.0 24.3 96.0 76.4 60.0 15.9 51.0 10.3
30 50 154.6 69.4 154.6 132.8 100.0 45.7 70.0 29.1
30 80 262.0 137.0 262.0 218.3 128.0 69.9 120.0 79.3
50 30 87.4 7.4 87.4 49.6 67.0 6.7 102.6 37.9
50 50 147.6 18.8 147.6 101.9 123.4 15.7 180.5 98.5
50 80 239.9 45.5 239.8 181.2 231.9 43.9 316.5 178.5
80 30 88.3 5.9 87.0 42.8 58.8 4.7 94.0 23.2
80 50 147.2 9.0 - - 101.3 6.9 173.5 75.0

Table 4: Number of cuts when t = 0.

First, note that more cuts are generated and applied in the semi-continuous formulation than in the
binary formulation. Now, in both cases, the proportion of applied cuts with respect to the number of
generated cuts is smaller when CPLEX cuts are turned off. Given the results in Table 3, just a few cuts
are required to get a non-trivial improvement over the default solver, and the generation of more user
cuts than needed seems to increase the running times.

6.2 The case t > 0

Tables 5, 6, and 7 are analogous to Tables 1, 2, and 3, respectively, with the difference that there is no
column E as no extended formulation was tested in this case.

n m Semi-continuous Binary
C U C+U C U C+U

30 30 10 10 10 10 10 10
30 50 7 10 8 10 10 10
30 80 2 9 8 10 10 10
50 30 0 10 3 10 10 10
50 50 0 9 1 9 10 8
50 80 0 0 0 1 10 4
80 30 0 5 0 4 10 6
80 50 0 0 0 0 10 0

Table 5: Number of solved instances when t > 0.

From Table 5, we see that when t > 0, the instances become much harder than in the case t = 0.
The performance of the semi-continuous formulation is quite poor in general. In contrast, the binary
formulation is able to solve all small instances with any procedure, but only when CPLEX cuts are
turned off it is possible to solve all large instances as well. Regarding explored nodes, Table 6 shows
that combining CPLEX and user cuts in the binary formulation gives the best results. With the semi-
continuous formulation, the picture is not that clear, but the presence of user cuts still helps. With
respect to computation times, we have that user cuts alone in the binary formulation outperforms
all other methods, as shown in Table 7. This procedure is also the best with the semi-continuous
formulations. Once again, combining CPLEX and user cuts is comparable to the default solver.

Finally, Table 8 shows information regarding cuts, and it is analogous to Table 4. As in the case t = 0,
when CPLEX and user cuts are combined, the solver attemps to generate and apply more cuts than
needed, decreasing the overall performance as follows from Table 7.

28

n m Semi-continuous Binary
C U C+U C U C+U

30 30 120194.0 17069.0 53748.7 603.1 852.3 433.5
30 50 137858.0 52383.7 40540.5 651.2 883.4 476.3
30 80 83006.5 112944.0 33035.1 1153.6 1103.7 901.6
50 30 - 106912.0 133777.0 3555.5 5927.4 2596.4
50 50 - 216427.0 121396.0 4991.4 10361.9 3013.5
50 80 - - - 7998.0 22166.4 2496.8
80 30 - 714998.0 - 17143.5 77894.5 16998.0
80 50 - - - - 104097.0 -

Table 6: Number of nodes needed to optimality when t > 0.

n m Semi-continuous Binary
C U C+U C U C+U

30 30 343.5 22.1 211.7 26.6 5.3 26.1
30 50 759.3 116.5 311.0 74.0 9.1 66.4
30 80 945.6 413.5 488.8 224.4 18.6 202.4
50 30 - 126.4 962.1 168.8 38.7 157.5
50 50 - 406.2 1283.7 601.8 93.8 469.9
50 80 - - - 1427.6 256.6 872.4
80 30 - 838.1 - 542.2 295.8 804.0
80 50 - - - - 762.9 -

Table 7: CPU time needed to optimality when t > 0.

As we have seen, the proposed valid inequalities, either in their original form or through an extended for-
mulation when possible, are quite useful in solving this class of semi-continuous network flow problems.
Although these cuts involve only the original variables of the problem, the introduction of binary vari-
ables seems to improve the overall performance, probably due to advanced bound tightening techniques
in CPLEX.

7 Conclusions

In this work we have considered semi-continuous network flow problems. In particular, we introduced
the semi-continuous inflow set with variable upper bounds as a relaxation. Two particular cases of this
set were considered, for which we presented complete descriptions of the convex hull in terms of linear
inequalities and extended formulations. These inequalities proved to be quite efficient in solving a class
of semi-continuous transportation problems. In fact, applying these cuts to a binary formulation of such
problems turned out to be the most effective method.

We envision at least two possible venues of future research, mainly based on the semi-continuous inflow
set. The first one is to consider finite upper bounds on semi-continuous variables. In this case, further
connections with [6] may be established. Another direction is to consider semi-continuous inflows and
outflows simultaneously. This would lead to a more general set that can be a better relaxation for
appropriate problems.

Acknowledgements: The authors acknowledge ExxonMobil for support, and Myun-Seok Cheon and
Ahmet Keha for useful discussions.

29

n m Semi-continuous Binary
U C+U U C+U

Gen Appl Gen Appl Gen Appl Gen Appl
30 30 101.7 51.2 98.7 86.6 48.0 25.6 42.0 21.1
30 50 159.0 92.1 161.9 143.1 74.9 43.8 94.9 51.8
30 80 253.0 169.4 265.0 235.1 120.0 92.4 152.0 104.7
50 30 89.8 29.5 94.3 87.7 84.0 29.1 101.2 69.4
50 50 147.7 68.8 150.0 144.0 147.9 70.4 182.9 136.5
50 80 - - - - 239.3 102.2 308.8 222.5
80 30 86.4 30.0 - - 79.0 25.1 111.2 85.3
80 50 - - - - 130.6 37.9 - -

Table 8: Number of cuts when t > 0.

Appendix

Given an integer t ≥ 1, let T := {1, . . . , t}. For each r ∈ T , consider πr ∈ Rn and πr0, π
r
1 ∈ R. We are

mainly interested in the case πr0 < πr1, although this is not required in what follows. Given a closed
convex set C ⊆ Rn, for each Q ∈ T := 2T , consider the set

CQ := {x ∈ C : πrx ≤ πr0 ∀r ∈ Q, πrx ≥ πr1 ∀r /∈ Q}.

We call the set ∪Q∈T CQ a t-branch split disjunction as defined in [10]. Let

Cπ,π0,π1 := conv
(
∪Q∈T CQ

)
.

When t = 1, the closedness of Cπ,π0,π1 was addressed in [3]. We extend this result for any t ≥ 1.

Proposition 23. Cπ,π0,π1 is a closed convex set. Moreover, if C is a polyhedron, so is Cπ,π0,π1 .

Proof. Let C∞ be the recession cone of C, and for each Q ∈ T , let CQ∞ := CQ + C∞. Also, let
T ∗ := {Q ∈ T : CQ 6= ∅}. If T ∗ is empty, then the result holds. Thus, assume T ∗ is nonempty.

Claim: Cπ,π0,π1 = conv
(
∪Q∈T ∗CQ∞

)
.

The forward inclusion is easy as ∪Q∈T CQ ⊆ ∪Q∈T ∗CQ∞.

For the reverse inclusion, consider x ∈ conv
(
∪Q∈T ∗CQ∞

)
. We can write x =

∑
Q∈T ∗ λ

Q(xQ+yQ), where

xQ ∈ CQ, yQ ∈ C∞, and λQ ≥ 0 for each Q ∈ T ∗, and
∑
Q∈T ∗ λ

Q = 1. If we show that for any Q ∈ T ∗,
xQ + yQ belongs to Cπ,π0,π1 , then the result follows. To that end, fix Q ∈ T ∗ and let

R− := {r ∈ T : πryQ < 0},

R+ := {r ∈ T : πryQ > 0},
R= := {r ∈ T : πryQ = 0}.

Note that there exists finite λ ≥ 1 such that πr(xQ + λyQ) ≤ πr0 for all r ∈ R− and πr(xQ + λyQ) ≥ πr1
for all r ∈ R+. Also, recall that xQ satisfies πrxQ ≤ πr0 for all r ∈ Q and πrxQ ≥ πr1 for all r /∈ Q. Thus
xQ+λyQ belongs to CQ

′
, where Q′ := R−∪(R=∩Q). Finally, note that xQ+yQ ∈ conv({xQ, xQ+λyQ}),

which implies xQ + yQ ∈ Cπ,π0,π1 as desired. ♦

30

By the claim, Cπ,π0,π1 is the convex hull of the union of nonempty closed convex sets having the same
recession cone. By Corollary 9.8.1 of [12], Cπ,π0,π1 is a closed convex set. Moreover, if C is a polyhedron,
then Cπ,π0,π1 is the convex hull of the union of nonempty polyhedra having the same recession cone,
which is a polyhedron [1].

References

[1] E. Balas. Disjunctive programming. Annals of Discrete Mathematics 5:3–51, 1979.

[2] D. Bienstock. Computational study of a family of mixed-integer quadratic programming problems.
Mathematical Programming 74, 2:121–140, 1996.

[3] D. Dadush, S.S. Dey, and J.P. Vielma. The split closure of a strictly convex body. Operations
Research Letters 39, 2:121–126, 2011.

[4] I.R. de Farias, E.L. Johnson, and G.L. Nemhauser. Branch-and-Cut for Combinatorial Optimization
Problems without Auxiliary Binary Variables. Knowledge Engineering Review 16, 1:25–39, 2001.

[5] I.R. de Farias and G.L. Nemhauser. A Polyhedral Study of the Cardinality Constrained Knapsack
Problem. Mathematical Programming 96, 3:439–467, 2003.

[6] I.R. de Farias. Semi-continuous Cuts for Mixed-Integer Programming. Integer Programming and
Combinatorial Optimization, 2004, 163–177.

[7] I.R. de Farias and M. Zhao. A Polyhedral Study of the Semi-Continuous Knapsack Problem.
www.optimization-online.com, 2011.

[8] J. Kallrath. Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential
and Future Perspectives. Chemical Engineering Research and Design 78, 6:809–822, 2000.

[9] J. Kallrath. Combined strategic and operational planning - an MILP success story in chemical
industry. OR Spectrum 24, 3:315–341, 2002.

[10] Y. Li and J.-P.P. Richard. Cook, Kannan and Schrijver’s example revisited. Discrete Optimization
5, 4:724–734, 2008.

[11] A.F. Perold. Large-Scale Portfolio Optimization. Management Science 30, 10:1143-1160, 1984.

[12] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1996.

[13] C.H. Timpe and J. Kallrath. Optimal planning in large multi-site production networks. European
Journal of Operational Research 126, 2:422–435, 2000.

31

	Introduction
	The semi-continuous inflow set
	Complexity of optimization
	Basic polyhedral results

	The case t=0
	Inequality description of conv(S(0,h))
	Extreme points of conv(S(0,h))
	Extended formulation for conv(S(0,h))

	The case h=0
	Inequality description of conv(S(t,0))
	Extended formulation for conv(S(t,0))

	A semi-continuous transportation problem
	The problem and its complexity
	Analysis of a relaxation of S*

	Computation
	The case t=0
	The case t>0

	Conclusions

