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Open versus closed loop capacity equilibria in
electricity markets under perfect and oligopolistic
competition
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Abstract We consider two game-theoretic models of the generation capac-
ity expansion problem in liberalized electricity markets. The first is an open
loop equilibrium model, where generation companies simultaneously choose
capacities and quantities to maximize their individual profit. The second is
a closed loop model, in which companies first choose capacities maximizing
their profit anticipating the market equilibrium outcomes in the second stage.
The latter problem is an Equilibrium Problem with Equilibrium Constraints
(EPEC). In both models, the intensity of competition among producers in the
energy market is frequently represented using conjectural variations. Consid-
ering one load period, we show that for any choice of conjectural variations
ranging from perfect competition to Cournot, the closed loop equilibrium co-
incides with the Cournot open loop equilibrium, thereby obtaining a "Kreps
and Scheinkman’-like result and extending it to arbitrary strategic behavior.
When expanding the model framework to multiple load periods, the closed
loop equilibria for different conjectural variations can diverge from each other
and from open loop equilibria. We also present and analyze alternative con-
jectured price response models with switching conjectures. Surprisingly, the
rank ordering of the closed loop equilibria in terms of consumer surplus and
market efficiency (as measured by total social welfare) is ambiguous. Thus,
regulatory approaches that force marginal cost-based bidding in spot markets
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may diminish market efficiency and consumer welfare by dampening incen-
tives for investment. We also show that the closed loop capacity yielded by a
conjectured price response second stage competition can be less or equal to
the closed loop Cournot capacity, and that the former capacity cannot exceed
the latter when there are symmetric agents and two load periods.

Keywords Generation Expansion Planning - Capacity Pre-Commitment -
Noncooperative Games - Equilibrium Problem with Equilibrium Constraints
(EPEC)

1 Introduction

In this paper we compare game-theoretic models that can be used to analyze
the strategic behavior of companies facing generation capacity expansion de-
cisions in liberalized electricity markets. Game theory is particularly useful in
the restructured energy sector because it allows us to investigate the strategic
behavior of agents (generation companies) whose interests are opposing and
whose decisions affect each other. In particular, we seek to characterize the
difference between open and closed loop models of investment.

Open loop models extend short-term models to a longer time horizon by
modeling investment and production decisions as being taken at the same time.
This corresponds to the open loop Cournot equilibrium conditions presented
in [34], the Cournot-based model presented in [45], which is solved using a
Mixed Complementarity Problem (MCP) scheme, and the model analyzed in
[8], which is solved using an equivalent optimization problem. However, this
approach may overly simplify the dynamic nature of the problem, as it assumes
that expansion and operation decisions are taken simultaneously.

The reason to employ more complicated closed loop formulations is that the
generation capacity expansion problem has an innate two-stage structure: first
investment decisions are taken followed by determination of energy production
in the spot market, which is limited by the previously chosen capacity. A two-
stage decision structure is a natural way to represent how many organizations
actually make decisions. One organizational subunit is often responsible for
capital budgeting and anticipating how capital expenditures might affect fu-
ture revenues and costs over a multi-year or even multi-decadal time horizon,
whereas a different group is in charge of day-to-day spot market bidding and
output decisions. This type of closed loop model is in fact an Equilibrium
Problem with Equilibrium Constraints (EPEC), see [32L[43], arising when each
of two or more companies simultaneously faces its own profit maximization
problem modeled as a Mathematical Program with Equilibrium Constraints
(MPEC). In the electricity sector, MPECs, bilevel problems, and EPECs were
first used to represent short-run bidding and production games among power
producers with existing capacity, e.g.,[3l[6,23,46L[48]. EPECs belong to a re-
cently developed class of mathematical programs that often arise in engineering
and economics applications and can be used to model electricity markets [40].
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For methods to solve EPECs, i.e., diagonalization, the reader is referred to
[24125,32].

Solving large-scale closed loop models can be very challenging, sometimes
even not tractable. Therefore, in real-world applications there is a strong in-
centive to resort to easier open loop models, simply because the corresponding
closed loop model cannot be solved (yet). In this paper, our results indicate
that when practical considerations motivate adoption of easier, less compli-
cated open loop models, the results may be very different from (possibly more
realistic) closed loop formulations.

1.1 Review of Literature

Several closed loop approaches to the generation capacity expansion problem
have been proposed. The papers most relevant for our paper are [34] and [29],
which will be discussed below. With their paper [29], Kreps and Scheinkman
(K-S) tried to reconcile Cournot’s [10] and Bertrand’s [4] theory by construct-
ing a two-stage game, where first firms simultaneously set capacity and sec-
ond, after capacity levels are made public, there is price competition. They
find that when assuming two identical firms and an efficient rationing rule
(i.e., the market’s short-run production is provided at least cost), their two-
stage game yields Cournot outcomes. Davidson and Deneckere [11] formulate
a critique of K-S, where they say that results critically depend on the choice
of the rationing rule. They claim that if the rationing rule is changed, the
equilibrium outcome need not be Cournot. In defense of K-S, Paul Madden
proved [33] that if it is assumed that demand functions are of the constant
elasticity form and that all costs are sunk, then the K-S two-stage game re-
duces to the Cournot model for any rationing mechanism between the efficient
and proportional extremes. However, Deneckere and Kovenock [14] find that
the K-S result does not necessarily hold if costs are asymmetric.

More recently, works such as [2TL[30] address the extension of the K-S
model to uncertainty of marginal costs. [2I] shows that due to uncertainty
of marginal costs, equilibria were necessarily asymmetric. Reynolds and Wil-
son [41] address the issue of uncertain demand in a K-S like model, which is
related to our extension to multiple load periods. They discover that if costs
are sufficiently high, the Cournot outcome is the unique solution to this game.
However, they also find that if costs are lower, no pure strategy equilibria ex-
ists. Lepore [31] also demonstrates that, under certain assumptions, the K-S
result is robust to demand uncertainty. Our results extend this literature by
considering generalizations of K-S-like models to conjectural variations other
than Competitive (Bertrand) as well as multiple load periods or, equivalently,
stochastic load.

In [34] the authors present and analyze three different models: an open
loop perfectly competitive model, an open loop Cournot model and a closed
loop Cournot model. Each considers several load periods which have different
demand curves and two firms, one with a peak load technology (low capital
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cost, high operating cost) and the other with a base load technology (high
capital cost, low operating cost). They analyze when open and closed loop
Cournot models coincide and when they are necessarily different. Moreover,
they demonstrate that the closed loop Cournot equilibrium capacities fall be-
tween the open loop Cournot and the open loop competitive solutions. Our
paper differs by considering a range of conjectural variations between perfect
competition and Cournot. Our formal results are for symmetric agents but
they extend to asymmetric cases. We derive certain equivalency results that
can also be extended to asymmetric firms. Moreover, in our models we con-
sider a constant second stage conjectural variation rather than a situation in
which the conjectural variation switches to Cournot when rival firms are at
capacity. We consider this alternative conjectural variation in section

In addition to [35], there are other works that have formulated and solved
closed loop models of power generation expansion. In [45] we find a closed
loop Stackelberg-based model that is formulated as an MPEC, where in the
first stage a leader firm decides its capacity and then in the second stage
the followers compete in quantities in a Cournot game. This work focuses
on comparing numerical results between this Stackelberg model and an open
loop Cournot model. [§] presents a two-stage model representing the market
equilibrium, where the first stage is based on a Cournot equilibrium among
producers who can choose continuous capacity investments and computes a
market equilibrium approximation for the entire model horizon and a second
stage discretizes this solution separately for each year. In [I9] the authors
present a linear bilevel model that determines the optimal investment decisions
of one generation company. They consider uncertainty in the demand and in
the capacity decisions of the competition. In [42] the author applies a two-
stage model in which firms choose their capacities under demand uncertainty
prior to competing in prices and presents regulatory conclusions. An instance
of a stochastic static closed loop model for the generation capacity problem for
a single firm can be found in [28], where investment and strategic production
decisions are taken in the upper level for a single target year in the future, while
the lower level represents market clearing where rival offering and investments
are represented via scenarios and which maximizes social welfare.

Existing generation capacity expansion approaches in the literature assume
either perfectly competitive [I9] or Cournot behavior [8[45] in the spot mar-
ket. The proposed open and closed loop models of this paper extend previous
approaches by including a generalized representation of market behavior via
conjectural variations, in particular through an equivalent conjectured price
response. This allows us to represent various forms of oligopoly, ranging from
perfect competition to Cournot. Power market oligopoly models have been
proposed before based on conjectural variations [7] and conjectured price re-
sponses [I3], but only for short term markets in which capacity is fixed.

In the case of electricity markets, production decisions undertaken by power
producers result from a complex dynamic game within multi-settlement mar-
kets. Typically, bids in the form of supply functions are submitted in two or
more successive markets at different times prior to operation, where the second
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and successive markets account for the commitments made in previous mar-
kets. Conjectural variations models can represent a reduced form of a dynamic
game as pointed out in [I7]. This kind of reinterpretation has been proposed
by several authors: in the context of the private provision of a public good
[26127], where steady state conjectures in a dynamic game are interpreted as
conjectural variations in the corresponding static game; in the context of the
oligopoly, conjectural variations have been presented as the reduced form of
a quantity-setting repeated game [5], or for example as the reduced form of
a differential games model with adjustment costs [IB[16]. The two stage for-
ward contracting/spot market Allaz-Vila game can also be reduced to a one
stage conjectural variations model [35]. Therefore, conjectural variations can
be used to capture very complex games in a computationally tractable way.
This is a major reason why many econometric industrial organization stud-
ies estimate oligopolistic interactions using model specifications based on the
assumption of constant conjectural variations [38]. Our discussion of these ref-
erences is only to state that in general conjectural variations can represent
more complicated games. We do not consider here the problem of estimating
or calculating conjectural variations, which can be a very complicated process
and would depend on the nature of the particular game that is reduced.

1.2 Open loop versus Closed loop Capacity Equilibria

We consider two identical firms with perfectly substitutable products, each
facing either a one-stage or a two-stage competitive situation. The one-stage
situation, represented by the open loop model, describes the one-shot invest-
ment operation market equilibrium. The closed loop model, which is an EPEC,
describes the two-stage investment-operation market equilibrium and is simi-
lar to the well-known K-S game [29]. Considering one load period, we find that
the closed loop equilibrium for any strategic market behavior between perfect
competition and Cournot yields the open loop Cournot outcomes, thereby
obtaining a K-S-type result and extending it to any strategic behavior be-
tween perfect competition and Cournot. As previously mentioned, Murphy
and Smeers [34] have found that under certain conditions the open and closed
loop Cournot equilibria coincide. Our result furthermore shows that consid-
ering one load period, all closed loop models assuming strategic spot market
behavior between perfect competition and Cournot coincide with the open
loop Cournot solution. In the multiple load period case we define some suffi-
cient conditions for the open and closed loop capacity decisions to be the same.
However, this result is parameter dependent. When capacity is the same, out-
puts in non-binding load periods are the same for open and closed loop models
when strategic spot market behavior is the same, otherwise outputs can differ.

When the closed loop capacity decisions differ for different conjectural vari-
ations, then the resulting consumer surplus and market efficiency (as measured
by social welfare, the sum of consumer surplus and profit) will depend on the
conjectural variation. It turns out that which conjectural variation results in
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the highest efficiency is parameter dependent. In particular, under some as-
sumptions, the closed loop model considering perfect competition in the energy
market can actually result in lower market efficiency, lower consumer surplus
and higher prices than Cournot competition. This surprising result implies that
regulatory approaches that force marginal cost-based bidding in spot markets
may decrease market efficiency and consumer welfare and may therefore ac-
tually be harmful. For example, the Irish spot market rules [39] require bids
to equal short-run marginal cost. Meanwhile, local market power mitigation
procedures in several US organized markets reset bids to marginal cost (plus
a small adder) if significant market power is present in local transmission-
constrained markets [37]. These market designs implicitly assume that perfect
competition is welfare superior to more oligopolistic behavior, such as Cournot
competition. As our counter-example will show, this is not necessarily so.

In [20], the authors have arrived at a similar result, however, they only
examine the polar cases of perfect competition or Cournot-type competition.
In our work we generalize strategic behavior using conjectural variations and
look at a range of strategic behavior, from perfect competition to Cournot
competition and we also observe that an intermediate solution between perfect
and Cournot competition can lead to even larger social welfare and consumer
surplus.

The results obtained are suggestive of what might occur in other industries
where storage is relatively unimportant and there is time varying demand
that must be met by production at the same moment. Examples include, for
instance, industries such as airlines or hotels.

This paper is organized as follows. In section [2] we introduce and define the
conjectured price response representation of the short-term market and provide
a straight-forward relationship to conjectural variations. Then, in section [3| we
formulate symmetric open and closed loop models for one load period and
establish that our K-S-like result also holds for arbitrary strategic behavior
ranging from perfect to Cournot competition. This is followed by section []
which extends the symmetric K-S-like framework to multiple load periods. We
furthermore analyze alternative models in which the second stage conjectural
variation switches depending on whether rivals’ capacity is binding or not,
instead of being constant. In section [p| we first show that the closed loop
capacity yielded by a conjectured price response second stage competition can
be less or equal to the closed loop Cournot capacity, and that the former
capacity cannot exceed the latter for symmetric agents and two load periods.
Also in that section we show by example that under the closed loop framework,
more competitive behavior in the spot market can lead to less market efficiency
and consumer surplus. Finally, section [f] concludes the paper.

2 Conjectural Variations and Conjectured Price Response

We introduce equilibrium models that capture various degrees of strategic
behavior in the spot market by introducing conjectural variations into the
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short-run energy market formulation. The conjectural variations development
can be related to standard industrial organization theory [I8]. In particular, we
introduce a conjectured price response parameter that can easily be translated
into conjectural variations with respect to quantities, and vice versa if we
consider demand to be linear.

First, we consider two identical firms with perfectly substitutable products,
for which we furthermore assume an affine price function p(d), i.e., p(d) =
(Do — d)/a, where d is the quantity demanded, o = Dy/Py is the demand
slope, Dy > 0 the demand intercept, and Py > 0 is the price intercept. Demand
d and quantities produced g¢;, ¢.;, with ¢ and -7 being the indices for the market
agents, are linked by the market clearing condition ¢; +¢.; = d. Hence, we will
refer to price also as p(g;, ¢.;).

Then we define the conjectural variation parameters as @_; ;. These repre-
sent agent i’s belief about how agent -i changes its production in response to
a change in i’s production. Therefore:

de; ., .
@—i i = s 1 -1, 1
s M
d,;, =1 (2)

And hence using — and our assumed p(g;, q.;), we obtain:

széZ@_i,izfé(lJrZ@'m) (3)

dq; -

As we are considering two identical firms in the models of this paper, we
can assume that @; ; = @_;; which we define as @ and therefore relation
simplifies to:

dp(qi, q.;) _ 1
T dn —5(1 + ) (4)

Now let us define the conjectured price response parameter ¢; as company
i’s belief concerning its influence on price p as a result of a change in its output
di:

dp(gigs) 1
0; == - a(l +9) >0, (5)
which immediately shows how to translate a conjectural variations parameter
into the conjectured price response and vice versa. The nonnegativity of
comes from the assumption that the conjectural variations parameter ¢ > —1.
Throughout the paper we will formulate the equilibrium models using the
conjectured price response parameter as opposed to the conjectural variations
parameter, because its depiction of the firms’ influence on price is more con-
venient for the derivations, as opposed to a firm’s influence on production by
competitors.

As has been proven in [12], this representation allows us to express spe-
cial cases of oligopolistic behavior such as perfect competition, the Cournot
oligopoly, or collusion. A general formulation of each firm’s profit objective
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would state that p = p(¢;, ), with the firm anticipating that price will re-
spond to the firm’s output decision. We term this the conjectured price re-
sponse model. If the firm takes p as exogenous (although it is endogenous to
the market), the result is the price-taking or perfect competition (and ¢ = —1),
similar to the Bertrand conjecture [29] under certain circumstances. Then the
conjectured price response parameter 6; equals 0, which means that none of
the competing firms believes it can influence price (and @ = —1). If instead
p(qi, q.;) is the inverse demand curve Dg/a — (g; + ¢.;)/, with g; being the
rival firm’s output which is taken as exogenous by firm 4, then the model is
a Nash-Cournot oligopoly. In the Cournot case, 6; equals 1/«, which would
translate to @ = 0 in the conjectural variations framework.

We can also express collusion (quantity matching, or ’tit for tat’) as 2/«
which translates to @ = 1, as well as values between the extremes of perfect
competition and the Cournot oligopoly. Some more complex dynamic games
can be reduced to a one stage game with intermediate values for @ (or 6;
respectively). For example, Murphy and Smeers [35] show that the Allaz-Vila
1] two stage forward contracting/spot market game can be reduced to a one
stage game assuming & = 1/2 (or § = 1/(2a)). The two stage Stackelberg
game can also be reduced to a conjectural variations-based one stage game as
shown in [9].

As mentioned above, in the case of electricity markets, production decisions
undertaken by power producers result from a complex dynamic game within
multi-settlement markets. Conjectural variations models (such as the used in
the lower level) can also be used as a computationally tractable reduced form
of a dynamic game [I7].

3 Generalization of the K-S-like Single Load Period Result to
Arbitrary Oligopolistic Conjectures

In this section we consider two identical firms with perfectly substitutable
products, facing either a one-stage or a two-stage competitive situation. The
one-stage situation is represented by the open loop model presented in 3.1 and
describes the one-shot investment-operation market equilibrium. In this situ-
ation, firms simultaneously choose capacities and quantities to maximize their
individual profit, while each firm conjectures a price response to its output de-
cisions consistent with the conjectured price response model. The closed loop
model given in [3.2] describes the two-stage investment-operation market equi-
librium, where firms first choose capacities that maximize their profit while
anticipating the equilibrium outcomes in the second stage, in which quantities
and prices are determined by a conjectured price response market equilib-
rium. We furthermore assume that there is an affine relation between price
and demand and that capacity can be added in continuous amounts.

The main contribution of this section is Theorem 1, in which we show that
for two identical agents, one load period and an affine non-increasing inverse
demand function, the one-stage model solution assuming Cournot competition
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is a solution to the closed loop model independent of the choice of conjectured
price response within the perfect competition-Cournot range. When the con-
jectured price response represents perfect competition, then this result is very
similar to the finding of [29]. As a matter of fact, Bertrand competition boils
down to perfect competition when there is no capacity constraint [44], in which
case our results would be equivalent to the K-S result. However, considering
that we have a capacity limitation, Bertrand competition and perfect com-
petition are not equivalent. For this reason our results are not exactly K-S,
however, taking into account the similarities, they are K-S-like. Thus, Theo-
rem 1 extends the 'Kreps and Scheinkman’-like result to any conjectured price
response within a range. Later in the paper, however, we show that this result
does not generalize to the case of multiple load periods.
Throughout this section we will use the following notation:

— g; denotes the quantity [MW] produced by firms i = 1, 2.

— x; denotes the capacity [MW] of firms ¢ = 1, 2.

— d denotes quantity demanded [MW].

— p [€/MWHh] denotes the clearing price. Moreover p(d) = (Do — d)/a where
Dy and « are positive constants, and Py denotes Dy/«.

— t [h/year] corresponds to the duration of the load period per year.

— B [€/MW /year] corresponds to the annual investment cost.

— 0 [€/MW1] is the variable production cost.

— 0 is a constant in [0,1/a], that is the conjectured price response corre-
sponding to the strategic spot market behavior for each i, see ().

Furthermore we will make the following assumptions:

— Both cost parameters, §, 8, are nonnegative.

— The investment cost plus the variable cost will be less than the price inter-
cept times duration t, i.e., dt+ 3 < Pyt, which is an intuitive condition as it
simply states that the maximum price Py is high enough to cover the sum
of the investment cost and the operation cost. Otherwise there is clearly
no incentive to participate in the market.

— The same demand curve assumptions are made as in section

— We consider one year rather than a multi-year time horizon, and so each
firm attempts to maximize its annualized profit.

3.1 The Open Loop Model

In the open loop model, every firm i faces a profit maximization problem in
which it chooses capacity x; and production ¢; simultaneously. When firms
simultaneously compete in capacity and quantity, the open loop investment-
operation market equilibrium problem consists of all the firms’ profit max-
imization problems plus market clearing conditions that link together their
problems by d = Dy —ap(g;, ¢.;). Conceptually, the resulting equilibrium prob-
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lem can be written as @—:

[ maxy, g, t(p(gi; i) — 0)qi — B
v { s.t. ¢ ST (©)
d=qi+qi, d=Do—ap(gq.i) (7)

In @ we describe i’s profit maximization as consisting of market revenues
tp(¢i, ¢.;)g; minus production costs tdg; and investment costs Sz;. The non-
negativity constraints can be omitted in this caseE|

Although @’s constraint is expressed as an inequality, it will hold as an
equality in equilibrium, at least in this one-period formulation. That z; = g;
for ¢ = 1,2 will be true in equilibrium, can easily be proven by contradiction.
Let us assume that at the equilibrium z; > ¢;; then firm i could unilaterally
increase its profits by shrinking z; to ¢; (assuming 5 > 0), which contradicts
the assumption of being at an equilibrium.

In this representation the conjectured price response is not explicit. There-
fore we re-write the open loop equilibrium stated in @— as a Mixed Com-
plementarity Problem (MCP) by replacing each firm’s profit maximization
problem by its first order Karush-Kuhn-Tucker (KKT) conditions. The objec-
tive function in (6)) is concave for any value of € in [0,1 /a]ﬂ Then, due to
linearity of p(d), 1@ is a concave maximization problem with linear con-
straints, hence its solutions are characterized by its KKT conditions. Therefore
let £; denote the Lagrangian of company ¢’s corresponding optimization prob-
lem, given in (@ and let \; be the Lagrange multiplier of constraint ¢; < x;.
Then, the open loop equilibrium problem is then given in —@.

9L _ 6 _ )\z -0

82?1'
A >0
Ai(zi —q;) =0
d=qi+qi, d=Dy—ap(q,q.) 9)

Due to the fact that A; = 8 > 0, the complementarity condition yields x; = g¢;
in equilibrium. In this formulation we can directly see the conjectured price

1 For completeness, let us consider the explicit non-negativity constraint 0 < ¢; in the
optimization problem @ and let us define pu; > 0 as the corresponding dual variable.
Then, due to complementarity conditions arising from the KKT conditions, we can separate
two cases, the one where pu; = 0 and the other where p; > 0. The first case will lead us
to the solution presented in the paper, and case p; > 0 will lead us to a solution where
i = t(6 — Pp). Considering that we assumed Py > ¢, this yields a contradiction to the non-
negativity of p;. Hence, this cannot be the case and therefore we omit the non-negativity
constraint.

2 Taking the first derivative of the objective function in @ with respect to g; yields:
tp(qi, q-i) — t0q; — té. Then, the second derivative is —2t6, which is smaller or equal to zero
for each value of 0 in [0,1/«], which yields concavity of the objective function.
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response parameter 6 in aagf. Solving the resulting system of equations yields:

Dot — a(B + 5t)

CT T Hef + 2) vi (10)
p= DOtf(ZleJ . (1)

In the open loop model we have not explicitly imposed g; > 0, however, from
(10) we obtain that the open loop model has a non-trivial solution (i.e., each
quantity is positive at equilibrium) if parameters are chosen such that Dyt —
a(B 4 6t) > 0 is satisfied. This condition is equivalent to 6t + 8 < Pyt using
the fact that « = Dy/Py and Dy > 0, which has already been stated in the
assumptions above.

A special case of the conjectured price response is the Cournot oligopoly.
In order to obtain the open loop Cournot solution, we just need to insert the
appropriate value of the conjectured price response parameter 6, which for
Cournot is 6 = 1/a. This solution is unique [34]. Then (10)-(LL) yield:

_ Dot —a( + 6t)

4 3¢ Vi (12)
Dot + 2a(8 + 6t)
= . 1
p 3ia (13)

3.2 The Closed Loop Model

We now present the closed loop conjectured price response model describ-
ing the two-stage investment-operation market equilibrium. In this case, firms
first choose capacities maximizing their profit anticipating the equilibrium
outcomes in the second stage, in which quantities and prices are determined
by a conjectured price response market equilibrium. We stress that the main
distinction of this model from the equilibrium model described in section [3.1
is that now there are two stages in the decision process, i.e., capacities and
quantities are not chosen at the same time. Then we present Theorem 1 which
establishes a relation between the open loop and the closed loop models for
the single demand period case.

3.2.1 The Production Level - Second Stage

The second stage (or lower level) represents the conjectured-price-response
market equilibrium, in which both firms maximize their market revenues minus
their production costs, deciding their production subject to the constraint
that production will not exceed capacity. The argument given above shows,
at equilibrium, that this constraint binds if there is a single demand period.
These maximization problems are linked by the market clearing condition.
Thus, the second stage market equilibrium problem can be written as:

- [ max, t(p(gi,qi) — 6)qi
v { s.t. ¢ < x; 1)
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d=qi+qi, d=Dy—ap(q,q.), (15)

As in the open loop case, p may be conjectured by firm i to be a function of its
output ¢;. Using a justification similar to that in the previous section, we now
substitute firm ¢’s KKT conditions for and arrive at the the conjectured
price response market equilibrium conditions given by:

BLL = tp(q“ q-i ) thi —to—X;=0
; q; < x; 1
v 0< A (16)
Ai(zi —qi) =0
d=gqi+qi, d=Do—ap(gi,q.i) (17)

3.2.2 The Investment Level - First Stage

In the first stage, both firms maximize their total profits, consisting of the gross
margin from the second stage (revenues minus variable production costs) mi-
nus investment costs, and choose their capacities subject to the second stage
equilibrium response. This can be written as the following equilibrium prob-
lem:

Vi { max,,  t(p(q,qi) — )qi — B (18)

s.t.  Second Stage, —

We know that at equilibrium, production will be equal to capacity. As in the
open loop model, this can be shown by contradiction. Since there is a linear
relation between price and demand, it follows that price can be expressed as
p=2L =o=e 4 Substituting z; = ¢; in this expression of price, yields p = W
Then expressing the objective function and the second stage in terms of the

variables x; yields the following simplified closed loop equilibrium problem:

v 4 maxe, t(iDO*f;*“ —0)z; — Py
s.t. Do—wi=2s _gp, —5>0

[e3

(19)

where y; are the dual variables to the corresponding constraints. Writing down
the closed loop equilibrium conditions (assuming a nontrivial solution x; > 0)
then yields:

t(Be=ti=t2 _ §) —tz; /o — B+ (—0 — 1/a) =0
Dotz _ g, — § >0

(PR =) =0

v =20

Vi (20)

When solving the system of equations given by we distinguish between
two separate cases: 7; = 0 and 7; > 0. The first case, i.e. 7; = 0, yields the
following solution for the closed loop equilibrium, where A; has been obtained

from :

_ Dot — Oé(ﬁ + (St)

. 21

i
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Dot + 2a( + 6t)
p= 3ta
Dot + (B + 6t)8 + (28 — t(6 + Dob))
B 3a

Moreover, it is easy to show that for 6 € [0,1/a] \; > 0 will be satisfied[]
which shows that z; is indeed the optimal value of ¢; in , confirming the
validity of for v; = 0. As in the previous section, the solution is nontrivial
due to the assumption that dt + 5 < Pyt.

As for uniqueness of the closed loop equilibrium, [34] has proven for the
Cournot closed loop equilibrium that if an equilibrium exists, then it is unique.
We will investigate uniqueness issues of the closed loop conjectured price re-
sponse model in future research. Comparing and with the open loop
equilibrium and we see that this is exactly the open loop solution
considering Cournot competition, i.e. and (13)).

Now let us consider the second case, i.e., 7; > 0. Then yields the
following values for capacities and ~;:

(22)

Ai

Vi. (23)

N Do — Ol(; .
T s 2
2
i = —(Dot + a*(B + 0t)0 + (28 — t(6 + Dy0))) Vi, (25)

(af + 1)(af + 2)

In the formulation of 4; in (25)), the numerator of the right hand side is the
negative of numerator on the right hand side of the formula , where we
know that latter is nonnegative for 6 € [0,1/«]. That is, it is impossible for
v; > 0. Hence the only solution to the closed loop equilibrium is the open loop
Cournot solution that results when ~; = 0.

3.2.8 Theorem 1

Theorem 1. Let there be two identical firms with perfectly substitutable products
and one load period. Let the affine price p(d) and the parameters needed to
define the open loop equilibrium problem —@D be as described at the start of
section [3

When comparing the open and closed loop competitive equilibria for two
firms, we find the following: The open loop Cournot solution, see - ,
is a solution to the closed loop conjectured price response equilibrium -
for any choice of the conjectured price response parameter 6 from perfect
competition to Cournot competition.

Proof : Sections and [3.2] above prove this theorem. As in the open loop
model, the closed loop model has a non-trivial solution if data is chosen such
that Pyt > B+ Jt is satisfied. |

3 Case 6 = 0: from we get Dot + 2a8 — adt = Do Pot + 2a8Py — Dodt > 2aB8Py > 0;
Case 0 = 1/(ka) with k > 1: Dot +a?(8+6t)/(ka) +a (28 —t(5+ Do (ka))) = (k—1)Dot/k+
20+ aB/k — (k—1)Doté/(kPo) = (k — 1)DotPo/k + 2a8Py + afPy/k — (k — 1)Dotd /k >
2aB Py + a,BPo/k > 0.
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Theorem 1 extends to the case of asymmetric firms but we omit the some-
what tedious analysis which can, however, be found in [47].

What we have proven in Theorem 1 is that as long as the strategic be-
havior in the market (which is characterized by the parameter ) is more
competitive than Cournot, then in the closed loop problem firms could de-
cide to build Cournot capacities. Even when the market is more competitive
than the Cournot case (e.g., Allaz-Vila or perfect competition), firms can de-
cide to build Cournot capacities. Hence Theorem 1 states that the Kreps and
Scheinkman-like result holds for any conjectured price response more compet-
itive than Cournot (e.g., Allaz-Vila or perfect competition), not just for the
case of perfect second stage competition.

Note that Theorem 1 describes sufficient conditions but they are not neces-
sary. This means that there are cases where Theorem 1 also holds for § > 1/«.

For example Theorem 1 may hold under collusive behavior (8 = 2/a)) when
the marginal cost of production (4) is sufficiently smallﬁ

In the following section we will extend the result of Theorem 1 to the
case of multiple demand periods. In particular, under stringent conditions,
the Cournot open loop and closed loop solutions can be the same, and the
Cournot open loop capacity can be the same as the closed loop capacity for
more intensive levels of competition in the second stage of the closed loop
game. But this result is parameter dependent, and in general, these solutions
differ. Surprisingly, for some parameter assumptions, more intensive competi-
tion in the second stage can yield economically inferior outcomes compared to
Cournot competition, in terms of consumer surplus and total market surplus.

4 Extension of K-S-like Result for Multiple Load Periods

In this section we extend the previously established comparison between the
open loop and the closed loop model to the situation in which firms each
choose a single capacity level, but face time varying demand that must be met
instantaneously. This characterizes electricity markets in which all generation
capacity is dispatchable thermal plant and there is no significant storage (e.g.,
in the form of hydropower). We also do not consider intermittent nondispatch-
able resources (such as wind); however, if their capacity is exogenous, their
output can simply be subtracted from consumer quantity demanded, so that d
represents effective demand. In particular, this extension will be characterized
by Proposition 1. We start this section by introducing some definitions and
conditions, followed by the statement of Proposition 1. In the remainder of
this section we then introduce the open and the closed loop model for mul-
tiple load periods in sections and In section [4.3] we present the proof
of Proposition 1. Section contains a numerical example of the theoretical
results obtained in this section. Finally, in section [.5] we introduce and briefly

4 Let Do = 1,t = 1,a = 1,8 = 1/2 and § = 0, then the open loop Cournot solution is
p = 2/3, with = 1/6 for each firm. In this case, with these cost numbers, the open loop
Cournot equals the closed loop equilibrium with 6 = 2/« (collusion, ¢ = 1).
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analyze alternative conjectured price response models with switching instead
of constant second stage behavior, which is arguably more realistic.
We adopt the following assumptions:

We still consider two identical firms and a linear demand function.

— Additionally let us define ! as the index for distinct load periods. Now
production decisions depend on both ¢ and .

— Furthermore let us define the active set of load levels LB; as the set of
load periods in which equilibrium production equals capacity for firm 4,
i.e., LB; = {llqy = z;}.

— 0; is a constant in [0,1/a], that is the conjectured price response for each
1, see .

— Both cost parameters, 9§, 3, are nonnegative.

— Moreover, p;(d) = (Do; — d;)/c; where Dy, and «; are positive constants,
and Py, denotes Dg;/qy.

— In addition, let Py; > & be true for | € LB;, which means that the maxi-
mum price that can be attained in the market has to be bigger than the
production cost, otherwise there would be no investment or production.

— We also assume Py, > ¢ for | ¢ LB;, which is similar to the condition above
and guarantees non-negativity, however, it allows production to be zero in
non-binding load periods.

— Similarly to the assumption made in the previous section, we also assume
that ZleLBi Pyt > B+ 5ZZELBi t;, which states that if maximum price
Py is paid for the durations ¢; then the resulting revenue must be more
than the sum of the investment cost and the operation cost, otherwise there
is no incentive to participate in the market.

— The same demand curve assumptions are made as in section

— We consider one year rather than a multi-year time horizon, and so each

firm is maximizing its annualized profit.

Proposition 1. (a) If the closed loop solutions for different 6 between perfect
competition and Cournot competition exist and have the same active set of load
periods (i.e., firm i’s upper bound on production is binding for the same load
periods 1) and the second stage multipliers, corresponding to the active set,
are positive at equilibrium, then capacity x; is the same for those values of 0.
(b) Furthermore, if we assume that the open loop Cournot equilibrium, i.e.,
0 = 1/«, has the same active set, then the Cournot open and closed loop
equilibria are the same.

Perhaps the most difficult assumption of Proposition 1 is the existence of
closed loop equilibria, since in general, EPECs may not have pure strategy
equilibria as shown in [22] and example 4 of [25].

4.1 The Open Loop Model for Multiple Load Periods

The purpose of this section is to develop the stationary conditions for the open
loop model for general § and multiple load periods and thereby characterize
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the equilibrium capacity x;. Therefore, we write the open loop investment-
operation market equilibrium as:

- maxy, g, o ti(Pi(qis i) — 0)qu — B;
v { s.t. gu <z Vi (26)
di = qa+ qi, di = Do —aupi(qit,qa) Vi (27)

As previously mentioned in section the non-negativity constraints can
be omitted in this caseEI Let us now derive the investment-operation mar-
ket equilibrium conditions distinguishing load levels where capacity is binding
from when capacity is slack. We can omit the complementarity between A;
and ¢;; < x;, because Ay =0 for | € LB; and x; = ¢; for [ € LB;.

OLi — tipi(qits q-ut) — tibiga —tid — Ay =0 1€ LB,

0qi1
gij = tpi(qir; -a) — tibhga — 6 =0 [ ¢ LB,

Vi gil =6+ ZZELBi Aig =0 (28)
gu=z; le€LB;
i<z | ¢LB;
0<N; W

dy = qa+ qi, di = Doy — aupi(qit, qar) Vi (29)

For the non-binding load periods [ ¢ LB; we can obtain the solution to the
equilibrium by solving the system of equations given by —, which yields:

Do — o6 .
g o= ot 2T LB,
qil 2+ b, Vl,l ¢ i (30)
Dg0 + 26
= —— Vi¢gLB,. 31
P 24 a0, # (31)

In order to obtain the solution for load levels when capacity is binding, we

sum g(ﬁj over all load periods | € LB;, substitute ¢;; = x; and use the g—i? =

condition:

oL,
> > (i qi) — S — tibigi) — Y Aa (32)

IELB,; i IELB; IELB,;
= Z (tipi(Git, 1) — td —ti0z;) — B =0 (33)
leLB;

5 As in section let us consider the explicit non-negativity constraints 0 < g¢;; in
the above optimization problem and let us define p;; > 0 as the corresponding dual
variables. Then, due to complementarity conditions arising from the KKT conditions, we can
separate two cases, the one where p;; = 0 and the other where p;; > 0. First, let us consider
the non-binding load periods: the case u;; = 0 leads us exactly to what we have presented
in the paper; when p;; > 0 then this simply leads us to zero production in the non-binding
load periods. Now let us consider the binding load periods: again, the case u;; = 0 leads
us exactly to the capacity presented in the paper; case p;; > 0 immediately leads us to the
trivial solution of zero capacity. Therefore we omit the explicit non-negativity constraint.
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If we express price as a function of capacity (¢; = z;) and we solve the system
of equations , together with Vi, this yields:

_ ZleLB;,(DOltl Hn;ﬁleLBi o) — HleLB,: (B +6 ZleLBi t)
>ters; (12 + b)) [ 1, 2e0m, on)

We know that for 6, € [0,1/ay], ¢ will be a continuous function of z; and
hence from we get that A;; will also be a continuous function of x;. Having
obtained capacities x;, the prices p; and demand d; for [ € LB; follow. We
furthermore observe that is a special case of in which we only have
one binding load period.

Above it has not been explicitly stated that ¢; and z; are positive variables,
but it can be easily seen that this is satisfied at the equilibrium point. In non-
binding load periods, production levels g;; given in will be nonnegative
due to the assumption that Py > §. Capacity x; given in will be positive
as long as ), p (Dot Hn?&leLBi an) > [lierp, (B + 62 cpp, t1) holds,
which is true due to the assumption > ;5 Porti > 8+ 6 e, tlﬂ

Vi (34)

i

4.2 The Closed Loop Model for Multiple Load Periods

Let us now derive the stationary conditions for the closed loop problem for
multiple load periods which then yields an expression for the equilibrium ca-
pacity. First, we state the second stage production game for the closed loop
game with multiple load periods in — and define Lagrange multipliers
Aq; for the constraint ¢; < x;.

- maxg, > ti(pi(qis qeit) — 0)qa
vi { s.t. gu <z Vi (35)
di = qa+ g, di = Doy — aupi(qit, q-ar) V1 (36)

Now we derive the market equilibrium conditions, assuming that each firm
holds the same conjectured price response 6; in each load period [. 6; can
differ among periods. The complementarity between \;; and ¢; < x; for | &
LB; implies that \;; = 0 for | ¢ LB;. Hence we omit that complementarity
condition for those load periods in the market equilibrium formulation of —
. Moreover, we assume that multipliers \;; for [ € LB; will be positive at
equilibrium. (If any multipliers are zero, then Proposition 1 may not hold.)

9Ly _ tlpl(gilv Q—il) —t01qy —ti 0 — Xy =0 [ €LB;

0qi1
g,ﬁj = tipi(qir, -a) — tibhgu — 16 =0 1 ¢ LB, -
Vi =2 leLB: 37
qil X i
0< gy VI

6 Let us consider the numerator of (34). Dividing the numerator by HleLBi «ay yields:
ZZELBi (Dorty Hn;éleLBi an)/ HleLBi a — 8- 6ZlELBi ty = ZZELBi (Dotti/ow) — B —
ézleLBi t, = ZleLB,i (Poity)) — B — 6ZleLBi t; > 0 due to assumption.
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dy = qa+ qi, di = Doy — aupi(qit, qar) Vi (38)

For the non-binding load periods [ ¢ LB; we can obtain the solution to the
conjectured price response market equilibrium by solving the system of equa-

tions given by —, which yields:

Doy — 0.
i = I ¢ LB;
%=, Vi, l ¢ (39)
Dgy 0 + 26
= — LB;. 4
PSS o, VI & LB; (40)

We cannot yet solve the market equilibrium for the binding load periods [ €
LB; depending as they do upon the z;’s. Hence we move on to the investment
equilibrium problem to obtain those x;’s, which is formulated below:

v 4 haxXs, Yo tioi(Girs qoin) g — >, tidga — B, (41)
s.t. 137) — (38)

After recalling that ¢; = x; for [ belonging to L B; and then re-arranging terms,
we can rewrite the objective function as:

Y (i —tidz) + Y (g — ti8qa) — B (42)

IeLB; I¢LB;

Note that we have separated the terms of the objective function that cor-
respond to inactive capacity constraints (I ¢ LB;) which do not involve
x;’s at all, and the terms that correspond to the active capacity constraints
(I € LB;). We furthermore know that for load periods I € LB; the price

p = Bo=dt — DOZ;IZi . Replacing p; for | € LB; in (42)), yields:

(&7

Dy —z1—x
S = —tdwm) + > (piga — tidgn) — B (43)
1ELB; 1 I¢LB;

We now show that is smooth for small perturbations of x; around its
equilibrium level. In other words, is a local description of the MPEC .
It has been shown in [2] that the second stage problem, i.e., the conjectured
price response spot market equilibrium, has an equivalent strictly concave
optimization problem. Hence the solution g;; is unique [36]. This yields that
¢;; is a continuous function of x;. Therefore it follows from uniqueness of
multipliers as a function of the optimal second stage quantity (due to the
linear independence constraint qualification [36]) that A;; is also a continuous
function of xz;. Hence, for small changes in x; the active set will not change
and we obtain smoothness of objective function . Finally, it is obvious that
the only nonlinear term in is quadratic in x; with a negative coefficient,
ZleLBi t1/ay, thus is concave in ;.

Therefore all we need to do is take the derivative of the objective function
with respect to x;, set it to zero and solve for x;, which yields:

B Yuers (Doti I sern, an) —Ilierp, 1B+ crp, t1)
3 ZZGLBi (ta Hn;élELBi an)

Vi (44)

%
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We observe that the capacity given by is independent of 6;. This means
that for any other closed loop equilibrium whose active set coincides with LB;
and whose \;; are positive at equilibrium, the capacity at equilibrium will
also be described by , even though strategic spot market behavior may be
different. We furthermore observe that is a special case of in which
we only have one binding load period.

Now that we have obtained the values for z;, the values for g;; as well as
prices p; and demand d; with [ € LB; follow. As we have already shown in the
open loop section, our assumptions imply that the solution will be non-trivial.

4.3 Proof of Proposition 1

Proof : (Part a) First, we observe that the closed loop capacity, given by ,
does not depend on the conjectured price responses 6;, forl =1,..., L, and in
particular this means that two closed loop equilibria with different 6;’s have
the exact same capacity solution as long as their active sets are the same with
i positive for | € LB;.

(Part b) Comparing the closed loop capacity with the open loop ca-
pacity we note that the open loop capacity does depend on the strategic
behavior 0; in the market whereas the closed loop capacity does not. Moreover
we observe that if open loop and closed loop models have the same active set
at equilibrium, then their solutions are exactly the same under Cournot com-
petition (6; = 1/ay). If open and closed loop equilibria have the same active
set and their 6; coincide but are not Cournot, then in general their capacity
will differ. However, their production g; for | ¢ LB; will be identical, as can

be seen by comparing — and —. a

In general, prices will be lower in the second stage under perfect competition
than under Cournot competition for periods other than LB;. In that case,
consumers will be better off (and firms worse off) under perfect competition
than Cournot competition. The numerical example in section [£.4] illustrates
this point. However, this result is parameter dependent as will be demonstrated
by the example in section [5.2] where we will show that in some cases Cournot
competition can yield more capacity and higher market efficiency than perfect
competition. This can only occur for cases where either the binding LB; differ,
or the LB; are the same but the \;; are zero for some {. Note that for one load
period, Proposition 1 reduces to Theorem 1.

Proposition 1, like Theorem 1, can be extended to asymmetric firms. As
the details are tedious we refer the reader to the general proof presented in
[47].

4.4 Example with Two Load Periods: LB; the same for all 6

Let us now consider an illustrative numerical example where two firms both
consider an investment in power generation capacity with the following data:
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Capacity Open-Loop (OL) vs Closed-Loop (CL) - 2 load periods
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Fig. 1 Built capacity, production and profit of one firm in the two load period numerical
example.

Two load periods I, with durations of t; = 3760 and ¢ = 5000 [h/year]
— Demand intercepts Dy; given by D1 = 2000 and Dg 2 = 1200 [MW]
Demand slopes o equal to a1 = Dy 1/250 and as = Dy 2/200

— Annualized capital cost § = 46000 [€/MW /year]

Operating cost 6 = 11.8 [€/MWh]

Having chosen the demand data for the two load levels such that capacity
will not be binding in both periods in any solution, we solve the open loop
and the closed loop model and compare results. In Figure [I] we present the
solution of one firm (as the second firm will have the same solution). First we
depict the capacity that was built, then we compare production for both load
periods and finally profits. Note that for both firms, LB; will be the same for
all 8 and will include only period [ = 1. Later we will present another example
where this is not the case, and the results differ in important ways.
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As demonstrated in Proposition 1, the closed loop capacity does not depend
on behavior in the spot market. However we will see that profits do depend on
the competitiveness of short-run behavior, and unlike the single demand period
case, are not the same for all § between perfect competition and Cournot. We
refer to the binding load period as 'peak’ and to the non-binding load period as
"base’. The closed loop production in the peak load level is the same for all 6, as
long as the competitive behavior on the spot market is at least as competitive
as Cournot. However, base load production depends on the strategic behavior
in the spot market. This can be explained as follows: as long as the strategic
behavior in the spot market is at least as competitive as Cournot, peak load
outputs are independent of 6§ because agents are aware that building Cournot
capacities will cause the peak period capacity constraint to bind and will limit
production on the market to the Cournot capacity. However, given our demand
data we also know that capacities will not be binding in the base period and as
a consequence outputs will not be limited either. Hence during the base periods
the closed loop model will find it most profitable to produce the equilibrium
outcomes resulting from the particular conjectured price response.

On the other hand, when considering the open loop model, the capacity
(peak load production) does depend on 6. In particular, the open loop capacity
will be determined by the spot market equilibrium considering the degree of
competitive behavior specified by . We observe that for increasing 6 between
perfect competition and Cournot in the open loop model, less and less capacity
is built until we reach the Cournot case, at which point the open and closed
loop results are exactly the same. Comparing open and closed loop models for
a given 6 reveals that while their base load outputs are identical, see Tables
capacity and thus peak load production differs depending on . Figure [I]also
shows that profits obtained in the closed loop model equal or exceed the profits
of the open loop model. This gap is largest assuming perfect competition and
becomes continuously smaller for increasing 6 until the results are equal under
Cournot. This means that the further away that spot market competition is
from Cournot, the greater the difference between model outcomes.

In standard open loop oligopoly models [I8] without capacity constraints,
perfect competition gives lower prices and total profits of firms, and greater
consumer surplus, and market efficiency compared to Cournot competitionm
We observe that this occurs for this particular instance of the open and closed
loop models, see Tables [2| and [3] It can be readily proven more generally that
market efficiency, consumer surplus, and average prices are greater for lower
values of # (more competitive second stage conditions) if LB; are the same for
those 8 (and multipliers are positive), and capacity is not binding in every ZE|
However, we will also demonstrate by counter-example that this result does not

7 Total Profit is defined as S ti(pr — 0)(qit + q.i1) — B(xs + ;). Consumer Surplus (CS)
is defined as the integral of the demand curve minus payments for energy, equal here to
> ti(Por — p1) (@i + -41) /2. Market Efficiency (ME) is defined as CS plus Total Profits.

8 This is proven by demonstrating that for smaller 6, the second stage prices will be lower
and closer to marginal operating cost in load periods for those periods that capacity is not
binding



22

S. Wogrin et al.

Table 1 Closed Loop Equilibrium Solution Perfect Competition (6; = 0), Allaz-Vila (6; =
1/(2ay)) and Cournot(6; = 1/ay) second-stage competition.

! Peak  Base
;1 [MW] 6,=0 602.6 564.6
;1 [MW] 0, =1/ 602.6 376.4
p; [E/MWh] 6, =0 99.4 11.8
p [€/MWh] 6, =1/(2cq) 994 49.4
p; [E/MWh] 6, =1/ 99.4 74.5

Table 2 Open Loop Equilibrium Solution Perfect Competition (6; = 0), Allaz-Vila (6; =
1/(2¢y)) and Cournot(9; = 1/a;) second-stage competition.

1 Peak  Base
g [MW] 0, =0 903.9 564.6
qu[MW] 0,=1/(20;) 7231 4517
qi [MW] 0, =1/ 602.6 376.4
p [€/MWhH]  6,=0 240  11.8
p [E/MWhH] 6, =1/(20;) 69.2 494
p [E/MWh] 60, =1/ 99.4 74.5

Table 3 Market Efficiency (ME), Consumer Surplus (CS) and Total Profit in Closed Loop

Solutions.
Perfect Competition  Allaz-Vila Cournot
ME [€] 1.21-10° 1.19 - 10° 1.15 - 109
CS [€] 0.873 - 10° 0.681-10° 0.577-10°
Total Profit [€] 0.342 - 109 0.511-10° 0.578 - 10°

necessarily apply when LB; differ for different #. In particular, in section [5.2
we will present an example in which Cournot competition counterintuitively
yields higher market efficiency than perfect competition.

4.5 Conjectured Price Response Models with Switching Conjectures

In this section we consider and analyze alternative conjectured price response
models that are a variant of the previously presented models. In particular,
we propose models in which a firm always has a Cournot conjectured price
response with respect to the output of a rival in periods when their capacity is
binding, and an arbitrary conjectured price response 6 between perfect compe-
tition and Cournot when the rival’s capacity is not binding. This type of model
is arguably more realistic because producers in the second stage will recognize
the times when rivals are at their capacity constraint and cannot increase out-
put. This argument has been thoroughly discussed in [35]. In general, when
solving models with switching conjectures, one has to have in mind that in
a multi-player game, some generation companies may have binding capacity,
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but others might not in the same load period. In this case, the conjecture
of the generation company at capacity would be 6 and the rival’s conjecture
would be the Cournot conjecture. Such models are more difficult to solve than
the previously presented models as some kind of iterative process has to be
adopted and moreover, pure strategy equilibria might not exist. Hence, for
the sake of simplicity of this analysis, we assume that a pure strategy equilib-
rium exists and we furthermore assume that the equilibrium is a symmetric
one. A detailed analysis for asymmetric equilibria, which is more complicated
and extensive than the case discussed in this section, can be found in [35]. In
this paper we do not explore these alternative models outside of this section,
however, we recognize their interest and we will address this topic in future
research.

Let us now introduce this alternative type of model first for the open loop
case. Note that, due to the symmetry assumption we get LB; = LB_;. Then,
the alternative open loop model is almost identical to the open loop model in-
troduced in section with the only difference that now there are two differ-
ent parameters for the conjectured price response: 6, for load periods [ € LB;
when capacity is binding; and 6; for the non-binding load periods. Moreover,
while 0; can represent any strategic behavior between perfect competition and
Cournot, the conjectured price response in load periods when capacity is bind-
ing is chosen to always correspond to Cournot behavior, i.e., 6, =1 /aq. With
this in mind the open loop investment-market equilibrium conditions, which
are given in —, only differ from the previously presented open loop
model 1| in its expression of géi when [ € LB;.

OLi = tipi(qur, -ar) — tibrgis — 16 — A\ =0 1 € LB,

oqi
9% = tipi(gu, ) — tibigu — 06 =0 1 ¢ LB

Vi Bt = B+ Lierp, Au =0 (45)
g1 =x; leLB;

g1 <z; ¢ LB;

0< XNy Wi

di =qu+qiu, di=Do— api(qu,qu) Vi (46)

If we assume that a pure strategy equilibrium exists, then we can analyze
this alternative open loop model in a manner paralleling the analysis in section
As a result, we can see that this model yields the capacity given in equation
, which coincides with the expression of the closed loop capacity previously
given in , once we substitute that §;, = 1/qy.

_ > ierp, (Dot Hn;ﬁleLBi an) = [liepp, at(B+03 1 p, 1)
dens, B2+ ) I ziers, on)

B Yuers, (Doti I zsern, an) = Tlierp, B+ crp, t1)

a 3 ZleLBi (ta Hn;éleLBi an)

Vi (47)

i

Vi (48)
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Similar to the alternative open loop model, we can derive the alternative
closed loop model by replacing 6; with 6; when | € LB;, yielding market
equilibrium equations identical to — with the only exception that in
gﬁij for [ € LB; we now use the Cournot conjecture él = 1/qy. Paralleling the
closed loop analysis of section [£.2]it is easy to see that this alternative type of
model yields the same closed form expression for capacity as the closed loop
model previously presented in .

The comparison between these alternative open and closed loop models
yields the result that if their sets of active load periods LB; coincide and a
pure strategy solution exists, both models (open and closed loop) yield the
same capacity independent of the choice of strategic behavior §; in the spot
market when capacity is not binding. Moreover, the same can be said when
comparing two instances of the alternative closed loop model with different
strategic behavior (i.e., different assumed values of ;) in load periods when
capacity is not binding, i.e., if the active sets of load periods are the same at
equilibrium, then they both yield the same capacity solution. The proof of the
comparison of two closed loop models is a simple extension of the Allaz-Vila
analysis in [35], which furthermore provides numerical examples. Moreover,
when comparing the closed loop model with switching conjectures to the closed
loop model previously presented in the paper, it can be said that if they are
at capacity in the same load periods, then their capacity will be the same;
however, when the binding load periods are different, then the alternative
model where strategic behavior switches can yield a different capacity than
the model where the second stage behavior is constant.

Asymmetric equilibria may exist, even if the firms themselves are symmet-
ric. This may happen, for example, when the conjectural variation assumed
for the production game is greater than Cournot. The character of the equi-
librium in this case is that one generation company is at capacity and sees the
conjectural variation in the rival while the generation company below capacity
sees the Cournot conjectural variation. If there is no symmetric equilibrium
because the production in one load period exceeds capacity when using 6 but
falls below capacity when using 0, one firm is at capacity and the other is
below. Total capacity is larger than with the Cournot conjecture. If there is a
symmetric equilibrium with a load period near capacity but below, there may
be an asymmetric equilibrium in which one firm reduces capacity to cause the
capacity to bind because that causes a discrete drop in production by the other
firm in that load period. For a detailed analysis of asymmetric equilibria and
numerical examples that show this can happen with the Allaz-Vila conjectural
variation, the reader is referred to [35].

5 Ranking of Closed Loop Equilibria: Capacity and Market
Efficiency

In this section we make some observations concerning capacity results in closed
loop equilibria. We also discuss the ambiguities that occur regarding social
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welfare when comparing two closed loop equilibrium solutions with different
strategic behavior in the spot market. In section [5.I] we prove that the capacity
of a closed loop model with competitive behavior between perfect competition
and Cournot can be lower or equal to the closed loop Cournot second stage
capacity, depending on the choice of data, and moreover, that it cannot be
higher for symmetric players in the two period case. In[5.2] we prove by counter-
example that the ranking of closed loop conjectured price response equilibria,
in terms of market efficiency (aggregate consumer surplus and market surplus)
and consumer welfare, is parameter dependent.

5.1 Comparisons of Capacity from Closed Loop Equilibria

In this section we analyze the effects of the strategic behavior in the spot
market on capacity in the closed loop model. This work is an extension of the
work of Murphy and Smeers [35] , in which they compare a closed loop Cournot
model to a model with an additional forward market stage, i.e., a closed loop
Allaz-Vila model with capacity decisions. They find that, depending on the
data, the capacity yielded by the closed loop Allaz-Vila model can either be
more, less or equal to the capacity given by the closed loop Cournot model
in a market with asymmetric players. We extend their results to general con-
jectural variations considering symmetric companies, and compare our closed
loop model with Cournot second stage competition to a closed loop model with
arbitrary second stage competition between perfect competition and Cournot.
We show that in this comparison the capacity yielded by conjectured price
response second stage competition can be less (decreasing) or equal to the
closed loop Cournot capacity, which is shown in section Further, in sec-
tion we prove a stronger result: that the former capacity cannot exceed
the latter for symmetric agents and two load periods.

5.1.1 Conjectured Price Response Can Yield Same or Less Capacity

Part (a) of Proposition 1 proves that if two closed loop solutions for different 6
between perfect competition and Cournot competition have the same active set
of load periods, then capacity is the same for those values. The corresponding
numerical example has been presented in section This demonstrates that
it is possible for two different closed loop models to yield the same capacity.

When the active sets of two solutions with different strategic behavior
coincide, we know that their capacity must be equal. However, from the closed
form expression for capacity, given in 7 we also know that when active
sets of load periods do not coincide, then the solutions will generally not be
the same. We show that the relationship between capacities resulting from
different # is ambiguous.

For an example in which the closed loop Cournot second stage capacity is
strictly above the capacities yielded by other closed loop models with more
competitive strategic behavior, we revisit the numerical example in section [£.4]
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Table 4 Closed Loop Equilibrium Less Capacity under More Competition: Perfect Com-
petition (0; = 0), Allaz-Vila (6; = 1/(2¢y)), and Cournot(6; = 1/a;) Second-Stage Compe-
tition.

! Peak  Base
g1 [MW] 6, =0 554.7  554.7
g [MW] 0, =1/(20q) 554.7 554.7
;1 [MW] 0, =1/ 602.6 517.6
p [E/MWh] 6, =0 111.3  65.5
p; [E/MWh] 6, =1/(2¢¢) 111.3 655
P [€/MWh] 91 = l/al 99.4 74.5

Table 5 Market Efficiency (ME), Consumer Surplus (CS) and Total Profit of Closed Loop
Solutions In Which More Competition Yields Less Capacity.

Perfect Competition = Allaz-Vila Cournot

ME [€] 1.32-10° 1.32-10°  1.33-10°
CS [€] 0.662 - 109 0.662-10°  0.666 - 107
Total Profit [€] 0.662 - 10° 0.662-10°  0.666 - 10°

and increase the base demand intercept Doz to 1650 MW. In Table[d] we present
the corresponding closed loop results for second stage perfect competition,
Allaz-Vila, and Cournot second stage competition. It can be observed that for
second stage Cournot competition, the capacity of 602.6 MW is only binding
in the peak period. This fact does not change for more competitive strategic
spot market behavior until we reach a certain threshold, 6 around 1/(1.7«),
when base load production exceeds the capacity of 602.6 MW. At this point
the set of active load periods at equilibrium changes and capacity is binding
in both peak and base load period and the new capacity is 554.7 MW.

In Table [5| we present the market efficiency, the consumer surplus and the
total profits of the decreasing capacity solution. We observe that Allaz-Vila
second stage competition yields a lower market efficiency than Cournot sec-
ond stage competition. In section [5.2] we will demonstrate that this market
efficiency result is ambiguous, as we present a counter-example where market
efficiency is higher under Allaz-Vila than under Cournot second stage compe-
tition, even though capacity is less in the Allaz-Vila case than in the Cournot
case.

5.1.2 Conjectured Price Response Can Yield More Capacity

When presenting the case in which conjectured price response yields more
capacity than Cournot in the closed loop game in [35], Murphy and Smeers
mainly restrict their discussion to a case with two load periods, peak and
base. We will do the same here. However, we also demonstrate that in the
case of symmetric agents and two load periods the conjectured price response
assumption cannot yield more capacity. Due to Proposition 1 we know that this
increasing capacity case could only happen when the active sets of closed loop
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solutions with different strategic behavior do not coincide. Hence we consider
two separate cases: case one where the closed loop Cournot capacity is binding
only in the peak period; and case two where it is binding in both load periods.

Case 1: Let therefore zpeax denote the closed loop Cournot second stage
capacity solution, which is only binding in the peak period and let a0t denote
the capacity of the closed loop conjectured price response equilibrium, where
capacity is binding in both load periods. Then, from we obtain the values
for both terms and they are given below.

Doty — ot
Tpeak = ot gtl (6 * 1) (49)
1

. _ Doitiag 4 Dogtacy — araz(B+6(t +t2)) (50)
both 3(tiag + toay)

In Table 4| we have presented an example where Tpcax Was larger than
Thoth- However, in order for the opposite case to be possible and feasible, the
following two conditions have to hold. First, production in the base period,
given by , for the Cournot case cannot exceed its capacity Zpeak, which
is formulated in and second, Tpotn has to be strictly larger than xpeak,
which is expressed in .

Tpeak < Thoth (52)

If we insert the expression of Zpeax given in into and simplify the
resulting inequalityﬂ we obtain a lower bound on the peak demand intercept
Dy, which is given in . Similarly, if we insert expressions and into
(52) and simplify the resulting inequalitym, we obtain a strict upper bound
on Dy1, which is given in (54)).

(Do2*a25)tt11+a1(ﬁ+5t1) < Do (53)
Doy < D02t1t2+(ﬁ+5t1)(tlazzgal)*ha2(5+5(t1+t2)) (54)

9 The inequality given by (51)) reads DOQg‘mé < Do1t1*§ct11(5+5t1). First, we multiply

both sides by 3, then we multiply the resulting inequality by 1, add a1 (8 + dt1) and finally
(Do2—a26)t1+aq (B+6t1) < Do

we divide by t;. The resulting inequality then reads

t1
10 The inequality given by (52]) reads %W <
Doitioa+Dootaog —ogaz(B+8(t1+t2)) ; ; ;
3(tiasTiaar) . Again we multiply both sides by 3, and then we

multiply the numerator of each side with the denominator of the other side. As both
sides now have the same denominator we only compare resulting numerators, which yield
(Do1t1 — a1 (B + 0t1))(t1az + taa1) = Doi1tias + Dortitear — a1 (B + 6t1)(f1o2 + taa) <
DOlt%ag + Doatitaar — tiaraz(B + 6(t1 + t2)). Now we bring all terms that include Doi
to the left side of the inequality and the remaining terms to the right. Then DOl(tfocg +
titaon —t3as) = Dortitaon < Dostitoan —t1aras(B+06(t1+t2)) +a1(B+6t1)(f1az +taar)
= a1 (Doz2tita — tiaa(B + §(t1 + t2)) + (B + 6t1)(t1a2 + t2aq)). Dividing both sides by

. Dgotqt 5t t t —t S(t t
t1taaq vields that Doy < 2024 2+(B+6t1)( 1a2:;t22a1) 12 (B+38(t1+t2))
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It is easy to verify that both the lower bound in and the strict upper
bound in of Dy; yield the same value, which is a contradiction to the
strict inequality and hence to the assumption that Zpcak < Thotn. Thus the
capacity under more intensive competition (zpotn) cannot exceed the Cournot
capacity (%peax) under the assumption that Cournot binds only in the peak
period while more intensive competition binds in both.

Case 2: We furthermore show that the case of increasing capacity under
more intensive competition can never happen when the active set of load
periods is reversed, i.e., when the closed loop Cournot second stage capacity
is binding in both load periods and the closed loop conjectured price response
capacity is only binding in the peak period. Let us assume we had such a
case, then the conjectured price response production in the base period, given
by , will be strictly less than its capacity zpeak because we know that
capacity is only binding in the peak load period. Moreover, from it is
easy to see that unrestricted Cournot base production would be less than ([39)
for all 62 < 1/as, all of which is shown in . As we assumed that the
Cournot closed loop capacity is binding in both load periods, it follows that
Thoth Will be less or equal to the unrestricted Cournot base production, which

is expressed in .

Doz —a2d Dga—a2d
3 S Siants < Tpeak (55)
Dos—asd
Thoth < 2522 (56)

Similarly to before we insert the expression of Zpeax and zpesn into and
(56) and simplify the resulting inequalities to obtain a lower and upper bound
on the base demand intercept Dyz, which are given in and . It is easy
to verify that both the lower bound in and the strict upper bound in
of Dgs yield the same value, which is a contradiction to the strict inequality
and hence to the assumption that znon (Cournot capacity) < Zpeak (capacity
under more intensive competition).

Dortias—ajas(B+5(t1+t2))taxd(tias+taa
o1ti1cx2 1 2( (t11a22)) 2 ( 162 2 l) S DO2 (57)
D02 < D()ltl*al(fiik(stl)JraQétl (58)

Hence, we have demonstrated that, for two load periods, the case in which
capacity increases with increasing competition (which occurred for an asym-
metric case in [35]) cannot happen for symmetric agents. Our result therefore
shows that, for the two load period case in [35], asymmetry is a necessary con-
dition in order for the capacity of the closed loop conjectured price response
solution to be larger than in the closed loop second stage Cournot equilibrium.
We raise the hypothesis that in the case of symmetric agents this might gener-
ally be true for multiple load periods as well. However, proving this hypothesis
or finding a counterexample is out of the scope of this paper and will be a topic
of future research.
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5.2 Ambiguity in Ranking of Closed Loop Equilibria when LB; Differs for
Different 6

In this section we show by counter-example that the ranking of the closed
loop conjectured price response equilibria, in terms of market efficiency and
consumer welfare, is parameter dependent. An interesting result we obtain is
that it is possible for the closed loop model that assumes perfectly competitive
behavior in the market to actually result in lower market efficiency (as mea-
sured by the sum of surpluses for all parties and load periods), lower consumer
surplus, and higher average prices than when Cournot competition prevails.
This counter-intuitive result implies that contrary to regulators’ beliefs that
requiring marginal cost bidding protects consumers, it actually can be harm-
ful. In [20] the authors have arrived at a similar result comparing perfectly
competitive and Cournot spot market behavior, however, they only look at
the polar cases of perfect competition or Cournot-type competition. In our
paper we generalize strategic behavior using conjectural variations and look
at a range of strategic behavior, from perfect competition to Cournot competi-
tion and we furthermore observe that an intermediate solution between perfect
and Cournot competition can lead to even larger social welfare and consumer
surplus despite yielding a level of installed capacity intermediate between the
perfect competition and the Cournot cases. In particular: The ranking of con-
jectured price response equilibria in terms of market efficiency and consumer
welfare is parameter dependent. This occurs because in general the LB; differ
among the solutions. It does not occur when LB; are the same for all § and
multipliers are positive as proven (and illustrated) in the previous section.

A counter-example: Let us now consider two firms both making an in-
vestment in generation capacity using the following data:

— Twenty equal length load periods I, so t; = 438 [h/year] for l =1,...,20
— Demand intercept Dg;, obtained by Dy = 2000 — 50(I — 1) [MW] for [ =
1,...,20

Demand slope «y, obtained by Dg;/250 for I =1,...,20

Capital cost 5 = 46000 [€/MW /year]

— Operating cost 6 = 11.8 [€/MWHh]

First we will assume perfect competition, i.e., §; = 0. We solve the re-
sulting closed loop game by diagonalization [25], which is an iterative method
in which firms take turns updating their first-stage capacity decisions, each
time solving a two-stage MPEC while considering the competition’s capac-
ity decisions as fixed. The closed loop equilibrium solution assuming perfect
competition in stage two is shown in Table [f] Second, we assume Cournot
competition in the spot market, i.e., 6; = 1/cy. Again we solve the closed loop
game by diagonalization, yielding the results shown in Table [/} We observe
that under second stage perfect competition, the capacity of 456.2 MW is
binding in every load period and prices never fall to marginal operating cost.
Moreover, the total installed capacity of 912.4 MW is significantly lower than
that installed under Cournot, which is 1101.2 MW. On the other hand, under
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Cournot competition, each firm’s capacity of 550.6 MW is binding only in the
first six load periods and the firms exercise market power by restricting their
output to below capacity in the other fourteen periods. Furthermore consider-
ing that the Cournot capacity is well above the perfectly competitive capacity,
it follows that during the six peak load periods, perfectly competitive prices
will be higher than Cournot prices. The open loop equilibrium solutions as-
suming Cournot competition, perfectly competitive behavior and Allaz-Vila
competition are presented in Tables [7] [I0] and [IT] respectively. Under Cournot
competition, open and closed loop equilibrium solutions coincide. Meanwhile
the system optimal plan, which is obtained by central planning under a maxi-
mization of social welfare objective, yields the same solution as the open loop
equilibrium under perfect competition, which is presented in Table As
expected, this solution exhibits the highest total installed capacity of 1651.8
MW, the lowest prices and the greatest market efficiency.

This closed loop investment game can be viewed as a kind of prisoners’
dilemma among multiple companies. An individual company might be able
to unilaterally improve its profit by expanding capacity, with higher volumes
making up for lower prices. But if all companies do that, then everyone’s
profits could be lower than if all companies instead refrained from building.
(Of course, in this prisoners’ dilemma metaphor we have not taken into account
another set of players that is better off when the companies all build. These
are the consumers, who enjoy lower prices and more consumption; as a result,
overall market efficiency as measured by total market surplus may improve
when firms “cheat”.)

Standard (single stage) oligopoly models [I8] without capacity constraints
find that perfect competition gives lower prices and greater market efficiency
than Cournot. Considering that standard result, our results seem counter-
intuitive, but they are due to the two-stage nature of the game. In particular,
less intensive competition in the commodity market can result in more in-
vestment and more consumer benefits than if competition in the commodity
market is intense (price competition a la Bertrand). In terms of the prisoners’
dilemma metaphor, higher short run margins under Cournot competition pro-
vide more incentive for the “prisoners” to “cheat” by adding capacity. Note
that in order to get these counter-intuitive results, firms do not need to be
symmetric, as shown in a numerical example in [47].

Finally, we solve the closed loop game assuming Allaz-Vila as competitive
behavior between perfect competition and Cournot, i.e., §; = 1/(2¢y). This
yields the equilibrium given in Table|8} Comparing the market efficiency (ME)
and the consumer surplus (CS) that we obtain in the perfectly competitive,
Cournot, Allaz-Vila and the social welfare maximizing solutions in Table [J]
we observe that, surprisingly, apart from the welfare maximizing solution the
highest social welfare and the highest consumer surplus is obtained under
the intermediate Allaz-Vila case. Even more surprising is that the capacity
obtained under Allaz-Vila competition is lower than the Cournot capacity, but
still yields a higher social welfare. This is because the greater welfare obtained
during periods when capacity is slack (and Allaz-Vila prices are lower and
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Table 6 Closed Loop Equilibrium Solution under Perfect Competition Second-Stage Com-
petition (0; = 0) with Capacity x; = 456.2 MW.

l 1 2 3 4 5 6 7 8 9 10
i1 [MW] 456.2  456.2  456.2 456.2 456.2 456.2 456.2 456.2 456.2  456.2
pr [€/MWHh] 135.9 133.0 129.9 126.7 123.3 119.7 115.8 111.8 107.4 102.8
l 11 12 13 14 15 16 17 18 19 20
i1 [MW] 456.2  456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2  456.2
p; [E/MWh] 97.9 92.7 87.1 81.0 74.5 67.5 59.9 51.6 42.6 32.8

Table 7 Closed Loop Equilibrium Solution under Cournot Second-Stage Competition (6; =

1/ay;) and Open Loop Cournot Equilibrium Solution, both with Capacity xz; = 550.6 MW.
l 1 2 3 4 5 6 7 8 9 10
gi1 [MW] 550.6 550.6 550.6 550.6 550.6 550.6 539.9 524.0 508.2 492.3
p; [€/MWh] 112.4 108.8 105.1 101.2 97.1 92.7 91.2 91.2 91.2 91.2
l 11 12 13 14 15 16 17 18 19 20
i [MW] 476.4  460.5 444.6 428.8 4129 397.0 381.1 365.2 3494 333.5
p; [E/MWh] 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

closer to production cost) offsets the welfare loss during peak periods when
the greater Cournot capacity yields lower prices.

Another surprise is that not only market efficiency but also profits are
non-monotonic in 8. Both perfect competition and Cournot profits are higher
than Allaz-Vila profits; the lowest profit thus occurs when market efficiency
is highest, at least under these parameters. However, higher profits do not al-
ways imply lower market efficiency, as a comparison of the perfect competition
and Cournot open loop cases shows. Cournot shows higher profit, consumer
surplus, and market efficiency than perfect competition. That is, Cournot is
Pareto superior to perfect competition under these parameters because all
parties are better off under the Cournot equilibrium.

Finally, we observe the market efficiency (ME), the consumer surplus (CS)
and total profits of the open loop model assuming perfect competition, Allaz-
Vila and Cournot competition in the market. As opposed to the closed loop
case, market efficiency in the open loop solutions increases monotonically with
the level of competition in the market and is therefore highest under perfect
competition.

6 Conclusions

In this paper we compare two types of models for modeling the generation
capacity expansion game: an open loop model describing a game in which in-
vestment and operation decisions are made simultaneously, and a closed loop
equilibrium model, where investment and operation decisions are made sequen-
tially. The purpose of this comparison is to emphasize that when resorting to
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Table 8 Closed Loop Equilibrium Solution Assuming Allaz-Vila Second-Stage Competition
(6; = 1/(2c;)) with Capacity x; = 515.2 MW.

l 1 2 3 4 5 6 7 8 9 10
i1 [MW] 515.2 515.2 515.2 515.2 515.2 515.2 515.2 5152 5152 515.2
p [€/MWh] 121.2 1179 1144 110.8 106.9 102.8 98.5 93.9 89.0 83.8
l 11 12 13 14 15 16 17 18 19 20
i1 [MW] 515.2 515.2 515.2 514.5 495.5 476.4 457.3 438.3 419.2 400.2
p; [E/MWh] 78.3 72.3 66.0 59.4 59.4 59.4 59.4 59.4 59.4 59.4
Table 9 Market Efficiency (ME), Consumer Surplus (CS) and Total Profit in Closed Loop
Solutions and Social Welfare Maximizing Solution.
Perfect Competition  Allaz-Vila Cournot Social Welfare Maximum
ME [€] 1.24 - 10° 1.30 - 10° 1.28 - 109 1.47-10°
CS [€] 0.621 - 10° 0.717-10°  0.638 - 10° 1.436 - 10°
Total Profit [€] 0.621 - 109 0.584-10° 0.638 - 10° 0.034 - 10°
Table 10 Open Loop Equilibrium Solution Assuming Perfect Competition and System
Optimal Plan Solution with Capacity z; = 825.9 MW.
l 1 2 3 4 5 6 7 8 9 10
i [MW] 8259 8259 8259 8259 8259 8259 809.9 786.1 762.2 738.4
p [E/MWh]  43.5 38.2 32.7 26.8 20.6 14.0 11.8 11.8 11.8 11.8
l 11 12 13 14 15 16 17 18 19 20
i [MW] 714.6 690.8 667.0 643.1 619.3 5955 571.7 5479 524.0 500.2
pr [€/MWh] 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8
Table 11 Open Loop Equilibrium Solution Assuming Allaz-Vila Competition (6; =
1/(2¢y)) with Capacity xz; = 660.7 MW.
l 1 2 3 4 5 6 7 8 9 10
i [MW] 660.7 660.7 660.7 660.7 660.7 660.7 647.9 628.8 609.8 590.7
p [E/MWhL] 84.8 80.6 76.1 71.4 66.5 61.2 59.4 59.4 59.4 59.4
l 11 12 13 14 15 16 17 18 19 20
i [MW] 571.7 552.6 533.6 514.5 4955 476.4 457.3 438.3 419.2 400.2
p [€/MWh]  59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4

Table 12 Market Efficiency (ME), Consumer Surplus (CS) and Total Profit in Open Loop
Solutions.

Perfect Competition  Allaz-Vila Cournot

ME [€] 1.47 - 109 1.39-10%  1.28-10°
CS [€] 1.436 - 10° 0.919-10° 0.638 - 10°
Total Profit [€] 0.034 - 10° 0.473-10°  0.638 - 10°
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easier, less complicated open loop models, instead of solving the more realis-
tic but more complicated closed loop models, the results may differ greatly.
In both models the market is represented via a conjectured price response,
which allows us to capture various degrees of oligopolistic behavior. Setting
out to characterize the differences between these two models, we have found
that for one load period, the closed loop equilibrium equals the open loop
Cournot equilibrium for any choice of conjectured price response between per-
fect competition and Cournot competition — a generalization of Kreps and
Scheinkman-like [29] findings. In the case of multiple load periods, this result
can be extended. In particular, if closed loop models under different conjec-
tures have the same set of load periods in which capacity is constraining and
the corresponding multipliers are positive, then their first stage capacity deci-
sions are the same, although not their outputs during periods when capacity
is slack. Furthermore, if the Cournot open and closed loop solutions have the
same periods when capacity constrains, then their solutions are identical. We
also explore alternative conjectured price response models in which the strate-
gic second stage competition switches to Cournot in load periods in which
rivals’ capacity is binding. When capacity does not bind, the strategic behav-
ior can range from perfect competition to Cournot. Such alternative models
may be more realistic, however, pure strategy equilibria might not exist and
they are more difficult to solve.

As indicated in the first numerical example, this indicates that when having
market behavior close to Cournot competition, the additional effort of com-
puting the closed loop model (as opposed to the simpler open loop model) does
not, pay off because the outcomes are either exactly the same or very similar
depending on the data. But if behavior on the spot market is far from Cournot
competition and approaching perfect competition, the additional modeling ef-
fort might be worthwhile, as the closed loop model is capable of depicting a
feature that the open loop model fails to capture, which is that generation
companies would not voluntarily build all the capacity that might be deter-
mined by the spot market equilibrium if that meant less profits for themselves.
Thus the closed loop model could be useful to evaluate the effect of alterna-
tive market designs for mitigating market power in spot markets and incenting
capacity investments in the long run, e.g. capacity mechanisms, in Sakellaris
[42]. Extensions could also consider the effect of forward energy contracting as
well (as in Murphy and Smeers [35]). These policy analyses will be the subject
of future research. The second numerical example shows that when the sets
of active load periods do not coincide for closed loop solutions with different
strategic spot market behavior, then the closed loop conjectured price response
capacity can be less than the closed loop Cournot second stage capacity. We
also prove that the former capacity cannot exceed the latter when there are
symmetric agents and two load periods.

The third numerical example demonstrates that depending on the choice
of parameters, more competition in the spot market may lead to less market
efficiency and less consumer surplus in the closed loop model. This surpris-
ing result indicates that regulatory approaches that encourage or mandate
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marginal pricing in the spot market in order to protect consumers may actu-
ally lead to situations in which both consumers and generation companies are
worse off.

In future research we will address the issue of existence and uniqueness of
solutions, as has been done for the Cournot case by Murphy and Smeers [34],
who found that a pure-strategy closed loop equilibrium does not necessarily
exist but if it exists it is unique. We will also address the question concerning
under what a priori conditions the active sets of open and closed loop equilibria
coincide. There will be further investigation of games in which the conjectural
variation is endogenous, resulting from the possibility that power producers
might adopt the Cournot conjecture in binding load periods since they may be
aware that their rivals cannot expand output at such times. Finally, the games
presented here will be extended to multi-year games with sequential capacity
decisions, and the effects of forward contracting will be investigated.
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